| /* | 
 |  *  libata-core.c - helper library for ATA | 
 |  * | 
 |  *  Maintained by:  Tejun Heo <tj@kernel.org> | 
 |  *    		    Please ALWAYS copy linux-ide@vger.kernel.org | 
 |  *		    on emails. | 
 |  * | 
 |  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved. | 
 |  *  Copyright 2003-2004 Jeff Garzik | 
 |  * | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2, or (at your option) | 
 |  *  any later version. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, | 
 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  *  GNU General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License | 
 |  *  along with this program; see the file COPYING.  If not, write to | 
 |  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * | 
 |  *  libata documentation is available via 'make {ps|pdf}docs', | 
 |  *  as Documentation/driver-api/libata.rst | 
 |  * | 
 |  *  Hardware documentation available from http://www.t13.org/ and | 
 |  *  http://www.sata-io.org/ | 
 |  * | 
 |  *  Standards documents from: | 
 |  *	http://www.t13.org (ATA standards, PCI DMA IDE spec) | 
 |  *	http://www.t10.org (SCSI MMC - for ATAPI MMC) | 
 |  *	http://www.sata-io.org (SATA) | 
 |  *	http://www.compactflash.org (CF) | 
 |  *	http://www.qic.org (QIC157 - Tape and DSC) | 
 |  *	http://www.ce-ata.org (CE-ATA: not supported) | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/time.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/io.h> | 
 | #include <linux/async.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/glob.h> | 
 | #include <scsi/scsi.h> | 
 | #include <scsi/scsi_cmnd.h> | 
 | #include <scsi/scsi_host.h> | 
 | #include <linux/libata.h> | 
 | #include <asm/byteorder.h> | 
 | #include <asm/unaligned.h> | 
 | #include <linux/cdrom.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/leds.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/platform_device.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/libata.h> | 
 |  | 
 | #include "libata.h" | 
 | #include "libata-transport.h" | 
 |  | 
 | /* debounce timing parameters in msecs { interval, duration, timeout } */ | 
 | const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 }; | 
 | const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 }; | 
 | const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 }; | 
 |  | 
 | const struct ata_port_operations ata_base_port_ops = { | 
 | 	.prereset		= ata_std_prereset, | 
 | 	.postreset		= ata_std_postreset, | 
 | 	.error_handler		= ata_std_error_handler, | 
 | 	.sched_eh		= ata_std_sched_eh, | 
 | 	.end_eh			= ata_std_end_eh, | 
 | }; | 
 |  | 
 | const struct ata_port_operations sata_port_ops = { | 
 | 	.inherits		= &ata_base_port_ops, | 
 |  | 
 | 	.qc_defer		= ata_std_qc_defer, | 
 | 	.hardreset		= sata_std_hardreset, | 
 | }; | 
 |  | 
 | static unsigned int ata_dev_init_params(struct ata_device *dev, | 
 | 					u16 heads, u16 sectors); | 
 | static unsigned int ata_dev_set_xfermode(struct ata_device *dev); | 
 | static void ata_dev_xfermask(struct ata_device *dev); | 
 | static unsigned long ata_dev_blacklisted(const struct ata_device *dev); | 
 |  | 
 | atomic_t ata_print_id = ATOMIC_INIT(0); | 
 |  | 
 | struct ata_force_param { | 
 | 	const char	*name; | 
 | 	unsigned int	cbl; | 
 | 	int		spd_limit; | 
 | 	unsigned long	xfer_mask; | 
 | 	unsigned int	horkage_on; | 
 | 	unsigned int	horkage_off; | 
 | 	unsigned int	lflags; | 
 | }; | 
 |  | 
 | struct ata_force_ent { | 
 | 	int			port; | 
 | 	int			device; | 
 | 	struct ata_force_param	param; | 
 | }; | 
 |  | 
 | static struct ata_force_ent *ata_force_tbl; | 
 | static int ata_force_tbl_size; | 
 |  | 
 | static char ata_force_param_buf[PAGE_SIZE] __initdata; | 
 | /* param_buf is thrown away after initialization, disallow read */ | 
 | module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); | 
 | MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); | 
 |  | 
 | static int atapi_enabled = 1; | 
 | module_param(atapi_enabled, int, 0444); | 
 | MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); | 
 |  | 
 | static int atapi_dmadir = 0; | 
 | module_param(atapi_dmadir, int, 0444); | 
 | MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); | 
 |  | 
 | int atapi_passthru16 = 1; | 
 | module_param(atapi_passthru16, int, 0444); | 
 | MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); | 
 |  | 
 | int libata_fua = 0; | 
 | module_param_named(fua, libata_fua, int, 0444); | 
 | MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); | 
 |  | 
 | static int ata_ignore_hpa; | 
 | module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); | 
 | MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); | 
 |  | 
 | static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; | 
 | module_param_named(dma, libata_dma_mask, int, 0444); | 
 | MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); | 
 |  | 
 | static int ata_probe_timeout; | 
 | module_param(ata_probe_timeout, int, 0444); | 
 | MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); | 
 |  | 
 | int libata_noacpi = 0; | 
 | module_param_named(noacpi, libata_noacpi, int, 0444); | 
 | MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); | 
 |  | 
 | int libata_allow_tpm = 0; | 
 | module_param_named(allow_tpm, libata_allow_tpm, int, 0444); | 
 | MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); | 
 |  | 
 | static int atapi_an; | 
 | module_param(atapi_an, int, 0444); | 
 | MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); | 
 |  | 
 | MODULE_AUTHOR("Jeff Garzik"); | 
 | MODULE_DESCRIPTION("Library module for ATA devices"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_VERSION); | 
 |  | 
 |  | 
 | static bool ata_sstatus_online(u32 sstatus) | 
 | { | 
 | 	return (sstatus & 0xf) == 0x3; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_link_next - link iteration helper | 
 |  *	@link: the previous link, NULL to start | 
 |  *	@ap: ATA port containing links to iterate | 
 |  *	@mode: iteration mode, one of ATA_LITER_* | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Host lock or EH context. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Pointer to the next link. | 
 |  */ | 
 | struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, | 
 | 			       enum ata_link_iter_mode mode) | 
 | { | 
 | 	BUG_ON(mode != ATA_LITER_EDGE && | 
 | 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); | 
 |  | 
 | 	/* NULL link indicates start of iteration */ | 
 | 	if (!link) | 
 | 		switch (mode) { | 
 | 		case ATA_LITER_EDGE: | 
 | 		case ATA_LITER_PMP_FIRST: | 
 | 			if (sata_pmp_attached(ap)) | 
 | 				return ap->pmp_link; | 
 | 			/* fall through */ | 
 | 		case ATA_LITER_HOST_FIRST: | 
 | 			return &ap->link; | 
 | 		} | 
 |  | 
 | 	/* we just iterated over the host link, what's next? */ | 
 | 	if (link == &ap->link) | 
 | 		switch (mode) { | 
 | 		case ATA_LITER_HOST_FIRST: | 
 | 			if (sata_pmp_attached(ap)) | 
 | 				return ap->pmp_link; | 
 | 			/* fall through */ | 
 | 		case ATA_LITER_PMP_FIRST: | 
 | 			if (unlikely(ap->slave_link)) | 
 | 				return ap->slave_link; | 
 | 			/* fall through */ | 
 | 		case ATA_LITER_EDGE: | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 	/* slave_link excludes PMP */ | 
 | 	if (unlikely(link == ap->slave_link)) | 
 | 		return NULL; | 
 |  | 
 | 	/* we were over a PMP link */ | 
 | 	if (++link < ap->pmp_link + ap->nr_pmp_links) | 
 | 		return link; | 
 |  | 
 | 	if (mode == ATA_LITER_PMP_FIRST) | 
 | 		return &ap->link; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_next - device iteration helper | 
 |  *	@dev: the previous device, NULL to start | 
 |  *	@link: ATA link containing devices to iterate | 
 |  *	@mode: iteration mode, one of ATA_DITER_* | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Host lock or EH context. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Pointer to the next device. | 
 |  */ | 
 | struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, | 
 | 				enum ata_dev_iter_mode mode) | 
 | { | 
 | 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && | 
 | 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); | 
 |  | 
 | 	/* NULL dev indicates start of iteration */ | 
 | 	if (!dev) | 
 | 		switch (mode) { | 
 | 		case ATA_DITER_ENABLED: | 
 | 		case ATA_DITER_ALL: | 
 | 			dev = link->device; | 
 | 			goto check; | 
 | 		case ATA_DITER_ENABLED_REVERSE: | 
 | 		case ATA_DITER_ALL_REVERSE: | 
 | 			dev = link->device + ata_link_max_devices(link) - 1; | 
 | 			goto check; | 
 | 		} | 
 |  | 
 |  next: | 
 | 	/* move to the next one */ | 
 | 	switch (mode) { | 
 | 	case ATA_DITER_ENABLED: | 
 | 	case ATA_DITER_ALL: | 
 | 		if (++dev < link->device + ata_link_max_devices(link)) | 
 | 			goto check; | 
 | 		return NULL; | 
 | 	case ATA_DITER_ENABLED_REVERSE: | 
 | 	case ATA_DITER_ALL_REVERSE: | 
 | 		if (--dev >= link->device) | 
 | 			goto check; | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 |  check: | 
 | 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && | 
 | 	    !ata_dev_enabled(dev)) | 
 | 		goto next; | 
 | 	return dev; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_phys_link - find physical link for a device | 
 |  *	@dev: ATA device to look up physical link for | 
 |  * | 
 |  *	Look up physical link which @dev is attached to.  Note that | 
 |  *	this is different from @dev->link only when @dev is on slave | 
 |  *	link.  For all other cases, it's the same as @dev->link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Don't care. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Pointer to the found physical link. | 
 |  */ | 
 | struct ata_link *ata_dev_phys_link(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 |  | 
 | 	if (!ap->slave_link) | 
 | 		return dev->link; | 
 | 	if (!dev->devno) | 
 | 		return &ap->link; | 
 | 	return ap->slave_link; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_force_cbl - force cable type according to libata.force | 
 |  *	@ap: ATA port of interest | 
 |  * | 
 |  *	Force cable type according to libata.force and whine about it. | 
 |  *	The last entry which has matching port number is used, so it | 
 |  *	can be specified as part of device force parameters.  For | 
 |  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the | 
 |  *	same effect. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  */ | 
 | void ata_force_cbl(struct ata_port *ap) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = ata_force_tbl_size - 1; i >= 0; i--) { | 
 | 		const struct ata_force_ent *fe = &ata_force_tbl[i]; | 
 |  | 
 | 		if (fe->port != -1 && fe->port != ap->print_id) | 
 | 			continue; | 
 |  | 
 | 		if (fe->param.cbl == ATA_CBL_NONE) | 
 | 			continue; | 
 |  | 
 | 		ap->cbl = fe->param.cbl; | 
 | 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_force_link_limits - force link limits according to libata.force | 
 |  *	@link: ATA link of interest | 
 |  * | 
 |  *	Force link flags and SATA spd limit according to libata.force | 
 |  *	and whine about it.  When only the port part is specified | 
 |  *	(e.g. 1:), the limit applies to all links connected to both | 
 |  *	the host link and all fan-out ports connected via PMP.  If the | 
 |  *	device part is specified as 0 (e.g. 1.00:), it specifies the | 
 |  *	first fan-out link not the host link.  Device number 15 always | 
 |  *	points to the host link whether PMP is attached or not.  If the | 
 |  *	controller has slave link, device number 16 points to it. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  */ | 
 | static void ata_force_link_limits(struct ata_link *link) | 
 | { | 
 | 	bool did_spd = false; | 
 | 	int linkno = link->pmp; | 
 | 	int i; | 
 |  | 
 | 	if (ata_is_host_link(link)) | 
 | 		linkno += 15; | 
 |  | 
 | 	for (i = ata_force_tbl_size - 1; i >= 0; i--) { | 
 | 		const struct ata_force_ent *fe = &ata_force_tbl[i]; | 
 |  | 
 | 		if (fe->port != -1 && fe->port != link->ap->print_id) | 
 | 			continue; | 
 |  | 
 | 		if (fe->device != -1 && fe->device != linkno) | 
 | 			continue; | 
 |  | 
 | 		/* only honor the first spd limit */ | 
 | 		if (!did_spd && fe->param.spd_limit) { | 
 | 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; | 
 | 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", | 
 | 					fe->param.name); | 
 | 			did_spd = true; | 
 | 		} | 
 |  | 
 | 		/* let lflags stack */ | 
 | 		if (fe->param.lflags) { | 
 | 			link->flags |= fe->param.lflags; | 
 | 			ata_link_notice(link, | 
 | 					"FORCE: link flag 0x%x forced -> 0x%x\n", | 
 | 					fe->param.lflags, link->flags); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_force_xfermask - force xfermask according to libata.force | 
 |  *	@dev: ATA device of interest | 
 |  * | 
 |  *	Force xfer_mask according to libata.force and whine about it. | 
 |  *	For consistency with link selection, device number 15 selects | 
 |  *	the first device connected to the host link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  */ | 
 | static void ata_force_xfermask(struct ata_device *dev) | 
 | { | 
 | 	int devno = dev->link->pmp + dev->devno; | 
 | 	int alt_devno = devno; | 
 | 	int i; | 
 |  | 
 | 	/* allow n.15/16 for devices attached to host port */ | 
 | 	if (ata_is_host_link(dev->link)) | 
 | 		alt_devno += 15; | 
 |  | 
 | 	for (i = ata_force_tbl_size - 1; i >= 0; i--) { | 
 | 		const struct ata_force_ent *fe = &ata_force_tbl[i]; | 
 | 		unsigned long pio_mask, mwdma_mask, udma_mask; | 
 |  | 
 | 		if (fe->port != -1 && fe->port != dev->link->ap->print_id) | 
 | 			continue; | 
 |  | 
 | 		if (fe->device != -1 && fe->device != devno && | 
 | 		    fe->device != alt_devno) | 
 | 			continue; | 
 |  | 
 | 		if (!fe->param.xfer_mask) | 
 | 			continue; | 
 |  | 
 | 		ata_unpack_xfermask(fe->param.xfer_mask, | 
 | 				    &pio_mask, &mwdma_mask, &udma_mask); | 
 | 		if (udma_mask) | 
 | 			dev->udma_mask = udma_mask; | 
 | 		else if (mwdma_mask) { | 
 | 			dev->udma_mask = 0; | 
 | 			dev->mwdma_mask = mwdma_mask; | 
 | 		} else { | 
 | 			dev->udma_mask = 0; | 
 | 			dev->mwdma_mask = 0; | 
 | 			dev->pio_mask = pio_mask; | 
 | 		} | 
 |  | 
 | 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", | 
 | 			       fe->param.name); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_force_horkage - force horkage according to libata.force | 
 |  *	@dev: ATA device of interest | 
 |  * | 
 |  *	Force horkage according to libata.force and whine about it. | 
 |  *	For consistency with link selection, device number 15 selects | 
 |  *	the first device connected to the host link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  */ | 
 | static void ata_force_horkage(struct ata_device *dev) | 
 | { | 
 | 	int devno = dev->link->pmp + dev->devno; | 
 | 	int alt_devno = devno; | 
 | 	int i; | 
 |  | 
 | 	/* allow n.15/16 for devices attached to host port */ | 
 | 	if (ata_is_host_link(dev->link)) | 
 | 		alt_devno += 15; | 
 |  | 
 | 	for (i = 0; i < ata_force_tbl_size; i++) { | 
 | 		const struct ata_force_ent *fe = &ata_force_tbl[i]; | 
 |  | 
 | 		if (fe->port != -1 && fe->port != dev->link->ap->print_id) | 
 | 			continue; | 
 |  | 
 | 		if (fe->device != -1 && fe->device != devno && | 
 | 		    fe->device != alt_devno) | 
 | 			continue; | 
 |  | 
 | 		if (!(~dev->horkage & fe->param.horkage_on) && | 
 | 		    !(dev->horkage & fe->param.horkage_off)) | 
 | 			continue; | 
 |  | 
 | 		dev->horkage |= fe->param.horkage_on; | 
 | 		dev->horkage &= ~fe->param.horkage_off; | 
 |  | 
 | 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", | 
 | 			       fe->param.name); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode | 
 |  *	@opcode: SCSI opcode | 
 |  * | 
 |  *	Determine ATAPI command type from @opcode. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} | 
 |  */ | 
 | int atapi_cmd_type(u8 opcode) | 
 | { | 
 | 	switch (opcode) { | 
 | 	case GPCMD_READ_10: | 
 | 	case GPCMD_READ_12: | 
 | 		return ATAPI_READ; | 
 |  | 
 | 	case GPCMD_WRITE_10: | 
 | 	case GPCMD_WRITE_12: | 
 | 	case GPCMD_WRITE_AND_VERIFY_10: | 
 | 		return ATAPI_WRITE; | 
 |  | 
 | 	case GPCMD_READ_CD: | 
 | 	case GPCMD_READ_CD_MSF: | 
 | 		return ATAPI_READ_CD; | 
 |  | 
 | 	case ATA_16: | 
 | 	case ATA_12: | 
 | 		if (atapi_passthru16) | 
 | 			return ATAPI_PASS_THRU; | 
 | 		/* fall thru */ | 
 | 	default: | 
 | 		return ATAPI_MISC; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure | 
 |  *	@tf: Taskfile to convert | 
 |  *	@pmp: Port multiplier port | 
 |  *	@is_cmd: This FIS is for command | 
 |  *	@fis: Buffer into which data will output | 
 |  * | 
 |  *	Converts a standard ATA taskfile to a Serial ATA | 
 |  *	FIS structure (Register - Host to Device). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) | 
 | { | 
 | 	fis[0] = 0x27;			/* Register - Host to Device FIS */ | 
 | 	fis[1] = pmp & 0xf;		/* Port multiplier number*/ | 
 | 	if (is_cmd) | 
 | 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */ | 
 |  | 
 | 	fis[2] = tf->command; | 
 | 	fis[3] = tf->feature; | 
 |  | 
 | 	fis[4] = tf->lbal; | 
 | 	fis[5] = tf->lbam; | 
 | 	fis[6] = tf->lbah; | 
 | 	fis[7] = tf->device; | 
 |  | 
 | 	fis[8] = tf->hob_lbal; | 
 | 	fis[9] = tf->hob_lbam; | 
 | 	fis[10] = tf->hob_lbah; | 
 | 	fis[11] = tf->hob_feature; | 
 |  | 
 | 	fis[12] = tf->nsect; | 
 | 	fis[13] = tf->hob_nsect; | 
 | 	fis[14] = 0; | 
 | 	fis[15] = tf->ctl; | 
 |  | 
 | 	fis[16] = tf->auxiliary & 0xff; | 
 | 	fis[17] = (tf->auxiliary >> 8) & 0xff; | 
 | 	fis[18] = (tf->auxiliary >> 16) & 0xff; | 
 | 	fis[19] = (tf->auxiliary >> 24) & 0xff; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile | 
 |  *	@fis: Buffer from which data will be input | 
 |  *	@tf: Taskfile to output | 
 |  * | 
 |  *	Converts a serial ATA FIS structure to a standard ATA taskfile. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 |  | 
 | void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) | 
 | { | 
 | 	tf->command	= fis[2];	/* status */ | 
 | 	tf->feature	= fis[3];	/* error */ | 
 |  | 
 | 	tf->lbal	= fis[4]; | 
 | 	tf->lbam	= fis[5]; | 
 | 	tf->lbah	= fis[6]; | 
 | 	tf->device	= fis[7]; | 
 |  | 
 | 	tf->hob_lbal	= fis[8]; | 
 | 	tf->hob_lbam	= fis[9]; | 
 | 	tf->hob_lbah	= fis[10]; | 
 |  | 
 | 	tf->nsect	= fis[12]; | 
 | 	tf->hob_nsect	= fis[13]; | 
 | } | 
 |  | 
 | static const u8 ata_rw_cmds[] = { | 
 | 	/* pio multi */ | 
 | 	ATA_CMD_READ_MULTI, | 
 | 	ATA_CMD_WRITE_MULTI, | 
 | 	ATA_CMD_READ_MULTI_EXT, | 
 | 	ATA_CMD_WRITE_MULTI_EXT, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 | 	ATA_CMD_WRITE_MULTI_FUA_EXT, | 
 | 	/* pio */ | 
 | 	ATA_CMD_PIO_READ, | 
 | 	ATA_CMD_PIO_WRITE, | 
 | 	ATA_CMD_PIO_READ_EXT, | 
 | 	ATA_CMD_PIO_WRITE_EXT, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 | 	/* dma */ | 
 | 	ATA_CMD_READ, | 
 | 	ATA_CMD_WRITE, | 
 | 	ATA_CMD_READ_EXT, | 
 | 	ATA_CMD_WRITE_EXT, | 
 | 	0, | 
 | 	0, | 
 | 	0, | 
 | 	ATA_CMD_WRITE_FUA_EXT | 
 | }; | 
 |  | 
 | /** | 
 |  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol | 
 |  *	@tf: command to examine and configure | 
 |  *	@dev: device tf belongs to | 
 |  * | 
 |  *	Examine the device configuration and tf->flags to calculate | 
 |  *	the proper read/write commands and protocol to use. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) | 
 | { | 
 | 	u8 cmd; | 
 |  | 
 | 	int index, fua, lba48, write; | 
 |  | 
 | 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; | 
 | 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; | 
 | 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; | 
 |  | 
 | 	if (dev->flags & ATA_DFLAG_PIO) { | 
 | 		tf->protocol = ATA_PROT_PIO; | 
 | 		index = dev->multi_count ? 0 : 8; | 
 | 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { | 
 | 		/* Unable to use DMA due to host limitation */ | 
 | 		tf->protocol = ATA_PROT_PIO; | 
 | 		index = dev->multi_count ? 0 : 8; | 
 | 	} else { | 
 | 		tf->protocol = ATA_PROT_DMA; | 
 | 		index = 16; | 
 | 	} | 
 |  | 
 | 	cmd = ata_rw_cmds[index + fua + lba48 + write]; | 
 | 	if (cmd) { | 
 | 		tf->command = cmd; | 
 | 		return 0; | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_tf_read_block - Read block address from ATA taskfile | 
 |  *	@tf: ATA taskfile of interest | 
 |  *	@dev: ATA device @tf belongs to | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	Read block address from @tf.  This function can handle all | 
 |  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and | 
 |  *	flags select the address format to use. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Block address read from @tf. | 
 |  */ | 
 | u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) | 
 | { | 
 | 	u64 block = 0; | 
 |  | 
 | 	if (tf->flags & ATA_TFLAG_LBA) { | 
 | 		if (tf->flags & ATA_TFLAG_LBA48) { | 
 | 			block |= (u64)tf->hob_lbah << 40; | 
 | 			block |= (u64)tf->hob_lbam << 32; | 
 | 			block |= (u64)tf->hob_lbal << 24; | 
 | 		} else | 
 | 			block |= (tf->device & 0xf) << 24; | 
 |  | 
 | 		block |= tf->lbah << 16; | 
 | 		block |= tf->lbam << 8; | 
 | 		block |= tf->lbal; | 
 | 	} else { | 
 | 		u32 cyl, head, sect; | 
 |  | 
 | 		cyl = tf->lbam | (tf->lbah << 8); | 
 | 		head = tf->device & 0xf; | 
 | 		sect = tf->lbal; | 
 |  | 
 | 		if (!sect) { | 
 | 			ata_dev_warn(dev, | 
 | 				     "device reported invalid CHS sector 0\n"); | 
 | 			return U64_MAX; | 
 | 		} | 
 |  | 
 | 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1; | 
 | 	} | 
 |  | 
 | 	return block; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_build_rw_tf - Build ATA taskfile for given read/write request | 
 |  *	@tf: Target ATA taskfile | 
 |  *	@dev: ATA device @tf belongs to | 
 |  *	@block: Block address | 
 |  *	@n_block: Number of blocks | 
 |  *	@tf_flags: RW/FUA etc... | 
 |  *	@tag: tag | 
 |  *	@class: IO priority class | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	Build ATA taskfile @tf for read/write request described by | 
 |  *	@block, @n_block, @tf_flags and @tag on @dev. | 
 |  * | 
 |  *	RETURNS: | 
 |  * | 
 |  *	0 on success, -ERANGE if the request is too large for @dev, | 
 |  *	-EINVAL if the request is invalid. | 
 |  */ | 
 | int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, | 
 | 		    u64 block, u32 n_block, unsigned int tf_flags, | 
 | 		    unsigned int tag, int class) | 
 | { | 
 | 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 
 | 	tf->flags |= tf_flags; | 
 |  | 
 | 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { | 
 | 		/* yay, NCQ */ | 
 | 		if (!lba_48_ok(block, n_block)) | 
 | 			return -ERANGE; | 
 |  | 
 | 		tf->protocol = ATA_PROT_NCQ; | 
 | 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; | 
 |  | 
 | 		if (tf->flags & ATA_TFLAG_WRITE) | 
 | 			tf->command = ATA_CMD_FPDMA_WRITE; | 
 | 		else | 
 | 			tf->command = ATA_CMD_FPDMA_READ; | 
 |  | 
 | 		tf->nsect = tag << 3; | 
 | 		tf->hob_feature = (n_block >> 8) & 0xff; | 
 | 		tf->feature = n_block & 0xff; | 
 |  | 
 | 		tf->hob_lbah = (block >> 40) & 0xff; | 
 | 		tf->hob_lbam = (block >> 32) & 0xff; | 
 | 		tf->hob_lbal = (block >> 24) & 0xff; | 
 | 		tf->lbah = (block >> 16) & 0xff; | 
 | 		tf->lbam = (block >> 8) & 0xff; | 
 | 		tf->lbal = block & 0xff; | 
 |  | 
 | 		tf->device = ATA_LBA; | 
 | 		if (tf->flags & ATA_TFLAG_FUA) | 
 | 			tf->device |= 1 << 7; | 
 |  | 
 | 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) { | 
 | 			if (class == IOPRIO_CLASS_RT) | 
 | 				tf->hob_nsect |= ATA_PRIO_HIGH << | 
 | 						 ATA_SHIFT_PRIO; | 
 | 		} | 
 | 	} else if (dev->flags & ATA_DFLAG_LBA) { | 
 | 		tf->flags |= ATA_TFLAG_LBA; | 
 |  | 
 | 		if (lba_28_ok(block, n_block)) { | 
 | 			/* use LBA28 */ | 
 | 			tf->device |= (block >> 24) & 0xf; | 
 | 		} else if (lba_48_ok(block, n_block)) { | 
 | 			if (!(dev->flags & ATA_DFLAG_LBA48)) | 
 | 				return -ERANGE; | 
 |  | 
 | 			/* use LBA48 */ | 
 | 			tf->flags |= ATA_TFLAG_LBA48; | 
 |  | 
 | 			tf->hob_nsect = (n_block >> 8) & 0xff; | 
 |  | 
 | 			tf->hob_lbah = (block >> 40) & 0xff; | 
 | 			tf->hob_lbam = (block >> 32) & 0xff; | 
 | 			tf->hob_lbal = (block >> 24) & 0xff; | 
 | 		} else | 
 | 			/* request too large even for LBA48 */ | 
 | 			return -ERANGE; | 
 |  | 
 | 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		tf->nsect = n_block & 0xff; | 
 |  | 
 | 		tf->lbah = (block >> 16) & 0xff; | 
 | 		tf->lbam = (block >> 8) & 0xff; | 
 | 		tf->lbal = block & 0xff; | 
 |  | 
 | 		tf->device |= ATA_LBA; | 
 | 	} else { | 
 | 		/* CHS */ | 
 | 		u32 sect, head, cyl, track; | 
 |  | 
 | 		/* The request -may- be too large for CHS addressing. */ | 
 | 		if (!lba_28_ok(block, n_block)) | 
 | 			return -ERANGE; | 
 |  | 
 | 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* Convert LBA to CHS */ | 
 | 		track = (u32)block / dev->sectors; | 
 | 		cyl   = track / dev->heads; | 
 | 		head  = track % dev->heads; | 
 | 		sect  = (u32)block % dev->sectors + 1; | 
 |  | 
 | 		DPRINTK("block %u track %u cyl %u head %u sect %u\n", | 
 | 			(u32)block, track, cyl, head, sect); | 
 |  | 
 | 		/* Check whether the converted CHS can fit. | 
 | 		   Cylinder: 0-65535 | 
 | 		   Head: 0-15 | 
 | 		   Sector: 1-255*/ | 
 | 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) | 
 | 			return -ERANGE; | 
 |  | 
 | 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ | 
 | 		tf->lbal = sect; | 
 | 		tf->lbam = cyl; | 
 | 		tf->lbah = cyl >> 8; | 
 | 		tf->device |= head; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask | 
 |  *	@pio_mask: pio_mask | 
 |  *	@mwdma_mask: mwdma_mask | 
 |  *	@udma_mask: udma_mask | 
 |  * | 
 |  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single | 
 |  *	unsigned int xfer_mask. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Packed xfer_mask. | 
 |  */ | 
 | unsigned long ata_pack_xfermask(unsigned long pio_mask, | 
 | 				unsigned long mwdma_mask, | 
 | 				unsigned long udma_mask) | 
 | { | 
 | 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | | 
 | 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | | 
 | 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks | 
 |  *	@xfer_mask: xfer_mask to unpack | 
 |  *	@pio_mask: resulting pio_mask | 
 |  *	@mwdma_mask: resulting mwdma_mask | 
 |  *	@udma_mask: resulting udma_mask | 
 |  * | 
 |  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. | 
 |  *	Any NULL destination masks will be ignored. | 
 |  */ | 
 | void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, | 
 | 			 unsigned long *mwdma_mask, unsigned long *udma_mask) | 
 | { | 
 | 	if (pio_mask) | 
 | 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; | 
 | 	if (mwdma_mask) | 
 | 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; | 
 | 	if (udma_mask) | 
 | 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; | 
 | } | 
 |  | 
 | static const struct ata_xfer_ent { | 
 | 	int shift, bits; | 
 | 	u8 base; | 
 | } ata_xfer_tbl[] = { | 
 | 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, | 
 | 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, | 
 | 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, | 
 | 	{ -1, }, | 
 | }; | 
 |  | 
 | /** | 
 |  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask | 
 |  *	@xfer_mask: xfer_mask of interest | 
 |  * | 
 |  *	Return matching XFER_* value for @xfer_mask.  Only the highest | 
 |  *	bit of @xfer_mask is considered. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Matching XFER_* value, 0xff if no match found. | 
 |  */ | 
 | u8 ata_xfer_mask2mode(unsigned long xfer_mask) | 
 | { | 
 | 	int highbit = fls(xfer_mask) - 1; | 
 | 	const struct ata_xfer_ent *ent; | 
 |  | 
 | 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) | 
 | 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits) | 
 | 			return ent->base + highbit - ent->shift; | 
 | 	return 0xff; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_* | 
 |  *	@xfer_mode: XFER_* of interest | 
 |  * | 
 |  *	Return matching xfer_mask for @xfer_mode. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Matching xfer_mask, 0 if no match found. | 
 |  */ | 
 | unsigned long ata_xfer_mode2mask(u8 xfer_mode) | 
 | { | 
 | 	const struct ata_xfer_ent *ent; | 
 |  | 
 | 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) | 
 | 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) | 
 | 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) | 
 | 				& ~((1 << ent->shift) - 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_* | 
