| /* | 
 |  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. | 
 |  * | 
 |  * Copyright (C) 2008-2012 ST-Ericsson AB | 
 |  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. | 
 |  * | 
 |  * Author: Linus Walleij <linus.walleij@stericsson.com> | 
 |  * | 
 |  * Initial version inspired by: | 
 |  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c | 
 |  * Initial adoption to PL022 by: | 
 |  *      Sachin Verma <sachin.verma@st.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/device.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/spi/spi.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/amba/bus.h> | 
 | #include <linux/amba/pl022.h> | 
 | #include <linux/io.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/gpio.h> | 
 | #include <linux/of_gpio.h> | 
 | #include <linux/pinctrl/consumer.h> | 
 |  | 
 | /* | 
 |  * This macro is used to define some register default values. | 
 |  * reg is masked with mask, the OR:ed with an (again masked) | 
 |  * val shifted sb steps to the left. | 
 |  */ | 
 | #define SSP_WRITE_BITS(reg, val, mask, sb) \ | 
 |  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) | 
 |  | 
 | /* | 
 |  * This macro is also used to define some default values. | 
 |  * It will just shift val by sb steps to the left and mask | 
 |  * the result with mask. | 
 |  */ | 
 | #define GEN_MASK_BITS(val, mask, sb) \ | 
 |  (((val)<<(sb)) & (mask)) | 
 |  | 
 | #define DRIVE_TX		0 | 
 | #define DO_NOT_DRIVE_TX		1 | 
 |  | 
 | #define DO_NOT_QUEUE_DMA	0 | 
 | #define QUEUE_DMA		1 | 
 |  | 
 | #define RX_TRANSFER		1 | 
 | #define TX_TRANSFER		2 | 
 |  | 
 | /* | 
 |  * Macros to access SSP Registers with their offsets | 
 |  */ | 
 | #define SSP_CR0(r)	(r + 0x000) | 
 | #define SSP_CR1(r)	(r + 0x004) | 
 | #define SSP_DR(r)	(r + 0x008) | 
 | #define SSP_SR(r)	(r + 0x00C) | 
 | #define SSP_CPSR(r)	(r + 0x010) | 
 | #define SSP_IMSC(r)	(r + 0x014) | 
 | #define SSP_RIS(r)	(r + 0x018) | 
 | #define SSP_MIS(r)	(r + 0x01C) | 
 | #define SSP_ICR(r)	(r + 0x020) | 
 | #define SSP_DMACR(r)	(r + 0x024) | 
 | #define SSP_CSR(r)	(r + 0x030) /* vendor extension */ | 
 | #define SSP_ITCR(r)	(r + 0x080) | 
 | #define SSP_ITIP(r)	(r + 0x084) | 
 | #define SSP_ITOP(r)	(r + 0x088) | 
 | #define SSP_TDR(r)	(r + 0x08C) | 
 |  | 
 | #define SSP_PID0(r)	(r + 0xFE0) | 
 | #define SSP_PID1(r)	(r + 0xFE4) | 
 | #define SSP_PID2(r)	(r + 0xFE8) | 
 | #define SSP_PID3(r)	(r + 0xFEC) | 
 |  | 
 | #define SSP_CID0(r)	(r + 0xFF0) | 
 | #define SSP_CID1(r)	(r + 0xFF4) | 
 | #define SSP_CID2(r)	(r + 0xFF8) | 
 | #define SSP_CID3(r)	(r + 0xFFC) | 
 |  | 
 | /* | 
 |  * SSP Control Register 0  - SSP_CR0 | 
 |  */ | 
 | #define SSP_CR0_MASK_DSS	(0x0FUL << 0) | 
 | #define SSP_CR0_MASK_FRF	(0x3UL << 4) | 
 | #define SSP_CR0_MASK_SPO	(0x1UL << 6) | 
 | #define SSP_CR0_MASK_SPH	(0x1UL << 7) | 
 | #define SSP_CR0_MASK_SCR	(0xFFUL << 8) | 
 |  | 
 | /* | 
 |  * The ST version of this block moves som bits | 
 |  * in SSP_CR0 and extends it to 32 bits | 
 |  */ | 
 | #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0) | 
 | #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5) | 
 | #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16) | 
 | #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21) | 
 |  | 
 | /* | 
 |  * SSP Control Register 0  - SSP_CR1 | 
 |  */ | 
 | #define SSP_CR1_MASK_LBM	(0x1UL << 0) | 
 | #define SSP_CR1_MASK_SSE	(0x1UL << 1) | 
 | #define SSP_CR1_MASK_MS		(0x1UL << 2) | 
 | #define SSP_CR1_MASK_SOD	(0x1UL << 3) | 
 |  | 
 | /* | 
 |  * The ST version of this block adds some bits | 
 |  * in SSP_CR1 | 
 |  */ | 
 | #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4) | 
 | #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5) | 
 | #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6) | 
 | #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) | 
 | #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) | 
 | /* This one is only in the PL023 variant */ | 
 | #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) | 
 |  | 
 | /* | 
 |  * SSP Status Register - SSP_SR | 
 |  */ | 
 | #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */ | 
 | #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */ | 
 | #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */ | 
 | #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */ | 
 | #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */ | 
 |  | 
 | /* | 
 |  * SSP Clock Prescale Register  - SSP_CPSR | 
 |  */ | 
 | #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0) | 
 |  | 
 | /* | 
 |  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC | 
 |  */ | 
 | #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ | 
 | #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */ | 
 | #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */ | 
 | #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */ | 
 |  | 
 | /* | 
 |  * SSP Raw Interrupt Status Register - SSP_RIS | 
 |  */ | 
 | /* Receive Overrun Raw Interrupt status */ | 
 | #define SSP_RIS_MASK_RORRIS		(0x1UL << 0) | 
 | /* Receive Timeout Raw Interrupt status */ | 
 | #define SSP_RIS_MASK_RTRIS		(0x1UL << 1) | 
 | /* Receive FIFO Raw Interrupt status */ | 
 | #define SSP_RIS_MASK_RXRIS		(0x1UL << 2) | 
 | /* Transmit FIFO Raw Interrupt status */ | 
 | #define SSP_RIS_MASK_TXRIS		(0x1UL << 3) | 
 |  | 
 | /* | 
 |  * SSP Masked Interrupt Status Register - SSP_MIS | 
 |  */ | 
 | /* Receive Overrun Masked Interrupt status */ | 
 | #define SSP_MIS_MASK_RORMIS		(0x1UL << 0) | 
 | /* Receive Timeout Masked Interrupt status */ | 
 | #define SSP_MIS_MASK_RTMIS		(0x1UL << 1) | 
 | /* Receive FIFO Masked Interrupt status */ | 
 | #define SSP_MIS_MASK_RXMIS		(0x1UL << 2) | 
 | /* Transmit FIFO Masked Interrupt status */ | 
 | #define SSP_MIS_MASK_TXMIS		(0x1UL << 3) | 
 |  | 
 | /* | 
 |  * SSP Interrupt Clear Register - SSP_ICR | 
 |  */ | 
 | /* Receive Overrun Raw Clear Interrupt bit */ | 
 | #define SSP_ICR_MASK_RORIC		(0x1UL << 0) | 
 | /* Receive Timeout Clear Interrupt bit */ | 
 | #define SSP_ICR_MASK_RTIC		(0x1UL << 1) | 
 |  | 
 | /* | 
 |  * SSP DMA Control Register - SSP_DMACR | 
 |  */ | 
 | /* Receive DMA Enable bit */ | 
 | #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0) | 
 | /* Transmit DMA Enable bit */ | 
 | #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1) | 
 |  | 
 | /* | 
 |  * SSP Chip Select Control Register - SSP_CSR | 
 |  * (vendor extension) | 
 |  */ | 
 | #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0) | 
 |  | 
 | /* | 
 |  * SSP Integration Test control Register - SSP_ITCR | 
 |  */ | 
 | #define SSP_ITCR_MASK_ITEN		(0x1UL << 0) | 
 | #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1) | 
 |  | 
 | /* | 
 |  * SSP Integration Test Input Register - SSP_ITIP | 
 |  */ | 
 | #define ITIP_MASK_SSPRXD		 (0x1UL << 0) | 
 | #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1) | 
 | #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2) | 
 | #define ITIP_MASK_RXDMAC		 (0x1UL << 3) | 
 | #define ITIP_MASK_TXDMAC		 (0x1UL << 4) | 
 | #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5) | 
 |  | 
 | /* | 
 |  * SSP Integration Test output Register - SSP_ITOP | 
 |  */ | 
 | #define ITOP_MASK_SSPTXD		 (0x1UL << 0) | 
 | #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1) | 
 | #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2) | 
 | #define ITOP_MASK_SSPOEn		 (0x1UL << 3) | 
 | #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4) | 
 | #define ITOP_MASK_RORINTR		 (0x1UL << 5) | 
 | #define ITOP_MASK_RTINTR		 (0x1UL << 6) | 
 | #define ITOP_MASK_RXINTR		 (0x1UL << 7) | 
 | #define ITOP_MASK_TXINTR		 (0x1UL << 8) | 
 | #define ITOP_MASK_INTR			 (0x1UL << 9) | 
 | #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10) | 
 | #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11) | 
 | #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12) | 
 | #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13) | 
 |  | 
 | /* | 
 |  * SSP Test Data Register - SSP_TDR | 
 |  */ | 
 | #define TDR_MASK_TESTDATA		(0xFFFFFFFF) | 
 |  | 
 | /* | 
 |  * Message State | 
 |  * we use the spi_message.state (void *) pointer to | 
 |  * hold a single state value, that's why all this | 
 |  * (void *) casting is done here. | 
 |  */ | 
 | #define STATE_START			((void *) 0) | 
 | #define STATE_RUNNING			((void *) 1) | 
 | #define STATE_DONE			((void *) 2) | 
 | #define STATE_ERROR			((void *) -1) | 
 |  | 
 | /* | 
 |  * SSP State - Whether Enabled or Disabled | 
 |  */ | 
 | #define SSP_DISABLED			(0) | 
 | #define SSP_ENABLED			(1) | 
