| /* Worker thread pool for slow items, such as filesystem lookups or mkdirs |
| * |
| * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| * |
| * See Documentation/slow-work.txt |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slow-work.h> |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| #include <linux/wait.h> |
| |
| #define SLOW_WORK_CULL_TIMEOUT (5 * HZ) /* cull threads 5s after running out of |
| * things to do */ |
| #define SLOW_WORK_OOM_TIMEOUT (5 * HZ) /* can't start new threads for 5s after |
| * OOM */ |
| |
| static void slow_work_cull_timeout(unsigned long); |
| static void slow_work_oom_timeout(unsigned long); |
| |
| #ifdef CONFIG_SYSCTL |
| static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
| void __user *, size_t *, loff_t *); |
| |
| static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
| void __user *, size_t *, loff_t *); |
| #endif |
| |
| /* |
| * The pool of threads has at least min threads in it as long as someone is |
| * using the facility, and may have as many as max. |
| * |
| * A portion of the pool may be processing very slow operations. |
| */ |
| static unsigned slow_work_min_threads = 2; |
| static unsigned slow_work_max_threads = 4; |
| static unsigned vslow_work_proportion = 50; /* % of threads that may process |
| * very slow work */ |
| |
| #ifdef CONFIG_SYSCTL |
| static const int slow_work_min_min_threads = 2; |
| static int slow_work_max_max_threads = 255; |
| static const int slow_work_min_vslow = 1; |
| static const int slow_work_max_vslow = 99; |
| |
| ctl_table slow_work_sysctls[] = { |
| { |
| .procname = "min-threads", |
| .data = &slow_work_min_threads, |
| .maxlen = sizeof(unsigned), |
| .mode = 0644, |
| .proc_handler = slow_work_min_threads_sysctl, |
| .extra1 = (void *) &slow_work_min_min_threads, |
| .extra2 = &slow_work_max_threads, |
| }, |
| { |
| .procname = "max-threads", |
| .data = &slow_work_max_threads, |
| .maxlen = sizeof(unsigned), |
| .mode = 0644, |
| .proc_handler = slow_work_max_threads_sysctl, |
| .extra1 = &slow_work_min_threads, |
| .extra2 = (void *) &slow_work_max_max_threads, |
| }, |
| { |
| .procname = "vslow-percentage", |
| .data = &vslow_work_proportion, |
| .maxlen = sizeof(unsigned), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = (void *) &slow_work_min_vslow, |
| .extra2 = (void *) &slow_work_max_vslow, |
| }, |
| {} |
| }; |
| #endif |
| |
| /* |
| * The active state of the thread pool |
| */ |
| static atomic_t slow_work_thread_count; |
| static atomic_t vslow_work_executing_count; |
| |
| static bool slow_work_may_not_start_new_thread; |
| static bool slow_work_cull; /* cull a thread due to lack of activity */ |
| static DEFINE_TIMER(slow_work_cull_timer, slow_work_cull_timeout, 0, 0); |
| static DEFINE_TIMER(slow_work_oom_timer, slow_work_oom_timeout, 0, 0); |
| static struct slow_work slow_work_new_thread; /* new thread starter */ |
| |
| /* |
| * The queues of work items and the lock governing access to them. These are |
| * shared between all the CPUs. It doesn't make sense to have per-CPU queues |
| * as the number of threads bears no relation to the number of CPUs. |
| * |
| * There are two queues of work items: one for slow work items, and one for |
| * very slow work items. |
| */ |
| static LIST_HEAD(slow_work_queue); |
| static LIST_HEAD(vslow_work_queue); |
| static DEFINE_SPINLOCK(slow_work_queue_lock); |
| |
| /* |
| * The thread controls. A variable used to signal to the threads that they |
| * should exit when the queue is empty, a waitqueue used by the threads to wait |
| * for signals, and a completion set by the last thread to exit. |
| */ |
| static bool slow_work_threads_should_exit; |
| static DECLARE_WAIT_QUEUE_HEAD(slow_work_thread_wq); |
| static DECLARE_COMPLETION(slow_work_last_thread_exited); |
| |
| /* |
| * The number of users of the thread pool and its lock. Whilst this is zero we |
| * have no threads hanging around, and when this reaches zero, we wait for all |