 |  *	@xfer_mode: XFER_* of interest | 
 |  * | 
 |  *	Return matching xfer_shift for @xfer_mode. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Matching xfer_shift, -1 if no match found. | 
 |  */ | 
 | int ata_xfer_mode2shift(unsigned long xfer_mode) | 
 | { | 
 | 	const struct ata_xfer_ent *ent; | 
 |  | 
 | 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) | 
 | 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) | 
 | 			return ent->shift; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_mode_string - convert xfer_mask to string | 
 |  *	@xfer_mask: mask of bits supported; only highest bit counts. | 
 |  * | 
 |  *	Determine string which represents the highest speed | 
 |  *	(highest bit in @modemask). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Constant C string representing highest speed listed in | 
 |  *	@mode_mask, or the constant C string "<n/a>". | 
 |  */ | 
 | const char *ata_mode_string(unsigned long xfer_mask) | 
 | { | 
 | 	static const char * const xfer_mode_str[] = { | 
 | 		"PIO0", | 
 | 		"PIO1", | 
 | 		"PIO2", | 
 | 		"PIO3", | 
 | 		"PIO4", | 
 | 		"PIO5", | 
 | 		"PIO6", | 
 | 		"MWDMA0", | 
 | 		"MWDMA1", | 
 | 		"MWDMA2", | 
 | 		"MWDMA3", | 
 | 		"MWDMA4", | 
 | 		"UDMA/16", | 
 | 		"UDMA/25", | 
 | 		"UDMA/33", | 
 | 		"UDMA/44", | 
 | 		"UDMA/66", | 
 | 		"UDMA/100", | 
 | 		"UDMA/133", | 
 | 		"UDMA7", | 
 | 	}; | 
 | 	int highbit; | 
 |  | 
 | 	highbit = fls(xfer_mask) - 1; | 
 | 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) | 
 | 		return xfer_mode_str[highbit]; | 
 | 	return "<n/a>"; | 
 | } | 
 |  | 
 | const char *sata_spd_string(unsigned int spd) | 
 | { | 
 | 	static const char * const spd_str[] = { | 
 | 		"1.5 Gbps", | 
 | 		"3.0 Gbps", | 
 | 		"6.0 Gbps", | 
 | 	}; | 
 |  | 
 | 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) | 
 | 		return "<unknown>"; | 
 | 	return spd_str[spd - 1]; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_classify - determine device type based on ATA-spec signature | 
 |  *	@tf: ATA taskfile register set for device to be identified | 
 |  * | 
 |  *	Determine from taskfile register contents whether a device is | 
 |  *	ATA or ATAPI, as per "Signature and persistence" section | 
 |  *	of ATA/PI spec (volume 1, sect 5.14). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, | 
 |  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. | 
 |  */ | 
 | unsigned int ata_dev_classify(const struct ata_taskfile *tf) | 
 | { | 
 | 	/* Apple's open source Darwin code hints that some devices only | 
 | 	 * put a proper signature into the LBA mid/high registers, | 
 | 	 * So, we only check those.  It's sufficient for uniqueness. | 
 | 	 * | 
 | 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate | 
 | 	 * signatures for ATA and ATAPI devices attached on SerialATA, | 
 | 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA | 
 | 	 * spec has never mentioned about using different signatures | 
 | 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port | 
 | 	 * Multiplier specification began to use 0x69/0x96 to identify | 
 | 	 * port multpliers and 0x3c/0xc3 to identify SEMB device. | 
 | 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and | 
 | 	 * 0x69/0x96 shortly and described them as reserved for | 
 | 	 * SerialATA. | 
 | 	 * | 
 | 	 * We follow the current spec and consider that 0x69/0x96 | 
 | 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. | 
 | 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports | 
 | 	 * SEMB signature.  This is worked around in | 
 | 	 * ata_dev_read_id(). | 
 | 	 */ | 
 | 	if ((tf->lbam == 0) && (tf->lbah == 0)) { | 
 | 		DPRINTK("found ATA device by sig\n"); | 
 | 		return ATA_DEV_ATA; | 
 | 	} | 
 |  | 
 | 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { | 
 | 		DPRINTK("found ATAPI device by sig\n"); | 
 | 		return ATA_DEV_ATAPI; | 
 | 	} | 
 |  | 
 | 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { | 
 | 		DPRINTK("found PMP device by sig\n"); | 
 | 		return ATA_DEV_PMP; | 
 | 	} | 
 |  | 
 | 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { | 
 | 		DPRINTK("found SEMB device by sig (could be ATA device)\n"); | 
 | 		return ATA_DEV_SEMB; | 
 | 	} | 
 |  | 
 | 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { | 
 | 		DPRINTK("found ZAC device by sig\n"); | 
 | 		return ATA_DEV_ZAC; | 
 | 	} | 
 |  | 
 | 	DPRINTK("unknown device\n"); | 
 | 	return ATA_DEV_UNKNOWN; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_id_string - Convert IDENTIFY DEVICE page into string | 
 |  *	@id: IDENTIFY DEVICE results we will examine | 
 |  *	@s: string into which data is output | 
 |  *	@ofs: offset into identify device page | 
 |  *	@len: length of string to return. must be an even number. | 
 |  * | 
 |  *	The strings in the IDENTIFY DEVICE page are broken up into | 
 |  *	16-bit chunks.  Run through the string, and output each | 
 |  *	8-bit chunk linearly, regardless of platform. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 |  | 
 | void ata_id_string(const u16 *id, unsigned char *s, | 
 | 		   unsigned int ofs, unsigned int len) | 
 | { | 
 | 	unsigned int c; | 
 |  | 
 | 	BUG_ON(len & 1); | 
 |  | 
 | 	while (len > 0) { | 
 | 		c = id[ofs] >> 8; | 
 | 		*s = c; | 
 | 		s++; | 
 |  | 
 | 		c = id[ofs] & 0xff; | 
 | 		*s = c; | 
 | 		s++; | 
 |  | 
 | 		ofs++; | 
 | 		len -= 2; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string | 
 |  *	@id: IDENTIFY DEVICE results we will examine | 
 |  *	@s: string into which data is output | 
 |  *	@ofs: offset into identify device page | 
 |  *	@len: length of string to return. must be an odd number. | 
 |  * | 
 |  *	This function is identical to ata_id_string except that it | 
 |  *	trims trailing spaces and terminates the resulting string with | 
 |  *	null.  @len must be actual maximum length (even number) + 1. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 | void ata_id_c_string(const u16 *id, unsigned char *s, | 
 | 		     unsigned int ofs, unsigned int len) | 
 | { | 
 | 	unsigned char *p; | 
 |  | 
 | 	ata_id_string(id, s, ofs, len - 1); | 
 |  | 
 | 	p = s + strnlen(s, len - 1); | 
 | 	while (p > s && p[-1] == ' ') | 
 | 		p--; | 
 | 	*p = '\0'; | 
 | } | 
 |  | 
 | static u64 ata_id_n_sectors(const u16 *id) | 
 | { | 
 | 	if (ata_id_has_lba(id)) { | 
 | 		if (ata_id_has_lba48(id)) | 
 | 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); | 
 | 		else | 
 | 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY); | 
 | 	} else { | 
 | 		if (ata_id_current_chs_valid(id)) | 
 | 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * | 
 | 			       id[ATA_ID_CUR_SECTORS]; | 
 | 		else | 
 | 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * | 
 | 			       id[ATA_ID_SECTORS]; | 
 | 	} | 
 | } | 
 |  | 
 | u64 ata_tf_to_lba48(const struct ata_taskfile *tf) | 
 | { | 
 | 	u64 sectors = 0; | 
 |  | 
 | 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; | 
 | 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; | 
 | 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; | 
 | 	sectors |= (tf->lbah & 0xff) << 16; | 
 | 	sectors |= (tf->lbam & 0xff) << 8; | 
 | 	sectors |= (tf->lbal & 0xff); | 
 |  | 
 | 	return sectors; | 
 | } | 
 |  | 
 | u64 ata_tf_to_lba(const struct ata_taskfile *tf) | 
 | { | 
 | 	u64 sectors = 0; | 
 |  | 
 | 	sectors |= (tf->device & 0x0f) << 24; | 
 | 	sectors |= (tf->lbah & 0xff) << 16; | 
 | 	sectors |= (tf->lbam & 0xff) << 8; | 
 | 	sectors |= (tf->lbal & 0xff); | 
 |  | 
 | 	return sectors; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_read_native_max_address - Read native max address | 
 |  *	@dev: target device | 
 |  *	@max_sectors: out parameter for the result native max address | 
 |  * | 
 |  *	Perform an LBA48 or LBA28 native size query upon the device in | 
 |  *	question. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -EACCES if command is aborted by the drive. | 
 |  *	-EIO on other errors. | 
 |  */ | 
 | static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) | 
 | { | 
 | 	unsigned int err_mask; | 
 | 	struct ata_taskfile tf; | 
 | 	int lba48 = ata_id_has_lba48(dev->id); | 
 |  | 
 | 	ata_tf_init(dev, &tf); | 
 |  | 
 | 	/* always clear all address registers */ | 
 | 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; | 
 |  | 
 | 	if (lba48) { | 
 | 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; | 
 | 		tf.flags |= ATA_TFLAG_LBA48; | 
 | 	} else | 
 | 		tf.command = ATA_CMD_READ_NATIVE_MAX; | 
 |  | 
 | 	tf.protocol = ATA_PROT_NODATA; | 
 | 	tf.device |= ATA_LBA; | 
 |  | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); | 
 | 	if (err_mask) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "failed to read native max address (err_mask=0x%x)\n", | 
 | 			     err_mask); | 
 | 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) | 
 | 			return -EACCES; | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (lba48) | 
 | 		*max_sectors = ata_tf_to_lba48(&tf) + 1; | 
 | 	else | 
 | 		*max_sectors = ata_tf_to_lba(&tf) + 1; | 
 | 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE) | 
 | 		(*max_sectors)--; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_set_max_sectors - Set max sectors | 
 |  *	@dev: target device | 
 |  *	@new_sectors: new max sectors value to set for the device | 
 |  * | 
 |  *	Set max sectors of @dev to @new_sectors. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -EACCES if command is aborted or denied (due to | 
 |  *	previous non-volatile SET_MAX) by the drive.  -EIO on other | 
 |  *	errors. | 
 |  */ | 
 | static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) | 
 | { | 
 | 	unsigned int err_mask; | 
 | 	struct ata_taskfile tf; | 
 | 	int lba48 = ata_id_has_lba48(dev->id); | 
 |  | 
 | 	new_sectors--; | 
 |  | 
 | 	ata_tf_init(dev, &tf); | 
 |  | 
 | 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; | 
 |  | 
 | 	if (lba48) { | 
 | 		tf.command = ATA_CMD_SET_MAX_EXT; | 
 | 		tf.flags |= ATA_TFLAG_LBA48; | 
 |  | 
 | 		tf.hob_lbal = (new_sectors >> 24) & 0xff; | 
 | 		tf.hob_lbam = (new_sectors >> 32) & 0xff; | 
 | 		tf.hob_lbah = (new_sectors >> 40) & 0xff; | 
 | 	} else { | 
 | 		tf.command = ATA_CMD_SET_MAX; | 
 |  | 
 | 		tf.device |= (new_sectors >> 24) & 0xf; | 
 | 	} | 
 |  | 
 | 	tf.protocol = ATA_PROT_NODATA; | 
 | 	tf.device |= ATA_LBA; | 
 |  | 
 | 	tf.lbal = (new_sectors >> 0) & 0xff; | 
 | 	tf.lbam = (new_sectors >> 8) & 0xff; | 
 | 	tf.lbah = (new_sectors >> 16) & 0xff; | 
 |  | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); | 
 | 	if (err_mask) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "failed to set max address (err_mask=0x%x)\n", | 
 | 			     err_mask); | 
 | 		if (err_mask == AC_ERR_DEV && | 
 | 		    (tf.feature & (ATA_ABORTED | ATA_IDNF))) | 
 | 			return -EACCES; | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_hpa_resize		-	Resize a device with an HPA set | 
 |  *	@dev: Device to resize | 
 |  * | 
 |  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize | 
 |  *	it if required to the full size of the media. The caller must check | 
 |  *	the drive has the HPA feature set enabled. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno on failure. | 
 |  */ | 
 | static int ata_hpa_resize(struct ata_device *dev) | 
 | { | 
 | 	struct ata_eh_context *ehc = &dev->link->eh_context; | 
 | 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; | 
 | 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; | 
 | 	u64 sectors = ata_id_n_sectors(dev->id); | 
 | 	u64 native_sectors; | 
 | 	int rc; | 
 |  | 
 | 	/* do we need to do it? */ | 
 | 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || | 
 | 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || | 
 | 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) | 
 | 		return 0; | 
 |  | 
 | 	/* read native max address */ | 
 | 	rc = ata_read_native_max_address(dev, &native_sectors); | 
 | 	if (rc) { | 
 | 		/* If device aborted the command or HPA isn't going to | 
 | 		 * be unlocked, skip HPA resizing. | 
 | 		 */ | 
 | 		if (rc == -EACCES || !unlock_hpa) { | 
 | 			ata_dev_warn(dev, | 
 | 				     "HPA support seems broken, skipping HPA handling\n"); | 
 | 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA; | 
 |  | 
 | 			/* we can continue if device aborted the command */ | 
 | 			if (rc == -EACCES) | 
 | 				rc = 0; | 
 | 		} | 
 |  | 
 | 		return rc; | 
 | 	} | 
 | 	dev->n_native_sectors = native_sectors; | 
 |  | 
 | 	/* nothing to do? */ | 
 | 	if (native_sectors <= sectors || !unlock_hpa) { | 
 | 		if (!print_info || native_sectors == sectors) | 
 | 			return 0; | 
 |  | 
 | 		if (native_sectors > sectors) | 
 | 			ata_dev_info(dev, | 
 | 				"HPA detected: current %llu, native %llu\n", | 
 | 				(unsigned long long)sectors, | 
 | 				(unsigned long long)native_sectors); | 
 | 		else if (native_sectors < sectors) | 
 | 			ata_dev_warn(dev, | 
 | 				"native sectors (%llu) is smaller than sectors (%llu)\n", | 
 | 				(unsigned long long)native_sectors, | 
 | 				(unsigned long long)sectors); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* let's unlock HPA */ | 
 | 	rc = ata_set_max_sectors(dev, native_sectors); | 
 | 	if (rc == -EACCES) { | 
 | 		/* if device aborted the command, skip HPA resizing */ | 
 | 		ata_dev_warn(dev, | 
 | 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n", | 
 | 			     (unsigned long long)sectors, | 
 | 			     (unsigned long long)native_sectors); | 
 | 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA; | 
 | 		return 0; | 
 | 	} else if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* re-read IDENTIFY data */ | 
 | 	rc = ata_dev_reread_id(dev, 0); | 
 | 	if (rc) { | 
 | 		ata_dev_err(dev, | 
 | 			    "failed to re-read IDENTIFY data after HPA resizing\n"); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	if (print_info) { | 
 | 		u64 new_sectors = ata_id_n_sectors(dev->id); | 
 | 		ata_dev_info(dev, | 
 | 			"HPA unlocked: %llu -> %llu, native %llu\n", | 
 | 			(unsigned long long)sectors, | 
 | 			(unsigned long long)new_sectors, | 
 | 			(unsigned long long)native_sectors); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dump_id - IDENTIFY DEVICE info debugging output | 
 |  *	@id: IDENTIFY DEVICE page to dump | 
 |  * | 
 |  *	Dump selected 16-bit words from the given IDENTIFY DEVICE | 
 |  *	page. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	caller. | 
 |  */ | 
 |  | 
 | static inline void ata_dump_id(const u16 *id) | 
 | { | 
 | 	DPRINTK("49==0x%04x  " | 
 | 		"53==0x%04x  " | 
 | 		"63==0x%04x  " | 
 | 		"64==0x%04x  " | 
 | 		"75==0x%04x  \n", | 
 | 		id[49], | 
 | 		id[53], | 
 | 		id[63], | 
 | 		id[64], | 
 | 		id[75]); | 
 | 	DPRINTK("80==0x%04x  " | 
 | 		"81==0x%04x  " | 
 | 		"82==0x%04x  " | 
 | 		"83==0x%04x  " | 
 | 		"84==0x%04x  \n", | 
 | 		id[80], | 
 | 		id[81], | 
 | 		id[82], | 
 | 		id[83], | 
 | 		id[84]); | 
 | 	DPRINTK("88==0x%04x  " | 
 | 		"93==0x%04x\n", | 
 | 		id[88], | 
 | 		id[93]); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data | 
 |  *	@id: IDENTIFY data to compute xfer mask from | 
 |  * | 
 |  *	Compute the xfermask for this device. This is not as trivial | 
 |  *	as it seems if we must consider early devices correctly. | 
 |  * | 
 |  *	FIXME: pre IDE drive timing (do we care ?). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Computed xfermask | 
 |  */ | 
 | unsigned long ata_id_xfermask(const u16 *id) | 
 | { | 
 | 	unsigned long pio_mask, mwdma_mask, udma_mask; | 
 |  | 
 | 	/* Usual case. Word 53 indicates word 64 is valid */ | 
 | 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { | 
 | 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03; | 
 | 		pio_mask <<= 3; | 
 | 		pio_mask |= 0x7; | 
 | 	} else { | 
 | 		/* If word 64 isn't valid then Word 51 high byte holds | 
 | 		 * the PIO timing number for the maximum. Turn it into | 
 | 		 * a mask. | 
 | 		 */ | 
 | 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; | 
 | 		if (mode < 5)	/* Valid PIO range */ | 
 | 			pio_mask = (2 << mode) - 1; | 
 | 		else | 
 | 			pio_mask = 1; | 
 |  | 
 | 		/* But wait.. there's more. Design your standards by | 
 | 		 * committee and you too can get a free iordy field to | 
 | 		 * process. However its the speeds not the modes that | 
 | 		 * are supported... Note drivers using the timing API | 
 | 		 * will get this right anyway | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; | 
 |  | 
 | 	if (ata_id_is_cfa(id)) { | 
 | 		/* | 
 | 		 *	Process compact flash extended modes | 
 | 		 */ | 
 | 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; | 
 | 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; | 
 |  | 
 | 		if (pio) | 
 | 			pio_mask |= (1 << 5); | 
 | 		if (pio > 1) | 
 | 			pio_mask |= (1 << 6); | 
 | 		if (dma) | 
 | 			mwdma_mask |= (1 << 3); | 
 | 		if (dma > 1) | 
 | 			mwdma_mask |= (1 << 4); | 
 | 	} | 
 |  | 
 | 	udma_mask = 0; | 
 | 	if (id[ATA_ID_FIELD_VALID] & (1 << 2)) | 
 | 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; | 
 |  | 
 | 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); | 
 | } | 
 |  | 
 | static void ata_qc_complete_internal(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct completion *waiting = qc->private_data; | 
 |  | 
 | 	complete(waiting); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_exec_internal_sg - execute libata internal command | 
 |  *	@dev: Device to which the command is sent | 
 |  *	@tf: Taskfile registers for the command and the result | 
 |  *	@cdb: CDB for packet command | 
 |  *	@dma_dir: Data transfer direction of the command | 
 |  *	@sgl: sg list for the data buffer of the command | 
 |  *	@n_elem: Number of sg entries | 
 |  *	@timeout: Timeout in msecs (0 for default) | 
 |  * | 
 |  *	Executes libata internal command with timeout.  @tf contains | 
 |  *	command on entry and result on return.  Timeout and error | 
 |  *	conditions are reported via return value.  No recovery action | 
 |  *	is taken after a command times out.  It's caller's duty to | 
 |  *	clean up after timeout. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None.  Should be called with kernel context, might sleep. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, AC_ERR_* mask on failure | 
 |  */ | 
 | unsigned ata_exec_internal_sg(struct ata_device *dev, | 
 | 			      struct ata_taskfile *tf, const u8 *cdb, | 
 | 			      int dma_dir, struct scatterlist *sgl, | 
 | 			      unsigned int n_elem, unsigned long timeout) | 
 | { | 
 | 	struct ata_link *link = dev->link; | 
 | 	struct ata_port *ap = link->ap; | 
 | 	u8 command = tf->command; | 
 | 	int auto_timeout = 0; | 
 | 	struct ata_queued_cmd *qc; | 
 | 	unsigned int preempted_tag; | 
 | 	u32 preempted_sactive; | 
 | 	u64 preempted_qc_active; | 
 | 	int preempted_nr_active_links; | 
 | 	DECLARE_COMPLETION_ONSTACK(wait); | 
 | 	unsigned long flags; | 
 | 	unsigned int err_mask; | 
 | 	int rc; | 
 |  | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	/* no internal command while frozen */ | 
 | 	if (ap->pflags & ATA_PFLAG_FROZEN) { | 
 | 		spin_unlock_irqrestore(ap->lock, flags); | 
 | 		return AC_ERR_SYSTEM; | 
 | 	} | 
 |  | 
 | 	/* initialize internal qc */ | 
 | 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); | 
 |  | 
 | 	qc->tag = ATA_TAG_INTERNAL; | 
 | 	qc->hw_tag = 0; | 
 | 	qc->scsicmd = NULL; | 
 | 	qc->ap = ap; | 
 | 	qc->dev = dev; | 
 | 	ata_qc_reinit(qc); | 
 |  | 
 | 	preempted_tag = link->active_tag; | 
 | 	preempted_sactive = link->sactive; | 
 | 	preempted_qc_active = ap->qc_active; | 
 | 	preempted_nr_active_links = ap->nr_active_links; | 
 | 	link->active_tag = ATA_TAG_POISON; | 
 | 	link->sactive = 0; | 
 | 	ap->qc_active = 0; | 
 | 	ap->nr_active_links = 0; | 
 |  | 
 | 	/* prepare & issue qc */ | 
 | 	qc->tf = *tf; | 
 | 	if (cdb) | 
 | 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); | 
 |  | 
 | 	/* some SATA bridges need us to indicate data xfer direction */ | 
 | 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && | 
 | 	    dma_dir == DMA_FROM_DEVICE) | 
 | 		qc->tf.feature |= ATAPI_DMADIR; | 
 |  | 
 | 	qc->flags |= ATA_QCFLAG_RESULT_TF; | 
 | 	qc->dma_dir = dma_dir; | 
 | 	if (dma_dir != DMA_NONE) { | 
 | 		unsigned int i, buflen = 0; | 
 | 		struct scatterlist *sg; | 
 |  | 
 | 		for_each_sg(sgl, sg, n_elem, i) | 
 | 			buflen += sg->length; | 
 |  | 
 | 		ata_sg_init(qc, sgl, n_elem); | 
 | 		qc->nbytes = buflen; | 
 | 	} | 
 |  | 
 | 	qc->private_data = &wait; | 
 | 	qc->complete_fn = ata_qc_complete_internal; | 
 |  | 
 | 	ata_qc_issue(qc); | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	if (!timeout) { | 
 | 		if (ata_probe_timeout) | 
 | 			timeout = ata_probe_timeout * 1000; | 
 | 		else { | 
 | 			timeout = ata_internal_cmd_timeout(dev, command); | 
 | 			auto_timeout = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ap->ops->error_handler) | 
 | 		ata_eh_release(ap); | 
 |  | 
 | 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); | 
 |  | 
 | 	if (ap->ops->error_handler) | 
 | 		ata_eh_acquire(ap); | 
 |  | 
 | 	ata_sff_flush_pio_task(ap); | 
 |  | 
 | 	if (!rc) { | 
 | 		spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 		/* We're racing with irq here.  If we lose, the | 
 | 		 * following test prevents us from completing the qc | 
 | 		 * twice.  If we win, the port is frozen and will be | 
 | 		 * cleaned up by ->post_internal_cmd(). | 
 | 		 */ | 
 | 		if (qc->flags & ATA_QCFLAG_ACTIVE) { | 
 | 			qc->err_mask |= AC_ERR_TIMEOUT; | 
 |  | 
 | 			if (ap->ops->error_handler) | 
 | 				ata_port_freeze(ap); | 
 | 			else | 
 | 				ata_qc_complete(qc); | 
 |  | 
 | 			if (ata_msg_warn(ap)) | 
 | 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", | 
 | 					     command); | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(ap->lock, flags); | 
 | 	} | 
 |  | 
 | 	/* do post_internal_cmd */ | 
 | 	if (ap->ops->post_internal_cmd) | 
 | 		ap->ops->post_internal_cmd(qc); | 
 |  | 
 | 	/* perform minimal error analysis */ | 
 | 	if (qc->flags & ATA_QCFLAG_FAILED) { | 
 | 		if (qc->result_tf.command & (ATA_ERR | ATA_DF)) | 
 | 			qc->err_mask |= AC_ERR_DEV; | 
 |  | 
 | 		if (!qc->err_mask) | 
 | 			qc->err_mask |= AC_ERR_OTHER; | 
 |  | 
 | 		if (qc->err_mask & ~AC_ERR_OTHER) | 
 | 			qc->err_mask &= ~AC_ERR_OTHER; | 
 | 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { | 
 | 		qc->result_tf.command |= ATA_SENSE; | 
 | 	} | 
 |  | 
 | 	/* finish up */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	*tf = qc->result_tf; | 
 | 	err_mask = qc->err_mask; | 
 |  | 
 | 	ata_qc_free(qc); | 
 | 	link->active_tag = preempted_tag; | 
 | 	link->sactive = preempted_sactive; | 
 | 	ap->qc_active = preempted_qc_active; | 
 | 	ap->nr_active_links = preempted_nr_active_links; | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) | 
 | 		ata_internal_cmd_timed_out(dev, command); | 
 |  | 
 | 	return err_mask; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_exec_internal - execute libata internal command | 
 |  *	@dev: Device to which the command is sent | 
 |  *	@tf: Taskfile registers for the command and the result | 
 |  *	@cdb: CDB for packet command | 
 |  *	@dma_dir: Data transfer direction of the command | 
 |  *	@buf: Data buffer of the command | 
 |  *	@buflen: Length of data buffer | 
 |  *	@timeout: Timeout in msecs (0 for default) | 
 |  * | 
 |  *	Wrapper around ata_exec_internal_sg() which takes simple | 
 |  *	buffer instead of sg list. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None.  Should be called with kernel context, might sleep. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, AC_ERR_* mask on failure | 
 |  */ | 
 | unsigned ata_exec_internal(struct ata_device *dev, | 
 | 			   struct ata_taskfile *tf, const u8 *cdb, | 
 | 			   int dma_dir, void *buf, unsigned int buflen, | 
 | 			   unsigned long timeout) | 
 | { | 
 | 	struct scatterlist *psg = NULL, sg; | 
 | 	unsigned int n_elem = 0; | 
 |  | 
 | 	if (dma_dir != DMA_NONE) { | 
 | 		WARN_ON(!buf); | 
 | 		sg_init_one(&sg, buf, buflen); | 
 | 		psg = &sg; | 
 | 		n_elem++; | 
 | 	} | 
 |  | 
 | 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, | 
 | 				    timeout); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_pio_need_iordy	-	check if iordy needed | 
 |  *	@adev: ATA device | 
 |  * | 
 |  *	Check if the current speed of the device requires IORDY. Used | 
 |  *	by various controllers for chip configuration. | 
 |  */ | 
 | unsigned int ata_pio_need_iordy(const struct ata_device *adev) | 
 | { | 
 | 	/* Don't set IORDY if we're preparing for reset.  IORDY may | 
 | 	 * lead to controller lock up on certain controllers if the | 
 | 	 * port is not occupied.  See bko#11703 for details. | 
 | 	 */ | 
 | 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) | 
 | 		return 0; | 
 | 	/* Controller doesn't support IORDY.  Probably a pointless | 
 | 	 * check as the caller should know this. | 
 | 	 */ | 
 | 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) | 
 | 		return 0; | 
 | 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */ | 
 | 	if (ata_id_is_cfa(adev->id) | 
 | 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) | 
 | 		return 0; | 
 | 	/* PIO3 and higher it is mandatory */ | 
 | 	if (adev->pio_mode > XFER_PIO_2) | 
 | 		return 1; | 
 | 	/* We turn it on when possible */ | 
 | 	if (ata_id_has_iordy(adev->id)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask | 
 |  *	@adev: ATA device | 
 |  * | 
 |  *	Compute the highest mode possible if we are not using iordy. Return | 
 |  *	-1 if no iordy mode is available. | 
 |  */ | 
 | static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) | 
 | { | 
 | 	/* If we have no drive specific rule, then PIO 2 is non IORDY */ | 
 | 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */ | 
 | 		u16 pio = adev->id[ATA_ID_EIDE_PIO]; | 
 | 		/* Is the speed faster than the drive allows non IORDY ? */ | 
 | 		if (pio) { | 
 | 			/* This is cycle times not frequency - watch the logic! */ | 
 | 			if (pio > 240)	/* PIO2 is 240nS per cycle */ | 
 | 				return 3 << ATA_SHIFT_PIO; | 
 | 			return 7 << ATA_SHIFT_PIO; | 
 | 		} | 
 | 	} | 
 | 	return 3 << ATA_SHIFT_PIO; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_do_dev_read_id		-	default ID read method | 
 |  *	@dev: device | 
 |  *	@tf: proposed taskfile | 
 |  *	@id: data buffer | 
 |  * | 
 |  *	Issue the identify taskfile and hand back the buffer containing | 
 |  *	identify data. For some RAID controllers and for pre ATA devices | 
 |  *	this function is wrapped or replaced by the driver | 
 |  */ | 
 | unsigned int ata_do_dev_read_id(struct ata_device *dev, | 
 | 					struct ata_taskfile *tf, u16 *id) | 
 | { | 
 | 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, | 
 | 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_read_id - Read ID data from the specified device | 
 |  *	@dev: target device | 
 |  *	@p_class: pointer to class of the target device (may be changed) | 
 |  *	@flags: ATA_READID_* flags | 
 |  *	@id: buffer to read IDENTIFY data into | 
 |  * | 
 |  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is | 
 |  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI | 
 |  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS | 
 |  *	for pre-ATA4 drives. | 
 |  * | 
 |  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right | 
 |  *	now we abort if we hit that case. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, | 
 | 		    unsigned int flags, u16 *id) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int class = *p_class; | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int err_mask = 0; | 
 | 	const char *reason; | 
 | 	bool is_semb = class == ATA_DEV_SEMB; | 
 | 	int may_fallback = 1, tried_spinup = 0; | 
 | 	int rc; | 
 |  | 
 | 	if (ata_msg_ctl(ap)) | 
 | 		ata_dev_dbg(dev, "%s: ENTER\n", __func__); | 
 |  | 
 | retry: | 
 | 	ata_tf_init(dev, &tf); | 
 |  | 
 | 	switch (class) { | 
 | 	case ATA_DEV_SEMB: | 
 | 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */ | 
 | 		/* fall through */ | 
 | 	case ATA_DEV_ATA: | 
 | 	case ATA_DEV_ZAC: | 
 | 		tf.command = ATA_CMD_ID_ATA; | 
 | 		break; | 
 | 	case ATA_DEV_ATAPI: | 
 | 		tf.command = ATA_CMD_ID_ATAPI; | 
 | 		break; | 
 | 	default: | 
 | 		rc = -ENODEV; | 