 |  | 
 | /* | 
 |  * SSP DMA State - Whether DMA Enabled or Disabled | 
 |  */ | 
 | #define SSP_DMA_DISABLED		(0) | 
 | #define SSP_DMA_ENABLED			(1) | 
 |  | 
 | /* | 
 |  * SSP Clock Defaults | 
 |  */ | 
 | #define SSP_DEFAULT_CLKRATE 0x2 | 
 | #define SSP_DEFAULT_PRESCALE 0x40 | 
 |  | 
 | /* | 
 |  * SSP Clock Parameter ranges | 
 |  */ | 
 | #define CPSDVR_MIN 0x02 | 
 | #define CPSDVR_MAX 0xFE | 
 | #define SCR_MIN 0x00 | 
 | #define SCR_MAX 0xFF | 
 |  | 
 | /* | 
 |  * SSP Interrupt related Macros | 
 |  */ | 
 | #define DEFAULT_SSP_REG_IMSC  0x0UL | 
 | #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC | 
 | #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC) | 
 |  | 
 | #define CLEAR_ALL_INTERRUPTS  0x3 | 
 |  | 
 | #define SPI_POLLING_TIMEOUT 1000 | 
 |  | 
 | /* | 
 |  * The type of reading going on on this chip | 
 |  */ | 
 | enum ssp_reading { | 
 | 	READING_NULL, | 
 | 	READING_U8, | 
 | 	READING_U16, | 
 | 	READING_U32 | 
 | }; | 
 |  | 
 | /** | 
 |  * The type of writing going on on this chip | 
 |  */ | 
 | enum ssp_writing { | 
 | 	WRITING_NULL, | 
 | 	WRITING_U8, | 
 | 	WRITING_U16, | 
 | 	WRITING_U32 | 
 | }; | 
 |  | 
 | /** | 
 |  * struct vendor_data - vendor-specific config parameters | 
 |  * for PL022 derivates | 
 |  * @fifodepth: depth of FIFOs (both) | 
 |  * @max_bpw: maximum number of bits per word | 
 |  * @unidir: supports unidirection transfers | 
 |  * @extended_cr: 32 bit wide control register 0 with extra | 
 |  * features and extra features in CR1 as found in the ST variants | 
 |  * @pl023: supports a subset of the ST extensions called "PL023" | 
 |  * @internal_cs_ctrl: supports chip select control register | 
 |  */ | 
 | struct vendor_data { | 
 | 	int fifodepth; | 
 | 	int max_bpw; | 
 | 	bool unidir; | 
 | 	bool extended_cr; | 
 | 	bool pl023; | 
 | 	bool loopback; | 
 | 	bool internal_cs_ctrl; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct pl022 - This is the private SSP driver data structure | 
 |  * @adev: AMBA device model hookup | 
 |  * @vendor: vendor data for the IP block | 
 |  * @phybase: the physical memory where the SSP device resides | 
 |  * @virtbase: the virtual memory where the SSP is mapped | 
 |  * @clk: outgoing clock "SPICLK" for the SPI bus | 
 |  * @master: SPI framework hookup | 
 |  * @master_info: controller-specific data from machine setup | 
 |  * @kworker: thread struct for message pump | 
 |  * @kworker_task: pointer to task for message pump kworker thread | 
 |  * @pump_messages: work struct for scheduling work to the message pump | 
 |  * @queue_lock: spinlock to syncronise access to message queue | 
 |  * @queue: message queue | 
 |  * @busy: message pump is busy | 
 |  * @running: message pump is running | 
 |  * @pump_transfers: Tasklet used in Interrupt Transfer mode | 
 |  * @cur_msg: Pointer to current spi_message being processed | 
 |  * @cur_transfer: Pointer to current spi_transfer | 
 |  * @cur_chip: pointer to current clients chip(assigned from controller_state) | 
 |  * @next_msg_cs_active: the next message in the queue has been examined | 
 |  *  and it was found that it uses the same chip select as the previous | 
 |  *  message, so we left it active after the previous transfer, and it's | 
 |  *  active already. | 
 |  * @tx: current position in TX buffer to be read | 
 |  * @tx_end: end position in TX buffer to be read | 
 |  * @rx: current position in RX buffer to be written | 
 |  * @rx_end: end position in RX buffer to be written | 
 |  * @read: the type of read currently going on | 
 |  * @write: the type of write currently going on | 
 |  * @exp_fifo_level: expected FIFO level | 
 |  * @dma_rx_channel: optional channel for RX DMA | 
 |  * @dma_tx_channel: optional channel for TX DMA | 
 |  * @sgt_rx: scattertable for the RX transfer | 
 |  * @sgt_tx: scattertable for the TX transfer | 
 |  * @dummypage: a dummy page used for driving data on the bus with DMA | 
 |  * @cur_cs: current chip select (gpio) | 
 |  * @chipselects: list of chipselects (gpios) | 
 |  */ | 
 | struct pl022 { | 
 | 	struct amba_device		*adev; | 
 | 	struct vendor_data		*vendor; | 
 | 	resource_size_t			phybase; | 
 | 	void __iomem			*virtbase; | 
 | 	struct clk			*clk; | 
 | 	struct spi_master		*master; | 
 | 	struct pl022_ssp_controller	*master_info; | 
 | 	/* Message per-transfer pump */ | 
 | 	struct tasklet_struct		pump_transfers; | 
 | 	struct spi_message		*cur_msg; | 
 | 	struct spi_transfer		*cur_transfer; | 
 | 	struct chip_data		*cur_chip; | 
 | 	bool				next_msg_cs_active; | 
 | 	void				*tx; | 
 | 	void				*tx_end; | 
 | 	void				*rx; | 
 | 	void				*rx_end; | 
 | 	enum ssp_reading		read; | 
 | 	enum ssp_writing		write; | 
 | 	u32				exp_fifo_level; | 
 | 	enum ssp_rx_level_trig		rx_lev_trig; | 
 | 	enum ssp_tx_level_trig		tx_lev_trig; | 
 | 	/* DMA settings */ | 
 | #ifdef CONFIG_DMA_ENGINE | 
 | 	struct dma_chan			*dma_rx_channel; | 
 | 	struct dma_chan			*dma_tx_channel; | 
 | 	struct sg_table			sgt_rx; | 
 | 	struct sg_table			sgt_tx; | 
 | 	char				*dummypage; | 
 | 	bool				dma_running; | 
 | #endif | 
 | 	int cur_cs; | 
 | 	int *chipselects; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct chip_data - To maintain runtime state of SSP for each client chip | 
 |  * @cr0: Value of control register CR0 of SSP - on later ST variants this | 
 |  *       register is 32 bits wide rather than just 16 | 
 |  * @cr1: Value of control register CR1 of SSP | 
 |  * @dmacr: Value of DMA control Register of SSP | 
 |  * @cpsr: Value of Clock prescale register | 
 |  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client | 
 |  * @enable_dma: Whether to enable DMA or not | 
 |  * @read: function ptr to be used to read when doing xfer for this chip | 
 |  * @write: function ptr to be used to write when doing xfer for this chip | 
 |  * @cs_control: chip select callback provided by chip | 
 |  * @xfer_type: polling/interrupt/DMA | 
 |  * | 
 |  * Runtime state of the SSP controller, maintained per chip, | 
 |  * This would be set according to the current message that would be served | 
 |  */ | 
 | struct chip_data { | 
 | 	u32 cr0; | 
 | 	u16 cr1; | 
 | 	u16 dmacr; | 
 | 	u16 cpsr; | 
 | 	u8 n_bytes; | 
 | 	bool enable_dma; | 
 | 	enum ssp_reading read; | 
 | 	enum ssp_writing write; | 
 | 	void (*cs_control) (u32 command); | 
 | 	int xfer_type; | 
 | }; | 
 |  | 
 | /** | 
 |  * null_cs_control - Dummy chip select function | 
 |  * @command: select/delect the chip | 
 |  * | 
 |  * If no chip select function is provided by client this is used as dummy | 
 |  * chip select | 
 |  */ | 
 | static void null_cs_control(u32 command) | 
 | { | 
 | 	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); | 
 | } | 
 |  | 
 | /** | 
 |  * internal_cs_control - Control chip select signals via SSP_CSR. | 
 |  * @pl022: SSP driver private data structure | 
 |  * @command: select/delect the chip | 
 |  * | 
 |  * Used on controller with internal chip select control via SSP_CSR register | 
 |  * (vendor extension). Each of the 5 LSB in the register controls one chip | 
 |  * select signal. | 
 |  */ | 
 | static void internal_cs_control(struct pl022 *pl022, u32 command) | 
 | { | 
 | 	u32 tmp; | 
 |  | 
 | 	tmp = readw(SSP_CSR(pl022->virtbase)); | 
 | 	if (command == SSP_CHIP_SELECT) | 
 | 		tmp &= ~BIT(pl022->cur_cs); | 
 | 	else | 
 | 		tmp |= BIT(pl022->cur_cs); | 
 | 	writew(tmp, SSP_CSR(pl022->virtbase)); | 
 | } | 
 |  | 
 | static void pl022_cs_control(struct pl022 *pl022, u32 command) | 
 | { | 
 | 	if (pl022->vendor->internal_cs_ctrl) | 
 | 		internal_cs_control(pl022, command); | 
 | 	else if (gpio_is_valid(pl022->cur_cs)) | 
 | 		gpio_set_value(pl022->cur_cs, command); | 
 | 	else | 
 | 		pl022->cur_chip->cs_control(command); | 
 | } | 
 |  | 
 | /** | 
 |  * giveback - current spi_message is over, schedule next message and call | 
 |  * callback of this message. Assumes that caller already | 
 |  * set message->status; dma and pio irqs are blocked | 
 |  * @pl022: SSP driver private data structure | 
 |  */ | 
 | static void giveback(struct pl022 *pl022) | 
 | { | 
 | 	struct spi_transfer *last_transfer; | 
 | 	pl022->next_msg_cs_active = false; | 
 |  | 
 | 	last_transfer = list_last_entry(&pl022->cur_msg->transfers, | 
 | 					struct spi_transfer, transfer_list); | 
 |  | 
 | 	/* Delay if requested before any change in chip select */ | 
 | 	if (last_transfer->delay_usecs) | 
 | 		/* | 
 | 		 * FIXME: This runs in interrupt context. | 
 | 		 * Is this really smart? | 
 | 		 */ | 
 | 		udelay(last_transfer->delay_usecs); | 