| * active or queued work items to complete and kill all the threads we do have. |
| */ |
| static int slow_work_user_count; |
| static DEFINE_MUTEX(slow_work_user_lock); |
| |
| /* |
| * Calculate the maximum number of active threads in the pool that are |
| * permitted to process very slow work items. |
| * |
| * The answer is rounded up to at least 1, but may not equal or exceed the |
| * maximum number of the threads in the pool. This means we always have at |
| * least one thread that can process slow work items, and we always have at |
| * least one thread that won't get tied up doing so. |
| */ |
| static unsigned slow_work_calc_vsmax(void) |
| { |
| unsigned vsmax; |
| |
| vsmax = atomic_read(&slow_work_thread_count) * vslow_work_proportion; |
| vsmax /= 100; |
| vsmax = max(vsmax, 1U); |
| return min(vsmax, slow_work_max_threads - 1); |
| } |
| |
| /* |
| * Attempt to execute stuff queued on a slow thread. Return true if we managed |
| * it, false if there was nothing to do. |
| */ |
| static bool slow_work_execute(void) |
| { |
| struct slow_work *work = NULL; |
| unsigned vsmax; |
| bool very_slow; |
| |
| vsmax = slow_work_calc_vsmax(); |
| |
| /* see if we can schedule a new thread to be started if we're not |
| * keeping up with the work */ |
| if (!waitqueue_active(&slow_work_thread_wq) && |
| (!list_empty(&slow_work_queue) || !list_empty(&vslow_work_queue)) && |
| atomic_read(&slow_work_thread_count) < slow_work_max_threads && |
| !slow_work_may_not_start_new_thread) |
| slow_work_enqueue(&slow_work_new_thread); |
| |
| /* find something to execute */ |
| spin_lock_irq(&slow_work_queue_lock); |
| if (!list_empty(&vslow_work_queue) && |
| atomic_read(&vslow_work_executing_count) < vsmax) { |
| work = list_entry(vslow_work_queue.next, |
| struct slow_work, link); |
| if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) |
| BUG(); |
| list_del_init(&work->link); |
| atomic_inc(&vslow_work_executing_count); |
| very_slow = true; |
| } else if (!list_empty(&slow_work_queue)) { |
| work = list_entry(slow_work_queue.next, |
| struct slow_work, link); |
| if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags)) |
| BUG(); |
| list_del_init(&work->link); |
| very_slow = false; |
| } else { |
| very_slow = false; /* avoid the compiler warning */ |
| } |
| spin_unlock_irq(&slow_work_queue_lock); |
| |
| if (!work) |
| return false; |
| |
| if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags)) |
| BUG(); |
| |
| work->ops->execute(work); |
| |
| if (very_slow) |
| atomic_dec(&vslow_work_executing_count); |
| clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags); |
| |
| /* if someone tried to enqueue the item whilst we were executing it, |
| * then it'll be left unenqueued to avoid multiple threads trying to |
| * execute it simultaneously |
| * |
| * there is, however, a race between us testing the pending flag and |
| * getting the spinlock, and between the enqueuer setting the pending |
| * flag and getting the spinlock, so we use a deferral bit to tell us |
| * if the enqueuer got there first |
| */ |
| if (test_bit(SLOW_WORK_PENDING, &work->flags)) { |
| spin_lock_irq(&slow_work_queue_lock); |
| |
| if (!test_bit(SLOW_WORK_EXECUTING, &work->flags) && |
| test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags)) |
| goto auto_requeue; |
| |
| spin_unlock_irq(&slow_work_queue_lock); |
| } |
| |
| work->ops->put_ref(work); |
| return true; |
| |
| auto_requeue: |
| /* we must complete the enqueue operation |
| * - we transfer our ref on the item back to the appropriate queue |
| * - don't wake another thread up as we're awake already |
| */ |
| if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) |
| list_add_tail(&work->link, &vslow_work_queue); |
| else |
| list_add_tail(&work->link, &slow_work_queue); |
| spin_unlock_irq(&slow_work_queue_lock); |
| return true; |
| } |
| |
| /** |