 | 		reason = "unsupported class"; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	tf.protocol = ATA_PROT_PIO; | 
 |  | 
 | 	/* Some devices choke if TF registers contain garbage.  Make | 
 | 	 * sure those are properly initialized. | 
 | 	 */ | 
 | 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 
 |  | 
 | 	/* Device presence detection is unreliable on some | 
 | 	 * controllers.  Always poll IDENTIFY if available. | 
 | 	 */ | 
 | 	tf.flags |= ATA_TFLAG_POLLING; | 
 |  | 
 | 	if (ap->ops->read_id) | 
 | 		err_mask = ap->ops->read_id(dev, &tf, id); | 
 | 	else | 
 | 		err_mask = ata_do_dev_read_id(dev, &tf, id); | 
 |  | 
 | 	if (err_mask) { | 
 | 		if (err_mask & AC_ERR_NODEV_HINT) { | 
 | 			ata_dev_dbg(dev, "NODEV after polling detection\n"); | 
 | 			return -ENOENT; | 
 | 		} | 
 |  | 
 | 		if (is_semb) { | 
 | 			ata_dev_info(dev, | 
 | 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n"); | 
 | 			/* SEMB is not supported yet */ | 
 | 			*p_class = ATA_DEV_SEMB_UNSUP; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { | 
 | 			/* Device or controller might have reported | 
 | 			 * the wrong device class.  Give a shot at the | 
 | 			 * other IDENTIFY if the current one is | 
 | 			 * aborted by the device. | 
 | 			 */ | 
 | 			if (may_fallback) { | 
 | 				may_fallback = 0; | 
 |  | 
 | 				if (class == ATA_DEV_ATA) | 
 | 					class = ATA_DEV_ATAPI; | 
 | 				else | 
 | 					class = ATA_DEV_ATA; | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			/* Control reaches here iff the device aborted | 
 | 			 * both flavors of IDENTIFYs which happens | 
 | 			 * sometimes with phantom devices. | 
 | 			 */ | 
 | 			ata_dev_dbg(dev, | 
 | 				    "both IDENTIFYs aborted, assuming NODEV\n"); | 
 | 			return -ENOENT; | 
 | 		} | 
 |  | 
 | 		rc = -EIO; | 
 | 		reason = "I/O error"; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) { | 
 | 		ata_dev_dbg(dev, "dumping IDENTIFY data, " | 
 | 			    "class=%d may_fallback=%d tried_spinup=%d\n", | 
 | 			    class, may_fallback, tried_spinup); | 
 | 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, | 
 | 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true); | 
 | 	} | 
 |  | 
 | 	/* Falling back doesn't make sense if ID data was read | 
 | 	 * successfully at least once. | 
 | 	 */ | 
 | 	may_fallback = 0; | 
 |  | 
 | 	swap_buf_le16(id, ATA_ID_WORDS); | 
 |  | 
 | 	/* sanity check */ | 
 | 	rc = -EINVAL; | 
 | 	reason = "device reports invalid type"; | 
 |  | 
 | 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { | 
 | 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) | 
 | 			goto err_out; | 
 | 		if (ap->host->flags & ATA_HOST_IGNORE_ATA && | 
 | 							ata_id_is_ata(id)) { | 
 | 			ata_dev_dbg(dev, | 
 | 				"host indicates ignore ATA devices, ignored\n"); | 
 | 			return -ENOENT; | 
 | 		} | 
 | 	} else { | 
 | 		if (ata_id_is_ata(id)) | 
 | 			goto err_out; | 
 | 	} | 
 |  | 
 | 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { | 
 | 		tried_spinup = 1; | 
 | 		/* | 
 | 		 * Drive powered-up in standby mode, and requires a specific | 
 | 		 * SET_FEATURES spin-up subcommand before it will accept | 
 | 		 * anything other than the original IDENTIFY command. | 
 | 		 */ | 
 | 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); | 
 | 		if (err_mask && id[2] != 0x738c) { | 
 | 			rc = -EIO; | 
 | 			reason = "SPINUP failed"; | 
 | 			goto err_out; | 
 | 		} | 
 | 		/* | 
 | 		 * If the drive initially returned incomplete IDENTIFY info, | 
 | 		 * we now must reissue the IDENTIFY command. | 
 | 		 */ | 
 | 		if (id[2] == 0x37c8) | 
 | 			goto retry; | 
 | 	} | 
 |  | 
 | 	if ((flags & ATA_READID_POSTRESET) && | 
 | 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { | 
 | 		/* | 
 | 		 * The exact sequence expected by certain pre-ATA4 drives is: | 
 | 		 * SRST RESET | 
 | 		 * IDENTIFY (optional in early ATA) | 
 | 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) | 
 | 		 * anything else.. | 
 | 		 * Some drives were very specific about that exact sequence. | 
 | 		 * | 
 | 		 * Note that ATA4 says lba is mandatory so the second check | 
 | 		 * should never trigger. | 
 | 		 */ | 
 | 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { | 
 | 			err_mask = ata_dev_init_params(dev, id[3], id[6]); | 
 | 			if (err_mask) { | 
 | 				rc = -EIO; | 
 | 				reason = "INIT_DEV_PARAMS failed"; | 
 | 				goto err_out; | 
 | 			} | 
 |  | 
 | 			/* current CHS translation info (id[53-58]) might be | 
 | 			 * changed. reread the identify device info. | 
 | 			 */ | 
 | 			flags &= ~ATA_READID_POSTRESET; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*p_class = class; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err_out: | 
 | 	if (ata_msg_warn(ap)) | 
 | 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", | 
 | 			     reason, err_mask); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_read_log_page - read a specific log page | 
 |  *	@dev: target device | 
 |  *	@log: log to read | 
 |  *	@page: page to read | 
 |  *	@buf: buffer to store read page | 
 |  *	@sectors: number of sectors to read | 
 |  * | 
 |  *	Read log page using READ_LOG_EXT command. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, AC_ERR_* mask otherwise. | 
 |  */ | 
 | unsigned int ata_read_log_page(struct ata_device *dev, u8 log, | 
 | 			       u8 page, void *buf, unsigned int sectors) | 
 | { | 
 | 	unsigned long ap_flags = dev->link->ap->flags; | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int err_mask; | 
 | 	bool dma = false; | 
 |  | 
 | 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); | 
 |  | 
 | 	/* | 
 | 	 * Return error without actually issuing the command on controllers | 
 | 	 * which e.g. lockup on a read log page. | 
 | 	 */ | 
 | 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE) | 
 | 		return AC_ERR_DEV; | 
 |  | 
 | retry: | 
 | 	ata_tf_init(dev, &tf); | 
 | 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && | 
 | 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { | 
 | 		tf.command = ATA_CMD_READ_LOG_DMA_EXT; | 
 | 		tf.protocol = ATA_PROT_DMA; | 
 | 		dma = true; | 
 | 	} else { | 
 | 		tf.command = ATA_CMD_READ_LOG_EXT; | 
 | 		tf.protocol = ATA_PROT_PIO; | 
 | 		dma = false; | 
 | 	} | 
 | 	tf.lbal = log; | 
 | 	tf.lbam = page; | 
 | 	tf.nsect = sectors; | 
 | 	tf.hob_nsect = sectors >> 8; | 
 | 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; | 
 |  | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, | 
 | 				     buf, sectors * ATA_SECT_SIZE, 0); | 
 |  | 
 | 	if (err_mask && dma) { | 
 | 		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; | 
 | 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	DPRINTK("EXIT, err_mask=%x\n", err_mask); | 
 | 	return err_mask; | 
 | } | 
 |  | 
 | static bool ata_log_supported(struct ata_device *dev, u8 log) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 |  | 
 | 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) | 
 | 		return false; | 
 | 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; | 
 | } | 
 |  | 
 | static bool ata_identify_page_supported(struct ata_device *dev, u8 page) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int err, i; | 
 |  | 
 | 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { | 
 | 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is | 
 | 	 * supported. | 
 | 	 */ | 
 | 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, | 
 | 				1); | 
 | 	if (err) { | 
 | 		ata_dev_info(dev, | 
 | 			     "failed to get Device Identify Log Emask 0x%x\n", | 
 | 			     err); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ap->sector_buf[8]; i++) { | 
 | 		if (ap->sector_buf[9 + i] == page) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int ata_do_link_spd_horkage(struct ata_device *dev) | 
 | { | 
 | 	struct ata_link *plink = ata_dev_phys_link(dev); | 
 | 	u32 target, target_limit; | 
 |  | 
 | 	if (!sata_scr_valid(plink)) | 
 | 		return 0; | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS) | 
 | 		target = 1; | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	target_limit = (1 << target) - 1; | 
 |  | 
 | 	/* if already on stricter limit, no need to push further */ | 
 | 	if (plink->sata_spd_limit <= target_limit) | 
 | 		return 0; | 
 |  | 
 | 	plink->sata_spd_limit = target_limit; | 
 |  | 
 | 	/* Request another EH round by returning -EAGAIN if link is | 
 | 	 * going faster than the target speed.  Forward progress is | 
 | 	 * guaranteed by setting sata_spd_limit to target_limit above. | 
 | 	 */ | 
 | 	if (plink->sata_spd > target) { | 
 | 		ata_dev_info(dev, "applying link speed limit horkage to %s\n", | 
 | 			     sata_spd_string(target)); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u8 ata_dev_knobble(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 |  | 
 | 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) | 
 | 		return 0; | 
 |  | 
 | 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); | 
 | } | 
 |  | 
 | static void ata_dev_config_ncq_send_recv(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { | 
 | 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); | 
 | 		return; | 
 | 	} | 
 | 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, | 
 | 				     0, ap->sector_buf, 1); | 
 | 	if (err_mask) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n", | 
 | 			    err_mask); | 
 | 	} else { | 
 | 		u8 *cmds = dev->ncq_send_recv_cmds; | 
 |  | 
 | 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; | 
 | 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); | 
 |  | 
 | 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { | 
 | 			ata_dev_dbg(dev, "disabling queued TRIM support\n"); | 
 | 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= | 
 | 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void ata_dev_config_ncq_non_data(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "NCQ Send/Recv Log not supported\n"); | 
 | 		return; | 
 | 	} | 
 | 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, | 
 | 				     0, ap->sector_buf, 1); | 
 | 	if (err_mask) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "failed to get NCQ Non-Data Log Emask 0x%x\n", | 
 | 			    err_mask); | 
 | 	} else { | 
 | 		u8 *cmds = dev->ncq_non_data_cmds; | 
 |  | 
 | 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); | 
 | 	} | 
 | } | 
 |  | 
 | static void ata_dev_config_ncq_prio(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { | 
 | 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	err_mask = ata_read_log_page(dev, | 
 | 				     ATA_LOG_IDENTIFY_DEVICE, | 
 | 				     ATA_LOG_SATA_SETTINGS, | 
 | 				     ap->sector_buf, | 
 | 				     1); | 
 | 	if (err_mask) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "failed to get Identify Device data, Emask 0x%x\n", | 
 | 			    err_mask); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { | 
 | 		dev->flags |= ATA_DFLAG_NCQ_PRIO; | 
 | 	} else { | 
 | 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO; | 
 | 		ata_dev_dbg(dev, "SATA page does not support priority\n"); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static int ata_dev_config_ncq(struct ata_device *dev, | 
 | 			       char *desc, size_t desc_sz) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); | 
 | 	unsigned int err_mask; | 
 | 	char *aa_desc = ""; | 
 |  | 
 | 	if (!ata_id_has_ncq(dev->id)) { | 
 | 		desc[0] = '\0'; | 
 | 		return 0; | 
 | 	} | 
 | 	if (dev->horkage & ATA_HORKAGE_NONCQ) { | 
 | 		snprintf(desc, desc_sz, "NCQ (not used)"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (ap->flags & ATA_FLAG_NCQ) { | 
 | 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); | 
 | 		dev->flags |= ATA_DFLAG_NCQ; | 
 | 	} | 
 |  | 
 | 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && | 
 | 		(ap->flags & ATA_FLAG_FPDMA_AA) && | 
 | 		ata_id_has_fpdma_aa(dev->id)) { | 
 | 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, | 
 | 			SATA_FPDMA_AA); | 
 | 		if (err_mask) { | 
 | 			ata_dev_err(dev, | 
 | 				    "failed to enable AA (error_mask=0x%x)\n", | 
 | 				    err_mask); | 
 | 			if (err_mask != AC_ERR_DEV) { | 
 | 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; | 
 | 				return -EIO; | 
 | 			} | 
 | 		} else | 
 | 			aa_desc = ", AA"; | 
 | 	} | 
 |  | 
 | 	if (hdepth >= ddepth) | 
 | 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); | 
 | 	else | 
 | 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, | 
 | 			ddepth, aa_desc); | 
 |  | 
 | 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { | 
 | 		if (ata_id_has_ncq_send_and_recv(dev->id)) | 
 | 			ata_dev_config_ncq_send_recv(dev); | 
 | 		if (ata_id_has_ncq_non_data(dev->id)) | 
 | 			ata_dev_config_ncq_non_data(dev); | 
 | 		if (ata_id_has_ncq_prio(dev->id)) | 
 | 			ata_dev_config_ncq_prio(dev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ata_dev_config_sense_reporting(struct ata_device *dev) | 
 | { | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	if (!ata_id_has_sense_reporting(dev->id)) | 
 | 		return; | 
 |  | 
 | 	if (ata_id_sense_reporting_enabled(dev->id)) | 
 | 		return; | 
 |  | 
 | 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); | 
 | 	if (err_mask) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "failed to enable Sense Data Reporting, Emask 0x%x\n", | 
 | 			    err_mask); | 
 | 	} | 
 | } | 
 |  | 
 | static void ata_dev_config_zac(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	unsigned int err_mask; | 
 | 	u8 *identify_buf = ap->sector_buf; | 
 |  | 
 | 	dev->zac_zones_optimal_open = U32_MAX; | 
 | 	dev->zac_zones_optimal_nonseq = U32_MAX; | 
 | 	dev->zac_zones_max_open = U32_MAX; | 
 |  | 
 | 	/* | 
 | 	 * Always set the 'ZAC' flag for Host-managed devices. | 
 | 	 */ | 
 | 	if (dev->class == ATA_DEV_ZAC) | 
 | 		dev->flags |= ATA_DFLAG_ZAC; | 
 | 	else if (ata_id_zoned_cap(dev->id) == 0x01) | 
 | 		/* | 
 | 		 * Check for host-aware devices. | 
 | 		 */ | 
 | 		dev->flags |= ATA_DFLAG_ZAC; | 
 |  | 
 | 	if (!(dev->flags & ATA_DFLAG_ZAC)) | 
 | 		return; | 
 |  | 
 | 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "ATA Zoned Information Log not supported\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) | 
 | 	 */ | 
 | 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, | 
 | 				     ATA_LOG_ZONED_INFORMATION, | 
 | 				     identify_buf, 1); | 
 | 	if (!err_mask) { | 
 | 		u64 zoned_cap, opt_open, opt_nonseq, max_open; | 
 |  | 
 | 		zoned_cap = get_unaligned_le64(&identify_buf[8]); | 
 | 		if ((zoned_cap >> 63)) | 
 | 			dev->zac_zoned_cap = (zoned_cap & 1); | 
 | 		opt_open = get_unaligned_le64(&identify_buf[24]); | 
 | 		if ((opt_open >> 63)) | 
 | 			dev->zac_zones_optimal_open = (u32)opt_open; | 
 | 		opt_nonseq = get_unaligned_le64(&identify_buf[32]); | 
 | 		if ((opt_nonseq >> 63)) | 
 | 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; | 
 | 		max_open = get_unaligned_le64(&identify_buf[40]); | 
 | 		if ((max_open >> 63)) | 
 | 			dev->zac_zones_max_open = (u32)max_open; | 
 | 	} | 
 | } | 
 |  | 
 | static void ata_dev_config_trusted(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	u64 trusted_cap; | 
 | 	unsigned int err; | 
 |  | 
 | 	if (!ata_id_has_trusted(dev->id)) | 
 | 		return; | 
 |  | 
 | 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "Security Log not supported\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, | 
 | 			ap->sector_buf, 1); | 
 | 	if (err) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "failed to read Security Log, Emask 0x%x\n", err); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); | 
 | 	if (!(trusted_cap & (1ULL << 63))) { | 
 | 		ata_dev_dbg(dev, | 
 | 			    "Trusted Computing capability qword not valid!\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (trusted_cap & (1 << 0)) | 
 | 		dev->flags |= ATA_DFLAG_TRUSTED; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_configure - Configure the specified ATA/ATAPI device | 
 |  *	@dev: Target device to configure | 
 |  * | 
 |  *	Configure @dev according to @dev->id.  Generic and low-level | 
 |  *	driver specific fixups are also applied. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise | 
 |  */ | 
 | int ata_dev_configure(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	struct ata_eh_context *ehc = &dev->link->eh_context; | 
 | 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; | 
 | 	const u16 *id = dev->id; | 
 | 	unsigned long xfer_mask; | 
 | 	unsigned int err_mask; | 
 | 	char revbuf[7];		/* XYZ-99\0 */ | 
 | 	char fwrevbuf[ATA_ID_FW_REV_LEN+1]; | 
 | 	char modelbuf[ATA_ID_PROD_LEN+1]; | 
 | 	int rc; | 
 |  | 
 | 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { | 
 | 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (ata_msg_probe(ap)) | 
 | 		ata_dev_dbg(dev, "%s: ENTER\n", __func__); | 
 |  | 
 | 	/* set horkage */ | 
 | 	dev->horkage |= ata_dev_blacklisted(dev); | 
 | 	ata_force_horkage(dev); | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_DISABLE) { | 
 | 		ata_dev_info(dev, "unsupported device, disabling\n"); | 
 | 		ata_dev_disable(dev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && | 
 | 	    dev->class == ATA_DEV_ATAPI) { | 
 | 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", | 
 | 			     atapi_enabled ? "not supported with this driver" | 
 | 			     : "disabled"); | 
 | 		ata_dev_disable(dev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	rc = ata_do_link_spd_horkage(dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ | 
 | 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && | 
 | 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) | 
 | 		dev->horkage |= ATA_HORKAGE_NOLPM; | 
 |  | 
 | 	if (ap->flags & ATA_FLAG_NO_LPM) | 
 | 		dev->horkage |= ATA_HORKAGE_NOLPM; | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_NOLPM) { | 
 | 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); | 
 | 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; | 
 | 	} | 
 |  | 
 | 	/* let ACPI work its magic */ | 
 | 	rc = ata_acpi_on_devcfg(dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* massage HPA, do it early as it might change IDENTIFY data */ | 
 | 	rc = ata_hpa_resize(dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* print device capabilities */ | 
 | 	if (ata_msg_probe(ap)) | 
 | 		ata_dev_dbg(dev, | 
 | 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " | 
 | 			    "85:%04x 86:%04x 87:%04x 88:%04x\n", | 
 | 			    __func__, | 
 | 			    id[49], id[82], id[83], id[84], | 
 | 			    id[85], id[86], id[87], id[88]); | 
 |  | 
 | 	/* initialize to-be-configured parameters */ | 
 | 	dev->flags &= ~ATA_DFLAG_CFG_MASK; | 
 | 	dev->max_sectors = 0; | 
 | 	dev->cdb_len = 0; | 
 | 	dev->n_sectors = 0; | 
 | 	dev->cylinders = 0; | 
 | 	dev->heads = 0; | 
 | 	dev->sectors = 0; | 
 | 	dev->multi_count = 0; | 
 |  | 
 | 	/* | 
 | 	 * common ATA, ATAPI feature tests | 
 | 	 */ | 
 |  | 
 | 	/* find max transfer mode; for printk only */ | 
 | 	xfer_mask = ata_id_xfermask(id); | 
 |  | 
 | 	if (ata_msg_probe(ap)) | 
 | 		ata_dump_id(id); | 
 |  | 
 | 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ | 
 | 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, | 
 | 			sizeof(fwrevbuf)); | 
 |  | 
 | 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, | 
 | 			sizeof(modelbuf)); | 
 |  | 
 | 	/* ATA-specific feature tests */ | 
 | 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { | 
 | 		if (ata_id_is_cfa(id)) { | 
 | 			/* CPRM may make this media unusable */ | 
 | 			if (id[ATA_ID_CFA_KEY_MGMT] & 1) | 
 | 				ata_dev_warn(dev, | 
 | 	"supports DRM functions and may not be fully accessible\n"); | 
 | 			snprintf(revbuf, 7, "CFA"); | 
 | 		} else { | 
 | 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); | 
 | 			/* Warn the user if the device has TPM extensions */ | 
 | 			if (ata_id_has_tpm(id)) | 
 | 				ata_dev_warn(dev, | 
 | 	"supports DRM functions and may not be fully accessible\n"); | 
 | 		} | 
 |  | 
 | 		dev->n_sectors = ata_id_n_sectors(id); | 
 |  | 
 | 		/* get current R/W Multiple count setting */ | 
 | 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { | 
 | 			unsigned int max = dev->id[47] & 0xff; | 
 | 			unsigned int cnt = dev->id[59] & 0xff; | 
 | 			/* only recognize/allow powers of two here */ | 
 | 			if (is_power_of_2(max) && is_power_of_2(cnt)) | 
 | 				if (cnt <= max) | 
 | 					dev->multi_count = cnt; | 
 | 		} | 
 |  | 
 | 		if (ata_id_has_lba(id)) { | 
 | 			const char *lba_desc; | 
 | 			char ncq_desc[24]; | 
 |  | 
 | 			lba_desc = "LBA"; | 
 | 			dev->flags |= ATA_DFLAG_LBA; | 
 | 			if (ata_id_has_lba48(id)) { | 
 | 				dev->flags |= ATA_DFLAG_LBA48; | 
 | 				lba_desc = "LBA48"; | 
 |  | 
 | 				if (dev->n_sectors >= (1UL << 28) && | 
 | 				    ata_id_has_flush_ext(id)) | 
 | 					dev->flags |= ATA_DFLAG_FLUSH_EXT; | 
 | 			} | 
 |  | 
 | 			/* config NCQ */ | 
 | 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); | 
 | 			if (rc) | 
 | 				return rc; | 
 |  | 
 | 			/* print device info to dmesg */ | 
 | 			if (ata_msg_drv(ap) && print_info) { | 
 | 				ata_dev_info(dev, "%s: %s, %s, max %s\n", | 
 | 					     revbuf, modelbuf, fwrevbuf, | 
 | 					     ata_mode_string(xfer_mask)); | 
 | 				ata_dev_info(dev, | 
 | 					     "%llu sectors, multi %u: %s %s\n", | 
 | 					(unsigned long long)dev->n_sectors, | 
 | 					dev->multi_count, lba_desc, ncq_desc); | 
 | 			} | 
 | 		} else { | 
 | 			/* CHS */ | 
 |  | 
 | 			/* Default translation */ | 
 | 			dev->cylinders	= id[1]; | 
 | 			dev->heads	= id[3]; | 
 | 			dev->sectors	= id[6]; | 
 |  | 
 | 			if (ata_id_current_chs_valid(id)) { | 
 | 				/* Current CHS translation is valid. */ | 
 | 				dev->cylinders = id[54]; | 
 | 				dev->heads     = id[55]; | 
 | 				dev->sectors   = id[56]; | 
 | 			} | 
 |  | 
 | 			/* print device info to dmesg */ | 
 | 			if (ata_msg_drv(ap) && print_info) { | 
 | 				ata_dev_info(dev, "%s: %s, %s, max %s\n", | 
 | 					     revbuf,	modelbuf, fwrevbuf, | 
 | 					     ata_mode_string(xfer_mask)); | 
 | 				ata_dev_info(dev, | 
 | 					     "%llu sectors, multi %u, CHS %u/%u/%u\n", | 
 | 					     (unsigned long long)dev->n_sectors, | 
 | 					     dev->multi_count, dev->cylinders, | 
 | 					     dev->heads, dev->sectors); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Check and mark DevSlp capability. Get DevSlp timing variables | 
 | 		 * from SATA Settings page of Identify Device Data Log. | 
 | 		 */ | 
 | 		if (ata_id_has_devslp(dev->id)) { | 
 | 			u8 *sata_setting = ap->sector_buf; | 
 | 			int i, j; | 
 |  | 
 | 			dev->flags |= ATA_DFLAG_DEVSLP; | 
 | 			err_mask = ata_read_log_page(dev, | 
 | 						     ATA_LOG_IDENTIFY_DEVICE, | 
 | 						     ATA_LOG_SATA_SETTINGS, | 
 | 						     sata_setting, | 
 | 						     1); | 
 | 			if (err_mask) | 
 | 				ata_dev_dbg(dev, | 
 | 					    "failed to get Identify Device Data, Emask 0x%x\n", | 
 | 					    err_mask); | 
 | 			else | 
 | 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { | 
 | 					j = ATA_LOG_DEVSLP_OFFSET + i; | 
 | 					dev->devslp_timing[i] = sata_setting[j]; | 
 | 				} | 
 | 		} | 
 | 		ata_dev_config_sense_reporting(dev); | 
 | 		ata_dev_config_zac(dev); | 
 | 		ata_dev_config_trusted(dev); | 
 | 		dev->cdb_len = 32; | 
 | 	} | 
 |  | 
 | 	/* ATAPI-specific feature tests */ | 
 | 	else if (dev->class == ATA_DEV_ATAPI) { | 
 | 		const char *cdb_intr_string = ""; | 
 | 		const char *atapi_an_string = ""; | 
 | 		const char *dma_dir_string = ""; | 
 | 		u32 sntf; | 
 |  | 
 | 		rc = atapi_cdb_len(id); | 
 | 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { | 
 | 			if (ata_msg_warn(ap)) | 
 | 				ata_dev_warn(dev, "unsupported CDB len\n"); | 
 | 			rc = -EINVAL; | 
 | 			goto err_out_nosup; | 
 | 		} | 
 | 		dev->cdb_len = (unsigned int) rc; | 
 |  | 
 | 		/* Enable ATAPI AN if both the host and device have | 
 | 		 * the support.  If PMP is attached, SNTF is required | 
 | 		 * to enable ATAPI AN to discern between PHY status | 
 | 		 * changed notifications and ATAPI ANs. | 
 | 		 */ | 
 | 		if (atapi_an && | 
 | 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && | 
 | 		    (!sata_pmp_attached(ap) || | 
 | 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { | 
 | 			/* issue SET feature command to turn this on */ | 
 | 			err_mask = ata_dev_set_feature(dev, | 
 | 					SETFEATURES_SATA_ENABLE, SATA_AN); | 
 | 			if (err_mask) | 
 | 				ata_dev_err(dev, | 
 | 					    "failed to enable ATAPI AN (err_mask=0x%x)\n", | 
 | 					    err_mask); | 
 | 			else { | 
 | 				dev->flags |= ATA_DFLAG_AN; | 
 | 				atapi_an_string = ", ATAPI AN"; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (ata_id_cdb_intr(dev->id)) { | 
 | 			dev->flags |= ATA_DFLAG_CDB_INTR; | 
 | 			cdb_intr_string = ", CDB intr"; | 
 | 		} | 
 |  | 
 | 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { | 
 | 			dev->flags |= ATA_DFLAG_DMADIR; | 
 | 			dma_dir_string = ", DMADIR"; | 
 | 		} | 
 |  | 
 | 		if (ata_id_has_da(dev->id)) { | 
 | 			dev->flags |= ATA_DFLAG_DA; | 
 | 			zpodd_init(dev); | 
 | 		} | 
 |  | 
 | 		/* print device info to dmesg */ | 
 | 		if (ata_msg_drv(ap) && print_info) | 
 | 			ata_dev_info(dev, | 
 | 				     "ATAPI: %s, %s, max %s%s%s%s\n", | 
 | 				     modelbuf, fwrevbuf, | 
 | 				     ata_mode_string(xfer_mask), | 
 | 				     cdb_intr_string, atapi_an_string, | 
 | 				     dma_dir_string); | 
 | 	} | 
 |  | 
 | 	/* determine max_sectors */ | 
 | 	dev->max_sectors = ATA_MAX_SECTORS; | 
 | 	if (dev->flags & ATA_DFLAG_LBA48) | 
 | 		dev->max_sectors = ATA_MAX_SECTORS_LBA48; | 
 |  | 
 | 	/* Limit PATA drive on SATA cable bridge transfers to udma5, | 
 | 	   200 sectors */ | 
 | 	if (ata_dev_knobble(dev)) { | 
 | 		if (ata_msg_drv(ap) && print_info) | 
 | 			ata_dev_info(dev, "applying bridge limits\n"); | 
 | 		dev->udma_mask &= ATA_UDMA5; | 
 | 		dev->max_sectors = ATA_MAX_SECTORS; | 
 | 	} | 
 |  | 
 | 	if ((dev->class == ATA_DEV_ATAPI) && | 
 | 	    (atapi_command_packet_set(id) == TYPE_TAPE)) { | 
 | 		dev->max_sectors = ATA_MAX_SECTORS_TAPE; | 
 | 		dev->horkage |= ATA_HORKAGE_STUCK_ERR; | 
 | 	} | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) | 
 | 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, | 
 | 					 dev->max_sectors); | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) | 
 | 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, | 
 | 					 dev->max_sectors); | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) | 
 | 		dev->max_sectors = ATA_MAX_SECTORS_LBA48; | 
 |  | 
 | 	if (ap->ops->dev_config) | 
 | 		ap->ops->dev_config(dev); | 
 |  | 
 | 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { | 
 | 		/* Let the user know. We don't want to disallow opens for | 
 | 		   rescue purposes, or in case the vendor is just a blithering | 
 | 		   idiot. Do this after the dev_config call as some controllers | 
 | 		   with buggy firmware may want to avoid reporting false device | 
 | 		   bugs */ | 
 |  | 
 | 		if (print_info) { | 
 | 			ata_dev_warn(dev, | 
 | "Drive reports diagnostics failure. This may indicate a drive\n"); | 
 | 			ata_dev_warn(dev, | 
 | "fault or invalid emulation. Contact drive vendor for information.\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { | 
 | 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); | 
 | 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_nosup: | 
 | 	if (ata_msg_probe(ap)) | 
 | 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_cable_40wire	-	return 40 wire cable type | 
 |  *	@ap: port | 
 |  * | 
 |  *	Helper method for drivers which want to hardwire 40 wire cable | 
 |  *	detection. | 
 |  */ | 
 |  | 
 | int ata_cable_40wire(struct ata_port *ap) | 
 | { | 
 | 	return ATA_CBL_PATA40; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_cable_80wire	-	return 80 wire cable type | 
 |  *	@ap: port | 
 |  * | 
 |  *	Helper method for drivers which want to hardwire 80 wire cable | 
 |  *	detection. | 
 |  */ | 
 |  | 
 | int ata_cable_80wire(struct ata_port *ap) | 
 | { | 
 | 	return ATA_CBL_PATA80; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_cable_unknown	-	return unknown PATA cable. | 
 |  *	@ap: port | 
 |  * | 
 |  *	Helper method for drivers which have no PATA cable detection. | 
 |  */ | 
 |  | 
 | int ata_cable_unknown(struct ata_port *ap) | 
 | { | 