 |  | 
 | 	if (!last_transfer->cs_change) { | 
 | 		struct spi_message *next_msg; | 
 |  | 
 | 		/* | 
 | 		 * cs_change was not set. We can keep the chip select | 
 | 		 * enabled if there is message in the queue and it is | 
 | 		 * for the same spi device. | 
 | 		 * | 
 | 		 * We cannot postpone this until pump_messages, because | 
 | 		 * after calling msg->complete (below) the driver that | 
 | 		 * sent the current message could be unloaded, which | 
 | 		 * could invalidate the cs_control() callback... | 
 | 		 */ | 
 | 		/* get a pointer to the next message, if any */ | 
 | 		next_msg = spi_get_next_queued_message(pl022->master); | 
 |  | 
 | 		/* | 
 | 		 * see if the next and current messages point | 
 | 		 * to the same spi device. | 
 | 		 */ | 
 | 		if (next_msg && next_msg->spi != pl022->cur_msg->spi) | 
 | 			next_msg = NULL; | 
 | 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR) | 
 | 			pl022_cs_control(pl022, SSP_CHIP_DESELECT); | 
 | 		else | 
 | 			pl022->next_msg_cs_active = true; | 
 |  | 
 | 	} | 
 |  | 
 | 	pl022->cur_msg = NULL; | 
 | 	pl022->cur_transfer = NULL; | 
 | 	pl022->cur_chip = NULL; | 
 | 	spi_finalize_current_message(pl022->master); | 
 |  | 
 | 	/* disable the SPI/SSP operation */ | 
 | 	writew((readw(SSP_CR1(pl022->virtbase)) & | 
 | 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * flush - flush the FIFO to reach a clean state | 
 |  * @pl022: SSP driver private data structure | 
 |  */ | 
 | static int flush(struct pl022 *pl022) | 
 | { | 
 | 	unsigned long limit = loops_per_jiffy << 1; | 
 |  | 
 | 	dev_dbg(&pl022->adev->dev, "flush\n"); | 
 | 	do { | 
 | 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) | 
 | 			readw(SSP_DR(pl022->virtbase)); | 
 | 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); | 
 |  | 
 | 	pl022->exp_fifo_level = 0; | 
 |  | 
 | 	return limit; | 
 | } | 
 |  | 
 | /** | 
 |  * restore_state - Load configuration of current chip | 
 |  * @pl022: SSP driver private data structure | 
 |  */ | 
 | static void restore_state(struct pl022 *pl022) | 
 | { | 
 | 	struct chip_data *chip = pl022->cur_chip; | 
 |  | 
 | 	if (pl022->vendor->extended_cr) | 
 | 		writel(chip->cr0, SSP_CR0(pl022->virtbase)); | 
 | 	else | 
 | 		writew(chip->cr0, SSP_CR0(pl022->virtbase)); | 
 | 	writew(chip->cr1, SSP_CR1(pl022->virtbase)); | 
 | 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); | 
 | 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); | 
 | 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); | 
 | 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); | 
 | } | 
 |  | 
 | /* | 
 |  * Default SSP Register Values | 
 |  */ | 
 | #define DEFAULT_SSP_REG_CR0 ( \ | 
 | 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \ | 
 | 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ | 
 | 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ | 
 | 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ | 
 | 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ | 
 | ) | 
 |  | 
 | /* ST versions have slightly different bit layout */ | 
 | #define DEFAULT_SSP_REG_CR0_ST ( \ | 
 | 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \ | 
 | 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ | 
 | 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ | 
 | 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ | 
 | 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ | 
 | 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \ | 
 | 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ | 
 | ) | 
 |  | 
 | /* The PL023 version is slightly different again */ | 
 | #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ | 
 | 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \ | 
 | 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ | 
 | 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ | 
 | 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ | 
 | ) | 
 |  | 
 | #define DEFAULT_SSP_REG_CR1 ( \ | 
 | 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ | 
 | 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ | 
 | 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ | 
 | 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ | 
 | ) | 
 |  | 
 | /* ST versions extend this register to use all 16 bits */ | 
 | #define DEFAULT_SSP_REG_CR1_ST ( \ | 
 | 	DEFAULT_SSP_REG_CR1 | \ | 
 | 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ | 
 | 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ | 
 | 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ | 
 | 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ | 
 | 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ | 
 | ) | 
 |  | 
 | /* | 
 |  * The PL023 variant has further differences: no loopback mode, no microwire | 
 |  * support, and a new clock feedback delay setting. | 
 |  */ | 
 | #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ | 
 | 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ | 
 | 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ | 
 | 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ | 
 | 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ | 
 | 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ | 
 | 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ | 
 | 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ | 
 | 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ | 
 | ) | 
 |  | 
 | #define DEFAULT_SSP_REG_CPSR ( \ | 
 | 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ | 
 | ) | 
 |  | 
 | #define DEFAULT_SSP_REG_DMACR (\ | 
 | 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ | 
 | 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ | 
 | ) | 
 |  | 
 | /** | 
 |  * load_ssp_default_config - Load default configuration for SSP | 
 |  * @pl022: SSP driver private data structure | 
 |  */ | 
 | static void load_ssp_default_config(struct pl022 *pl022) | 
 | { | 
 | 	if (pl022->vendor->pl023) { | 
 | 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); | 
 | 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); | 
 | 	} else if (pl022->vendor->extended_cr) { | 
 | 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); | 
 | 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); | 
 | 	} else { | 
 | 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); | 
 | 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); | 
 | 	} | 
 | 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); | 
 | 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); | 
 | 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); | 
 | 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); | 
 | } | 
 |  | 
 | /** | 
 |  * This will write to TX and read from RX according to the parameters | 
 |  * set in pl022. | 
 |  */ | 
 | static void readwriter(struct pl022 *pl022) | 
 | { | 
 |  | 
 | 	/* | 
 | 	 * The FIFO depth is different between primecell variants. | 
 | 	 * I believe filling in too much in the FIFO might cause | 
 | 	 * errons in 8bit wide transfers on ARM variants (just 8 words | 
 | 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least. | 
 | 	 * | 
 | 	 * To prevent this issue, the TX FIFO is only filled to the | 
 | 	 * unused RX FIFO fill length, regardless of what the TX | 
 | 	 * FIFO status flag indicates. | 
 | 	 */ | 
 | 	dev_dbg(&pl022->adev->dev, | 
 | 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", | 
 | 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); | 
 |  | 
 | 	/* Read as much as you can */ | 
 | 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) | 
 | 	       && (pl022->rx < pl022->rx_end)) { | 
 | 		switch (pl022->read) { | 
 | 		case READING_NULL: | 
 | 			readw(SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		case READING_U8: | 
 | 			*(u8 *) (pl022->rx) = | 
 | 				readw(SSP_DR(pl022->virtbase)) & 0xFFU; | 
 | 			break; | 
 | 		case READING_U16: | 
 | 			*(u16 *) (pl022->rx) = | 
 | 				(u16) readw(SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		case READING_U32: | 
 | 			*(u32 *) (pl022->rx) = | 
 | 				readl(SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		} | 
 | 		pl022->rx += (pl022->cur_chip->n_bytes); | 
 | 		pl022->exp_fifo_level--; | 
 | 	} | 
 | 	/* | 
 | 	 * Write as much as possible up to the RX FIFO size | 
 | 	 */ | 
 | 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) | 
 | 	       && (pl022->tx < pl022->tx_end)) { | 
 | 		switch (pl022->write) { | 
 | 		case WRITING_NULL: | 
 | 			writew(0x0, SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		case WRITING_U8: | 
 | 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		case WRITING_U16: | 