| * slow_work_enqueue - Schedule a slow work item for processing |
| * @work: The work item to queue |
| * |
| * Schedule a slow work item for processing. If the item is already undergoing |
| * execution, this guarantees not to re-enter the execution routine until the |
| * first execution finishes. |
| * |
| * The item is pinned by this function as it retains a reference to it, managed |
| * through the item operations. The item is unpinned once it has been |
| * executed. |
| * |
| * An item may hog the thread that is running it for a relatively large amount |
| * of time, sufficient, for example, to perform several lookup, mkdir, create |
| * and setxattr operations. It may sleep on I/O and may sleep to obtain locks. |
| * |
| * Conversely, if a number of items are awaiting processing, it may take some |
| * time before any given item is given attention. The number of threads in the |
| * pool may be increased to deal with demand, but only up to a limit. |
| * |
| * If SLOW_WORK_VERY_SLOW is set on the work item, then it will be placed in |
| * the very slow queue, from which only a portion of the threads will be |
| * allowed to pick items to execute. This ensures that very slow items won't |
| * overly block ones that are just ordinarily slow. |
| * |
| * Returns 0 if successful, -EAGAIN if not. |
| */ |
| int slow_work_enqueue(struct slow_work *work) |
| { |
| unsigned long flags; |
| |
| BUG_ON(slow_work_user_count <= 0); |
| BUG_ON(!work); |
| BUG_ON(!work->ops); |
| BUG_ON(!work->ops->get_ref); |
| |
| /* when honouring an enqueue request, we only promise that we will run |
| * the work function in the future; we do not promise to run it once |
| * per enqueue request |
| * |
| * we use the PENDING bit to merge together repeat requests without |
| * having to disable IRQs and take the spinlock, whilst still |
| * maintaining our promise |
| */ |
| if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) { |
| spin_lock_irqsave(&slow_work_queue_lock, flags); |
| |
| /* we promise that we will not attempt to execute the work |
| * function in more than one thread simultaneously |
| * |
| * this, however, leaves us with a problem if we're asked to |
| * enqueue the work whilst someone is executing the work |
| * function as simply queueing the work immediately means that |
| * another thread may try executing it whilst it is already |
| * under execution |
| * |
| * to deal with this, we set the ENQ_DEFERRED bit instead of |
| * enqueueing, and the thread currently executing the work |
| * function will enqueue the work item when the work function |
| * returns and it has cleared the EXECUTING bit |
| */ |
| if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) { |
| set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags); |
| } else { |
| if (work->ops->get_ref(work) < 0) |
| goto cant_get_ref; |
| if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) |
| list_add_tail(&work->link, &vslow_work_queue); |
| else |
| list_add_tail(&work->link, &slow_work_queue); |
| wake_up(&slow_work_thread_wq); |
| } |
| |
| spin_unlock_irqrestore(&slow_work_queue_lock, flags); |
| } |
| return 0; |
| |
| cant_get_ref: |
| spin_unlock_irqrestore(&slow_work_queue_lock, flags); |
| return -EAGAIN; |
| } |
| EXPORT_SYMBOL(slow_work_enqueue); |
| |
| /* |
| * Schedule a cull of the thread pool at some time in the near future |
| */ |
| static void slow_work_schedule_cull(void) |
| { |
| mod_timer(&slow_work_cull_timer, |
| round_jiffies(jiffies + SLOW_WORK_CULL_TIMEOUT)); |
| } |
| |
| /* |
| * Worker thread culling algorithm |
| */ |
| static bool slow_work_cull_thread(void) |
| { |
| unsigned long flags; |
| bool do_cull = false; |
| |
| spin_lock_irqsave(&slow_work_queue_lock, flags); |
| |
| if (slow_work_cull) { |
| slow_work_cull = false; |
| |
| if (list_empty(&slow_work_queue) && |
| list_empty(&vslow_work_queue) && |
| atomic_read(&slow_work_thread_count) > |
| slow_work_min_threads) { |