 | 	return ATA_CBL_PATA_UNK; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_cable_ignore	-	return ignored PATA cable. | 
 |  *	@ap: port | 
 |  * | 
 |  *	Helper method for drivers which don't use cable type to limit | 
 |  *	transfer mode. | 
 |  */ | 
 | int ata_cable_ignore(struct ata_port *ap) | 
 | { | 
 | 	return ATA_CBL_PATA_IGN; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_cable_sata	-	return SATA cable type | 
 |  *	@ap: port | 
 |  * | 
 |  *	Helper method for drivers which have SATA cables | 
 |  */ | 
 |  | 
 | int ata_cable_sata(struct ata_port *ap) | 
 | { | 
 | 	return ATA_CBL_SATA; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_bus_probe - Reset and probe ATA bus | 
 |  *	@ap: Bus to probe | 
 |  * | 
 |  *	Master ATA bus probing function.  Initiates a hardware-dependent | 
 |  *	bus reset, then attempts to identify any devices found on | 
 |  *	the bus. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	PCI/etc. bus probe sem. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, negative errno otherwise. | 
 |  */ | 
 |  | 
 | int ata_bus_probe(struct ata_port *ap) | 
 | { | 
 | 	unsigned int classes[ATA_MAX_DEVICES]; | 
 | 	int tries[ATA_MAX_DEVICES]; | 
 | 	int rc; | 
 | 	struct ata_device *dev; | 
 |  | 
 | 	ata_for_each_dev(dev, &ap->link, ALL) | 
 | 		tries[dev->devno] = ATA_PROBE_MAX_TRIES; | 
 |  | 
 |  retry: | 
 | 	ata_for_each_dev(dev, &ap->link, ALL) { | 
 | 		/* If we issue an SRST then an ATA drive (not ATAPI) | 
 | 		 * may change configuration and be in PIO0 timing. If | 
 | 		 * we do a hard reset (or are coming from power on) | 
 | 		 * this is true for ATA or ATAPI. Until we've set a | 
 | 		 * suitable controller mode we should not touch the | 
 | 		 * bus as we may be talking too fast. | 
 | 		 */ | 
 | 		dev->pio_mode = XFER_PIO_0; | 
 | 		dev->dma_mode = 0xff; | 
 |  | 
 | 		/* If the controller has a pio mode setup function | 
 | 		 * then use it to set the chipset to rights. Don't | 
 | 		 * touch the DMA setup as that will be dealt with when | 
 | 		 * configuring devices. | 
 | 		 */ | 
 | 		if (ap->ops->set_piomode) | 
 | 			ap->ops->set_piomode(ap, dev); | 
 | 	} | 
 |  | 
 | 	/* reset and determine device classes */ | 
 | 	ap->ops->phy_reset(ap); | 
 |  | 
 | 	ata_for_each_dev(dev, &ap->link, ALL) { | 
 | 		if (dev->class != ATA_DEV_UNKNOWN) | 
 | 			classes[dev->devno] = dev->class; | 
 | 		else | 
 | 			classes[dev->devno] = ATA_DEV_NONE; | 
 |  | 
 | 		dev->class = ATA_DEV_UNKNOWN; | 
 | 	} | 
 |  | 
 | 	/* read IDENTIFY page and configure devices. We have to do the identify | 
 | 	   specific sequence bass-ackwards so that PDIAG- is released by | 
 | 	   the slave device */ | 
 |  | 
 | 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { | 
 | 		if (tries[dev->devno]) | 
 | 			dev->class = classes[dev->devno]; | 
 |  | 
 | 		if (!ata_dev_enabled(dev)) | 
 | 			continue; | 
 |  | 
 | 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, | 
 | 				     dev->id); | 
 | 		if (rc) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	/* Now ask for the cable type as PDIAG- should have been released */ | 
 | 	if (ap->ops->cable_detect) | 
 | 		ap->cbl = ap->ops->cable_detect(ap); | 
 |  | 
 | 	/* We may have SATA bridge glue hiding here irrespective of | 
 | 	 * the reported cable types and sensed types.  When SATA | 
 | 	 * drives indicate we have a bridge, we don't know which end | 
 | 	 * of the link the bridge is which is a problem. | 
 | 	 */ | 
 | 	ata_for_each_dev(dev, &ap->link, ENABLED) | 
 | 		if (ata_id_is_sata(dev->id)) | 
 | 			ap->cbl = ATA_CBL_SATA; | 
 |  | 
 | 	/* After the identify sequence we can now set up the devices. We do | 
 | 	   this in the normal order so that the user doesn't get confused */ | 
 |  | 
 | 	ata_for_each_dev(dev, &ap->link, ENABLED) { | 
 | 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; | 
 | 		rc = ata_dev_configure(dev); | 
 | 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; | 
 | 		if (rc) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	/* configure transfer mode */ | 
 | 	rc = ata_set_mode(&ap->link, &dev); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	ata_for_each_dev(dev, &ap->link, ENABLED) | 
 | 		return 0; | 
 |  | 
 | 	return -ENODEV; | 
 |  | 
 |  fail: | 
 | 	tries[dev->devno]--; | 
 |  | 
 | 	switch (rc) { | 
 | 	case -EINVAL: | 
 | 		/* eeek, something went very wrong, give up */ | 
 | 		tries[dev->devno] = 0; | 
 | 		break; | 
 |  | 
 | 	case -ENODEV: | 
 | 		/* give it just one more chance */ | 
 | 		tries[dev->devno] = min(tries[dev->devno], 1); | 
 | 		/* fall through */ | 
 | 	case -EIO: | 
 | 		if (tries[dev->devno] == 1) { | 
 | 			/* This is the last chance, better to slow | 
 | 			 * down than lose it. | 
 | 			 */ | 
 | 			sata_down_spd_limit(&ap->link, 0); | 
 | 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!tries[dev->devno]) | 
 | 		ata_dev_disable(dev); | 
 |  | 
 | 	goto retry; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_print_link_status - Print SATA link status | 
 |  *	@link: SATA link to printk link status about | 
 |  * | 
 |  *	This function prints link speed and status of a SATA link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  */ | 
 | static void sata_print_link_status(struct ata_link *link) | 
 | { | 
 | 	u32 sstatus, scontrol, tmp; | 
 |  | 
 | 	if (sata_scr_read(link, SCR_STATUS, &sstatus)) | 
 | 		return; | 
 | 	sata_scr_read(link, SCR_CONTROL, &scontrol); | 
 |  | 
 | 	if (ata_phys_link_online(link)) { | 
 | 		tmp = (sstatus >> 4) & 0xf; | 
 | 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", | 
 | 			      sata_spd_string(tmp), sstatus, scontrol); | 
 | 	} else { | 
 | 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", | 
 | 			      sstatus, scontrol); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_pair		-	return other device on cable | 
 |  *	@adev: device | 
 |  * | 
 |  *	Obtain the other device on the same cable, or if none is | 
 |  *	present NULL is returned | 
 |  */ | 
 |  | 
 | struct ata_device *ata_dev_pair(struct ata_device *adev) | 
 | { | 
 | 	struct ata_link *link = adev->link; | 
 | 	struct ata_device *pair = &link->device[1 - adev->devno]; | 
 | 	if (!ata_dev_enabled(pair)) | 
 | 		return NULL; | 
 | 	return pair; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_down_spd_limit - adjust SATA spd limit downward | 
 |  *	@link: Link to adjust SATA spd limit for | 
 |  *	@spd_limit: Additional limit | 
 |  * | 
 |  *	Adjust SATA spd limit of @link downward.  Note that this | 
 |  *	function only adjusts the limit.  The change must be applied | 
 |  *	using sata_set_spd(). | 
 |  * | 
 |  *	If @spd_limit is non-zero, the speed is limited to equal to or | 
 |  *	lower than @spd_limit if such speed is supported.  If | 
 |  *	@spd_limit is slower than any supported speed, only the lowest | 
 |  *	supported speed is allowed. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno on failure | 
 |  */ | 
 | int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) | 
 | { | 
 | 	u32 sstatus, spd, mask; | 
 | 	int rc, bit; | 
 |  | 
 | 	if (!sata_scr_valid(link)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* If SCR can be read, use it to determine the current SPD. | 
 | 	 * If not, use cached value in link->sata_spd. | 
 | 	 */ | 
 | 	rc = sata_scr_read(link, SCR_STATUS, &sstatus); | 
 | 	if (rc == 0 && ata_sstatus_online(sstatus)) | 
 | 		spd = (sstatus >> 4) & 0xf; | 
 | 	else | 
 | 		spd = link->sata_spd; | 
 |  | 
 | 	mask = link->sata_spd_limit; | 
 | 	if (mask <= 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* unconditionally mask off the highest bit */ | 
 | 	bit = fls(mask) - 1; | 
 | 	mask &= ~(1 << bit); | 
 |  | 
 | 	/* | 
 | 	 * Mask off all speeds higher than or equal to the current one.  At | 
 | 	 * this point, if current SPD is not available and we previously | 
 | 	 * recorded the link speed from SStatus, the driver has already | 
 | 	 * masked off the highest bit so mask should already be 1 or 0. | 
 | 	 * Otherwise, we should not force 1.5Gbps on a link where we have | 
 | 	 * not previously recorded speed from SStatus.  Just return in this | 
 | 	 * case. | 
 | 	 */ | 
 | 	if (spd > 1) | 
 | 		mask &= (1 << (spd - 1)) - 1; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* were we already at the bottom? */ | 
 | 	if (!mask) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (spd_limit) { | 
 | 		if (mask & ((1 << spd_limit) - 1)) | 
 | 			mask &= (1 << spd_limit) - 1; | 
 | 		else { | 
 | 			bit = ffs(mask) - 1; | 
 | 			mask = 1 << bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	link->sata_spd_limit = mask; | 
 |  | 
 | 	ata_link_warn(link, "limiting SATA link speed to %s\n", | 
 | 		      sata_spd_string(fls(mask))); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) | 
 | { | 
 | 	struct ata_link *host_link = &link->ap->link; | 
 | 	u32 limit, target, spd; | 
 |  | 
 | 	limit = link->sata_spd_limit; | 
 |  | 
 | 	/* Don't configure downstream link faster than upstream link. | 
 | 	 * It doesn't speed up anything and some PMPs choke on such | 
 | 	 * configuration. | 
 | 	 */ | 
 | 	if (!ata_is_host_link(link) && host_link->sata_spd) | 
 | 		limit &= (1 << host_link->sata_spd) - 1; | 
 |  | 
 | 	if (limit == UINT_MAX) | 
 | 		target = 0; | 
 | 	else | 
 | 		target = fls(limit); | 
 |  | 
 | 	spd = (*scontrol >> 4) & 0xf; | 
 | 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); | 
 |  | 
 | 	return spd != target; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_set_spd_needed - is SATA spd configuration needed | 
 |  *	@link: Link in question | 
 |  * | 
 |  *	Test whether the spd limit in SControl matches | 
 |  *	@link->sata_spd_limit.  This function is used to determine | 
 |  *	whether hardreset is necessary to apply SATA spd | 
 |  *	configuration. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	1 if SATA spd configuration is needed, 0 otherwise. | 
 |  */ | 
 | static int sata_set_spd_needed(struct ata_link *link) | 
 | { | 
 | 	u32 scontrol; | 
 |  | 
 | 	if (sata_scr_read(link, SCR_CONTROL, &scontrol)) | 
 | 		return 1; | 
 |  | 
 | 	return __sata_set_spd_needed(link, &scontrol); | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_set_spd - set SATA spd according to spd limit | 
 |  *	@link: Link to set SATA spd for | 
 |  * | 
 |  *	Set SATA spd of @link according to sata_spd_limit. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if spd doesn't need to be changed, 1 if spd has been | 
 |  *	changed.  Negative errno if SCR registers are inaccessible. | 
 |  */ | 
 | int sata_set_spd(struct ata_link *link) | 
 | { | 
 | 	u32 scontrol; | 
 | 	int rc; | 
 |  | 
 | 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) | 
 | 		return rc; | 
 |  | 
 | 	if (!__sata_set_spd_needed(link, &scontrol)) | 
 | 		return 0; | 
 |  | 
 | 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) | 
 | 		return rc; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * This mode timing computation functionality is ported over from | 
 |  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik | 
 |  */ | 
 | /* | 
 |  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). | 
 |  * These were taken from ATA/ATAPI-6 standard, rev 0a, except | 
 |  * for UDMA6, which is currently supported only by Maxtor drives. | 
 |  * | 
 |  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. | 
 |  */ | 
 |  | 
 | static const struct ata_timing ata_timing[] = { | 
 | /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */ | 
 | 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 }, | 
 | 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 }, | 
 | 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 }, | 
 | 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 }, | 
 | 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 }, | 
 | 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 }, | 
 | 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 }, | 
 |  | 
 | 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 }, | 
 | 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 }, | 
 | 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 }, | 
 |  | 
 | 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 }, | 
 | 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 }, | 
 | 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 }, | 
 | 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 }, | 
 | 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 }, | 
 |  | 
 | /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */ | 
 | 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 }, | 
 | 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 }, | 
 | 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 }, | 
 | 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 }, | 
 | 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 }, | 
 | 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 }, | 
 | 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 }, | 
 |  | 
 | 	{ 0xFF } | 
 | }; | 
 |  | 
 | #define ENOUGH(v, unit)		(((v)-1)/(unit)+1) | 
 | #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0) | 
 |  | 
 | static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) | 
 | { | 
 | 	q->setup	= EZ(t->setup,       T); | 
 | 	q->act8b	= EZ(t->act8b,       T); | 
 | 	q->rec8b	= EZ(t->rec8b,       T); | 
 | 	q->cyc8b	= EZ(t->cyc8b,       T); | 
 | 	q->active	= EZ(t->active,      T); | 
 | 	q->recover	= EZ(t->recover,     T); | 
 | 	q->dmack_hold	= EZ(t->dmack_hold,  T); | 
 | 	q->cycle	= EZ(t->cycle,       T); | 
 | 	q->udma		= EZ(t->udma,       UT); | 
 | } | 
 |  | 
 | void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, | 
 | 		      struct ata_timing *m, unsigned int what) | 
 | { | 
 | 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup); | 
 | 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b); | 
 | 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b); | 
 | 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b); | 
 | 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active); | 
 | 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); | 
 | 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); | 
 | 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle); | 
 | 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma); | 
 | } | 
 |  | 
 | const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) | 
 | { | 
 | 	const struct ata_timing *t = ata_timing; | 
 |  | 
 | 	while (xfer_mode > t->mode) | 
 | 		t++; | 
 |  | 
 | 	if (xfer_mode == t->mode) | 
 | 		return t; | 
 |  | 
 | 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", | 
 | 			__func__, xfer_mode); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int ata_timing_compute(struct ata_device *adev, unsigned short speed, | 
 | 		       struct ata_timing *t, int T, int UT) | 
 | { | 
 | 	const u16 *id = adev->id; | 
 | 	const struct ata_timing *s; | 
 | 	struct ata_timing p; | 
 |  | 
 | 	/* | 
 | 	 * Find the mode. | 
 | 	 */ | 
 |  | 
 | 	if (!(s = ata_timing_find_mode(speed))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(t, s, sizeof(*s)); | 
 |  | 
 | 	/* | 
 | 	 * If the drive is an EIDE drive, it can tell us it needs extended | 
 | 	 * PIO/MW_DMA cycle timing. | 
 | 	 */ | 
 |  | 
 | 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */ | 
 | 		memset(&p, 0, sizeof(p)); | 
 |  | 
 | 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { | 
 | 			if (speed <= XFER_PIO_2) | 
 | 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; | 
 | 			else if ((speed <= XFER_PIO_4) || | 
 | 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) | 
 | 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; | 
 | 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) | 
 | 			p.cycle = id[ATA_ID_EIDE_DMA_MIN]; | 
 |  | 
 | 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Convert the timing to bus clock counts. | 
 | 	 */ | 
 |  | 
 | 	ata_timing_quantize(t, t, T, UT); | 
 |  | 
 | 	/* | 
 | 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, | 
 | 	 * S.M.A.R.T * and some other commands. We have to ensure that the | 
 | 	 * DMA cycle timing is slower/equal than the fastest PIO timing. | 
 | 	 */ | 
 |  | 
 | 	if (speed > XFER_PIO_6) { | 
 | 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT); | 
 | 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Lengthen active & recovery time so that cycle time is correct. | 
 | 	 */ | 
 |  | 
 | 	if (t->act8b + t->rec8b < t->cyc8b) { | 
 | 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; | 
 | 		t->rec8b = t->cyc8b - t->act8b; | 
 | 	} | 
 |  | 
 | 	if (t->active + t->recover < t->cycle) { | 
 | 		t->active += (t->cycle - (t->active + t->recover)) / 2; | 
 | 		t->recover = t->cycle - t->active; | 
 | 	} | 
 |  | 
 | 	/* In a few cases quantisation may produce enough errors to | 
 | 	   leave t->cycle too low for the sum of active and recovery | 
 | 	   if so we must correct this */ | 
 | 	if (t->active + t->recover > t->cycle) | 
 | 		t->cycle = t->active + t->recover; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration | 
 |  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine. | 
 |  *	@cycle: cycle duration in ns | 
 |  * | 
 |  *	Return matching xfer mode for @cycle.  The returned mode is of | 
 |  *	the transfer type specified by @xfer_shift.  If @cycle is too | 
 |  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster | 
 |  *	than the fastest known mode, the fasted mode is returned. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Matching xfer_mode, 0xff if no match found. | 
 |  */ | 
 | u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) | 
 | { | 
 | 	u8 base_mode = 0xff, last_mode = 0xff; | 
 | 	const struct ata_xfer_ent *ent; | 
 | 	const struct ata_timing *t; | 
 |  | 
 | 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) | 
 | 		if (ent->shift == xfer_shift) | 
 | 			base_mode = ent->base; | 
 |  | 
 | 	for (t = ata_timing_find_mode(base_mode); | 
 | 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { | 
 | 		unsigned short this_cycle; | 
 |  | 
 | 		switch (xfer_shift) { | 
 | 		case ATA_SHIFT_PIO: | 
 | 		case ATA_SHIFT_MWDMA: | 
 | 			this_cycle = t->cycle; | 
 | 			break; | 
 | 		case ATA_SHIFT_UDMA: | 
 | 			this_cycle = t->udma; | 
 | 			break; | 
 | 		default: | 
 | 			return 0xff; | 
 | 		} | 
 |  | 
 | 		if (cycle > this_cycle) | 
 | 			break; | 
 |  | 
 | 		last_mode = t->mode; | 
 | 	} | 
 |  | 
 | 	return last_mode; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_down_xfermask_limit - adjust dev xfer masks downward | 
 |  *	@dev: Device to adjust xfer masks | 
 |  *	@sel: ATA_DNXFER_* selector | 
 |  * | 
 |  *	Adjust xfer masks of @dev downward.  Note that this function | 
 |  *	does not apply the change.  Invoking ata_set_mode() afterwards | 
 |  *	will apply the limit. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno on failure | 
 |  */ | 
 | int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) | 
 | { | 
 | 	char buf[32]; | 
 | 	unsigned long orig_mask, xfer_mask; | 
 | 	unsigned long pio_mask, mwdma_mask, udma_mask; | 
 | 	int quiet, highbit; | 
 |  | 
 | 	quiet = !!(sel & ATA_DNXFER_QUIET); | 
 | 	sel &= ~ATA_DNXFER_QUIET; | 
 |  | 
 | 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, | 
 | 						  dev->mwdma_mask, | 
 | 						  dev->udma_mask); | 
 | 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); | 
 |  | 
 | 	switch (sel) { | 
 | 	case ATA_DNXFER_PIO: | 
 | 		highbit = fls(pio_mask) - 1; | 
 | 		pio_mask &= ~(1 << highbit); | 
 | 		break; | 
 |  | 
 | 	case ATA_DNXFER_DMA: | 
 | 		if (udma_mask) { | 
 | 			highbit = fls(udma_mask) - 1; | 
 | 			udma_mask &= ~(1 << highbit); | 
 | 			if (!udma_mask) | 
 | 				return -ENOENT; | 
 | 		} else if (mwdma_mask) { | 
 | 			highbit = fls(mwdma_mask) - 1; | 
 | 			mwdma_mask &= ~(1 << highbit); | 
 | 			if (!mwdma_mask) | 
 | 				return -ENOENT; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case ATA_DNXFER_40C: | 
 | 		udma_mask &= ATA_UDMA_MASK_40C; | 
 | 		break; | 
 |  | 
 | 	case ATA_DNXFER_FORCE_PIO0: | 
 | 		pio_mask &= 1; | 
 | 		/* fall through */ | 
 | 	case ATA_DNXFER_FORCE_PIO: | 
 | 		mwdma_mask = 0; | 
 | 		udma_mask = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); | 
 |  | 
 | 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!quiet) { | 
 | 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) | 
 | 			snprintf(buf, sizeof(buf), "%s:%s", | 
 | 				 ata_mode_string(xfer_mask), | 
 | 				 ata_mode_string(xfer_mask & ATA_MASK_PIO)); | 
 | 		else | 
 | 			snprintf(buf, sizeof(buf), "%s", | 
 | 				 ata_mode_string(xfer_mask)); | 
 |  | 
 | 		ata_dev_warn(dev, "limiting speed to %s\n", buf); | 
 | 	} | 
 |  | 
 | 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, | 
 | 			    &dev->udma_mask); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_dev_set_mode(struct ata_device *dev) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	struct ata_eh_context *ehc = &dev->link->eh_context; | 
 | 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; | 
 | 	const char *dev_err_whine = ""; | 
 | 	int ign_dev_err = 0; | 
 | 	unsigned int err_mask = 0; | 
 | 	int rc; | 
 |  | 
 | 	dev->flags &= ~ATA_DFLAG_PIO; | 
 | 	if (dev->xfer_shift == ATA_SHIFT_PIO) | 
 | 		dev->flags |= ATA_DFLAG_PIO; | 
 |  | 
 | 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) | 
 | 		dev_err_whine = " (SET_XFERMODE skipped)"; | 
 | 	else { | 
 | 		if (nosetxfer) | 
 | 			ata_dev_warn(dev, | 
 | 				     "NOSETXFER but PATA detected - can't " | 
 | 				     "skip SETXFER, might malfunction\n"); | 
 | 		err_mask = ata_dev_set_xfermode(dev); | 
 | 	} | 
 |  | 
 | 	if (err_mask & ~AC_ERR_DEV) | 
 | 		goto fail; | 
 |  | 
 | 	/* revalidate */ | 
 | 	ehc->i.flags |= ATA_EHI_POST_SETMODE; | 
 | 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); | 
 | 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE; | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (dev->xfer_shift == ATA_SHIFT_PIO) { | 
 | 		/* Old CFA may refuse this command, which is just fine */ | 
 | 		if (ata_id_is_cfa(dev->id)) | 
 | 			ign_dev_err = 1; | 
 | 		/* Catch several broken garbage emulations plus some pre | 
 | 		   ATA devices */ | 
 | 		if (ata_id_major_version(dev->id) == 0 && | 
 | 					dev->pio_mode <= XFER_PIO_2) | 
 | 			ign_dev_err = 1; | 
 | 		/* Some very old devices and some bad newer ones fail | 
 | 		   any kind of SET_XFERMODE request but support PIO0-2 | 
 | 		   timings and no IORDY */ | 
 | 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) | 
 | 			ign_dev_err = 1; | 
 | 	} | 
 | 	/* Early MWDMA devices do DMA but don't allow DMA mode setting. | 
 | 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ | 
 | 	if (dev->xfer_shift == ATA_SHIFT_MWDMA && | 
 | 	    dev->dma_mode == XFER_MW_DMA_0 && | 
 | 	    (dev->id[63] >> 8) & 1) | 
 | 		ign_dev_err = 1; | 
 |  | 
 | 	/* if the device is actually configured correctly, ignore dev err */ | 
 | 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) | 
 | 		ign_dev_err = 1; | 
 |  | 
 | 	if (err_mask & AC_ERR_DEV) { | 
 | 		if (!ign_dev_err) | 
 | 			goto fail; | 
 | 		else | 
 | 			dev_err_whine = " (device error ignored)"; | 
 | 	} | 
 |  | 
 | 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", | 
 | 		dev->xfer_shift, (int)dev->xfer_mode); | 
 |  | 
 | 	if (!(ehc->i.flags & ATA_EHI_QUIET) || | 
 | 	    ehc->i.flags & ATA_EHI_DID_HARDRESET) | 
 | 		ata_dev_info(dev, "configured for %s%s\n", | 
 | 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), | 
 | 			     dev_err_whine); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail: | 
 | 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER | 
 |  *	@link: link on which timings will be programmed | 
 |  *	@r_failed_dev: out parameter for failed device | 
 |  * | 
 |  *	Standard implementation of the function used to tune and set | 
 |  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If | 
 |  *	ata_dev_set_mode() fails, pointer to the failing device is | 
 |  *	returned in @r_failed_dev. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	PCI/etc. bus probe sem. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno otherwise | 
 |  */ | 
 |  | 
 | int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 | 	struct ata_device *dev; | 
 | 	int rc = 0, used_dma = 0, found = 0; | 
 |  | 
 | 	/* step 1: calculate xfer_mask */ | 
 | 	ata_for_each_dev(dev, link, ENABLED) { | 
 | 		unsigned long pio_mask, dma_mask; | 
 | 		unsigned int mode_mask; | 
 |  | 
 | 		mode_mask = ATA_DMA_MASK_ATA; | 
 | 		if (dev->class == ATA_DEV_ATAPI) | 
 | 			mode_mask = ATA_DMA_MASK_ATAPI; | 
 | 		else if (ata_id_is_cfa(dev->id)) | 
 | 			mode_mask = ATA_DMA_MASK_CFA; | 
 |  | 
 | 		ata_dev_xfermask(dev); | 
 | 		ata_force_xfermask(dev); | 
 |  | 
 | 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); | 
 |  | 
 | 		if (libata_dma_mask & mode_mask) | 
 | 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, | 
 | 						     dev->udma_mask); | 
 | 		else | 
 | 			dma_mask = 0; | 
 |  | 
 | 		dev->pio_mode = ata_xfer_mask2mode(pio_mask); | 
 | 		dev->dma_mode = ata_xfer_mask2mode(dma_mask); | 
 |  | 
 | 		found = 1; | 
 | 		if (ata_dma_enabled(dev)) | 
 | 			used_dma = 1; | 
 | 	} | 
 | 	if (!found) | 
 | 		goto out; | 
 |  | 
 | 	/* step 2: always set host PIO timings */ | 
 | 	ata_for_each_dev(dev, link, ENABLED) { | 
 | 		if (dev->pio_mode == 0xff) { | 
 | 			ata_dev_warn(dev, "no PIO support\n"); | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		dev->xfer_mode = dev->pio_mode; | 
 | 		dev->xfer_shift = ATA_SHIFT_PIO; | 
 | 		if (ap->ops->set_piomode) | 
 | 			ap->ops->set_piomode(ap, dev); | 
 | 	} | 
 |  | 
 | 	/* step 3: set host DMA timings */ | 
 | 	ata_for_each_dev(dev, link, ENABLED) { | 
 | 		if (!ata_dma_enabled(dev)) | 
 | 			continue; | 
 |  | 
 | 		dev->xfer_mode = dev->dma_mode; | 
 | 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); | 
 | 		if (ap->ops->set_dmamode) | 
 | 			ap->ops->set_dmamode(ap, dev); | 
 | 	} | 
 |  | 
 | 	/* step 4: update devices' xfer mode */ | 
 | 	ata_for_each_dev(dev, link, ENABLED) { | 
 | 		rc = ata_dev_set_mode(dev); | 
 | 		if (rc) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Record simplex status. If we selected DMA then the other | 
 | 	 * host channels are not permitted to do so. | 
 | 	 */ | 
 | 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) | 
 | 		ap->host->simplex_claimed = ap; | 
 |  | 
 |  out: | 
 | 	if (rc) | 
 | 		*r_failed_dev = dev; | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_wait_ready - wait for link to become ready | 
 |  *	@link: link to be waited on | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  *	@check_ready: callback to check link readiness | 
 |  * | 
 |  *	Wait for @link to become ready.  @check_ready should return | 
 |  *	positive number if @link is ready, 0 if it isn't, -ENODEV if | 
 |  *	link doesn't seem to be occupied, other errno for other error | 
 |  *	conditions. | 
 |  * | 
 |  *	Transient -ENODEV conditions are allowed for | 
 |  *	ATA_TMOUT_FF_WAIT. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if @link is ready before @deadline; otherwise, -errno. | 
 |  */ | 
 | int ata_wait_ready(struct ata_link *link, unsigned long deadline, | 
 | 		   int (*check_ready)(struct ata_link *link)) | 
 | { | 
 | 	unsigned long start = jiffies; | 
 | 	unsigned long nodev_deadline; | 
 | 	int warned = 0; | 
 |  | 
 | 	/* choose which 0xff timeout to use, read comment in libata.h */ | 
 | 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) | 
 | 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); | 
 | 	else | 
 | 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); | 
 |  | 
 | 	/* Slave readiness can't be tested separately from master.  On | 
 | 	 * M/S emulation configuration, this function should be called | 
 | 	 * only on the master and it will handle both master and slave. | 
 | 	 */ | 
 | 	WARN_ON(link == link->ap->slave_link); | 
 |  | 
 | 	if (time_after(nodev_deadline, deadline)) | 
 | 		nodev_deadline = deadline; | 
 |  | 
 | 	while (1) { | 
 | 		unsigned long now = jiffies; | 
 | 		int ready, tmp; | 
 |  | 
 | 		ready = tmp = check_ready(link); | 
 | 		if (ready > 0) | 
 | 			return 0; | 
 |  | 
 | 		/* | 
 | 		 * -ENODEV could be transient.  Ignore -ENODEV if link | 
 | 		 * is online.  Also, some SATA devices take a long | 