 | 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		case WRITING_U32: | 
 | 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); | 
 | 			break; | 
 | 		} | 
 | 		pl022->tx += (pl022->cur_chip->n_bytes); | 
 | 		pl022->exp_fifo_level++; | 
 | 		/* | 
 | 		 * This inner reader takes care of things appearing in the RX | 
 | 		 * FIFO as we're transmitting. This will happen a lot since the | 
 | 		 * clock starts running when you put things into the TX FIFO, | 
 | 		 * and then things are continuously clocked into the RX FIFO. | 
 | 		 */ | 
 | 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) | 
 | 		       && (pl022->rx < pl022->rx_end)) { | 
 | 			switch (pl022->read) { | 
 | 			case READING_NULL: | 
 | 				readw(SSP_DR(pl022->virtbase)); | 
 | 				break; | 
 | 			case READING_U8: | 
 | 				*(u8 *) (pl022->rx) = | 
 | 					readw(SSP_DR(pl022->virtbase)) & 0xFFU; | 
 | 				break; | 
 | 			case READING_U16: | 
 | 				*(u16 *) (pl022->rx) = | 
 | 					(u16) readw(SSP_DR(pl022->virtbase)); | 
 | 				break; | 
 | 			case READING_U32: | 
 | 				*(u32 *) (pl022->rx) = | 
 | 					readl(SSP_DR(pl022->virtbase)); | 
 | 				break; | 
 | 			} | 
 | 			pl022->rx += (pl022->cur_chip->n_bytes); | 
 | 			pl022->exp_fifo_level--; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * When we exit here the TX FIFO should be full and the RX FIFO | 
 | 	 * should be empty | 
 | 	 */ | 
 | } | 
 |  | 
 | /** | 
 |  * next_transfer - Move to the Next transfer in the current spi message | 
 |  * @pl022: SSP driver private data structure | 
 |  * | 
 |  * This function moves though the linked list of spi transfers in the | 
 |  * current spi message and returns with the state of current spi | 
 |  * message i.e whether its last transfer is done(STATE_DONE) or | 
 |  * Next transfer is ready(STATE_RUNNING) | 
 |  */ | 
 | static void *next_transfer(struct pl022 *pl022) | 
 | { | 
 | 	struct spi_message *msg = pl022->cur_msg; | 
 | 	struct spi_transfer *trans = pl022->cur_transfer; | 
 |  | 
 | 	/* Move to next transfer */ | 
 | 	if (trans->transfer_list.next != &msg->transfers) { | 
 | 		pl022->cur_transfer = | 
 | 		    list_entry(trans->transfer_list.next, | 
 | 			       struct spi_transfer, transfer_list); | 
 | 		return STATE_RUNNING; | 
 | 	} | 
 | 	return STATE_DONE; | 
 | } | 
 |  | 
 | /* | 
 |  * This DMA functionality is only compiled in if we have | 
 |  * access to the generic DMA devices/DMA engine. | 
 |  */ | 
 | #ifdef CONFIG_DMA_ENGINE | 
 | static void unmap_free_dma_scatter(struct pl022 *pl022) | 
 | { | 
 | 	/* Unmap and free the SG tables */ | 
 | 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, | 
 | 		     pl022->sgt_tx.nents, DMA_TO_DEVICE); | 
 | 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, | 
 | 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE); | 
 | 	sg_free_table(&pl022->sgt_rx); | 
 | 	sg_free_table(&pl022->sgt_tx); | 
 | } | 
 |  | 
 | static void dma_callback(void *data) | 
 | { | 
 | 	struct pl022 *pl022 = data; | 
 | 	struct spi_message *msg = pl022->cur_msg; | 
 |  | 
 | 	BUG_ON(!pl022->sgt_rx.sgl); | 
 |  | 
 | #ifdef VERBOSE_DEBUG | 
 | 	/* | 
 | 	 * Optionally dump out buffers to inspect contents, this is | 
 | 	 * good if you want to convince yourself that the loopback | 
 | 	 * read/write contents are the same, when adopting to a new | 
 | 	 * DMA engine. | 
 | 	 */ | 
 | 	{ | 
 | 		struct scatterlist *sg; | 
 | 		unsigned int i; | 
 |  | 
 | 		dma_sync_sg_for_cpu(&pl022->adev->dev, | 
 | 				    pl022->sgt_rx.sgl, | 
 | 				    pl022->sgt_rx.nents, | 
 | 				    DMA_FROM_DEVICE); | 
 |  | 
 | 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { | 
 | 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); | 
 | 			print_hex_dump(KERN_ERR, "SPI RX: ", | 
 | 				       DUMP_PREFIX_OFFSET, | 
 | 				       16, | 
 | 				       1, | 
 | 				       sg_virt(sg), | 
 | 				       sg_dma_len(sg), | 
 | 				       1); | 
 | 		} | 
 | 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { | 
 | 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); | 
 | 			print_hex_dump(KERN_ERR, "SPI TX: ", | 
 | 				       DUMP_PREFIX_OFFSET, | 
 | 				       16, | 
 | 				       1, | 
 | 				       sg_virt(sg), | 
 | 				       sg_dma_len(sg), | 
 | 				       1); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	unmap_free_dma_scatter(pl022); | 
 |  | 
 | 	/* Update total bytes transferred */ | 
 | 	msg->actual_length += pl022->cur_transfer->len; | 
 | 	if (pl022->cur_transfer->cs_change) | 
 | 		pl022_cs_control(pl022, SSP_CHIP_DESELECT); | 
 |  | 
 | 	/* Move to next transfer */ | 
 | 	msg->state = next_transfer(pl022); | 
 | 	tasklet_schedule(&pl022->pump_transfers); | 
 | } | 
 |  | 
 | static void setup_dma_scatter(struct pl022 *pl022, | 
 | 			      void *buffer, | 
 | 			      unsigned int length, | 
 | 			      struct sg_table *sgtab) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	int bytesleft = length; | 
 | 	void *bufp = buffer; | 
 | 	int mapbytes; | 
 | 	int i; | 
 |  | 
 | 	if (buffer) { | 
 | 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { | 
 | 			/* | 
 | 			 * If there are less bytes left than what fits | 
 | 			 * in the current page (plus page alignment offset) | 
 | 			 * we just feed in this, else we stuff in as much | 
 | 			 * as we can. | 
 | 			 */ | 
 | 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) | 
 | 				mapbytes = bytesleft; | 
 | 			else | 
 | 				mapbytes = PAGE_SIZE - offset_in_page(bufp); | 
 | 			sg_set_page(sg, virt_to_page(bufp), | 
 | 				    mapbytes, offset_in_page(bufp)); | 
 | 			bufp += mapbytes; | 
 | 			bytesleft -= mapbytes; | 
 | 			dev_dbg(&pl022->adev->dev, | 
 | 				"set RX/TX target page @ %p, %d bytes, %d left\n", | 
 | 				bufp, mapbytes, bytesleft); | 
 | 		} | 
 | 	} else { | 
 | 		/* Map the dummy buffer on every page */ | 
 | 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { | 
 | 			if (bytesleft < PAGE_SIZE) | 
 | 				mapbytes = bytesleft; | 
 | 			else | 
 | 				mapbytes = PAGE_SIZE; | 
 | 			sg_set_page(sg, virt_to_page(pl022->dummypage), | 
 | 				    mapbytes, 0); | 
 | 			bytesleft -= mapbytes; | 
 | 			dev_dbg(&pl022->adev->dev, | 
 | 				"set RX/TX to dummy page %d bytes, %d left\n", | 
 | 				mapbytes, bytesleft); | 
 |  | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(bytesleft); | 
 | } | 
 |  | 
 | /** | 
 |  * configure_dma - configures the channels for the next transfer | 
 |  * @pl022: SSP driver's private data structure | 
 |  */ | 
 | static int configure_dma(struct pl022 *pl022) | 
 | { | 
 | 	struct dma_slave_config rx_conf = { | 
 | 		.src_addr = SSP_DR(pl022->phybase), | 
 | 		.direction = DMA_DEV_TO_MEM, | 
 | 		.device_fc = false, | 
 | 	}; | 
 | 	struct dma_slave_config tx_conf = { | 
 | 		.dst_addr = SSP_DR(pl022->phybase), | 
 | 		.direction = DMA_MEM_TO_DEV, | 
 | 		.device_fc = false, | 
 | 	}; | 
 | 	unsigned int pages; | 
 | 	int ret; | 
 | 	int rx_sglen, tx_sglen; | 
 | 	struct dma_chan *rxchan = pl022->dma_rx_channel; | 
 | 	struct dma_chan *txchan = pl022->dma_tx_channel; | 
 | 	struct dma_async_tx_descriptor *rxdesc; | 
 | 	struct dma_async_tx_descriptor *txdesc; | 
 |  | 
 | 	/* Check that the channels are available */ | 
 | 	if (!rxchan || !txchan) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * If supplied, the DMA burstsize should equal the FIFO trigger level. | 
 | 	 * Notice that the DMA engine uses one-to-one mapping. Since we can | 
 | 	 * not trigger on 2 elements this needs explicit mapping rather than | 
 | 	 * calculation. | 
 | 	 */ | 
 | 	switch (pl022->rx_lev_trig) { | 
 | 	case SSP_RX_1_OR_MORE_ELEM: | 
 | 		rx_conf.src_maxburst = 1; | 
 | 		break; | 
 | 	case SSP_RX_4_OR_MORE_ELEM: | 
 | 		rx_conf.src_maxburst = 4; | 
 | 		break; | 
 | 	case SSP_RX_8_OR_MORE_ELEM: | 
 | 		rx_conf.src_maxburst = 8; | 
 | 		break; | 
 | 	case SSP_RX_16_OR_MORE_ELEM: | 
 | 		rx_conf.src_maxburst = 16; | 
 | 		break; | 
 | 	case SSP_RX_32_OR_MORE_ELEM: | 
 | 		rx_conf.src_maxburst = 32; | 
 | 		break; | 
 | 	default: | 
 | 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (pl022->tx_lev_trig) { | 
 | 	case SSP_TX_1_OR_MORE_EMPTY_LOC: | 
 | 		tx_conf.dst_maxburst = 1; | 
 | 		break; | 
 | 	case SSP_TX_4_OR_MORE_EMPTY_LOC: | 
 | 		tx_conf.dst_maxburst = 4; | 
 | 		break; | 
 | 	case SSP_TX_8_OR_MORE_EMPTY_LOC: | 
 | 		tx_conf.dst_maxburst = 8; | 
 | 		break; | 
 | 	case SSP_TX_16_OR_MORE_EMPTY_LOC: | 
 | 		tx_conf.dst_maxburst = 16; | 
 | 		break; | 
 | 	case SSP_TX_32_OR_MORE_EMPTY_LOC: | 
 | 		tx_conf.dst_maxburst = 32; | 
 | 		break; | 
 | 	default: | 