| slow_work_schedule_cull(); |
| do_cull = true; |
| } |
| } |
| |
| spin_unlock_irqrestore(&slow_work_queue_lock, flags); |
| return do_cull; |
| } |
| |
| /* |
| * Determine if there is slow work available for dispatch |
| */ |
| static inline bool slow_work_available(int vsmax) |
| { |
| return !list_empty(&slow_work_queue) || |
| (!list_empty(&vslow_work_queue) && |
| atomic_read(&vslow_work_executing_count) < vsmax); |
| } |
| |
| /* |
| * Worker thread dispatcher |
| */ |
| static int slow_work_thread(void *_data) |
| { |
| int vsmax; |
| |
| DEFINE_WAIT(wait); |
| |
| set_freezable(); |
| set_user_nice(current, -5); |
| |
| for (;;) { |
| vsmax = vslow_work_proportion; |
| vsmax *= atomic_read(&slow_work_thread_count); |
| vsmax /= 100; |
| |
| prepare_to_wait_exclusive(&slow_work_thread_wq, &wait, |
| TASK_INTERRUPTIBLE); |
| if (!freezing(current) && |
| !slow_work_threads_should_exit && |
| !slow_work_available(vsmax) && |
| !slow_work_cull) |
| schedule(); |
| finish_wait(&slow_work_thread_wq, &wait); |
| |
| try_to_freeze(); |
| |
| vsmax = vslow_work_proportion; |
| vsmax *= atomic_read(&slow_work_thread_count); |
| vsmax /= 100; |
| |
| if (slow_work_available(vsmax) && slow_work_execute()) { |
| cond_resched(); |
| if (list_empty(&slow_work_queue) && |
| list_empty(&vslow_work_queue) && |
| atomic_read(&slow_work_thread_count) > |
| slow_work_min_threads) |
| slow_work_schedule_cull(); |
| continue; |
| } |
| |
| if (slow_work_threads_should_exit) |
| break; |
| |
| if (slow_work_cull && slow_work_cull_thread()) |
| break; |
| } |
| |
| if (atomic_dec_and_test(&slow_work_thread_count)) |
| complete_and_exit(&slow_work_last_thread_exited, 0); |
| return 0; |
| } |
| |
| /* |
| * Handle thread cull timer expiration |
| */ |
| static void slow_work_cull_timeout(unsigned long data) |
| { |
| slow_work_cull = true; |
| wake_up(&slow_work_thread_wq); |
| } |
| |
| /* |
| * Get a reference on slow work thread starter |
| */ |
| static int slow_work_new_thread_get_ref(struct slow_work *work) |
| { |
| return 0; |
| } |
| |
| /* |
| * Drop a reference on slow work thread starter |
| */ |
| static void slow_work_new_thread_put_ref(struct slow_work *work) |
| { |
| } |
| |
| /* |
| * Start a new slow work thread |
| */ |
| static void slow_work_new_thread_execute(struct slow_work *work) |
| { |
| struct task_struct *p; |
| |
| if (slow_work_threads_should_exit) |
| return; |
| |
| if (atomic_read(&slow_work_thread_count) >= slow_work_max_threads) |
| return; |
| |
| if (!mutex_trylock(&slow_work_user_lock)) |
| return; |
| |
| slow_work_may_not_start_new_thread = true; |
| atomic_inc(&slow_work_thread_count); |
| p = kthread_run(slow_work_thread, NULL, "kslowd"); |
| if (IS_ERR(p)) { |
| printk(KERN_DEBUG "Slow work thread pool: OOM\n"); |
| if (atomic_dec_and_test(&slow_work_thread_count)) |
| BUG(); /* we're running on a slow work thread... */ |
| mod_timer(&slow_work_oom_timer, |
| round_jiffies(jiffies + SLOW_WORK_OOM_TIMEOUT)); |
| } else { |
| /* ratelimit the starting of new threads */ |
| mod_timer(&slow_work_oom_timer, jiffies + 1); |
| } |
| |
| mutex_unlock(&slow_work_user_lock); |
| } |
| |
| static const struct slow_work_ops slow_work_new_thread_ops = { |
| .get_ref = slow_work_new_thread_get_ref, |
| .put_ref = slow_work_new_thread_put_ref, |
| .execute = slow_work_new_thread_execute, |
| }; |
| |
| /* |
| * post-OOM new thread start suppression expiration |
| */ |
| static void slow_work_oom_timeout(unsigned long data) |
| { |
| slow_work_may_not_start_new_thread = false; |
| } |
| |
| #ifdef CONFIG_SYSCTL |
| /* |
| * Handle adjustment of the minimum number of threads |
| */ |
| static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
| void __user *buffer, |
| size_t *lenp, loff_t *ppos) |
| { |
| int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| int n; |
| |
| if (ret == 0) { |
| mutex_lock(&slow_work_user_lock); |
| if (slow_work_user_count > 0) { |