 | 		 * time to clear 0xff after reset.  Wait for | 
 | 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't | 
 | 		 * offline. | 
 | 		 * | 
 | 		 * Note that some PATA controllers (pata_ali) explode | 
 | 		 * if status register is read more than once when | 
 | 		 * there's no device attached. | 
 | 		 */ | 
 | 		if (ready == -ENODEV) { | 
 | 			if (ata_link_online(link)) | 
 | 				ready = 0; | 
 | 			else if ((link->ap->flags & ATA_FLAG_SATA) && | 
 | 				 !ata_link_offline(link) && | 
 | 				 time_before(now, nodev_deadline)) | 
 | 				ready = 0; | 
 | 		} | 
 |  | 
 | 		if (ready) | 
 | 			return ready; | 
 | 		if (time_after(now, deadline)) | 
 | 			return -EBUSY; | 
 |  | 
 | 		if (!warned && time_after(now, start + 5 * HZ) && | 
 | 		    (deadline - now > 3 * HZ)) { | 
 | 			ata_link_warn(link, | 
 | 				"link is slow to respond, please be patient " | 
 | 				"(ready=%d)\n", tmp); | 
 | 			warned = 1; | 
 | 		} | 
 |  | 
 | 		ata_msleep(link->ap, 50); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_wait_after_reset - wait for link to become ready after reset | 
 |  *	@link: link to be waited on | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  *	@check_ready: callback to check link readiness | 
 |  * | 
 |  *	Wait for @link to become ready after reset. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if @link is ready before @deadline; otherwise, -errno. | 
 |  */ | 
 | int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, | 
 | 				int (*check_ready)(struct ata_link *link)) | 
 | { | 
 | 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); | 
 |  | 
 | 	return ata_wait_ready(link, deadline, check_ready); | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_link_debounce - debounce SATA phy status | 
 |  *	@link: ATA link to debounce SATA phy status for | 
 |  *	@params: timing parameters { interval, duration, timeout } in msec | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Make sure SStatus of @link reaches stable state, determined by | 
 |  *	holding the same value where DET is not 1 for @duration polled | 
 |  *	every @interval, before @timeout.  Timeout constraints the | 
 |  *	beginning of the stable state.  Because DET gets stuck at 1 on | 
 |  *	some controllers after hot unplugging, this functions waits | 
 |  *	until timeout then returns 0 if DET is stable at 1. | 
 |  * | 
 |  *	@timeout is further limited by @deadline.  The sooner of the | 
 |  *	two is used. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno on failure. | 
 |  */ | 
 | int sata_link_debounce(struct ata_link *link, const unsigned long *params, | 
 | 		       unsigned long deadline) | 
 | { | 
 | 	unsigned long interval = params[0]; | 
 | 	unsigned long duration = params[1]; | 
 | 	unsigned long last_jiffies, t; | 
 | 	u32 last, cur; | 
 | 	int rc; | 
 |  | 
 | 	t = ata_deadline(jiffies, params[2]); | 
 | 	if (time_before(t, deadline)) | 
 | 		deadline = t; | 
 |  | 
 | 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) | 
 | 		return rc; | 
 | 	cur &= 0xf; | 
 |  | 
 | 	last = cur; | 
 | 	last_jiffies = jiffies; | 
 |  | 
 | 	while (1) { | 
 | 		ata_msleep(link->ap, interval); | 
 | 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) | 
 | 			return rc; | 
 | 		cur &= 0xf; | 
 |  | 
 | 		/* DET stable? */ | 
 | 		if (cur == last) { | 
 | 			if (cur == 1 && time_before(jiffies, deadline)) | 
 | 				continue; | 
 | 			if (time_after(jiffies, | 
 | 				       ata_deadline(last_jiffies, duration))) | 
 | 				return 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* unstable, start over */ | 
 | 		last = cur; | 
 | 		last_jiffies = jiffies; | 
 |  | 
 | 		/* Check deadline.  If debouncing failed, return | 
 | 		 * -EPIPE to tell upper layer to lower link speed. | 
 | 		 */ | 
 | 		if (time_after(jiffies, deadline)) | 
 | 			return -EPIPE; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_link_resume - resume SATA link | 
 |  *	@link: ATA link to resume SATA | 
 |  *	@params: timing parameters { interval, duration, timeout } in msec | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Resume SATA phy @link and debounce it. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno on failure. | 
 |  */ | 
 | int sata_link_resume(struct ata_link *link, const unsigned long *params, | 
 | 		     unsigned long deadline) | 
 | { | 
 | 	int tries = ATA_LINK_RESUME_TRIES; | 
 | 	u32 scontrol, serror; | 
 | 	int rc; | 
 |  | 
 | 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) | 
 | 		return rc; | 
 |  | 
 | 	/* | 
 | 	 * Writes to SControl sometimes get ignored under certain | 
 | 	 * controllers (ata_piix SIDPR).  Make sure DET actually is | 
 | 	 * cleared. | 
 | 	 */ | 
 | 	do { | 
 | 		scontrol = (scontrol & 0x0f0) | 0x300; | 
 | 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) | 
 | 			return rc; | 
 | 		/* | 
 | 		 * Some PHYs react badly if SStatus is pounded | 
 | 		 * immediately after resuming.  Delay 200ms before | 
 | 		 * debouncing. | 
 | 		 */ | 
 | 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) | 
 | 			ata_msleep(link->ap, 200); | 
 |  | 
 | 		/* is SControl restored correctly? */ | 
 | 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) | 
 | 			return rc; | 
 | 	} while ((scontrol & 0xf0f) != 0x300 && --tries); | 
 |  | 
 | 	if ((scontrol & 0xf0f) != 0x300) { | 
 | 		ata_link_warn(link, "failed to resume link (SControl %X)\n", | 
 | 			     scontrol); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (tries < ATA_LINK_RESUME_TRIES) | 
 | 		ata_link_warn(link, "link resume succeeded after %d retries\n", | 
 | 			      ATA_LINK_RESUME_TRIES - tries); | 
 |  | 
 | 	if ((rc = sata_link_debounce(link, params, deadline))) | 
 | 		return rc; | 
 |  | 
 | 	/* clear SError, some PHYs require this even for SRST to work */ | 
 | 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) | 
 | 		rc = sata_scr_write(link, SCR_ERROR, serror); | 
 |  | 
 | 	return rc != -EINVAL ? rc : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields | 
 |  *	@link: ATA link to manipulate SControl for | 
 |  *	@policy: LPM policy to configure | 
 |  *	@spm_wakeup: initiate LPM transition to active state | 
 |  * | 
 |  *	Manipulate the IPM field of the SControl register of @link | 
 |  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and | 
 |  *	@spm_wakeup is %true, the SPM field is manipulated to wake up | 
 |  *	the link.  This function also clears PHYRDY_CHG before | 
 |  *	returning. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	EH context. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, | 
 | 		      bool spm_wakeup) | 
 | { | 
 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 	bool woken_up = false; | 
 | 	u32 scontrol; | 
 | 	int rc; | 
 |  | 
 | 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	switch (policy) { | 
 | 	case ATA_LPM_MAX_POWER: | 
 | 		/* disable all LPM transitions */ | 
 | 		scontrol |= (0x7 << 8); | 
 | 		/* initiate transition to active state */ | 
 | 		if (spm_wakeup) { | 
 | 			scontrol |= (0x4 << 12); | 
 | 			woken_up = true; | 
 | 		} | 
 | 		break; | 
 | 	case ATA_LPM_MED_POWER: | 
 | 		/* allow LPM to PARTIAL */ | 
 | 		scontrol &= ~(0x1 << 8); | 
 | 		scontrol |= (0x6 << 8); | 
 | 		break; | 
 | 	case ATA_LPM_MED_POWER_WITH_DIPM: | 
 | 	case ATA_LPM_MIN_POWER_WITH_PARTIAL: | 
 | 	case ATA_LPM_MIN_POWER: | 
 | 		if (ata_link_nr_enabled(link) > 0) | 
 | 			/* no restrictions on LPM transitions */ | 
 | 			scontrol &= ~(0x7 << 8); | 
 | 		else { | 
 | 			/* empty port, power off */ | 
 | 			scontrol &= ~0xf; | 
 | 			scontrol |= (0x1 << 2); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	rc = sata_scr_write(link, SCR_CONTROL, scontrol); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* give the link time to transit out of LPM state */ | 
 | 	if (woken_up) | 
 | 		msleep(10); | 
 |  | 
 | 	/* clear PHYRDY_CHG from SError */ | 
 | 	ehc->i.serror &= ~SERR_PHYRDY_CHG; | 
 | 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_std_prereset - prepare for reset | 
 |  *	@link: ATA link to be reset | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	@link is about to be reset.  Initialize it.  Failure from | 
 |  *	prereset makes libata abort whole reset sequence and give up | 
 |  *	that port, so prereset should be best-effort.  It does its | 
 |  *	best to prepare for reset sequence but if things go wrong, it | 
 |  *	should just whine, not fail. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_std_prereset(struct ata_link *link, unsigned long deadline) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 	const unsigned long *timing = sata_ehc_deb_timing(ehc); | 
 | 	int rc; | 
 |  | 
 | 	/* if we're about to do hardreset, nothing more to do */ | 
 | 	if (ehc->i.action & ATA_EH_HARDRESET) | 
 | 		return 0; | 
 |  | 
 | 	/* if SATA, resume link */ | 
 | 	if (ap->flags & ATA_FLAG_SATA) { | 
 | 		rc = sata_link_resume(link, timing, deadline); | 
 | 		/* whine about phy resume failure but proceed */ | 
 | 		if (rc && rc != -EOPNOTSUPP) | 
 | 			ata_link_warn(link, | 
 | 				      "failed to resume link for reset (errno=%d)\n", | 
 | 				      rc); | 
 | 	} | 
 |  | 
 | 	/* no point in trying softreset on offline link */ | 
 | 	if (ata_phys_link_offline(link)) | 
 | 		ehc->i.action &= ~ATA_EH_SOFTRESET; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_link_hardreset - reset link via SATA phy reset | 
 |  *	@link: link to reset | 
 |  *	@timing: timing parameters { interval, duration, timeout } in msec | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  *	@online: optional out parameter indicating link onlineness | 
 |  *	@check_ready: optional callback to check link readiness | 
 |  * | 
 |  *	SATA phy-reset @link using DET bits of SControl register. | 
 |  *	After hardreset, link readiness is waited upon using | 
 |  *	ata_wait_ready() if @check_ready is specified.  LLDs are | 
 |  *	allowed to not specify @check_ready and wait itself after this | 
 |  *	function returns.  Device classification is LLD's | 
 |  *	responsibility. | 
 |  * | 
 |  *	*@online is set to one iff reset succeeded and @link is online | 
 |  *	after reset. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, | 
 | 			unsigned long deadline, | 
 | 			bool *online, int (*check_ready)(struct ata_link *)) | 
 | { | 
 | 	u32 scontrol; | 
 | 	int rc; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	if (online) | 
 | 		*online = false; | 
 |  | 
 | 	if (sata_set_spd_needed(link)) { | 
 | 		/* SATA spec says nothing about how to reconfigure | 
 | 		 * spd.  To be on the safe side, turn off phy during | 
 | 		 * reconfiguration.  This works for at least ICH7 AHCI | 
 | 		 * and Sil3124. | 
 | 		 */ | 
 | 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) | 
 | 			goto out; | 
 |  | 
 | 		scontrol = (scontrol & 0x0f0) | 0x304; | 
 |  | 
 | 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) | 
 | 			goto out; | 
 |  | 
 | 		sata_set_spd(link); | 
 | 	} | 
 |  | 
 | 	/* issue phy wake/reset */ | 
 | 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) | 
 | 		goto out; | 
 |  | 
 | 	scontrol = (scontrol & 0x0f0) | 0x301; | 
 |  | 
 | 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) | 
 | 		goto out; | 
 |  | 
 | 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1 | 
 | 	 * 10.4.2 says at least 1 ms. | 
 | 	 */ | 
 | 	ata_msleep(link->ap, 1); | 
 |  | 
 | 	/* bring link back */ | 
 | 	rc = sata_link_resume(link, timing, deadline); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	/* if link is offline nothing more to do */ | 
 | 	if (ata_phys_link_offline(link)) | 
 | 		goto out; | 
 |  | 
 | 	/* Link is online.  From this point, -ENODEV too is an error. */ | 
 | 	if (online) | 
 | 		*online = true; | 
 |  | 
 | 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { | 
 | 		/* If PMP is supported, we have to do follow-up SRST. | 
 | 		 * Some PMPs don't send D2H Reg FIS after hardreset if | 
 | 		 * the first port is empty.  Wait only for | 
 | 		 * ATA_TMOUT_PMP_SRST_WAIT. | 
 | 		 */ | 
 | 		if (check_ready) { | 
 | 			unsigned long pmp_deadline; | 
 |  | 
 | 			pmp_deadline = ata_deadline(jiffies, | 
 | 						    ATA_TMOUT_PMP_SRST_WAIT); | 
 | 			if (time_after(pmp_deadline, deadline)) | 
 | 				pmp_deadline = deadline; | 
 | 			ata_wait_ready(link, pmp_deadline, check_ready); | 
 | 		} | 
 | 		rc = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rc = 0; | 
 | 	if (check_ready) | 
 | 		rc = ata_wait_ready(link, deadline, check_ready); | 
 |  out: | 
 | 	if (rc && rc != -EAGAIN) { | 
 | 		/* online is set iff link is online && reset succeeded */ | 
 | 		if (online) | 
 | 			*online = false; | 
 | 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); | 
 | 	} | 
 | 	DPRINTK("EXIT, rc=%d\n", rc); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_std_hardreset - COMRESET w/o waiting or classification | 
 |  *	@link: link to reset | 
 |  *	@class: resulting class of attached device | 
 |  *	@deadline: deadline jiffies for the operation | 
 |  * | 
 |  *	Standard SATA COMRESET w/o waiting or classification. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if link offline, -EAGAIN if link online, -errno on errors. | 
 |  */ | 
 | int sata_std_hardreset(struct ata_link *link, unsigned int *class, | 
 | 		       unsigned long deadline) | 
 | { | 
 | 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); | 
 | 	bool online; | 
 | 	int rc; | 
 |  | 
 | 	/* do hardreset */ | 
 | 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL); | 
 | 	return online ? -EAGAIN : rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_std_postreset - standard postreset callback | 
 |  *	@link: the target ata_link | 
 |  *	@classes: classes of attached devices | 
 |  * | 
 |  *	This function is invoked after a successful reset.  Note that | 
 |  *	the device might have been reset more than once using | 
 |  *	different reset methods before postreset is invoked. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  */ | 
 | void ata_std_postreset(struct ata_link *link, unsigned int *classes) | 
 | { | 
 | 	u32 serror; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	/* reset complete, clear SError */ | 
 | 	if (!sata_scr_read(link, SCR_ERROR, &serror)) | 
 | 		sata_scr_write(link, SCR_ERROR, serror); | 
 |  | 
 | 	/* print link status */ | 
 | 	sata_print_link_status(link); | 
 |  | 
 | 	DPRINTK("EXIT\n"); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_same_device - Determine whether new ID matches configured device | 
 |  *	@dev: device to compare against | 
 |  *	@new_class: class of the new device | 
 |  *	@new_id: IDENTIFY page of the new device | 
 |  * | 
 |  *	Compare @new_class and @new_id against @dev and determine | 
 |  *	whether @dev is the device indicated by @new_class and | 
 |  *	@new_id. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	1 if @dev matches @new_class and @new_id, 0 otherwise. | 
 |  */ | 
 | static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, | 
 | 			       const u16 *new_id) | 
 | { | 
 | 	const u16 *old_id = dev->id; | 
 | 	unsigned char model[2][ATA_ID_PROD_LEN + 1]; | 
 | 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; | 
 |  | 
 | 	if (dev->class != new_class) { | 
 | 		ata_dev_info(dev, "class mismatch %d != %d\n", | 
 | 			     dev->class, new_class); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); | 
 | 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); | 
 | 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); | 
 | 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); | 
 |  | 
 | 	if (strcmp(model[0], model[1])) { | 
 | 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", | 
 | 			     model[0], model[1]); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (strcmp(serial[0], serial[1])) { | 
 | 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", | 
 | 			     serial[0], serial[1]); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_reread_id - Re-read IDENTIFY data | 
 |  *	@dev: target ATA device | 
 |  *	@readid_flags: read ID flags | 
 |  * | 
 |  *	Re-read IDENTIFY page and make sure @dev is still attached to | 
 |  *	the port. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno otherwise | 
 |  */ | 
 | int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) | 
 | { | 
 | 	unsigned int class = dev->class; | 
 | 	u16 *id = (void *)dev->link->ap->sector_buf; | 
 | 	int rc; | 
 |  | 
 | 	/* read ID data */ | 
 | 	rc = ata_dev_read_id(dev, &class, readid_flags, id); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* is the device still there? */ | 
 | 	if (!ata_dev_same_device(dev, class, id)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_revalidate - Revalidate ATA device | 
 |  *	@dev: device to revalidate | 
 |  *	@new_class: new class code | 
 |  *	@readid_flags: read ID flags | 
 |  * | 
 |  *	Re-read IDENTIFY page, make sure @dev is still attached to the | 
 |  *	port and reconfigure it according to the new IDENTIFY page. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno otherwise | 
 |  */ | 
 | int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, | 
 | 		       unsigned int readid_flags) | 
 | { | 
 | 	u64 n_sectors = dev->n_sectors; | 
 | 	u64 n_native_sectors = dev->n_native_sectors; | 
 | 	int rc; | 
 |  | 
 | 	if (!ata_dev_enabled(dev)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ | 
 | 	if (ata_class_enabled(new_class) && | 
 | 	    new_class != ATA_DEV_ATA && | 
 | 	    new_class != ATA_DEV_ATAPI && | 
 | 	    new_class != ATA_DEV_ZAC && | 
 | 	    new_class != ATA_DEV_SEMB) { | 
 | 		ata_dev_info(dev, "class mismatch %u != %u\n", | 
 | 			     dev->class, new_class); | 
 | 		rc = -ENODEV; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* re-read ID */ | 
 | 	rc = ata_dev_reread_id(dev, readid_flags); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	/* configure device according to the new ID */ | 
 | 	rc = ata_dev_configure(dev); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	/* verify n_sectors hasn't changed */ | 
 | 	if (dev->class != ATA_DEV_ATA || !n_sectors || | 
 | 	    dev->n_sectors == n_sectors) | 
 | 		return 0; | 
 |  | 
 | 	/* n_sectors has changed */ | 
 | 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", | 
 | 		     (unsigned long long)n_sectors, | 
 | 		     (unsigned long long)dev->n_sectors); | 
 |  | 
 | 	/* | 
 | 	 * Something could have caused HPA to be unlocked | 
 | 	 * involuntarily.  If n_native_sectors hasn't changed and the | 
 | 	 * new size matches it, keep the device. | 
 | 	 */ | 
 | 	if (dev->n_native_sectors == n_native_sectors && | 
 | 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "new n_sectors matches native, probably " | 
 | 			     "late HPA unlock, n_sectors updated\n"); | 
 | 		/* use the larger n_sectors */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try | 
 | 	 * unlocking HPA in those cases. | 
 | 	 * | 
 | 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 | 
 | 	 */ | 
 | 	if (dev->n_native_sectors == n_native_sectors && | 
 | 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors && | 
 | 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { | 
 | 		ata_dev_warn(dev, | 
 | 			     "old n_sectors matches native, probably " | 
 | 			     "late HPA lock, will try to unlock HPA\n"); | 
 | 		/* try unlocking HPA */ | 
 | 		dev->flags |= ATA_DFLAG_UNLOCK_HPA; | 
 | 		rc = -EIO; | 
 | 	} else | 
 | 		rc = -ENODEV; | 
 |  | 
 | 	/* restore original n_[native_]sectors and fail */ | 
 | 	dev->n_native_sectors = n_native_sectors; | 
 | 	dev->n_sectors = n_sectors; | 
 |  fail: | 
 | 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); | 
 | 	return rc; | 
 | } | 
 |  | 
 | struct ata_blacklist_entry { | 
 | 	const char *model_num; | 
 | 	const char *model_rev; | 
 | 	unsigned long horkage; | 
 | }; | 
 |  | 
 | static const struct ata_blacklist_entry ata_device_blacklist [] = { | 
 | 	/* Devices with DMA related problems under Linux */ | 
 | 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA }, | 
 | 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA }, | 
 | 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA }, | 
 | 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA }, | 
 | 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA }, | 
 | 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA }, | 
 | 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, | 
 | 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA }, | 
 | 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA }, | 
 | 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA }, | 
 | 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA }, | 
 | 	/* Odd clown on sil3726/4726 PMPs */ | 
 | 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE }, | 
 |  | 
 | 	/* Weird ATAPI devices */ | 
 | 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 }, | 
 | 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA }, | 
 | 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 }, | 
 | 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 }, | 
 |  | 
 | 	/* | 
 | 	 * Causes silent data corruption with higher max sects. | 
 | 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com | 
 | 	 */ | 
 | 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 }, | 
 |  | 
 | 	/* | 
 | 	 * These devices time out with higher max sects. | 
 | 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 | 
 | 	 */ | 
 | 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 }, | 
 | 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 }, | 
 |  | 
 | 	/* Devices we expect to fail diagnostics */ | 
 |  | 
 | 	/* Devices where NCQ should be avoided */ | 
 | 	/* NCQ is slow */ | 
 | 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ }, | 
 | 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, }, | 
 | 	/* http://thread.gmane.org/gmane.linux.ide/14907 */ | 
 | 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ }, | 
 | 	/* NCQ is broken */ | 
 | 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ }, | 
 | 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ }, | 
 | 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ }, | 
 | 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ }, | 
 | 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ }, | 
 |  | 
 | 	/* Seagate NCQ + FLUSH CACHE firmware bug */ | 
 | 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ | | 
 | 						ATA_HORKAGE_FIRMWARE_WARN }, | 
 |  | 
 | 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ | | 
 | 						ATA_HORKAGE_FIRMWARE_WARN }, | 
 |  | 
 | 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ | | 
 | 						ATA_HORKAGE_FIRMWARE_WARN }, | 
 |  | 
 | 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ | | 
 | 						ATA_HORKAGE_FIRMWARE_WARN }, | 
 |  | 
 | 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */ | 
 | 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA }, | 
 | 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA }, | 
 | 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA }, | 
 |  | 
 | 	/* Blacklist entries taken from Silicon Image 3124/3132 | 
 | 	   Windows driver .inf file - also several Linux problem reports */ | 
 | 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, }, | 
 | 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, }, | 
 | 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, }, | 
 |  | 
 | 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ | 
 | 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, }, | 
 |  | 
 | 	/* Some Sandisk SSDs lock up hard with NCQ enabled.  Reported on | 
 | 	   SD7SN6S256G and SD8SN8U256G */ | 
 | 	{ "SanDisk SD[78]SN*G",	NULL,		ATA_HORKAGE_NONCQ, }, | 
 |  | 
 | 	/* devices which puke on READ_NATIVE_MAX */ | 
 | 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, }, | 
 | 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, | 
 | 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, | 
 | 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA }, | 
 |  | 
 | 	/* this one allows HPA unlocking but fails IOs on the area */ | 
 | 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA }, | 
 |  | 
 | 	/* Devices which report 1 sector over size HPA */ | 
 | 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, }, | 
 | 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, }, | 
 | 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, }, | 
 |  | 
 | 	/* Devices which get the IVB wrong */ | 
 | 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, | 
 | 	/* Maybe we should just blacklist TSSTcorp... */ | 
 | 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, }, | 
 |  | 
 | 	/* Devices that do not need bridging limits applied */ | 
 | 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, }, | 
 | 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, }, | 
 |  | 
 | 	/* Devices which aren't very happy with higher link speeds */ | 
 | 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, }, | 
 | 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, }, | 
 |  | 
 | 	/* | 
 | 	 * Devices which choke on SETXFER.  Applies only if both the | 
 | 	 * device and controller are SATA. | 
 | 	 */ | 
 | 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER }, | 
 | 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER }, | 
 | 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER }, | 
 | 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER }, | 
 | 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER }, | 
 |  | 
 | 	/* Crucial BX100 SSD 500GB has broken LPM support */ | 
 | 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM }, | 
 |  | 
 | 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ | 
 | 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM | | 
 | 						ATA_HORKAGE_NOLPM, }, | 
 | 	/* 512GB MX100 with newer firmware has only LPM issues */ | 
 | 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM | | 
 | 						ATA_HORKAGE_NOLPM, }, | 
 |  | 
 | 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ | 
 | 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM | | 
 | 						ATA_HORKAGE_NOLPM, }, | 
 | 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM | | 
 | 						ATA_HORKAGE_NOLPM, }, | 
 |  | 
 | 	/* These specific Samsung models/firmware-revs do not handle LPM well */ | 
 | 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, | 
 | 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, }, | 
 | 	{ "SAMSUNG MZ7TD256HAFV-000L9", "DXT02L5Q", ATA_HORKAGE_NOLPM, }, | 
 |  | 
 | 	/* devices that don't properly handle queued TRIM commands */ | 
 | 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM | | 
 | 						ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 |  | 
 | 	/* devices that don't properly handle TRIM commands */ | 
 | 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, }, | 
 |  | 
 | 	/* | 
 | 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT | 
 | 	 * (Return Zero After Trim) flags in the ATA Command Set are | 
 | 	 * unreliable in the sense that they only define what happens if | 
 | 	 * the device successfully executed the DSM TRIM command. TRIM | 
 | 	 * is only advisory, however, and the device is free to silently | 
 | 	 * ignore all or parts of the request. | 
 | 	 * | 
 | 	 * Whitelist drives that are known to reliably return zeroes | 
 | 	 * after TRIM. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude | 
 | 	 * that model before whitelisting all other intel SSDs. | 
 | 	 */ | 
 | 	{ "INTEL*SSDSC2MH*",		NULL,	0, }, | 
 |  | 
 | 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 | 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, }, | 
 |  | 
 | 	/* | 
 | 	 * Some WD SATA-I drives spin up and down erratically when the link | 
 | 	 * is put into the slumber mode.  We don't have full list of the | 
 | 	 * affected devices.  Disable LPM if the device matches one of the | 
 | 	 * known prefixes and is SATA-1.  As a side effect LPM partial is | 
 | 	 * lost too. | 
 | 	 * | 
 | 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 | 
 | 	 */ | 
 | 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 | 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM }, | 
 |  | 
 | 	/* End Marker */ | 
 | 	{ } | 
 | }; | 
 |  | 
 | static unsigned long ata_dev_blacklisted(const struct ata_device *dev) | 