 | 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (pl022->read) { | 
 | 	case READING_NULL: | 
 | 		/* Use the same as for writing */ | 
 | 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; | 
 | 		break; | 
 | 	case READING_U8: | 
 | 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
 | 		break; | 
 | 	case READING_U16: | 
 | 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
 | 		break; | 
 | 	case READING_U32: | 
 | 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (pl022->write) { | 
 | 	case WRITING_NULL: | 
 | 		/* Use the same as for reading */ | 
 | 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; | 
 | 		break; | 
 | 	case WRITING_U8: | 
 | 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
 | 		break; | 
 | 	case WRITING_U16: | 
 | 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
 | 		break; | 
 | 	case WRITING_U32: | 
 | 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* SPI pecularity: we need to read and write the same width */ | 
 | 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) | 
 | 		rx_conf.src_addr_width = tx_conf.dst_addr_width; | 
 | 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) | 
 | 		tx_conf.dst_addr_width = rx_conf.src_addr_width; | 
 | 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); | 
 |  | 
 | 	dmaengine_slave_config(rxchan, &rx_conf); | 
 | 	dmaengine_slave_config(txchan, &tx_conf); | 
 |  | 
 | 	/* Create sglists for the transfers */ | 
 | 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); | 
 | 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); | 
 |  | 
 | 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); | 
 | 	if (ret) | 
 | 		goto err_alloc_rx_sg; | 
 |  | 
 | 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); | 
 | 	if (ret) | 
 | 		goto err_alloc_tx_sg; | 
 |  | 
 | 	/* Fill in the scatterlists for the RX+TX buffers */ | 
 | 	setup_dma_scatter(pl022, pl022->rx, | 
 | 			  pl022->cur_transfer->len, &pl022->sgt_rx); | 
 | 	setup_dma_scatter(pl022, pl022->tx, | 
 | 			  pl022->cur_transfer->len, &pl022->sgt_tx); | 
 |  | 
 | 	/* Map DMA buffers */ | 
 | 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, | 
 | 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE); | 
 | 	if (!rx_sglen) | 
 | 		goto err_rx_sgmap; | 
 |  | 
 | 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, | 
 | 			   pl022->sgt_tx.nents, DMA_TO_DEVICE); | 
 | 	if (!tx_sglen) | 
 | 		goto err_tx_sgmap; | 
 |  | 
 | 	/* Send both scatterlists */ | 
 | 	rxdesc = dmaengine_prep_slave_sg(rxchan, | 
 | 				      pl022->sgt_rx.sgl, | 
 | 				      rx_sglen, | 
 | 				      DMA_DEV_TO_MEM, | 
 | 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 	if (!rxdesc) | 
 | 		goto err_rxdesc; | 
 |  | 
 | 	txdesc = dmaengine_prep_slave_sg(txchan, | 
 | 				      pl022->sgt_tx.sgl, | 
 | 				      tx_sglen, | 
 | 				      DMA_MEM_TO_DEV, | 
 | 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 	if (!txdesc) | 
 | 		goto err_txdesc; | 
 |  | 
 | 	/* Put the callback on the RX transfer only, that should finish last */ | 
 | 	rxdesc->callback = dma_callback; | 
 | 	rxdesc->callback_param = pl022; | 
 |  | 
 | 	/* Submit and fire RX and TX with TX last so we're ready to read! */ | 
 | 	dmaengine_submit(rxdesc); | 
 | 	dmaengine_submit(txdesc); | 
 | 	dma_async_issue_pending(rxchan); | 
 | 	dma_async_issue_pending(txchan); | 
 | 	pl022->dma_running = true; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_txdesc: | 
 | 	dmaengine_terminate_all(txchan); | 
 | err_rxdesc: | 
 | 	dmaengine_terminate_all(rxchan); | 
 | 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, | 
 | 		     pl022->sgt_tx.nents, DMA_TO_DEVICE); | 
 | err_tx_sgmap: | 
 | 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, | 
 | 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE); | 
 | err_rx_sgmap: | 
 | 	sg_free_table(&pl022->sgt_tx); | 
 | err_alloc_tx_sg: | 
 | 	sg_free_table(&pl022->sgt_rx); | 
 | err_alloc_rx_sg: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int pl022_dma_probe(struct pl022 *pl022) | 
 | { | 
 | 	dma_cap_mask_t mask; | 
 |  | 
 | 	/* Try to acquire a generic DMA engine slave channel */ | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_SLAVE, mask); | 
 | 	/* | 
 | 	 * We need both RX and TX channels to do DMA, else do none | 
 | 	 * of them. | 
 | 	 */ | 
 | 	pl022->dma_rx_channel = dma_request_channel(mask, | 
 | 					    pl022->master_info->dma_filter, | 
 | 					    pl022->master_info->dma_rx_param); | 
 | 	if (!pl022->dma_rx_channel) { | 
 | 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); | 
 | 		goto err_no_rxchan; | 
 | 	} | 
 |  | 
 | 	pl022->dma_tx_channel = dma_request_channel(mask, | 
 | 					    pl022->master_info->dma_filter, | 
 | 					    pl022->master_info->dma_tx_param); | 
 | 	if (!pl022->dma_tx_channel) { | 
 | 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); | 
 | 		goto err_no_txchan; | 
 | 	} | 
 |  | 
 | 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!pl022->dummypage) | 
 | 		goto err_no_dummypage; | 
 |  | 
 | 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", | 
 | 		 dma_chan_name(pl022->dma_rx_channel), | 
 | 		 dma_chan_name(pl022->dma_tx_channel)); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_no_dummypage: | 
 | 	dma_release_channel(pl022->dma_tx_channel); | 
 | err_no_txchan: | 
 | 	dma_release_channel(pl022->dma_rx_channel); | 
 | 	pl022->dma_rx_channel = NULL; | 
 | err_no_rxchan: | 
 | 	dev_err(&pl022->adev->dev, | 
 | 			"Failed to work in dma mode, work without dma!\n"); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int pl022_dma_autoprobe(struct pl022 *pl022) | 
 | { | 
 | 	struct device *dev = &pl022->adev->dev; | 
 |  | 
 | 	/* automatically configure DMA channels from platform, normally using DT */ | 
 | 	pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx"); | 
 | 	if (!pl022->dma_rx_channel) | 
 | 		goto err_no_rxchan; | 
 |  | 
 | 	pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx"); | 
 | 	if (!pl022->dma_tx_channel) | 
 | 		goto err_no_txchan; | 
 |  | 
 | 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!pl022->dummypage) | 
 | 		goto err_no_dummypage; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_no_dummypage: | 
 | 	dma_release_channel(pl022->dma_tx_channel); | 
 | 	pl022->dma_tx_channel = NULL; | 
 | err_no_txchan: | 
 | 	dma_release_channel(pl022->dma_rx_channel); | 
 | 	pl022->dma_rx_channel = NULL; | 
 | err_no_rxchan: | 
 | 	return -ENODEV; | 
 | } | 
 | 		 | 
 | static void terminate_dma(struct pl022 *pl022) | 
 | { | 
 | 	struct dma_chan *rxchan = pl022->dma_rx_channel; | 
 | 	struct dma_chan *txchan = pl022->dma_tx_channel; | 
 |  | 
 | 	dmaengine_terminate_all(rxchan); | 
 | 	dmaengine_terminate_all(txchan); | 
 | 	unmap_free_dma_scatter(pl022); | 
 | 	pl022->dma_running = false; | 
 | } | 
 |  | 
 | static void pl022_dma_remove(struct pl022 *pl022) | 
 | { | 
 | 	if (pl022->dma_running) | 
 | 		terminate_dma(pl022); | 
 | 	if (pl022->dma_tx_channel) | 
 | 		dma_release_channel(pl022->dma_tx_channel); | 
 | 	if (pl022->dma_rx_channel) | 
 | 		dma_release_channel(pl022->dma_rx_channel); | 
 | 	kfree(pl022->dummypage); | 
 | } | 
 |  | 
 | #else | 
 | static inline int configure_dma(struct pl022 *pl022) | 
 | { | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static inline int pl022_dma_autoprobe(struct pl022 *pl022) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int pl022_dma_probe(struct pl022 *pl022) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void pl022_dma_remove(struct pl022 *pl022) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * pl022_interrupt_handler - Interrupt handler for SSP controller | 
 |  * | 
 |  * This function handles interrupts generated for an interrupt based transfer. | 
 |  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the | 
 |  * current message's state as STATE_ERROR and schedule the tasklet | 
 |  * pump_transfers which will do the postprocessing of the current message by | 
 |  * calling giveback(). Otherwise it reads data from RX FIFO till there is no | 
 |  * more data, and writes data in TX FIFO till it is not full. If we complete | 
 |  * the transfer we move to the next transfer and schedule the tasklet. | 
 |  */ | 
 | static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) | 
 | { | 
 | 	struct pl022 *pl022 = dev_id; | 
 | 	struct spi_message *msg = pl022->cur_msg; | 
 | 	u16 irq_status = 0; | 
 | 	u16 flag = 0; | 
 |  | 
 | 	if (unlikely(!msg)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"bad message state in interrupt handler"); | 