| /* see if we need to start or stop threads */ |
| n = atomic_read(&slow_work_thread_count) - |
| slow_work_min_threads; |
| |
| if (n < 0 && !slow_work_may_not_start_new_thread) |
| slow_work_enqueue(&slow_work_new_thread); |
| else if (n > 0) |
| slow_work_schedule_cull(); |
| } |
| mutex_unlock(&slow_work_user_lock); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Handle adjustment of the maximum number of threads |
| */ |
| static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
| void __user *buffer, |
| size_t *lenp, loff_t *ppos) |
| { |
| int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| int n; |
| |
| if (ret == 0) { |
| mutex_lock(&slow_work_user_lock); |
| if (slow_work_user_count > 0) { |
| /* see if we need to stop threads */ |
| n = slow_work_max_threads - |
| atomic_read(&slow_work_thread_count); |
| |
| if (n < 0) |
| slow_work_schedule_cull(); |
| } |
| mutex_unlock(&slow_work_user_lock); |
| } |
| |
| return ret; |
| } |
| #endif /* CONFIG_SYSCTL */ |
| |
| /** |
| * slow_work_register_user - Register a user of the facility |
| * |
| * Register a user of the facility, starting up the initial threads if there |
| * aren't any other users at this point. This will return 0 if successful, or |
| * an error if not. |
| */ |
| int slow_work_register_user(void) |
| { |
| struct task_struct *p; |
| int loop; |
| |
| mutex_lock(&slow_work_user_lock); |
| |
| if (slow_work_user_count == 0) { |
| printk(KERN_NOTICE "Slow work thread pool: Starting up\n"); |
| init_completion(&slow_work_last_thread_exited); |
| |
| slow_work_threads_should_exit = false; |
| slow_work_init(&slow_work_new_thread, |
| &slow_work_new_thread_ops); |
| slow_work_may_not_start_new_thread = false; |
| slow_work_cull = false; |
| |
| /* start the minimum number of threads */ |
| for (loop = 0; loop < slow_work_min_threads; loop++) { |
| atomic_inc(&slow_work_thread_count); |
| p = kthread_run(slow_work_thread, NULL, "kslowd"); |
| if (IS_ERR(p)) |
| goto error; |
| } |
| printk(KERN_NOTICE "Slow work thread pool: Ready\n"); |
| } |
| |
| slow_work_user_count++; |
| mutex_unlock(&slow_work_user_lock); |
| return 0; |
| |
| error: |
| if (atomic_dec_and_test(&slow_work_thread_count)) |
| complete(&slow_work_last_thread_exited); |
| if (loop > 0) { |
| printk(KERN_ERR "Slow work thread pool:" |
| " Aborting startup on ENOMEM\n"); |
| slow_work_threads_should_exit = true; |
| wake_up_all(&slow_work_thread_wq); |
| wait_for_completion(&slow_work_last_thread_exited); |
| printk(KERN_ERR "Slow work thread pool: Aborted\n"); |
| } |
| mutex_unlock(&slow_work_user_lock); |
| return PTR_ERR(p); |
| } |
| EXPORT_SYMBOL(slow_work_register_user); |
| |
| /** |
| * slow_work_unregister_user - Unregister a user of the facility |
| * |
| * Unregister a user of the facility, killing all the threads if this was the |
| * last one. |
| */ |
| void slow_work_unregister_user(void) |
| { |
| mutex_lock(&slow_work_user_lock); |
| |
| BUG_ON(slow_work_user_count <= 0); |
| |
| slow_work_user_count--; |
| if (slow_work_user_count == 0) { |
| printk(KERN_NOTICE "Slow work thread pool: Shutting down\n"); |
| slow_work_threads_should_exit = true; |
| del_timer_sync(&slow_work_cull_timer); |
| del_timer_sync(&slow_work_oom_timer); |
| wake_up_all(&slow_work_thread_wq); |
| wait_for_completion(&slow_work_last_thread_exited); |
| printk(KERN_NOTICE "Slow work thread pool:" |
| " Shut down complete\n"); |
| } |
| |
| mutex_unlock(&slow_work_user_lock); |
| } |
| EXPORT_SYMBOL(slow_work_unregister_user); |
| |
| /* |
| * Initialise the slow work facility |
| */ |
| static int __init init_slow_work(void) |
| { |
| unsigned nr_cpus = num_possible_cpus(); |
| |
| if (slow_work_max_threads < nr_cpus) |
| slow_work_max_threads = nr_cpus; |
| #ifdef CONFIG_SYSCTL |
| if (slow_work_max_max_threads < nr_cpus * 2) |
| slow_work_max_max_threads = nr_cpus * 2; |
| #endif |
| return 0; |
| } |
| |
| subsys_initcall(init_slow_work); |