 | { | 
 | 	unsigned char model_num[ATA_ID_PROD_LEN + 1]; | 
 | 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; | 
 | 	const struct ata_blacklist_entry *ad = ata_device_blacklist; | 
 |  | 
 | 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); | 
 | 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); | 
 |  | 
 | 	while (ad->model_num) { | 
 | 		if (glob_match(ad->model_num, model_num)) { | 
 | 			if (ad->model_rev == NULL) | 
 | 				return ad->horkage; | 
 | 			if (glob_match(ad->model_rev, model_rev)) | 
 | 				return ad->horkage; | 
 | 		} | 
 | 		ad++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_dma_blacklisted(const struct ata_device *dev) | 
 | { | 
 | 	/* We don't support polling DMA. | 
 | 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) | 
 | 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state. | 
 | 	 */ | 
 | 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && | 
 | 	    (dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 		return 1; | 
 | 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_is_40wire		-	check drive side detection | 
 |  *	@dev: device | 
 |  * | 
 |  *	Perform drive side detection decoding, allowing for device vendors | 
 |  *	who can't follow the documentation. | 
 |  */ | 
 |  | 
 | static int ata_is_40wire(struct ata_device *dev) | 
 | { | 
 | 	if (dev->horkage & ATA_HORKAGE_IVB) | 
 | 		return ata_drive_40wire_relaxed(dev->id); | 
 | 	return ata_drive_40wire(dev->id); | 
 | } | 
 |  | 
 | /** | 
 |  *	cable_is_40wire		-	40/80/SATA decider | 
 |  *	@ap: port to consider | 
 |  * | 
 |  *	This function encapsulates the policy for speed management | 
 |  *	in one place. At the moment we don't cache the result but | 
 |  *	there is a good case for setting ap->cbl to the result when | 
 |  *	we are called with unknown cables (and figuring out if it | 
 |  *	impacts hotplug at all). | 
 |  * | 
 |  *	Return 1 if the cable appears to be 40 wire. | 
 |  */ | 
 |  | 
 | static int cable_is_40wire(struct ata_port *ap) | 
 | { | 
 | 	struct ata_link *link; | 
 | 	struct ata_device *dev; | 
 |  | 
 | 	/* If the controller thinks we are 40 wire, we are. */ | 
 | 	if (ap->cbl == ATA_CBL_PATA40) | 
 | 		return 1; | 
 |  | 
 | 	/* If the controller thinks we are 80 wire, we are. */ | 
 | 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) | 
 | 		return 0; | 
 |  | 
 | 	/* If the system is known to be 40 wire short cable (eg | 
 | 	 * laptop), then we allow 80 wire modes even if the drive | 
 | 	 * isn't sure. | 
 | 	 */ | 
 | 	if (ap->cbl == ATA_CBL_PATA40_SHORT) | 
 | 		return 0; | 
 |  | 
 | 	/* If the controller doesn't know, we scan. | 
 | 	 * | 
 | 	 * Note: We look for all 40 wire detects at this point.  Any | 
 | 	 *       80 wire detect is taken to be 80 wire cable because | 
 | 	 * - in many setups only the one drive (slave if present) will | 
 | 	 *   give a valid detect | 
 | 	 * - if you have a non detect capable drive you don't want it | 
 | 	 *   to colour the choice | 
 | 	 */ | 
 | 	ata_for_each_link(link, ap, EDGE) { | 
 | 		ata_for_each_dev(dev, link, ENABLED) { | 
 | 			if (!ata_is_40wire(dev)) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_xfermask - Compute supported xfermask of the given device | 
 |  *	@dev: Device to compute xfermask for | 
 |  * | 
 |  *	Compute supported xfermask of @dev and store it in | 
 |  *	dev->*_mask.  This function is responsible for applying all | 
 |  *	known limits including host controller limits, device | 
 |  *	blacklist, etc... | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  */ | 
 | static void ata_dev_xfermask(struct ata_device *dev) | 
 | { | 
 | 	struct ata_link *link = dev->link; | 
 | 	struct ata_port *ap = link->ap; | 
 | 	struct ata_host *host = ap->host; | 
 | 	unsigned long xfer_mask; | 
 |  | 
 | 	/* controller modes available */ | 
 | 	xfer_mask = ata_pack_xfermask(ap->pio_mask, | 
 | 				      ap->mwdma_mask, ap->udma_mask); | 
 |  | 
 | 	/* drive modes available */ | 
 | 	xfer_mask &= ata_pack_xfermask(dev->pio_mask, | 
 | 				       dev->mwdma_mask, dev->udma_mask); | 
 | 	xfer_mask &= ata_id_xfermask(dev->id); | 
 |  | 
 | 	/* | 
 | 	 *	CFA Advanced TrueIDE timings are not allowed on a shared | 
 | 	 *	cable | 
 | 	 */ | 
 | 	if (ata_dev_pair(dev)) { | 
 | 		/* No PIO5 or PIO6 */ | 
 | 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); | 
 | 		/* No MWDMA3 or MWDMA 4 */ | 
 | 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); | 
 | 	} | 
 |  | 
 | 	if (ata_dma_blacklisted(dev)) { | 
 | 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); | 
 | 		ata_dev_warn(dev, | 
 | 			     "device is on DMA blacklist, disabling DMA\n"); | 
 | 	} | 
 |  | 
 | 	if ((host->flags & ATA_HOST_SIMPLEX) && | 
 | 	    host->simplex_claimed && host->simplex_claimed != ap) { | 
 | 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); | 
 | 		ata_dev_warn(dev, | 
 | 			     "simplex DMA is claimed by other device, disabling DMA\n"); | 
 | 	} | 
 |  | 
 | 	if (ap->flags & ATA_FLAG_NO_IORDY) | 
 | 		xfer_mask &= ata_pio_mask_no_iordy(dev); | 
 |  | 
 | 	if (ap->ops->mode_filter) | 
 | 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask); | 
 |  | 
 | 	/* Apply cable rule here.  Don't apply it early because when | 
 | 	 * we handle hot plug the cable type can itself change. | 
 | 	 * Check this last so that we know if the transfer rate was | 
 | 	 * solely limited by the cable. | 
 | 	 * Unknown or 80 wire cables reported host side are checked | 
 | 	 * drive side as well. Cases where we know a 40wire cable | 
 | 	 * is used safely for 80 are not checked here. | 
 | 	 */ | 
 | 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) | 
 | 		/* UDMA/44 or higher would be available */ | 
 | 		if (cable_is_40wire(ap)) { | 
 | 			ata_dev_warn(dev, | 
 | 				     "limited to UDMA/33 due to 40-wire cable\n"); | 
 | 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); | 
 | 		} | 
 |  | 
 | 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, | 
 | 			    &dev->mwdma_mask, &dev->udma_mask); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command | 
 |  *	@dev: Device to which command will be sent | 
 |  * | 
 |  *	Issue SET FEATURES - XFER MODE command to device @dev | 
 |  *	on port @ap. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	PCI/etc. bus probe sem. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, AC_ERR_* mask otherwise. | 
 |  */ | 
 |  | 
 | static unsigned int ata_dev_set_xfermode(struct ata_device *dev) | 
 | { | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	/* set up set-features taskfile */ | 
 | 	DPRINTK("set features - xfer mode\n"); | 
 |  | 
 | 	/* Some controllers and ATAPI devices show flaky interrupt | 
 | 	 * behavior after setting xfer mode.  Use polling instead. | 
 | 	 */ | 
 | 	ata_tf_init(dev, &tf); | 
 | 	tf.command = ATA_CMD_SET_FEATURES; | 
 | 	tf.feature = SETFEATURES_XFER; | 
 | 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; | 
 | 	tf.protocol = ATA_PROT_NODATA; | 
 | 	/* If we are using IORDY we must send the mode setting command */ | 
 | 	if (ata_pio_need_iordy(dev)) | 
 | 		tf.nsect = dev->xfer_mode; | 
 | 	/* If the device has IORDY and the controller does not - turn it off */ | 
 |  	else if (ata_id_has_iordy(dev->id)) | 
 | 		tf.nsect = 0x01; | 
 | 	else /* In the ancient relic department - skip all of this */ | 
 | 		return 0; | 
 |  | 
 | 	/* On some disks, this command causes spin-up, so we need longer timeout */ | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); | 
 |  | 
 | 	DPRINTK("EXIT, err_mask=%x\n", err_mask); | 
 | 	return err_mask; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES | 
 |  *	@dev: Device to which command will be sent | 
 |  *	@enable: Whether to enable or disable the feature | 
 |  *	@feature: The sector count represents the feature to set | 
 |  * | 
 |  *	Issue SET FEATURES - SATA FEATURES command to device @dev | 
 |  *	on port @ap with sector count | 
 |  * | 
 |  *	LOCKING: | 
 |  *	PCI/etc. bus probe sem. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, AC_ERR_* mask otherwise. | 
 |  */ | 
 | unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) | 
 | { | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int err_mask; | 
 | 	unsigned long timeout = 0; | 
 |  | 
 | 	/* set up set-features taskfile */ | 
 | 	DPRINTK("set features - SATA features\n"); | 
 |  | 
 | 	ata_tf_init(dev, &tf); | 
 | 	tf.command = ATA_CMD_SET_FEATURES; | 
 | 	tf.feature = enable; | 
 | 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 
 | 	tf.protocol = ATA_PROT_NODATA; | 
 | 	tf.nsect = feature; | 
 |  | 
 | 	if (enable == SETFEATURES_SPINUP) | 
 | 		timeout = ata_probe_timeout ? | 
 | 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); | 
 |  | 
 | 	DPRINTK("EXIT, err_mask=%x\n", err_mask); | 
 | 	return err_mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_dev_set_feature); | 
 |  | 
 | /** | 
 |  *	ata_dev_init_params - Issue INIT DEV PARAMS command | 
 |  *	@dev: Device to which command will be sent | 
 |  *	@heads: Number of heads (taskfile parameter) | 
 |  *	@sectors: Number of sectors (taskfile parameter) | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, AC_ERR_* mask otherwise. | 
 |  */ | 
 | static unsigned int ata_dev_init_params(struct ata_device *dev, | 
 | 					u16 heads, u16 sectors) | 
 | { | 
 | 	struct ata_taskfile tf; | 
 | 	unsigned int err_mask; | 
 |  | 
 | 	/* Number of sectors per track 1-255. Number of heads 1-16 */ | 
 | 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) | 
 | 		return AC_ERR_INVALID; | 
 |  | 
 | 	/* set up init dev params taskfile */ | 
 | 	DPRINTK("init dev params \n"); | 
 |  | 
 | 	ata_tf_init(dev, &tf); | 
 | 	tf.command = ATA_CMD_INIT_DEV_PARAMS; | 
 | 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; | 
 | 	tf.protocol = ATA_PROT_NODATA; | 
 | 	tf.nsect = sectors; | 
 | 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ | 
 |  | 
 | 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); | 
 | 	/* A clean abort indicates an original or just out of spec drive | 
 | 	   and we should continue as we issue the setup based on the | 
 | 	   drive reported working geometry */ | 
 | 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) | 
 | 		err_mask = 0; | 
 |  | 
 | 	DPRINTK("EXIT, err_mask=%x\n", err_mask); | 
 | 	return err_mask; | 
 | } | 
 |  | 
 | /** | 
 |  *	atapi_check_dma - Check whether ATAPI DMA can be supported | 
 |  *	@qc: Metadata associated with taskfile to check | 
 |  * | 
 |  *	Allow low-level driver to filter ATA PACKET commands, returning | 
 |  *	a status indicating whether or not it is OK to use DMA for the | 
 |  *	supplied PACKET command. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: 0 when ATAPI DMA can be used | 
 |  *               nonzero otherwise | 
 |  */ | 
 | int atapi_check_dma(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 |  | 
 | 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a | 
 | 	 * few ATAPI devices choke on such DMA requests. | 
 | 	 */ | 
 | 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && | 
 | 	    unlikely(qc->nbytes & 15)) | 
 | 		return 1; | 
 |  | 
 | 	if (ap->ops->check_atapi_dma) | 
 | 		return ap->ops->check_atapi_dma(qc); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_std_qc_defer - Check whether a qc needs to be deferred | 
 |  *	@qc: ATA command in question | 
 |  * | 
 |  *	Non-NCQ commands cannot run with any other command, NCQ or | 
 |  *	not.  As upper layer only knows the queue depth, we are | 
 |  *	responsible for maintaining exclusion.  This function checks | 
 |  *	whether a new command @qc can be issued. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	ATA_DEFER_* if deferring is needed, 0 otherwise. | 
 |  */ | 
 | int ata_std_qc_defer(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_link *link = qc->dev->link; | 
 |  | 
 | 	if (ata_is_ncq(qc->tf.protocol)) { | 
 | 		if (!ata_tag_valid(link->active_tag)) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if (!ata_tag_valid(link->active_tag) && !link->sactive) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return ATA_DEFER_LINK; | 
 | } | 
 |  | 
 | void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } | 
 |  | 
 | /** | 
 |  *	ata_sg_init - Associate command with scatter-gather table. | 
 |  *	@qc: Command to be associated | 
 |  *	@sg: Scatter-gather table. | 
 |  *	@n_elem: Number of elements in s/g table. | 
 |  * | 
 |  *	Initialize the data-related elements of queued_cmd @qc | 
 |  *	to point to a scatter-gather table @sg, containing @n_elem | 
 |  *	elements. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, | 
 | 		 unsigned int n_elem) | 
 | { | 
 | 	qc->sg = sg; | 
 | 	qc->n_elem = n_elem; | 
 | 	qc->cursg = qc->sg; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAS_DMA | 
 |  | 
 | /** | 
 |  *	ata_sg_clean - Unmap DMA memory associated with command | 
 |  *	@qc: Command containing DMA memory to be released | 
 |  * | 
 |  *	Unmap all mapped DMA memory associated with this command. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | static void ata_sg_clean(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct scatterlist *sg = qc->sg; | 
 | 	int dir = qc->dma_dir; | 
 |  | 
 | 	WARN_ON_ONCE(sg == NULL); | 
 |  | 
 | 	VPRINTK("unmapping %u sg elements\n", qc->n_elem); | 
 |  | 
 | 	if (qc->n_elem) | 
 | 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); | 
 |  | 
 | 	qc->flags &= ~ATA_QCFLAG_DMAMAP; | 
 | 	qc->sg = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command. | 
 |  *	@qc: Command with scatter-gather table to be mapped. | 
 |  * | 
 |  *	DMA-map the scatter-gather table associated with queued_cmd @qc. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Zero on success, negative on error. | 
 |  * | 
 |  */ | 
 | static int ata_sg_setup(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	unsigned int n_elem; | 
 |  | 
 | 	VPRINTK("ENTER, ata%u\n", ap->print_id); | 
 |  | 
 | 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); | 
 | 	if (n_elem < 1) | 
 | 		return -1; | 
 |  | 
 | 	VPRINTK("%d sg elements mapped\n", n_elem); | 
 | 	qc->orig_n_elem = qc->n_elem; | 
 | 	qc->n_elem = n_elem; | 
 | 	qc->flags |= ATA_QCFLAG_DMAMAP; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else /* !CONFIG_HAS_DMA */ | 
 |  | 
 | static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} | 
 | static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } | 
 |  | 
 | #endif /* !CONFIG_HAS_DMA */ | 
 |  | 
 | /** | 
 |  *	swap_buf_le16 - swap halves of 16-bit words in place | 
 |  *	@buf:  Buffer to swap | 
 |  *	@buf_words:  Number of 16-bit words in buffer. | 
 |  * | 
 |  *	Swap halves of 16-bit words if needed to convert from | 
 |  *	little-endian byte order to native cpu byte order, or | 
 |  *	vice-versa. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void swap_buf_le16(u16 *buf, unsigned int buf_words) | 
 | { | 
 | #ifdef __BIG_ENDIAN | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < buf_words; i++) | 
 | 		buf[i] = le16_to_cpu(buf[i]); | 
 | #endif /* __BIG_ENDIAN */ | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_qc_new_init - Request an available ATA command, and initialize it | 
 |  *	@dev: Device from whom we request an available command structure | 
 |  *	@tag: tag | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  */ | 
 |  | 
 | struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) | 
 | { | 
 | 	struct ata_port *ap = dev->link->ap; | 
 | 	struct ata_queued_cmd *qc; | 
 |  | 
 | 	/* no command while frozen */ | 
 | 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) | 
 | 		return NULL; | 
 |  | 
 | 	/* libsas case */ | 
 | 	if (ap->flags & ATA_FLAG_SAS_HOST) { | 
 | 		tag = ata_sas_allocate_tag(ap); | 
 | 		if (tag < 0) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	qc = __ata_qc_from_tag(ap, tag); | 
 | 	qc->tag = qc->hw_tag = tag; | 
 | 	qc->scsicmd = NULL; | 
 | 	qc->ap = ap; | 
 | 	qc->dev = dev; | 
 |  | 
 | 	ata_qc_reinit(qc); | 
 |  | 
 | 	return qc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_qc_free - free unused ata_queued_cmd | 
 |  *	@qc: Command to complete | 
 |  * | 
 |  *	Designed to free unused ata_queued_cmd object | 
 |  *	in case something prevents using it. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_qc_free(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap; | 
 | 	unsigned int tag; | 
 |  | 
 | 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ | 
 | 	ap = qc->ap; | 
 |  | 
 | 	qc->flags = 0; | 
 | 	tag = qc->tag; | 
 | 	if (ata_tag_valid(tag)) { | 
 | 		qc->tag = ATA_TAG_POISON; | 
 | 		if (ap->flags & ATA_FLAG_SAS_HOST) | 
 | 			ata_sas_free_tag(tag, ap); | 
 | 	} | 
 | } | 
 |  | 
 | void __ata_qc_complete(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap; | 
 | 	struct ata_link *link; | 
 |  | 
 | 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ | 
 | 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); | 
 | 	ap = qc->ap; | 
 | 	link = qc->dev->link; | 
 |  | 
 | 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) | 
 | 		ata_sg_clean(qc); | 
 |  | 
 | 	/* command should be marked inactive atomically with qc completion */ | 
 | 	if (ata_is_ncq(qc->tf.protocol)) { | 
 | 		link->sactive &= ~(1 << qc->hw_tag); | 
 | 		if (!link->sactive) | 
 | 			ap->nr_active_links--; | 
 | 	} else { | 
 | 		link->active_tag = ATA_TAG_POISON; | 
 | 		ap->nr_active_links--; | 
 | 	} | 
 |  | 
 | 	/* clear exclusive status */ | 
 | 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && | 
 | 		     ap->excl_link == link)) | 
 | 		ap->excl_link = NULL; | 
 |  | 
 | 	/* atapi: mark qc as inactive to prevent the interrupt handler | 
 | 	 * from completing the command twice later, before the error handler | 
 | 	 * is called. (when rc != 0 and atapi request sense is needed) | 
 | 	 */ | 
 | 	qc->flags &= ~ATA_QCFLAG_ACTIVE; | 
 | 	ap->qc_active &= ~(1ULL << qc->tag); | 
 |  | 
 | 	/* call completion callback */ | 
 | 	qc->complete_fn(qc); | 
 | } | 
 |  | 
 | static void fill_result_tf(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 |  | 
 | 	qc->result_tf.flags = qc->tf.flags; | 
 | 	ap->ops->qc_fill_rtf(qc); | 
 | } | 
 |  | 
 | static void ata_verify_xfer(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_device *dev = qc->dev; | 
 |  | 
 | 	if (!ata_is_data(qc->tf.protocol)) | 
 | 		return; | 
 |  | 
 | 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) | 
 | 		return; | 
 |  | 
 | 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_qc_complete - Complete an active ATA command | 
 |  *	@qc: Command to complete | 
 |  * | 
 |  *	Indicate to the mid and upper layers that an ATA command has | 
 |  *	completed, with either an ok or not-ok status. | 
 |  * | 
 |  *	Refrain from calling this function multiple times when | 
 |  *	successfully completing multiple NCQ commands. | 
 |  *	ata_qc_complete_multiple() should be used instead, which will | 
 |  *	properly update IRQ expect state. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_qc_complete(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 |  | 
 | 	/* Trigger the LED (if available) */ | 
 | 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); | 
 |  | 
 | 	/* XXX: New EH and old EH use different mechanisms to | 
 | 	 * synchronize EH with regular execution path. | 
 | 	 * | 
 | 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. | 
 | 	 * Normal execution path is responsible for not accessing a | 
 | 	 * failed qc.  libata core enforces the rule by returning NULL | 
 | 	 * from ata_qc_from_tag() for failed qcs. | 
 | 	 * | 
 | 	 * Old EH depends on ata_qc_complete() nullifying completion | 
 | 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does | 
 | 	 * not synchronize with interrupt handler.  Only PIO task is | 
 | 	 * taken care of. | 
 | 	 */ | 
 | 	if (ap->ops->error_handler) { | 
 | 		struct ata_device *dev = qc->dev; | 
 | 		struct ata_eh_info *ehi = &dev->link->eh_info; | 
 |  | 
 | 		if (unlikely(qc->err_mask)) | 
 | 			qc->flags |= ATA_QCFLAG_FAILED; | 
 |  | 
 | 		/* | 
 | 		 * Finish internal commands without any further processing | 
 | 		 * and always with the result TF filled. | 
 | 		 */ | 
 | 		if (unlikely(ata_tag_internal(qc->tag))) { | 
 | 			fill_result_tf(qc); | 
 | 			trace_ata_qc_complete_internal(qc); | 
 | 			__ata_qc_complete(qc); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Non-internal qc has failed.  Fill the result TF and | 
 | 		 * summon EH. | 
 | 		 */ | 
 | 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { | 
 | 			fill_result_tf(qc); | 
 | 			trace_ata_qc_complete_failed(qc); | 
 | 			ata_qc_schedule_eh(qc); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); | 
 |  | 
 | 		/* read result TF if requested */ | 
 | 		if (qc->flags & ATA_QCFLAG_RESULT_TF) | 
 | 			fill_result_tf(qc); | 
 |  | 
 | 		trace_ata_qc_complete_done(qc); | 
 | 		/* Some commands need post-processing after successful | 
 | 		 * completion. | 
 | 		 */ | 
 | 		switch (qc->tf.command) { | 
 | 		case ATA_CMD_SET_FEATURES: | 
 | 			if (qc->tf.feature != SETFEATURES_WC_ON && | 
 | 			    qc->tf.feature != SETFEATURES_WC_OFF && | 
 | 			    qc->tf.feature != SETFEATURES_RA_ON && | 
 | 			    qc->tf.feature != SETFEATURES_RA_OFF) | 
 | 				break; | 
 | 			/* fall through */ | 
 | 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ | 
 | 		case ATA_CMD_SET_MULTI: /* multi_count changed */ | 
 | 			/* revalidate device */ | 
 | 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; | 
 | 			ata_port_schedule_eh(ap); | 
 | 			break; | 
 |  | 
 | 		case ATA_CMD_SLEEP: | 
 | 			dev->flags |= ATA_DFLAG_SLEEPING; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) | 
 | 			ata_verify_xfer(qc); | 
 |  | 
 | 		__ata_qc_complete(qc); | 
 | 	} else { | 
 | 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) | 
 | 			return; | 
 |  | 
 | 		/* read result TF if failed or requested */ | 
 | 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) | 
 | 			fill_result_tf(qc); | 
 |  | 
 | 		__ata_qc_complete(qc); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_qc_complete_multiple - Complete multiple qcs successfully | 
 |  *	@ap: port in question | 
 |  *	@qc_active: new qc_active mask | 
 |  * | 
 |  *	Complete in-flight commands.  This functions is meant to be | 
 |  *	called from low-level driver's interrupt routine to complete | 
 |  *	requests normally.  ap->qc_active and @qc_active is compared | 
 |  *	and commands are completed accordingly. | 
 |  * | 
 |  *	Always use this function when completing multiple NCQ commands | 
 |  *	from IRQ handlers instead of calling ata_qc_complete() | 
 |  *	multiple times to keep IRQ expect status properly in sync. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Number of completed commands on success, -errno otherwise. | 
 |  */ | 
 | int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) | 
 | { | 
 | 	u64 done_mask, ap_qc_active = ap->qc_active; | 
 | 	int nr_done = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the internal tag is set on ap->qc_active, then we care about | 
 | 	 * bit0 on the passed in qc_active mask. Move that bit up to match | 
 | 	 * the internal tag. | 
 | 	 */ | 
 | 	if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { | 
 | 		qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; | 
 | 		qc_active ^= qc_active & 0x01; | 
 | 	} | 
 |  | 
 | 	done_mask = ap_qc_active ^ qc_active; | 
 |  | 
 | 	if (unlikely(done_mask & qc_active)) { | 
 | 		ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", | 
 | 			     ap->qc_active, qc_active); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (done_mask) { | 
 | 		struct ata_queued_cmd *qc; | 
 | 		unsigned int tag = __ffs64(done_mask); | 
 |  | 
 | 		qc = ata_qc_from_tag(ap, tag); | 
 | 		if (qc) { | 
 | 			ata_qc_complete(qc); | 
 | 			nr_done++; | 
 | 		} | 
 | 		done_mask &= ~(1ULL << tag); | 
 | 	} | 
 |  | 
 | 	return nr_done; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_qc_issue - issue taskfile to device | 
 |  *	@qc: command to issue to device | 
 |  * | 
 |  *	Prepare an ATA command to submission to device. | 
 |  *	This includes mapping the data into a DMA-able | 
 |  *	area, filling in the S/G table, and finally | 
 |  *	writing the taskfile to hardware, starting the command. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	spin_lock_irqsave(host lock) | 
 |  */ | 
 | void ata_qc_issue(struct ata_queued_cmd *qc) | 
 | { | 
 | 	struct ata_port *ap = qc->ap; | 
 | 	struct ata_link *link = qc->dev->link; | 
 | 	u8 prot = qc->tf.protocol; | 
 |  | 
 | 	/* Make sure only one non-NCQ command is outstanding.  The | 
 | 	 * check is skipped for old EH because it reuses active qc to | 
 | 	 * request ATAPI sense. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); | 
 |  | 
 | 	if (ata_is_ncq(prot)) { | 
 | 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); | 
 |  | 
 | 		if (!link->sactive) | 
 | 			ap->nr_active_links++; | 
 | 		link->sactive |= 1 << qc->hw_tag; | 
 | 	} else { | 
 | 		WARN_ON_ONCE(link->sactive); | 
 |  | 
 | 		ap->nr_active_links++; | 
 | 		link->active_tag = qc->tag; | 
 | 	} | 
 |  | 
 | 	qc->flags |= ATA_QCFLAG_ACTIVE; | 
 | 	ap->qc_active |= 1ULL << qc->tag; | 
 |  | 
 | 	/* | 
 | 	 * We guarantee to LLDs that they will have at least one | 
 | 	 * non-zero sg if the command is a data command. | 
 | 	 */ | 
 | 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) | 
 | 		goto sys_err; | 
 |  | 
 | 	if (ata_is_dma(prot) || (ata_is_pio(prot) && | 
 | 				 (ap->flags & ATA_FLAG_PIO_DMA))) | 
 | 		if (ata_sg_setup(qc)) | 
 | 			goto sys_err; | 
 |  | 
 | 	/* if device is sleeping, schedule reset and abort the link */ | 
 | 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { | 
 | 		link->eh_info.action |= ATA_EH_RESET; | 
 | 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); | 
 | 		ata_link_abort(link); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ap->ops->qc_prep(qc); | 
 | 	trace_ata_qc_issue(qc); | 
 | 	qc->err_mask |= ap->ops->qc_issue(qc); | 
 | 	if (unlikely(qc->err_mask)) | 
 | 		goto err; | 
 | 	return; | 
 |  | 
 | sys_err: | 
 | 	qc->err_mask |= AC_ERR_SYSTEM; | 
 | err: | 
 | 	ata_qc_complete(qc); | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_scr_valid - test whether SCRs are accessible | 
 |  *	@link: ATA link to test SCR accessibility for | 
 |  * | 
 |  *	Test whether SCRs are accessible for @link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	1 if SCRs are accessible, 0 otherwise. | 
 |  */ | 
 | int sata_scr_valid(struct ata_link *link) | 
 | { | 
 | 	struct ata_port *ap = link->ap; | 
 |  | 
 | 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_scr_read - read SCR register of the specified port | 
 |  *	@link: ATA link to read SCR for | 
 |  *	@reg: SCR to read | 
 |  *	@val: Place to store read value | 
 |  * | 
 |  *	Read SCR register @reg of @link into *@val.  This function is | 
 |  *	guaranteed to succeed if @link is ap->link, the cable type of | 
 |  *	the port is SATA and the port implements ->scr_read. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None if @link is ap->link.  Kernel thread context otherwise. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno on failure. | 
 |  */ | 
 | int sata_scr_read(struct ata_link *link, int reg, u32 *val) | 
 | { | 
 | 	if (ata_is_host_link(link)) { | 
 | 		if (sata_scr_valid(link)) | 
 | 			return link->ap->ops->scr_read(link, reg, val); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	return sata_pmp_scr_read(link, reg, val); | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_scr_write - write SCR register of the specified port | 
 |  *	@link: ATA link to write SCR for | 
 |  *	@reg: SCR to write | 
 |  *	@val: value to write | 
 |  * | 
 |  *	Write @val to SCR register @reg of @link.  This function is | 
 |  *	guaranteed to succeed if @link is ap->link, the cable type of | 
 |  *	the port is SATA and the port implements ->scr_read. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None if @link is ap->link.  Kernel thread context otherwise. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno on failure. | 
 |  */ | 
 | int sata_scr_write(struct ata_link *link, int reg, u32 val) | 
 | { | 
 | 	if (ata_is_host_link(link)) { | 