 | 		/* Never fail */ | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	/* Read the Interrupt Status Register */ | 
 | 	irq_status = readw(SSP_MIS(pl022->virtbase)); | 
 |  | 
 | 	if (unlikely(!irq_status)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	/* | 
 | 	 * This handles the FIFO interrupts, the timeout | 
 | 	 * interrupts are flatly ignored, they cannot be | 
 | 	 * trusted. | 
 | 	 */ | 
 | 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { | 
 | 		/* | 
 | 		 * Overrun interrupt - bail out since our Data has been | 
 | 		 * corrupted | 
 | 		 */ | 
 | 		dev_err(&pl022->adev->dev, "FIFO overrun\n"); | 
 | 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) | 
 | 			dev_err(&pl022->adev->dev, | 
 | 				"RXFIFO is full\n"); | 
 | 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF) | 
 | 			dev_err(&pl022->adev->dev, | 
 | 				"TXFIFO is full\n"); | 
 |  | 
 | 		/* | 
 | 		 * Disable and clear interrupts, disable SSP, | 
 | 		 * mark message with bad status so it can be | 
 | 		 * retried. | 
 | 		 */ | 
 | 		writew(DISABLE_ALL_INTERRUPTS, | 
 | 		       SSP_IMSC(pl022->virtbase)); | 
 | 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); | 
 | 		writew((readw(SSP_CR1(pl022->virtbase)) & | 
 | 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); | 
 | 		msg->state = STATE_ERROR; | 
 |  | 
 | 		/* Schedule message queue handler */ | 
 | 		tasklet_schedule(&pl022->pump_transfers); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	readwriter(pl022); | 
 |  | 
 | 	if ((pl022->tx == pl022->tx_end) && (flag == 0)) { | 
 | 		flag = 1; | 
 | 		/* Disable Transmit interrupt, enable receive interrupt */ | 
 | 		writew((readw(SSP_IMSC(pl022->virtbase)) & | 
 | 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, | 
 | 		       SSP_IMSC(pl022->virtbase)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Since all transactions must write as much as shall be read, | 
 | 	 * we can conclude the entire transaction once RX is complete. | 
 | 	 * At this point, all TX will always be finished. | 
 | 	 */ | 
 | 	if (pl022->rx >= pl022->rx_end) { | 
 | 		writew(DISABLE_ALL_INTERRUPTS, | 
 | 		       SSP_IMSC(pl022->virtbase)); | 
 | 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); | 
 | 		if (unlikely(pl022->rx > pl022->rx_end)) { | 
 | 			dev_warn(&pl022->adev->dev, "read %u surplus " | 
 | 				 "bytes (did you request an odd " | 
 | 				 "number of bytes on a 16bit bus?)\n", | 
 | 				 (u32) (pl022->rx - pl022->rx_end)); | 
 | 		} | 
 | 		/* Update total bytes transferred */ | 
 | 		msg->actual_length += pl022->cur_transfer->len; | 
 | 		if (pl022->cur_transfer->cs_change) | 
 | 			pl022_cs_control(pl022, SSP_CHIP_DESELECT); | 
 | 		/* Move to next transfer */ | 
 | 		msg->state = next_transfer(pl022); | 
 | 		tasklet_schedule(&pl022->pump_transfers); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * This sets up the pointers to memory for the next message to | 
 |  * send out on the SPI bus. | 
 |  */ | 
 | static int set_up_next_transfer(struct pl022 *pl022, | 
 | 				struct spi_transfer *transfer) | 
 | { | 
 | 	int residue; | 
 |  | 
 | 	/* Sanity check the message for this bus width */ | 
 | 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; | 
 | 	if (unlikely(residue != 0)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"message of %u bytes to transmit but the current " | 
 | 			"chip bus has a data width of %u bytes!\n", | 
 | 			pl022->cur_transfer->len, | 
 | 			pl022->cur_chip->n_bytes); | 
 | 		dev_err(&pl022->adev->dev, "skipping this message\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	pl022->tx = (void *)transfer->tx_buf; | 
 | 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len; | 
 | 	pl022->rx = (void *)transfer->rx_buf; | 
 | 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len; | 
 | 	pl022->write = | 
 | 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL; | 
 | 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pump_transfers - Tasklet function which schedules next transfer | 
 |  * when running in interrupt or DMA transfer mode. | 
 |  * @data: SSP driver private data structure | 
 |  * | 
 |  */ | 
 | static void pump_transfers(unsigned long data) | 
 | { | 
 | 	struct pl022 *pl022 = (struct pl022 *) data; | 
 | 	struct spi_message *message = NULL; | 
 | 	struct spi_transfer *transfer = NULL; | 
 | 	struct spi_transfer *previous = NULL; | 
 |  | 
 | 	/* Get current state information */ | 
 | 	message = pl022->cur_msg; | 
 | 	transfer = pl022->cur_transfer; | 
 |  | 
 | 	/* Handle for abort */ | 
 | 	if (message->state == STATE_ERROR) { | 
 | 		message->status = -EIO; | 
 | 		giveback(pl022); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Handle end of message */ | 
 | 	if (message->state == STATE_DONE) { | 
 | 		message->status = 0; | 
 | 		giveback(pl022); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Delay if requested at end of transfer before CS change */ | 
 | 	if (message->state == STATE_RUNNING) { | 
 | 		previous = list_entry(transfer->transfer_list.prev, | 
 | 					struct spi_transfer, | 
 | 					transfer_list); | 
 | 		if (previous->delay_usecs) | 
 | 			/* | 
 | 			 * FIXME: This runs in interrupt context. | 
 | 			 * Is this really smart? | 
 | 			 */ | 
 | 			udelay(previous->delay_usecs); | 
 |  | 
 | 		/* Reselect chip select only if cs_change was requested */ | 
 | 		if (previous->cs_change) | 
 | 			pl022_cs_control(pl022, SSP_CHIP_SELECT); | 
 | 	} else { | 
 | 		/* STATE_START */ | 
 | 		message->state = STATE_RUNNING; | 
 | 	} | 
 |  | 
 | 	if (set_up_next_transfer(pl022, transfer)) { | 
 | 		message->state = STATE_ERROR; | 
 | 		message->status = -EIO; | 
 | 		giveback(pl022); | 
 | 		return; | 
 | 	} | 
 | 	/* Flush the FIFOs and let's go! */ | 
 | 	flush(pl022); | 
 |  | 
 | 	if (pl022->cur_chip->enable_dma) { | 
 | 		if (configure_dma(pl022)) { | 
 | 			dev_dbg(&pl022->adev->dev, | 
 | 				"configuration of DMA failed, fall back to interrupt mode\n"); | 
 | 			goto err_config_dma; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | err_config_dma: | 
 | 	/* enable all interrupts except RX */ | 
 | 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); | 
 | } | 
 |  | 
 | static void do_interrupt_dma_transfer(struct pl022 *pl022) | 
 | { | 
 | 	/* | 
 | 	 * Default is to enable all interrupts except RX - | 
 | 	 * this will be enabled once TX is complete | 
 | 	 */ | 
 | 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM); | 
 |  | 
 | 	/* Enable target chip, if not already active */ | 
 | 	if (!pl022->next_msg_cs_active) | 
 | 		pl022_cs_control(pl022, SSP_CHIP_SELECT); | 
 |  | 
 | 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) { | 
 | 		/* Error path */ | 
 | 		pl022->cur_msg->state = STATE_ERROR; | 
 | 		pl022->cur_msg->status = -EIO; | 
 | 		giveback(pl022); | 
 | 		return; | 
 | 	} | 
 | 	/* If we're using DMA, set up DMA here */ | 
 | 	if (pl022->cur_chip->enable_dma) { | 
 | 		/* Configure DMA transfer */ | 
 | 		if (configure_dma(pl022)) { | 
 | 			dev_dbg(&pl022->adev->dev, | 
 | 				"configuration of DMA failed, fall back to interrupt mode\n"); | 
 | 			goto err_config_dma; | 
 | 		} | 
 | 		/* Disable interrupts in DMA mode, IRQ from DMA controller */ | 
 | 		irqflags = DISABLE_ALL_INTERRUPTS; | 
 | 	} | 
 | err_config_dma: | 
 | 	/* Enable SSP, turn on interrupts */ | 
 | 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), | 
 | 	       SSP_CR1(pl022->virtbase)); | 
 | 	writew(irqflags, SSP_IMSC(pl022->virtbase)); | 
 | } | 
 |  | 
 | static void do_polling_transfer(struct pl022 *pl022) | 
 | { | 
 | 	struct spi_message *message = NULL; | 
 | 	struct spi_transfer *transfer = NULL; | 
 | 	struct spi_transfer *previous = NULL; | 
 | 	struct chip_data *chip; | 
 | 	unsigned long time, timeout; | 
 |  | 
 | 	chip = pl022->cur_chip; | 
 | 	message = pl022->cur_msg; | 
 |  | 
 | 	while (message->state != STATE_DONE) { | 
 | 		/* Handle for abort */ | 
 | 		if (message->state == STATE_ERROR) | 
 | 			break; | 
 | 		transfer = pl022->cur_transfer; | 
 |  | 
 | 		/* Delay if requested at end of transfer */ | 
 | 		if (message->state == STATE_RUNNING) { | 
 | 			previous = | 
 | 			    list_entry(transfer->transfer_list.prev, | 
 | 				       struct spi_transfer, transfer_list); | 
 | 			if (previous->delay_usecs) | 
 | 				udelay(previous->delay_usecs); | 
 | 			if (previous->cs_change) | 
 | 				pl022_cs_control(pl022, SSP_CHIP_SELECT); | 
 | 		} else { | 
 | 			/* STATE_START */ | 
 | 			message->state = STATE_RUNNING; | 
 | 			if (!pl022->next_msg_cs_active) | 
 | 				pl022_cs_control(pl022, SSP_CHIP_SELECT); | 