 | 		if (sata_scr_valid(link)) | 
 | 			return link->ap->ops->scr_write(link, reg, val); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	return sata_pmp_scr_write(link, reg, val); | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_scr_write_flush - write SCR register of the specified port and flush | 
 |  *	@link: ATA link to write SCR for | 
 |  *	@reg: SCR to write | 
 |  *	@val: value to write | 
 |  * | 
 |  *	This function is identical to sata_scr_write() except that this | 
 |  *	function performs flush after writing to the register. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None if @link is ap->link.  Kernel thread context otherwise. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, negative errno on failure. | 
 |  */ | 
 | int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) | 
 | { | 
 | 	if (ata_is_host_link(link)) { | 
 | 		int rc; | 
 |  | 
 | 		if (sata_scr_valid(link)) { | 
 | 			rc = link->ap->ops->scr_write(link, reg, val); | 
 | 			if (rc == 0) | 
 | 				rc = link->ap->ops->scr_read(link, reg, &val); | 
 | 			return rc; | 
 | 		} | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	return sata_pmp_scr_write(link, reg, val); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_phys_link_online - test whether the given link is online | 
 |  *	@link: ATA link to test | 
 |  * | 
 |  *	Test whether @link is online.  Note that this function returns | 
 |  *	0 if online status of @link cannot be obtained, so | 
 |  *	ata_link_online(link) != !ata_link_offline(link). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	True if the port online status is available and online. | 
 |  */ | 
 | bool ata_phys_link_online(struct ata_link *link) | 
 | { | 
 | 	u32 sstatus; | 
 |  | 
 | 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && | 
 | 	    ata_sstatus_online(sstatus)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_phys_link_offline - test whether the given link is offline | 
 |  *	@link: ATA link to test | 
 |  * | 
 |  *	Test whether @link is offline.  Note that this function | 
 |  *	returns 0 if offline status of @link cannot be obtained, so | 
 |  *	ata_link_online(link) != !ata_link_offline(link). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	True if the port offline status is available and offline. | 
 |  */ | 
 | bool ata_phys_link_offline(struct ata_link *link) | 
 | { | 
 | 	u32 sstatus; | 
 |  | 
 | 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && | 
 | 	    !ata_sstatus_online(sstatus)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_link_online - test whether the given link is online | 
 |  *	@link: ATA link to test | 
 |  * | 
 |  *	Test whether @link is online.  This is identical to | 
 |  *	ata_phys_link_online() when there's no slave link.  When | 
 |  *	there's a slave link, this function should only be called on | 
 |  *	the master link and will return true if any of M/S links is | 
 |  *	online. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	True if the port online status is available and online. | 
 |  */ | 
 | bool ata_link_online(struct ata_link *link) | 
 | { | 
 | 	struct ata_link *slave = link->ap->slave_link; | 
 |  | 
 | 	WARN_ON(link == slave);	/* shouldn't be called on slave link */ | 
 |  | 
 | 	return ata_phys_link_online(link) || | 
 | 		(slave && ata_phys_link_online(slave)); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_link_offline - test whether the given link is offline | 
 |  *	@link: ATA link to test | 
 |  * | 
 |  *	Test whether @link is offline.  This is identical to | 
 |  *	ata_phys_link_offline() when there's no slave link.  When | 
 |  *	there's a slave link, this function should only be called on | 
 |  *	the master link and will return true if both M/S links are | 
 |  *	offline. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	True if the port offline status is available and offline. | 
 |  */ | 
 | bool ata_link_offline(struct ata_link *link) | 
 | { | 
 | 	struct ata_link *slave = link->ap->slave_link; | 
 |  | 
 | 	WARN_ON(link == slave);	/* shouldn't be called on slave link */ | 
 |  | 
 | 	return ata_phys_link_offline(link) && | 
 | 		(!slave || ata_phys_link_offline(slave)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, | 
 | 				unsigned int action, unsigned int ehi_flags, | 
 | 				bool async) | 
 | { | 
 | 	struct ata_link *link; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Previous resume operation might still be in | 
 | 	 * progress.  Wait for PM_PENDING to clear. | 
 | 	 */ | 
 | 	if (ap->pflags & ATA_PFLAG_PM_PENDING) { | 
 | 		ata_port_wait_eh(ap); | 
 | 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); | 
 | 	} | 
 |  | 
 | 	/* request PM ops to EH */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	ap->pm_mesg = mesg; | 
 | 	ap->pflags |= ATA_PFLAG_PM_PENDING; | 
 | 	ata_for_each_link(link, ap, HOST_FIRST) { | 
 | 		link->eh_info.action |= action; | 
 | 		link->eh_info.flags |= ehi_flags; | 
 | 	} | 
 |  | 
 | 	ata_port_schedule_eh(ap); | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	if (!async) { | 
 | 		ata_port_wait_eh(ap); | 
 | 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * On some hardware, device fails to respond after spun down for suspend.  As | 
 |  * the device won't be used before being resumed, we don't need to touch the | 
 |  * device.  Ask EH to skip the usual stuff and proceed directly to suspend. | 
 |  * | 
 |  * http://thread.gmane.org/gmane.linux.ide/46764 | 
 |  */ | 
 | static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET | 
 | 						 | ATA_EHI_NO_AUTOPSY | 
 | 						 | ATA_EHI_NO_RECOVERY; | 
 |  | 
 | static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) | 
 | { | 
 | 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); | 
 | } | 
 |  | 
 | static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) | 
 | { | 
 | 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); | 
 | } | 
 |  | 
 | static int ata_port_pm_suspend(struct device *dev) | 
 | { | 
 | 	struct ata_port *ap = to_ata_port(dev); | 
 |  | 
 | 	if (pm_runtime_suspended(dev)) | 
 | 		return 0; | 
 |  | 
 | 	ata_port_suspend(ap, PMSG_SUSPEND); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_port_pm_freeze(struct device *dev) | 
 | { | 
 | 	struct ata_port *ap = to_ata_port(dev); | 
 |  | 
 | 	if (pm_runtime_suspended(dev)) | 
 | 		return 0; | 
 |  | 
 | 	ata_port_suspend(ap, PMSG_FREEZE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_port_pm_poweroff(struct device *dev) | 
 | { | 
 | 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY | 
 | 						| ATA_EHI_QUIET; | 
 |  | 
 | static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) | 
 | { | 
 | 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); | 
 | } | 
 |  | 
 | static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) | 
 | { | 
 | 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); | 
 | } | 
 |  | 
 | static int ata_port_pm_resume(struct device *dev) | 
 | { | 
 | 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); | 
 | 	pm_runtime_disable(dev); | 
 | 	pm_runtime_set_active(dev); | 
 | 	pm_runtime_enable(dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * For ODDs, the upper layer will poll for media change every few seconds, | 
 |  * which will make it enter and leave suspend state every few seconds. And | 
 |  * as each suspend will cause a hard/soft reset, the gain of runtime suspend | 
 |  * is very little and the ODD may malfunction after constantly being reset. | 
 |  * So the idle callback here will not proceed to suspend if a non-ZPODD capable | 
 |  * ODD is attached to the port. | 
 |  */ | 
 | static int ata_port_runtime_idle(struct device *dev) | 
 | { | 
 | 	struct ata_port *ap = to_ata_port(dev); | 
 | 	struct ata_link *link; | 
 | 	struct ata_device *adev; | 
 |  | 
 | 	ata_for_each_link(link, ap, HOST_FIRST) { | 
 | 		ata_for_each_dev(adev, link, ENABLED) | 
 | 			if (adev->class == ATA_DEV_ATAPI && | 
 | 			    !zpodd_dev_enabled(adev)) | 
 | 				return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_port_runtime_suspend(struct device *dev) | 
 | { | 
 | 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ata_port_runtime_resume(struct device *dev) | 
 | { | 
 | 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops ata_port_pm_ops = { | 
 | 	.suspend = ata_port_pm_suspend, | 
 | 	.resume = ata_port_pm_resume, | 
 | 	.freeze = ata_port_pm_freeze, | 
 | 	.thaw = ata_port_pm_resume, | 
 | 	.poweroff = ata_port_pm_poweroff, | 
 | 	.restore = ata_port_pm_resume, | 
 |  | 
 | 	.runtime_suspend = ata_port_runtime_suspend, | 
 | 	.runtime_resume = ata_port_runtime_resume, | 
 | 	.runtime_idle = ata_port_runtime_idle, | 
 | }; | 
 |  | 
 | /* sas ports don't participate in pm runtime management of ata_ports, | 
 |  * and need to resume ata devices at the domain level, not the per-port | 
 |  * level. sas suspend/resume is async to allow parallel port recovery | 
 |  * since sas has multiple ata_port instances per Scsi_Host. | 
 |  */ | 
 | void ata_sas_port_suspend(struct ata_port *ap) | 
 | { | 
 | 	ata_port_suspend_async(ap, PMSG_SUSPEND); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sas_port_suspend); | 
 |  | 
 | void ata_sas_port_resume(struct ata_port *ap) | 
 | { | 
 | 	ata_port_resume_async(ap, PMSG_RESUME); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ata_sas_port_resume); | 
 |  | 
 | /** | 
 |  *	ata_host_suspend - suspend host | 
 |  *	@host: host to suspend | 
 |  *	@mesg: PM message | 
 |  * | 
 |  *	Suspend @host.  Actual operation is performed by port suspend. | 
 |  */ | 
 | int ata_host_suspend(struct ata_host *host, pm_message_t mesg) | 
 | { | 
 | 	host->dev->power.power_state = mesg; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_resume - resume host | 
 |  *	@host: host to resume | 
 |  * | 
 |  *	Resume @host.  Actual operation is performed by port resume. | 
 |  */ | 
 | void ata_host_resume(struct ata_host *host) | 
 | { | 
 | 	host->dev->power.power_state = PMSG_ON; | 
 | } | 
 | #endif | 
 |  | 
 | const struct device_type ata_port_type = { | 
 | 	.name = "ata_port", | 
 | #ifdef CONFIG_PM | 
 | 	.pm = &ata_port_pm_ops, | 
 | #endif | 
 | }; | 
 |  | 
 | /** | 
 |  *	ata_dev_init - Initialize an ata_device structure | 
 |  *	@dev: Device structure to initialize | 
 |  * | 
 |  *	Initialize @dev in preparation for probing. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from caller. | 
 |  */ | 
 | void ata_dev_init(struct ata_device *dev) | 
 | { | 
 | 	struct ata_link *link = ata_dev_phys_link(dev); | 
 | 	struct ata_port *ap = link->ap; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* SATA spd limit is bound to the attached device, reset together */ | 
 | 	link->sata_spd_limit = link->hw_sata_spd_limit; | 
 | 	link->sata_spd = 0; | 
 |  | 
 | 	/* High bits of dev->flags are used to record warm plug | 
 | 	 * requests which occur asynchronously.  Synchronize using | 
 | 	 * host lock. | 
 | 	 */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 | 	dev->flags &= ~ATA_DFLAG_INIT_MASK; | 
 | 	dev->horkage = 0; | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, | 
 | 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); | 
 | 	dev->pio_mask = UINT_MAX; | 
 | 	dev->mwdma_mask = UINT_MAX; | 
 | 	dev->udma_mask = UINT_MAX; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_link_init - Initialize an ata_link structure | 
 |  *	@ap: ATA port link is attached to | 
 |  *	@link: Link structure to initialize | 
 |  *	@pmp: Port multiplier port number | 
 |  * | 
 |  *	Initialize @link. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  */ | 
 | void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* clear everything except for devices */ | 
 | 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, | 
 | 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); | 
 |  | 
 | 	link->ap = ap; | 
 | 	link->pmp = pmp; | 
 | 	link->active_tag = ATA_TAG_POISON; | 
 | 	link->hw_sata_spd_limit = UINT_MAX; | 
 |  | 
 | 	/* can't use iterator, ap isn't initialized yet */ | 
 | 	for (i = 0; i < ATA_MAX_DEVICES; i++) { | 
 | 		struct ata_device *dev = &link->device[i]; | 
 |  | 
 | 		dev->link = link; | 
 | 		dev->devno = dev - link->device; | 
 | #ifdef CONFIG_ATA_ACPI | 
 | 		dev->gtf_filter = ata_acpi_gtf_filter; | 
 | #endif | 
 | 		ata_dev_init(dev); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_link_init_spd - Initialize link->sata_spd_limit | 
 |  *	@link: Link to configure sata_spd_limit for | 
 |  * | 
 |  *	Initialize @link->[hw_]sata_spd_limit to the currently | 
 |  *	configured value. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno on failure. | 
 |  */ | 
 | int sata_link_init_spd(struct ata_link *link) | 
 | { | 
 | 	u8 spd; | 
 | 	int rc; | 
 |  | 
 | 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	spd = (link->saved_scontrol >> 4) & 0xf; | 
 | 	if (spd) | 
 | 		link->hw_sata_spd_limit &= (1 << spd) - 1; | 
 |  | 
 | 	ata_force_link_limits(link); | 
 |  | 
 | 	link->sata_spd_limit = link->hw_sata_spd_limit; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_port_alloc - allocate and initialize basic ATA port resources | 
 |  *	@host: ATA host this allocated port belongs to | 
 |  * | 
 |  *	Allocate and initialize basic ATA port resources. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Allocate ATA port on success, NULL on failure. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  */ | 
 | struct ata_port *ata_port_alloc(struct ata_host *host) | 
 | { | 
 | 	struct ata_port *ap; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	ap = kzalloc(sizeof(*ap), GFP_KERNEL); | 
 | 	if (!ap) | 
 | 		return NULL; | 
 |  | 
 | 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; | 
 | 	ap->lock = &host->lock; | 
 | 	ap->print_id = -1; | 
 | 	ap->local_port_no = -1; | 
 | 	ap->host = host; | 
 | 	ap->dev = host->dev; | 
 |  | 
 | #if defined(ATA_VERBOSE_DEBUG) | 
 | 	/* turn on all debugging levels */ | 
 | 	ap->msg_enable = 0x00FF; | 
 | #elif defined(ATA_DEBUG) | 
 | 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; | 
 | #else | 
 | 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; | 
 | #endif | 
 |  | 
 | 	mutex_init(&ap->scsi_scan_mutex); | 
 | 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); | 
 | 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); | 
 | 	INIT_LIST_HEAD(&ap->eh_done_q); | 
 | 	init_waitqueue_head(&ap->eh_wait_q); | 
 | 	init_completion(&ap->park_req_pending); | 
 | 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, | 
 | 		    TIMER_DEFERRABLE); | 
 |  | 
 | 	ap->cbl = ATA_CBL_NONE; | 
 |  | 
 | 	ata_link_init(ap, &ap->link, 0); | 
 |  | 
 | #ifdef ATA_IRQ_TRAP | 
 | 	ap->stats.unhandled_irq = 1; | 
 | 	ap->stats.idle_irq = 1; | 
 | #endif | 
 | 	ata_sff_port_init(ap); | 
 |  | 
 | 	return ap; | 
 | } | 
 |  | 
 | static void ata_devres_release(struct device *gendev, void *res) | 
 | { | 
 | 	struct ata_host *host = dev_get_drvdata(gendev); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		if (!ap) | 
 | 			continue; | 
 |  | 
 | 		if (ap->scsi_host) | 
 | 			scsi_host_put(ap->scsi_host); | 
 |  | 
 | 	} | 
 |  | 
 | 	dev_set_drvdata(gendev, NULL); | 
 | 	ata_host_put(host); | 
 | } | 
 |  | 
 | static void ata_host_release(struct kref *kref) | 
 | { | 
 | 	struct ata_host *host = container_of(kref, struct ata_host, kref); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		kfree(ap->pmp_link); | 
 | 		kfree(ap->slave_link); | 
 | 		kfree(ap); | 
 | 		host->ports[i] = NULL; | 
 | 	} | 
 | 	kfree(host); | 
 | } | 
 |  | 
 | void ata_host_get(struct ata_host *host) | 
 | { | 
 | 	kref_get(&host->kref); | 
 | } | 
 |  | 
 | void ata_host_put(struct ata_host *host) | 
 | { | 
 | 	kref_put(&host->kref, ata_host_release); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_alloc - allocate and init basic ATA host resources | 
 |  *	@dev: generic device this host is associated with | 
 |  *	@max_ports: maximum number of ATA ports associated with this host | 
 |  * | 
 |  *	Allocate and initialize basic ATA host resources.  LLD calls | 
 |  *	this function to allocate a host, initializes it fully and | 
 |  *	attaches it using ata_host_register(). | 
 |  * | 
 |  *	@max_ports ports are allocated and host->n_ports is | 
 |  *	initialized to @max_ports.  The caller is allowed to decrease | 
 |  *	host->n_ports before calling ata_host_register().  The unused | 
 |  *	ports will be automatically freed on registration. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Allocate ATA host on success, NULL on failure. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  */ | 
 | struct ata_host *ata_host_alloc(struct device *dev, int max_ports) | 
 | { | 
 | 	struct ata_host *host; | 
 | 	size_t sz; | 
 | 	int i; | 
 | 	void *dr; | 
 |  | 
 | 	DPRINTK("ENTER\n"); | 
 |  | 
 | 	/* alloc a container for our list of ATA ports (buses) */ | 
 | 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); | 
 | 	host = kzalloc(sz, GFP_KERNEL); | 
 | 	if (!host) | 
 | 		return NULL; | 
 |  | 
 | 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
 | 		goto err_free; | 
 |  | 
 | 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); | 
 | 	if (!dr) | 
 | 		goto err_out; | 
 |  | 
 | 	devres_add(dev, dr); | 
 | 	dev_set_drvdata(dev, host); | 
 |  | 
 | 	spin_lock_init(&host->lock); | 
 | 	mutex_init(&host->eh_mutex); | 
 | 	host->dev = dev; | 
 | 	host->n_ports = max_ports; | 
 | 	kref_init(&host->kref); | 
 |  | 
 | 	/* allocate ports bound to this host */ | 
 | 	for (i = 0; i < max_ports; i++) { | 
 | 		struct ata_port *ap; | 
 |  | 
 | 		ap = ata_port_alloc(host); | 
 | 		if (!ap) | 
 | 			goto err_out; | 
 |  | 
 | 		ap->port_no = i; | 
 | 		host->ports[i] = ap; | 
 | 	} | 
 |  | 
 | 	devres_remove_group(dev, NULL); | 
 | 	return host; | 
 |  | 
 |  err_out: | 
 | 	devres_release_group(dev, NULL); | 
 |  err_free: | 
 | 	kfree(host); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_alloc_pinfo - alloc host and init with port_info array | 
 |  *	@dev: generic device this host is associated with | 
 |  *	@ppi: array of ATA port_info to initialize host with | 
 |  *	@n_ports: number of ATA ports attached to this host | 
 |  * | 
 |  *	Allocate ATA host and initialize with info from @ppi.  If NULL | 
 |  *	terminated, @ppi may contain fewer entries than @n_ports.  The | 
 |  *	last entry will be used for the remaining ports. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	Allocate ATA host on success, NULL on failure. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  */ | 
 | struct ata_host *ata_host_alloc_pinfo(struct device *dev, | 
 | 				      const struct ata_port_info * const * ppi, | 
 | 				      int n_ports) | 
 | { | 
 | 	const struct ata_port_info *pi; | 
 | 	struct ata_host *host; | 
 | 	int i, j; | 
 |  | 
 | 	host = ata_host_alloc(dev, n_ports); | 
 | 	if (!host) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		if (ppi[j]) | 
 | 			pi = ppi[j++]; | 
 |  | 
 | 		ap->pio_mask = pi->pio_mask; | 
 | 		ap->mwdma_mask = pi->mwdma_mask; | 
 | 		ap->udma_mask = pi->udma_mask; | 
 | 		ap->flags |= pi->flags; | 
 | 		ap->link.flags |= pi->link_flags; | 
 | 		ap->ops = pi->port_ops; | 
 |  | 
 | 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) | 
 | 			host->ops = pi->port_ops; | 
 | 	} | 
 |  | 
 | 	return host; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_slave_link_init - initialize slave link | 
 |  *	@ap: port to initialize slave link for | 
 |  * | 
 |  *	Create and initialize slave link for @ap.  This enables slave | 
 |  *	link handling on the port. | 
 |  * | 
 |  *	In libata, a port contains links and a link contains devices. | 
 |  *	There is single host link but if a PMP is attached to it, | 
 |  *	there can be multiple fan-out links.  On SATA, there's usually | 
 |  *	a single device connected to a link but PATA and SATA | 
 |  *	controllers emulating TF based interface can have two - master | 
 |  *	and slave. | 
 |  * | 
 |  *	However, there are a few controllers which don't fit into this | 
 |  *	abstraction too well - SATA controllers which emulate TF | 
 |  *	interface with both master and slave devices but also have | 
 |  *	separate SCR register sets for each device.  These controllers | 
 |  *	need separate links for physical link handling | 
 |  *	(e.g. onlineness, link speed) but should be treated like a | 
 |  *	traditional M/S controller for everything else (e.g. command | 
 |  *	issue, softreset). | 
 |  * | 
 |  *	slave_link is libata's way of handling this class of | 
 |  *	controllers without impacting core layer too much.  For | 
 |  *	anything other than physical link handling, the default host | 
 |  *	link is used for both master and slave.  For physical link | 
 |  *	handling, separate @ap->slave_link is used.  All dirty details | 
 |  *	are implemented inside libata core layer.  From LLD's POV, the | 
 |  *	only difference is that prereset, hardreset and postreset are | 
 |  *	called once more for the slave link, so the reset sequence | 
 |  *	looks like the following. | 
 |  * | 
 |  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> | 
 |  *	softreset(M) -> postreset(M) -> postreset(S) | 
 |  * | 
 |  *	Note that softreset is called only for the master.  Softreset | 
 |  *	resets both M/S by definition, so SRST on master should handle | 
 |  *	both (the standard method will work just fine). | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Should be called before host is registered. | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno on failure. | 
 |  */ | 
 | int ata_slave_link_init(struct ata_port *ap) | 
 | { | 
 | 	struct ata_link *link; | 
 |  | 
 | 	WARN_ON(ap->slave_link); | 
 | 	WARN_ON(ap->flags & ATA_FLAG_PMP); | 
 |  | 
 | 	link = kzalloc(sizeof(*link), GFP_KERNEL); | 
 | 	if (!link) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ata_link_init(ap, link, 1); | 
 | 	ap->slave_link = link; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ata_host_stop(struct device *gendev, void *res) | 
 | { | 
 | 	struct ata_host *host = dev_get_drvdata(gendev); | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(!(host->flags & ATA_HOST_STARTED)); | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		if (ap->ops->port_stop) | 
 | 			ap->ops->port_stop(ap); | 
 | 	} | 
 |  | 
 | 	if (host->ops->host_stop) | 
 | 		host->ops->host_stop(host); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_finalize_port_ops - finalize ata_port_operations | 
 |  *	@ops: ata_port_operations to finalize | 
 |  * | 
 |  *	An ata_port_operations can inherit from another ops and that | 
 |  *	ops can again inherit from another.  This can go on as many | 
 |  *	times as necessary as long as there is no loop in the | 
 |  *	inheritance chain. | 
 |  * | 
 |  *	Ops tables are finalized when the host is started.  NULL or | 
 |  *	unspecified entries are inherited from the closet ancestor | 
 |  *	which has the method and the entry is populated with it. | 
 |  *	After finalization, the ops table directly points to all the | 
 |  *	methods and ->inherits is no longer necessary and cleared. | 
 |  * | 
 |  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None. | 
 |  */ | 
 | static void ata_finalize_port_ops(struct ata_port_operations *ops) | 
 | { | 
 | 	static DEFINE_SPINLOCK(lock); | 
 | 	const struct ata_port_operations *cur; | 
 | 	void **begin = (void **)ops; | 
 | 	void **end = (void **)&ops->inherits; | 
 | 	void **pp; | 
 |  | 
 | 	if (!ops || !ops->inherits) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&lock); | 
 |  | 
 | 	for (cur = ops->inherits; cur; cur = cur->inherits) { | 
 | 		void **inherit = (void **)cur; | 
 |  | 
 | 		for (pp = begin; pp < end; pp++, inherit++) | 
 | 			if (!*pp) | 
 | 				*pp = *inherit; | 
 | 	} | 
 |  | 
 | 	for (pp = begin; pp < end; pp++) | 
 | 		if (IS_ERR(*pp)) | 
 | 			*pp = NULL; | 
 |  | 
 | 	ops->inherits = NULL; | 
 |  | 
 | 	spin_unlock(&lock); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_start - start and freeze ports of an ATA host | 
 |  *	@host: ATA host to start ports for | 
 |  * | 
 |  *	Start and then freeze ports of @host.  Started status is | 
 |  *	recorded in host->flags, so this function can be called | 
 |  *	multiple times.  Ports are guaranteed to get started only | 
 |  *	once.  If host->ops isn't initialized yet, its set to the | 
 |  *	first non-dummy port ops. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 if all ports are started successfully, -errno otherwise. | 
 |  */ | 
 | int ata_host_start(struct ata_host *host) | 
 | { | 
 | 	int have_stop = 0; | 
 | 	void *start_dr = NULL; | 
 | 	int i, rc; | 
 |  | 
 | 	if (host->flags & ATA_HOST_STARTED) | 
 | 		return 0; | 
 |  | 
 | 	ata_finalize_port_ops(host->ops); | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		ata_finalize_port_ops(ap->ops); | 
 |  | 
 | 		if (!host->ops && !ata_port_is_dummy(ap)) | 
 | 			host->ops = ap->ops; | 
 |  | 
 | 		if (ap->ops->port_stop) | 
 | 			have_stop = 1; | 
 | 	} | 
 |  | 
 | 	if (host->ops->host_stop) | 
 | 		have_stop = 1; | 
 |  | 
 | 	if (have_stop) { | 
 | 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); | 
 | 		if (!start_dr) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		if (ap->ops->port_start) { | 
 | 			rc = ap->ops->port_start(ap); | 
 | 			if (rc) { | 
 | 				if (rc != -ENODEV) | 
 | 					dev_err(host->dev, | 
 | 						"failed to start port %d (errno=%d)\n", | 
 | 						i, rc); | 
 | 				goto err_out; | 
 | 			} | 
 | 		} | 
 | 		ata_eh_freeze_port(ap); | 
 | 	} | 
 |  | 
 | 	if (start_dr) | 
 | 		devres_add(host->dev, start_dr); | 
 | 	host->flags |= ATA_HOST_STARTED; | 
 | 	return 0; | 
 |  | 
 |  err_out: | 
 | 	while (--i >= 0) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 |  | 
 | 		if (ap->ops->port_stop) | 
 | 			ap->ops->port_stop(ap); | 
 | 	} | 
 | 	devres_free(start_dr); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) | 
 |  *	@host:	host to initialize | 
 |  *	@dev:	device host is attached to | 
 |  *	@ops:	port_ops | 
 |  * | 
 |  */ | 
 | void ata_host_init(struct ata_host *host, struct device *dev, | 
 | 		   struct ata_port_operations *ops) | 
 | { | 
 | 	spin_lock_init(&host->lock); | 
 | 	mutex_init(&host->eh_mutex); | 
 | 	host->n_tags = ATA_MAX_QUEUE; | 
 | 	host->dev = dev; | 
 | 	host->ops = ops; | 
 | 	kref_init(&host->kref); | 
 | } | 
 |  | 
 | void __ata_port_probe(struct ata_port *ap) | 
 | { | 
 | 	struct ata_eh_info *ehi = &ap->link.eh_info; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* kick EH for boot probing */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 |  | 
 | 	ehi->probe_mask |= ATA_ALL_DEVICES; | 
 | 	ehi->action |= ATA_EH_RESET; | 
 | 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; | 
 |  | 
 | 	ap->pflags &= ~ATA_PFLAG_INITIALIZING; | 
 | 	ap->pflags |= ATA_PFLAG_LOADING; | 
 | 	ata_port_schedule_eh(ap); | 
 |  | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 | } | 
 |  | 
 | int ata_port_probe(struct ata_port *ap) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (ap->ops->error_handler) { | 
 | 		__ata_port_probe(ap); | 
 | 		ata_port_wait_eh(ap); | 
 | 	} else { | 
 | 		DPRINTK("ata%u: bus probe begin\n", ap->print_id); | 
 | 		rc = ata_bus_probe(ap); | 
 | 		DPRINTK("ata%u: bus probe end\n", ap->print_id); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | static void async_port_probe(void *data, async_cookie_t cookie) | 
 | { | 
 | 	struct ata_port *ap = data; | 
 |  | 
 | 	/* | 
 | 	 * If we're not allowed to scan this host in parallel, | 
 | 	 * we need to wait until all previous scans have completed | 
 | 	 * before going further. | 
 | 	 * Jeff Garzik says this is only within a controller, so we | 
 | 	 * don't need to wait for port 0, only for later ports. | 
 | 	 */ | 
 | 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) | 
 | 		async_synchronize_cookie(cookie); | 
 |  | 
 | 	(void)ata_port_probe(ap); | 
 |  | 
 | 	/* in order to keep device order, we need to synchronize at this point */ | 
 | 	async_synchronize_cookie(cookie); | 
 |  | 
 | 	ata_scsi_scan_host(ap, 1); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_register - register initialized ATA host | 
 |  *	@host: ATA host to register | 
 |  *	@sht: template for SCSI host | 
 |  * | 