 | 		} | 
 |  | 
 | 		/* Configuration Changing Per Transfer */ | 
 | 		if (set_up_next_transfer(pl022, transfer)) { | 
 | 			/* Error path */ | 
 | 			message->state = STATE_ERROR; | 
 | 			break; | 
 | 		} | 
 | 		/* Flush FIFOs and enable SSP */ | 
 | 		flush(pl022); | 
 | 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), | 
 | 		       SSP_CR1(pl022->virtbase)); | 
 |  | 
 | 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); | 
 |  | 
 | 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); | 
 | 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { | 
 | 			time = jiffies; | 
 | 			readwriter(pl022); | 
 | 			if (time_after(time, timeout)) { | 
 | 				dev_warn(&pl022->adev->dev, | 
 | 				"%s: timeout!\n", __func__); | 
 | 				message->state = STATE_ERROR; | 
 | 				goto out; | 
 | 			} | 
 | 			cpu_relax(); | 
 | 		} | 
 |  | 
 | 		/* Update total byte transferred */ | 
 | 		message->actual_length += pl022->cur_transfer->len; | 
 | 		if (pl022->cur_transfer->cs_change) | 
 | 			pl022_cs_control(pl022, SSP_CHIP_DESELECT); | 
 | 		/* Move to next transfer */ | 
 | 		message->state = next_transfer(pl022); | 
 | 	} | 
 | out: | 
 | 	/* Handle end of message */ | 
 | 	if (message->state == STATE_DONE) | 
 | 		message->status = 0; | 
 | 	else | 
 | 		message->status = -EIO; | 
 |  | 
 | 	giveback(pl022); | 
 | 	return; | 
 | } | 
 |  | 
 | static int pl022_transfer_one_message(struct spi_master *master, | 
 | 				      struct spi_message *msg) | 
 | { | 
 | 	struct pl022 *pl022 = spi_master_get_devdata(master); | 
 |  | 
 | 	/* Initial message state */ | 
 | 	pl022->cur_msg = msg; | 
 | 	msg->state = STATE_START; | 
 |  | 
 | 	pl022->cur_transfer = list_entry(msg->transfers.next, | 
 | 					 struct spi_transfer, transfer_list); | 
 |  | 
 | 	/* Setup the SPI using the per chip configuration */ | 
 | 	pl022->cur_chip = spi_get_ctldata(msg->spi); | 
 | 	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select]; | 
 |  | 
 | 	restore_state(pl022); | 
 | 	flush(pl022); | 
 |  | 
 | 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) | 
 | 		do_polling_transfer(pl022); | 
 | 	else | 
 | 		do_interrupt_dma_transfer(pl022); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pl022_unprepare_transfer_hardware(struct spi_master *master) | 
 | { | 
 | 	struct pl022 *pl022 = spi_master_get_devdata(master); | 
 |  | 
 | 	/* nothing more to do - disable spi/ssp and power off */ | 
 | 	writew((readw(SSP_CR1(pl022->virtbase)) & | 
 | 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int verify_controller_parameters(struct pl022 *pl022, | 
 | 				struct pl022_config_chip const *chip_info) | 
 | { | 
 | 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) | 
 | 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"interface is configured incorrectly\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && | 
 | 	    (!pl022->vendor->unidir)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"unidirectional mode not supported in this " | 
 | 			"hardware version\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if ((chip_info->hierarchy != SSP_MASTER) | 
 | 	    && (chip_info->hierarchy != SSP_SLAVE)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"hierarchy is configured incorrectly\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if ((chip_info->com_mode != INTERRUPT_TRANSFER) | 
 | 	    && (chip_info->com_mode != DMA_TRANSFER) | 
 | 	    && (chip_info->com_mode != POLLING_TRANSFER)) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"Communication mode is configured incorrectly\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	switch (chip_info->rx_lev_trig) { | 
 | 	case SSP_RX_1_OR_MORE_ELEM: | 
 | 	case SSP_RX_4_OR_MORE_ELEM: | 
 | 	case SSP_RX_8_OR_MORE_ELEM: | 
 | 		/* These are always OK, all variants can handle this */ | 
 | 		break; | 
 | 	case SSP_RX_16_OR_MORE_ELEM: | 
 | 		if (pl022->vendor->fifodepth < 16) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 			"RX FIFO Trigger Level is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case SSP_RX_32_OR_MORE_ELEM: | 
 | 		if (pl022->vendor->fifodepth < 32) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 			"RX FIFO Trigger Level is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"RX FIFO Trigger Level is configured incorrectly\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	switch (chip_info->tx_lev_trig) { | 
 | 	case SSP_TX_1_OR_MORE_EMPTY_LOC: | 
 | 	case SSP_TX_4_OR_MORE_EMPTY_LOC: | 
 | 	case SSP_TX_8_OR_MORE_EMPTY_LOC: | 
 | 		/* These are always OK, all variants can handle this */ | 
 | 		break; | 
 | 	case SSP_TX_16_OR_MORE_EMPTY_LOC: | 
 | 		if (pl022->vendor->fifodepth < 16) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 			"TX FIFO Trigger Level is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case SSP_TX_32_OR_MORE_EMPTY_LOC: | 
 | 		if (pl022->vendor->fifodepth < 32) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 			"TX FIFO Trigger Level is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"TX FIFO Trigger Level is configured incorrectly\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { | 
 | 		if ((chip_info->ctrl_len < SSP_BITS_4) | 
 | 		    || (chip_info->ctrl_len > SSP_BITS_32)) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 				"CTRL LEN is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) | 
 | 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { | 
 | 			dev_err(&pl022->adev->dev, | 
 | 				"Wait State is configured incorrectly\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		/* Half duplex is only available in the ST Micro version */ | 
 | 		if (pl022->vendor->extended_cr) { | 
 | 			if ((chip_info->duplex != | 
 | 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) | 
 | 			    && (chip_info->duplex != | 
 | 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { | 
 | 				dev_err(&pl022->adev->dev, | 
 | 					"Microwire duplex mode is configured incorrectly\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) | 
 | 				dev_err(&pl022->adev->dev, | 
 | 					"Microwire half duplex mode requested," | 
 | 					" but this is only available in the" | 
 | 					" ST version of PL022\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) | 
 | { | 
 | 	return rate / (cpsdvsr * (1 + scr)); | 
 | } | 
 |  | 
 | static int calculate_effective_freq(struct pl022 *pl022, int freq, struct | 
 | 				    ssp_clock_params * clk_freq) | 
 | { | 
 | 	/* Lets calculate the frequency parameters */ | 
 | 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; | 
 | 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, | 
 | 		best_scr = 0, tmp, found = 0; | 
 |  | 
 | 	rate = clk_get_rate(pl022->clk); | 
 | 	/* cpsdvscr = 2 & scr 0 */ | 
 | 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); | 
 | 	/* cpsdvsr = 254 & scr = 255 */ | 
 | 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); | 
 |  | 
 | 	if (freq > max_tclk) | 
 | 		dev_warn(&pl022->adev->dev, | 
 | 			"Max speed that can be programmed is %d Hz, you requested %d\n", | 
 | 			max_tclk, freq); | 
 |  | 
 | 	if (freq < min_tclk) { | 
 | 		dev_err(&pl022->adev->dev, | 
 | 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n", | 
 | 			freq, min_tclk); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * best_freq will give closest possible available rate (<= requested | 
 | 	 * freq) for all values of scr & cpsdvsr. | 
 | 	 */ | 
 | 	while ((cpsdvsr <= CPSDVR_MAX) && !found) { | 
 | 		while (scr <= SCR_MAX) { | 
 | 			tmp = spi_rate(rate, cpsdvsr, scr); | 
 |  | 
 | 			if (tmp > freq) { | 
 | 				/* we need lower freq */ | 
 | 				scr++; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If found exact value, mark found and break. | 
 | 			 * If found more closer value, update and break. | 
 | 			 */ | 
 | 			if (tmp > best_freq) { | 
 | 				best_freq = tmp; | 
 | 				best_cpsdvsr = cpsdvsr; | 
 | 				best_scr = scr; | 
 |  | 
 | 				if (tmp == freq) | 
 | 					found = 1; | 
 | 			} | 
 | 			/* | 
 | 			 * increased scr will give lower rates, which are not | 
 | 			 * required | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		cpsdvsr += 2; | 
 | 		scr = SCR_MIN; | 
 | 	} | 
 |  | 
 | 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", | 
 | 			freq); | 
 |  | 
 | 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); | 
 | 	clk_freq->scr = (u8) (best_scr & 0xFF); | 
 | 	dev_dbg(&pl022->adev->dev, | 
 | 		"SSP Target Frequency is: %u, Effective Frequency is %u\n", | 
 | 		freq, best_freq); | 
 | 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", | 