 |  *	Register initialized ATA host.  @host is allocated using | 
 |  *	ata_host_alloc() and fully initialized by LLD.  This function | 
 |  *	starts ports, registers @host with ATA and SCSI layers and | 
 |  *	probe registered devices. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) | 
 | { | 
 | 	int i, rc; | 
 |  | 
 | 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); | 
 |  | 
 | 	/* host must have been started */ | 
 | 	if (!(host->flags & ATA_HOST_STARTED)) { | 
 | 		dev_err(host->dev, "BUG: trying to register unstarted host\n"); | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Blow away unused ports.  This happens when LLD can't | 
 | 	 * determine the exact number of ports to allocate at | 
 | 	 * allocation time. | 
 | 	 */ | 
 | 	for (i = host->n_ports; host->ports[i]; i++) | 
 | 		kfree(host->ports[i]); | 
 |  | 
 | 	/* give ports names and add SCSI hosts */ | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id); | 
 | 		host->ports[i]->local_port_no = i + 1; | 
 | 	} | 
 |  | 
 | 	/* Create associated sysfs transport objects  */ | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		rc = ata_tport_add(host->dev,host->ports[i]); | 
 | 		if (rc) { | 
 | 			goto err_tadd; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = ata_scsi_add_hosts(host, sht); | 
 | 	if (rc) | 
 | 		goto err_tadd; | 
 |  | 
 | 	/* set cable, sata_spd_limit and report */ | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 | 		unsigned long xfer_mask; | 
 |  | 
 | 		/* set SATA cable type if still unset */ | 
 | 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) | 
 | 			ap->cbl = ATA_CBL_SATA; | 
 |  | 
 | 		/* init sata_spd_limit to the current value */ | 
 | 		sata_link_init_spd(&ap->link); | 
 | 		if (ap->slave_link) | 
 | 			sata_link_init_spd(ap->slave_link); | 
 |  | 
 | 		/* print per-port info to dmesg */ | 
 | 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, | 
 | 					      ap->udma_mask); | 
 |  | 
 | 		if (!ata_port_is_dummy(ap)) { | 
 | 			ata_port_info(ap, "%cATA max %s %s\n", | 
 | 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', | 
 | 				      ata_mode_string(xfer_mask), | 
 | 				      ap->link.eh_info.desc); | 
 | 			ata_ehi_clear_desc(&ap->link.eh_info); | 
 | 		} else | 
 | 			ata_port_info(ap, "DUMMY\n"); | 
 | 	} | 
 |  | 
 | 	/* perform each probe asynchronously */ | 
 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 		struct ata_port *ap = host->ports[i]; | 
 | 		async_schedule(async_port_probe, ap); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err_tadd: | 
 | 	while (--i >= 0) { | 
 | 		ata_tport_delete(host->ports[i]); | 
 | 	} | 
 | 	return rc; | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_activate - start host, request IRQ and register it | 
 |  *	@host: target ATA host | 
 |  *	@irq: IRQ to request | 
 |  *	@irq_handler: irq_handler used when requesting IRQ | 
 |  *	@irq_flags: irq_flags used when requesting IRQ | 
 |  *	@sht: scsi_host_template to use when registering the host | 
 |  * | 
 |  *	After allocating an ATA host and initializing it, most libata | 
 |  *	LLDs perform three steps to activate the host - start host, | 
 |  *	request IRQ and register it.  This helper takes necessary | 
 |  *	arguments and performs the three steps in one go. | 
 |  * | 
 |  *	An invalid IRQ skips the IRQ registration and expects the host to | 
 |  *	have set polling mode on the port. In this case, @irq_handler | 
 |  *	should be NULL. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from calling layer (may sleep). | 
 |  * | 
 |  *	RETURNS: | 
 |  *	0 on success, -errno otherwise. | 
 |  */ | 
 | int ata_host_activate(struct ata_host *host, int irq, | 
 | 		      irq_handler_t irq_handler, unsigned long irq_flags, | 
 | 		      struct scsi_host_template *sht) | 
 | { | 
 | 	int i, rc; | 
 | 	char *irq_desc; | 
 |  | 
 | 	rc = ata_host_start(host); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Special case for polling mode */ | 
 | 	if (!irq) { | 
 | 		WARN_ON(irq_handler); | 
 | 		return ata_host_register(host, sht); | 
 | 	} | 
 |  | 
 | 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", | 
 | 				  dev_driver_string(host->dev), | 
 | 				  dev_name(host->dev)); | 
 | 	if (!irq_desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, | 
 | 			      irq_desc, host); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) | 
 | 		ata_port_desc(host->ports[i], "irq %d", irq); | 
 |  | 
 | 	rc = ata_host_register(host, sht); | 
 | 	/* if failed, just free the IRQ and leave ports alone */ | 
 | 	if (rc) | 
 | 		devm_free_irq(host->dev, irq, host); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_port_detach - Detach ATA port in preparation of device removal | 
 |  *	@ap: ATA port to be detached | 
 |  * | 
 |  *	Detach all ATA devices and the associated SCSI devices of @ap; | 
 |  *	then, remove the associated SCSI host.  @ap is guaranteed to | 
 |  *	be quiescent on return from this function. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  */ | 
 | static void ata_port_detach(struct ata_port *ap) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct ata_link *link; | 
 | 	struct ata_device *dev; | 
 |  | 
 | 	if (!ap->ops->error_handler) | 
 | 		goto skip_eh; | 
 |  | 
 | 	/* tell EH we're leaving & flush EH */ | 
 | 	spin_lock_irqsave(ap->lock, flags); | 
 | 	ap->pflags |= ATA_PFLAG_UNLOADING; | 
 | 	ata_port_schedule_eh(ap); | 
 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 |  | 
 | 	/* wait till EH commits suicide */ | 
 | 	ata_port_wait_eh(ap); | 
 |  | 
 | 	/* it better be dead now */ | 
 | 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); | 
 |  | 
 | 	cancel_delayed_work_sync(&ap->hotplug_task); | 
 |  | 
 |  skip_eh: | 
 | 	/* clean up zpodd on port removal */ | 
 | 	ata_for_each_link(link, ap, HOST_FIRST) { | 
 | 		ata_for_each_dev(dev, link, ALL) { | 
 | 			if (zpodd_dev_enabled(dev)) | 
 | 				zpodd_exit(dev); | 
 | 		} | 
 | 	} | 
 | 	if (ap->pmp_link) { | 
 | 		int i; | 
 | 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++) | 
 | 			ata_tlink_delete(&ap->pmp_link[i]); | 
 | 	} | 
 | 	/* remove the associated SCSI host */ | 
 | 	scsi_remove_host(ap->scsi_host); | 
 | 	ata_tport_delete(ap); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_host_detach - Detach all ports of an ATA host | 
 |  *	@host: Host to detach | 
 |  * | 
 |  *	Detach all ports of @host. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep). | 
 |  */ | 
 | void ata_host_detach(struct ata_host *host) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < host->n_ports; i++) | 
 | 		ata_port_detach(host->ports[i]); | 
 |  | 
 | 	/* the host is dead now, dissociate ACPI */ | 
 | 	ata_acpi_dissociate(host); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PCI | 
 |  | 
 | /** | 
 |  *	ata_pci_remove_one - PCI layer callback for device removal | 
 |  *	@pdev: PCI device that was removed | 
 |  * | 
 |  *	PCI layer indicates to libata via this hook that hot-unplug or | 
 |  *	module unload event has occurred.  Detach all ports.  Resource | 
 |  *	release is handled via devres. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from PCI layer (may sleep). | 
 |  */ | 
 | void ata_pci_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct ata_host *host = pci_get_drvdata(pdev); | 
 |  | 
 | 	ata_host_detach(host); | 
 | } | 
 |  | 
 | /* move to PCI subsystem */ | 
 | int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) | 
 | { | 
 | 	unsigned long tmp = 0; | 
 |  | 
 | 	switch (bits->width) { | 
 | 	case 1: { | 
 | 		u8 tmp8 = 0; | 
 | 		pci_read_config_byte(pdev, bits->reg, &tmp8); | 
 | 		tmp = tmp8; | 
 | 		break; | 
 | 	} | 
 | 	case 2: { | 
 | 		u16 tmp16 = 0; | 
 | 		pci_read_config_word(pdev, bits->reg, &tmp16); | 
 | 		tmp = tmp16; | 
 | 		break; | 
 | 	} | 
 | 	case 4: { | 
 | 		u32 tmp32 = 0; | 
 | 		pci_read_config_dword(pdev, bits->reg, &tmp32); | 
 | 		tmp = tmp32; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tmp &= bits->mask; | 
 |  | 
 | 	return (tmp == bits->val) ? 1 : 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) | 
 | { | 
 | 	pci_save_state(pdev); | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	if (mesg.event & PM_EVENT_SLEEP) | 
 | 		pci_set_power_state(pdev, PCI_D3hot); | 
 | } | 
 |  | 
 | int ata_pci_device_do_resume(struct pci_dev *pdev) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	pci_set_power_state(pdev, PCI_D0); | 
 | 	pci_restore_state(pdev); | 
 |  | 
 | 	rc = pcim_enable_device(pdev); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"failed to enable device after resume (%d)\n", rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) | 
 | { | 
 | 	struct ata_host *host = pci_get_drvdata(pdev); | 
 | 	int rc = 0; | 
 |  | 
 | 	rc = ata_host_suspend(host, mesg); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	ata_pci_device_do_suspend(pdev, mesg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ata_pci_device_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct ata_host *host = pci_get_drvdata(pdev); | 
 | 	int rc; | 
 |  | 
 | 	rc = ata_pci_device_do_resume(pdev); | 
 | 	if (rc == 0) | 
 | 		ata_host_resume(host); | 
 | 	return rc; | 
 | } | 
 | #endif /* CONFIG_PM */ | 
 |  | 
 | #endif /* CONFIG_PCI */ | 
 |  | 
 | /** | 
 |  *	ata_platform_remove_one - Platform layer callback for device removal | 
 |  *	@pdev: Platform device that was removed | 
 |  * | 
 |  *	Platform layer indicates to libata via this hook that hot-unplug or | 
 |  *	module unload event has occurred.  Detach all ports.  Resource | 
 |  *	release is handled via devres. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Inherited from platform layer (may sleep). | 
 |  */ | 
 | int ata_platform_remove_one(struct platform_device *pdev) | 
 | { | 
 | 	struct ata_host *host = platform_get_drvdata(pdev); | 
 |  | 
 | 	ata_host_detach(host); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init ata_parse_force_one(char **cur, | 
 | 				      struct ata_force_ent *force_ent, | 
 | 				      const char **reason) | 
 | { | 
 | 	static const struct ata_force_param force_tbl[] __initconst = { | 
 | 		{ "40c",	.cbl		= ATA_CBL_PATA40 }, | 
 | 		{ "80c",	.cbl		= ATA_CBL_PATA80 }, | 
 | 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT }, | 
 | 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK }, | 
 | 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN }, | 
 | 		{ "sata",	.cbl		= ATA_CBL_SATA }, | 
 | 		{ "1.5Gbps",	.spd_limit	= 1 }, | 
 | 		{ "3.0Gbps",	.spd_limit	= 2 }, | 
 | 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ }, | 
 | 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ }, | 
 | 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM }, | 
 | 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM }, | 
 | 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID }, | 
 | 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) }, | 
 | 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) }, | 
 | 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) }, | 
 | 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) }, | 
 | 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) }, | 
 | 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) }, | 
 | 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) }, | 
 | 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) }, | 
 | 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) }, | 
 | 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) }, | 
 | 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) }, | 
 | 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) }, | 
 | 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) }, | 
 | 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) }, | 
 | 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) }, | 
 | 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) }, | 
 | 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) }, | 
 | 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) }, | 
 | 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) }, | 
 | 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) }, | 
 | 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) }, | 
 | 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) }, | 
 | 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) }, | 
 | 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) }, | 
 | 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) }, | 
 | 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) }, | 
 | 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) }, | 
 | 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) }, | 
 | 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) }, | 
 | 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) }, | 
 | 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) }, | 
 | 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) }, | 
 | 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) }, | 
 | 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) }, | 
 | 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST }, | 
 | 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST }, | 
 | 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, | 
 | 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE }, | 
 | 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR }, | 
 | 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE }, | 
 | 	}; | 
 | 	char *start = *cur, *p = *cur; | 
 | 	char *id, *val, *endp; | 
 | 	const struct ata_force_param *match_fp = NULL; | 
 | 	int nr_matches = 0, i; | 
 |  | 
 | 	/* find where this param ends and update *cur */ | 
 | 	while (*p != '\0' && *p != ',') | 
 | 		p++; | 
 |  | 
 | 	if (*p == '\0') | 
 | 		*cur = p; | 
 | 	else | 
 | 		*cur = p + 1; | 
 |  | 
 | 	*p = '\0'; | 
 |  | 
 | 	/* parse */ | 
 | 	p = strchr(start, ':'); | 
 | 	if (!p) { | 
 | 		val = strstrip(start); | 
 | 		goto parse_val; | 
 | 	} | 
 | 	*p = '\0'; | 
 |  | 
 | 	id = strstrip(start); | 
 | 	val = strstrip(p + 1); | 
 |  | 
 | 	/* parse id */ | 
 | 	p = strchr(id, '.'); | 
 | 	if (p) { | 
 | 		*p++ = '\0'; | 
 | 		force_ent->device = simple_strtoul(p, &endp, 10); | 
 | 		if (p == endp || *endp != '\0') { | 
 | 			*reason = "invalid device"; | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	force_ent->port = simple_strtoul(id, &endp, 10); | 
 | 	if (id == endp || *endp != '\0') { | 
 | 		*reason = "invalid port/link"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 |  parse_val: | 
 | 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ | 
 | 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { | 
 | 		const struct ata_force_param *fp = &force_tbl[i]; | 
 |  | 
 | 		if (strncasecmp(val, fp->name, strlen(val))) | 
 | 			continue; | 
 |  | 
 | 		nr_matches++; | 
 | 		match_fp = fp; | 
 |  | 
 | 		if (strcasecmp(val, fp->name) == 0) { | 
 | 			nr_matches = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!nr_matches) { | 
 | 		*reason = "unknown value"; | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (nr_matches > 1) { | 
 | 		*reason = "ambiguous value"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	force_ent->param = *match_fp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init ata_parse_force_param(void) | 
 | { | 
 | 	int idx = 0, size = 1; | 
 | 	int last_port = -1, last_device = -1; | 
 | 	char *p, *cur, *next; | 
 |  | 
 | 	/* calculate maximum number of params and allocate force_tbl */ | 
 | 	for (p = ata_force_param_buf; *p; p++) | 
 | 		if (*p == ',') | 
 | 			size++; | 
 |  | 
 | 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); | 
 | 	if (!ata_force_tbl) { | 
 | 		printk(KERN_WARNING "ata: failed to extend force table, " | 
 | 		       "libata.force ignored\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* parse and populate the table */ | 
 | 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { | 
 | 		const char *reason = ""; | 
 | 		struct ata_force_ent te = { .port = -1, .device = -1 }; | 
 |  | 
 | 		next = cur; | 
 | 		if (ata_parse_force_one(&next, &te, &reason)) { | 
 | 			printk(KERN_WARNING "ata: failed to parse force " | 
 | 			       "parameter \"%s\" (%s)\n", | 
 | 			       cur, reason); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (te.port == -1) { | 
 | 			te.port = last_port; | 
 | 			te.device = last_device; | 
 | 		} | 
 |  | 
 | 		ata_force_tbl[idx++] = te; | 
 |  | 
 | 		last_port = te.port; | 
 | 		last_device = te.device; | 
 | 	} | 
 |  | 
 | 	ata_force_tbl_size = idx; | 
 | } | 
 |  | 
 | static int __init ata_init(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	ata_parse_force_param(); | 
 |  | 
 | 	rc = ata_sff_init(); | 
 | 	if (rc) { | 
 | 		kfree(ata_force_tbl); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	libata_transport_init(); | 
 | 	ata_scsi_transport_template = ata_attach_transport(); | 
 | 	if (!ata_scsi_transport_template) { | 
 | 		ata_sff_exit(); | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); | 
 | 	return 0; | 
 |  | 
 | err_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit ata_exit(void) | 
 | { | 
 | 	ata_release_transport(ata_scsi_transport_template); | 
 | 	libata_transport_exit(); | 
 | 	ata_sff_exit(); | 
 | 	kfree(ata_force_tbl); | 
 | } | 
 |  | 
 | subsys_initcall(ata_init); | 
 | module_exit(ata_exit); | 
 |  | 
 | static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); | 
 |  | 
 | int ata_ratelimit(void) | 
 | { | 
 | 	return __ratelimit(&ratelimit); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_msleep - ATA EH owner aware msleep | 
 |  *	@ap: ATA port to attribute the sleep to | 
 |  *	@msecs: duration to sleep in milliseconds | 
 |  * | 
 |  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the | 
 |  *	ownership is released before going to sleep and reacquired | 
 |  *	after the sleep is complete.  IOW, other ports sharing the | 
 |  *	@ap->host will be allowed to own the EH while this task is | 
 |  *	sleeping. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Might sleep. | 
 |  */ | 
 | void ata_msleep(struct ata_port *ap, unsigned int msecs) | 
 | { | 
 | 	bool owns_eh = ap && ap->host->eh_owner == current; | 
 |  | 
 | 	if (owns_eh) | 
 | 		ata_eh_release(ap); | 
 |  | 
 | 	if (msecs < 20) { | 
 | 		unsigned long usecs = msecs * USEC_PER_MSEC; | 
 | 		usleep_range(usecs, usecs + 50); | 
 | 	} else { | 
 | 		msleep(msecs); | 
 | 	} | 
 |  | 
 | 	if (owns_eh) | 
 | 		ata_eh_acquire(ap); | 
 | } | 
 |  | 
 | /** | 
 |  *	ata_wait_register - wait until register value changes | 
 |  *	@ap: ATA port to wait register for, can be NULL | 
 |  *	@reg: IO-mapped register | 
 |  *	@mask: Mask to apply to read register value | 
 |  *	@val: Wait condition | 
 |  *	@interval: polling interval in milliseconds | 
 |  *	@timeout: timeout in milliseconds | 
 |  * | 
 |  *	Waiting for some bits of register to change is a common | 
 |  *	operation for ATA controllers.  This function reads 32bit LE | 
 |  *	IO-mapped register @reg and tests for the following condition. | 
 |  * | 
 |  *	(*@reg & mask) != val | 
 |  * | 
 |  *	If the condition is met, it returns; otherwise, the process is | 
 |  *	repeated after @interval_msec until timeout. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	Kernel thread context (may sleep) | 
 |  * | 
 |  *	RETURNS: | 
 |  *	The final register value. | 
 |  */ | 
 | u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, | 
 | 		      unsigned long interval, unsigned long timeout) | 
 | { | 
 | 	unsigned long deadline; | 
 | 	u32 tmp; | 
 |  | 
 | 	tmp = ioread32(reg); | 
 |  | 
 | 	/* Calculate timeout _after_ the first read to make sure | 
 | 	 * preceding writes reach the controller before starting to | 
 | 	 * eat away the timeout. | 
 | 	 */ | 
 | 	deadline = ata_deadline(jiffies, timeout); | 
 |  | 
 | 	while ((tmp & mask) == val && time_before(jiffies, deadline)) { | 
 | 		ata_msleep(ap, interval); | 
 | 		tmp = ioread32(reg); | 
 | 	} | 
 |  | 
 | 	return tmp; | 
 | } | 
 |  | 
 | /** | 
 |  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored | 
 |  *	@link: Link receiving the event | 
 |  * | 
 |  *	Test whether the received PHY event has to be ignored or not. | 
 |  * | 
 |  *	LOCKING: | 
 |  *	None: | 
 |  * | 
 |  *	RETURNS: | 
 |  *	True if the event has to be ignored. | 
 |  */ | 
 | bool sata_lpm_ignore_phy_events(struct ata_link *link) | 
 | { | 
 | 	unsigned long lpm_timeout = link->last_lpm_change + | 
 | 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); | 
 |  | 
 | 	/* if LPM is enabled, PHYRDY doesn't mean anything */ | 
 | 	if (link->lpm_policy > ATA_LPM_MAX_POWER) | 
 | 		return true; | 
 |  | 
 | 	/* ignore the first PHY event after the LPM policy changed | 
 | 	 * as it is might be spurious | 
 | 	 */ | 
 | 	if ((link->flags & ATA_LFLAG_CHANGED) && | 
 | 	    time_before(jiffies, lpm_timeout)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); | 
 |  | 
 | /* | 
 |  * Dummy port_ops | 
 |  */ | 
 | static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) | 
 | { | 
 | 	return AC_ERR_SYSTEM; | 
 | } | 
 |  | 
 | static void ata_dummy_error_handler(struct ata_port *ap) | 
 | { | 
 | 	/* truly dummy */ | 
 | } | 
 |  | 
 | struct ata_port_operations ata_dummy_port_ops = { | 
 | 	.qc_prep		= ata_noop_qc_prep, | 
 | 	.qc_issue		= ata_dummy_qc_issue, | 
 | 	.error_handler		= ata_dummy_error_handler, | 
 | 	.sched_eh		= ata_std_sched_eh, | 
 | 	.end_eh			= ata_std_end_eh, | 
 | }; | 
 |  | 
 | const struct ata_port_info ata_dummy_port_info = { | 
 | 	.port_ops		= &ata_dummy_port_ops, | 
 | }; | 
 |  | 
 | /* | 
 |  * Utility print functions | 
 |  */ | 
 | void ata_port_printk(const struct ata_port *ap, const char *level, | 
 | 		     const char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 |  | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 |  | 
 | 	printk("%sata%u: %pV", level, ap->print_id, &vaf); | 
 |  | 
 | 	va_end(args); | 
 | } | 
 | EXPORT_SYMBOL(ata_port_printk); | 
 |  | 
 | void ata_link_printk(const struct ata_link *link, const char *level, | 
 | 		     const char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 |  | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 |  | 
 | 	if (sata_pmp_attached(link->ap) || link->ap->slave_link) | 
 | 		printk("%sata%u.%02u: %pV", | 
 | 		       level, link->ap->print_id, link->pmp, &vaf); | 
 | 	else | 
 | 		printk("%sata%u: %pV", | 
 | 		       level, link->ap->print_id, &vaf); | 
 |  | 
 | 	va_end(args); | 
 | } | 
 | EXPORT_SYMBOL(ata_link_printk); | 
 |  | 
 | void ata_dev_printk(const struct ata_device *dev, const char *level, | 
 | 		    const char *fmt, ...) | 
 | { | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 |  | 
 | 	va_start(args, fmt); | 
 |  | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 |  | 
 | 	printk("%sata%u.%02u: %pV", | 
 | 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno, | 
 | 	       &vaf); | 
 |  | 
 | 	va_end(args); | 
 | } | 
 | EXPORT_SYMBOL(ata_dev_printk); | 
 |  | 
 | void ata_print_version(const struct device *dev, const char *version) | 
 | { | 
 | 	dev_printk(KERN_DEBUG, dev, "version %s\n", version); | 
 | } | 
 | EXPORT_SYMBOL(ata_print_version); | 
 |  | 
 | /* | 
 |  * libata is essentially a library of internal helper functions for | 
 |  * low-level ATA host controller drivers.  As such, the API/ABI is | 
 |  * likely to change as new drivers are added and updated. | 
 |  * Do not depend on ABI/API stability. | 
 |  */ | 
 | EXPORT_SYMBOL_GPL(sata_deb_timing_normal); | 
 | EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); | 
 | EXPORT_SYMBOL_GPL(sata_deb_timing_long); | 
 | EXPORT_SYMBOL_GPL(ata_base_port_ops); | 
 | EXPORT_SYMBOL_GPL(sata_port_ops); | 
 | EXPORT_SYMBOL_GPL(ata_dummy_port_ops); | 
 | EXPORT_SYMBOL_GPL(ata_dummy_port_info); | 
 | EXPORT_SYMBOL_GPL(ata_link_next); | 
 | EXPORT_SYMBOL_GPL(ata_dev_next); | 
 | EXPORT_SYMBOL_GPL(ata_std_bios_param); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); | 
 | EXPORT_SYMBOL_GPL(ata_host_init); | 
 | EXPORT_SYMBOL_GPL(ata_host_alloc); | 
 | EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); | 
 | EXPORT_SYMBOL_GPL(ata_slave_link_init); | 
 | EXPORT_SYMBOL_GPL(ata_host_start); | 
 | EXPORT_SYMBOL_GPL(ata_host_register); | 
 | EXPORT_SYMBOL_GPL(ata_host_activate); | 
 | EXPORT_SYMBOL_GPL(ata_host_detach); | 
 | EXPORT_SYMBOL_GPL(ata_sg_init); | 
 | EXPORT_SYMBOL_GPL(ata_qc_complete); | 
 | EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); | 
 | EXPORT_SYMBOL_GPL(atapi_cmd_type); | 
 | EXPORT_SYMBOL_GPL(ata_tf_to_fis); | 
 | EXPORT_SYMBOL_GPL(ata_tf_from_fis); | 
 | EXPORT_SYMBOL_GPL(ata_pack_xfermask); | 
 | EXPORT_SYMBOL_GPL(ata_unpack_xfermask); | 
 | EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); | 
 | EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); | 
 | EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); | 
 | EXPORT_SYMBOL_GPL(ata_mode_string); | 
 | EXPORT_SYMBOL_GPL(ata_id_xfermask); | 
 | EXPORT_SYMBOL_GPL(ata_do_set_mode); | 
 | EXPORT_SYMBOL_GPL(ata_std_qc_defer); | 
 | EXPORT_SYMBOL_GPL(ata_noop_qc_prep); | 
 | EXPORT_SYMBOL_GPL(ata_dev_disable); | 
 | EXPORT_SYMBOL_GPL(sata_set_spd); | 
 | EXPORT_SYMBOL_GPL(ata_wait_after_reset); | 
 | EXPORT_SYMBOL_GPL(sata_link_debounce); | 
 | EXPORT_SYMBOL_GPL(sata_link_resume); | 
 | EXPORT_SYMBOL_GPL(sata_link_scr_lpm); | 
 | EXPORT_SYMBOL_GPL(ata_std_prereset); | 
 | EXPORT_SYMBOL_GPL(sata_link_hardreset); | 
 | EXPORT_SYMBOL_GPL(sata_std_hardreset); | 
 | EXPORT_SYMBOL_GPL(ata_std_postreset); | 
 | EXPORT_SYMBOL_GPL(ata_dev_classify); | 
 | EXPORT_SYMBOL_GPL(ata_dev_pair); | 
 | EXPORT_SYMBOL_GPL(ata_ratelimit); | 
 | EXPORT_SYMBOL_GPL(ata_msleep); | 
 | EXPORT_SYMBOL_GPL(ata_wait_register); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_slave_config); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); | 
 | EXPORT_SYMBOL_GPL(__ata_change_queue_depth); | 
 | EXPORT_SYMBOL_GPL(sata_scr_valid); | 
 | EXPORT_SYMBOL_GPL(sata_scr_read); | 
 | EXPORT_SYMBOL_GPL(sata_scr_write); | 
 | EXPORT_SYMBOL_GPL(sata_scr_write_flush); | 
 | EXPORT_SYMBOL_GPL(ata_link_online); | 
 | EXPORT_SYMBOL_GPL(ata_link_offline); | 
 | #ifdef CONFIG_PM | 
 | EXPORT_SYMBOL_GPL(ata_host_suspend); | 
 | EXPORT_SYMBOL_GPL(ata_host_resume); | 
 | #endif /* CONFIG_PM */ | 
 | EXPORT_SYMBOL_GPL(ata_id_string); | 
 | EXPORT_SYMBOL_GPL(ata_id_c_string); | 
 | EXPORT_SYMBOL_GPL(ata_do_dev_read_id); | 
 | EXPORT_SYMBOL_GPL(ata_scsi_simulate); | 
 |  | 
 | EXPORT_SYMBOL_GPL(ata_pio_need_iordy); | 
 | EXPORT_SYMBOL_GPL(ata_timing_find_mode); | 
 | EXPORT_SYMBOL_GPL(ata_timing_compute); | 
 | EXPORT_SYMBOL_GPL(ata_timing_merge); | 
 | EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | EXPORT_SYMBOL_GPL(pci_test_config_bits); | 
 | EXPORT_SYMBOL_GPL(ata_pci_remove_one); | 
 | #ifdef CONFIG_PM | 
 | EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); | 
 | EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); | 
 | EXPORT_SYMBOL_GPL(ata_pci_device_suspend); | 
 | EXPORT_SYMBOL_GPL(ata_pci_device_resume); | 
 | #endif /* CONFIG_PM */ | 
 | #endif /* CONFIG_PCI */ | 
 |  | 
 | EXPORT_SYMBOL_GPL(ata_platform_remove_one); | 
 |  | 
 | EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); | 
 | EXPORT_SYMBOL_GPL(ata_ehi_push_desc); | 
 | EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); | 
 | EXPORT_SYMBOL_GPL(ata_port_desc); | 
 | #ifdef CONFIG_PCI | 
 | EXPORT_SYMBOL_GPL(ata_port_pbar_desc); | 
 | #endif /* CONFIG_PCI */ | 
 | EXPORT_SYMBOL_GPL(ata_port_schedule_eh); | 
 | EXPORT_SYMBOL_GPL(ata_link_abort); | 
 | EXPORT_SYMBOL_GPL(ata_port_abort); | 
 | EXPORT_SYMBOL_GPL(ata_port_freeze); | 
 | EXPORT_SYMBOL_GPL(sata_async_notification); | 
 | EXPORT_SYMBOL_GPL(ata_eh_freeze_port); | 
 | EXPORT_SYMBOL_GPL(ata_eh_thaw_port); | 
 | EXPORT_SYMBOL_GPL(ata_eh_qc_complete); | 
 | EXPORT_SYMBOL_GPL(ata_eh_qc_retry); | 
 | EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); | 
 | EXPORT_SYMBOL_GPL(ata_do_eh); | 
 | EXPORT_SYMBOL_GPL(ata_std_error_handler); | 
 |  | 
 | EXPORT_SYMBOL_GPL(ata_cable_40wire); | 
 | EXPORT_SYMBOL_GPL(ata_cable_80wire); | 
 | EXPORT_SYMBOL_GPL(ata_cable_unknown); | 
 | EXPORT_SYMBOL_GPL(ata_cable_ignore); | 
 | EXPORT_SYMBOL_GPL(ata_cable_sata); | 
 | EXPORT_SYMBOL_GPL(ata_host_get); | 
 | EXPORT_SYMBOL_GPL(ata_host_put); |