 | 		clk_freq->cpsdvsr, clk_freq->scr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * A piece of default chip info unless the platform | 
 |  * supplies it. | 
 |  */ | 
 | static const struct pl022_config_chip pl022_default_chip_info = { | 
 | 	.com_mode = POLLING_TRANSFER, | 
 | 	.iface = SSP_INTERFACE_MOTOROLA_SPI, | 
 | 	.hierarchy = SSP_SLAVE, | 
 | 	.slave_tx_disable = DO_NOT_DRIVE_TX, | 
 | 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, | 
 | 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, | 
 | 	.ctrl_len = SSP_BITS_8, | 
 | 	.wait_state = SSP_MWIRE_WAIT_ZERO, | 
 | 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, | 
 | 	.cs_control = null_cs_control, | 
 | }; | 
 |  | 
 | /** | 
 |  * pl022_setup - setup function registered to SPI master framework | 
 |  * @spi: spi device which is requesting setup | 
 |  * | 
 |  * This function is registered to the SPI framework for this SPI master | 
 |  * controller. If it is the first time when setup is called by this device, | 
 |  * this function will initialize the runtime state for this chip and save | 
 |  * the same in the device structure. Else it will update the runtime info | 
 |  * with the updated chip info. Nothing is really being written to the | 
 |  * controller hardware here, that is not done until the actual transfer | 
 |  * commence. | 
 |  */ | 
 | static int pl022_setup(struct spi_device *spi) | 
 | { | 
 | 	struct pl022_config_chip const *chip_info; | 
 | 	struct pl022_config_chip chip_info_dt; | 
 | 	struct chip_data *chip; | 
 | 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; | 
 | 	int status = 0; | 
 | 	struct pl022 *pl022 = spi_master_get_devdata(spi->master); | 
 | 	unsigned int bits = spi->bits_per_word; | 
 | 	u32 tmp; | 
 | 	struct device_node *np = spi->dev.of_node; | 
 |  | 
 | 	if (!spi->max_speed_hz) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Get controller_state if one is supplied */ | 
 | 	chip = spi_get_ctldata(spi); | 
 |  | 
 | 	if (chip == NULL) { | 
 | 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); | 
 | 		if (!chip) | 
 | 			return -ENOMEM; | 
 | 		dev_dbg(&spi->dev, | 
 | 			"allocated memory for controller's runtime state\n"); | 
 | 	} | 
 |  | 
 | 	/* Get controller data if one is supplied */ | 
 | 	chip_info = spi->controller_data; | 
 |  | 
 | 	if (chip_info == NULL) { | 
 | 		if (np) { | 
 | 			chip_info_dt = pl022_default_chip_info; | 
 |  | 
 | 			chip_info_dt.hierarchy = SSP_MASTER; | 
 | 			of_property_read_u32(np, "pl022,interface", | 
 | 				&chip_info_dt.iface); | 
 | 			of_property_read_u32(np, "pl022,com-mode", | 
 | 				&chip_info_dt.com_mode); | 
 | 			of_property_read_u32(np, "pl022,rx-level-trig", | 
 | 				&chip_info_dt.rx_lev_trig); | 
 | 			of_property_read_u32(np, "pl022,tx-level-trig", | 
 | 				&chip_info_dt.tx_lev_trig); | 
 | 			of_property_read_u32(np, "pl022,ctrl-len", | 
 | 				&chip_info_dt.ctrl_len); | 
 | 			of_property_read_u32(np, "pl022,wait-state", | 
 | 				&chip_info_dt.wait_state); | 
 | 			of_property_read_u32(np, "pl022,duplex", | 
 | 				&chip_info_dt.duplex); | 
 |  | 
 | 			chip_info = &chip_info_dt; | 
 | 		} else { | 
 | 			chip_info = &pl022_default_chip_info; | 
 | 			/* spi_board_info.controller_data not is supplied */ | 
 | 			dev_dbg(&spi->dev, | 
 | 				"using default controller_data settings\n"); | 
 | 		} | 
 | 	} else | 
 | 		dev_dbg(&spi->dev, | 
 | 			"using user supplied controller_data settings\n"); | 
 |  | 
 | 	/* | 
 | 	 * We can override with custom divisors, else we use the board | 
 | 	 * frequency setting | 
 | 	 */ | 
 | 	if ((0 == chip_info->clk_freq.cpsdvsr) | 
 | 	    && (0 == chip_info->clk_freq.scr)) { | 
 | 		status = calculate_effective_freq(pl022, | 
 | 						  spi->max_speed_hz, | 
 | 						  &clk_freq); | 
 | 		if (status < 0) | 
 | 			goto err_config_params; | 
 | 	} else { | 
 | 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); | 
 | 		if ((clk_freq.cpsdvsr % 2) != 0) | 
 | 			clk_freq.cpsdvsr = | 
 | 				clk_freq.cpsdvsr - 1; | 
 | 	} | 
 | 	if ((clk_freq.cpsdvsr < CPSDVR_MIN) | 
 | 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) { | 
 | 		status = -EINVAL; | 
 | 		dev_err(&spi->dev, | 
 | 			"cpsdvsr is configured incorrectly\n"); | 
 | 		goto err_config_params; | 
 | 	} | 
 |  | 
 | 	status = verify_controller_parameters(pl022, chip_info); | 
 | 	if (status) { | 
 | 		dev_err(&spi->dev, "controller data is incorrect"); | 
 | 		goto err_config_params; | 
 | 	} | 
 |  | 
 | 	pl022->rx_lev_trig = chip_info->rx_lev_trig; | 
 | 	pl022->tx_lev_trig = chip_info->tx_lev_trig; | 
 |  | 
 | 	/* Now set controller state based on controller data */ | 
 | 	chip->xfer_type = chip_info->com_mode; | 
 | 	if (!chip_info->cs_control) { | 
 | 		chip->cs_control = null_cs_control; | 
 | 		if (!gpio_is_valid(pl022->chipselects[spi->chip_select])) | 
 | 			dev_warn(&spi->dev, | 
 | 				 "invalid chip select\n"); | 
 | 	} else | 
 | 		chip->cs_control = chip_info->cs_control; | 
 |  | 
 | 	/* Check bits per word with vendor specific range */ | 
 | 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { | 
 | 		status = -ENOTSUPP; | 
 | 		dev_err(&spi->dev, "illegal data size for this controller!\n"); | 
 | 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", | 
 | 				pl022->vendor->max_bpw); | 
 | 		goto err_config_params; | 
 | 	} else if (bits <= 8) { | 
 | 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); | 
 | 		chip->n_bytes = 1; | 
 | 		chip->read = READING_U8; | 
 | 		chip->write = WRITING_U8; | 
 | 	} else if (bits <= 16) { | 
 | 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); | 
 | 		chip->n_bytes = 2; | 
 | 		chip->read = READING_U16; | 
 | 		chip->write = WRITING_U16; | 
 | 	} else { | 
 | 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); | 
 | 		chip->n_bytes = 4; | 
 | 		chip->read = READING_U32; | 
 | 		chip->write = WRITING_U32; | 
 | 	} | 
 |  | 
 | 	/* Now Initialize all register settings required for this chip */ | 
 | 	chip->cr0 = 0; | 
 | 	chip->cr1 = 0; | 
 | 	chip->dmacr = 0; | 
 | 	chip->cpsr = 0; | 
 | 	if ((chip_info->com_mode == DMA_TRANSFER) | 
 | 	    && ((pl022->master_info)->enable_dma)) { | 
 | 		chip->enable_dma = true; | 
 | 		dev_dbg(&spi->dev, "DMA mode set in controller state\n"); | 
 | 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, | 
 | 			       SSP_DMACR_MASK_RXDMAE, 0); | 
 | 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, | 
 | 			       SSP_DMACR_MASK_TXDMAE, 1); | 
 | 	} else { | 
 | 		chip->enable_dma = false; | 
 | 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); | 
 | 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, | 
 | 			       SSP_DMACR_MASK_RXDMAE, 0); | 
 | 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, | 
 | 			       SSP_DMACR_MASK_TXDMAE, 1); | 
 | 	} | 
 |  | 
 | 	chip->cpsr = clk_freq.cpsdvsr; | 
 |  | 
 | 	/* Special setup for the ST micro extended control registers */ | 
 | 	if (pl022->vendor->extended_cr) { | 
 | 		u32 etx; | 
 |  | 
 | 		if (pl022->vendor->pl023) { | 
 | 			/* These bits are only in the PL023 */ | 
 | 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, | 
 | 				       SSP_CR1_MASK_FBCLKDEL_ST, 13); | 
 | 		} else { | 
 | 			/* These bits are in the PL022 but not PL023 */ | 
 | 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex, | 
 | 				       SSP_CR0_MASK_HALFDUP_ST, 5); | 
 | 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, | 
 | 				       SSP_CR0_MASK_CSS_ST, 16); | 
 | 			SSP_WRITE_BITS(chip->cr0, chip_info->iface, | 
 | 				       SSP_CR0_MASK_FRF_ST, 21); | 
 | 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, | 
 | 				       SSP_CR1_MASK_MWAIT_ST, 6); | 
 | 		} | 
 | 		SSP_WRITE_BITS(chip->cr0, bits - 1, | 
 | 			       SSP_CR0_MASK_DSS_ST, 0); | 
 |  | 
 | 		if (spi->mode & SPI_LSB_FIRST) { | 
 | 			tmp = SSP_RX_LSB; | 
 | 			etx = SSP_TX_LSB; | 
 | 		} else { | 
 | 			tmp = SSP_RX_MSB; | 
 | 			etx = SSP_TX_MSB; | 
 | 		} | 
 | 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); | 
 | 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); | 
 | 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, | 
 | 			       SSP_CR1_MASK_RXIFLSEL_ST, 7); | 
 | 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, | 
 | 			       SSP_CR1_MASK_TXIFLSEL_ST, 10); | 
 | 	} else { | 
 | 		SSP_WRITE_BITS(chip->cr0, bits - 1, | 
 | 			       SSP_CR0_MASK_DSS, 0); | 
 | 		SSP_WRITE_BITS(chip->cr0, chip_info->iface, | 
 | 			       SSP_CR0_MASK_FRF, 4); | 
 | 	} | 
 |  | 
 | 	/* Stuff that is common for all versions */ | 
 | 	if (spi->mode & SPI_CPOL) | 
 | 		tmp = SSP_CLK_POL_IDLE_HIGH; | 
 | 	else | 
 | 		tmp = SSP_CLK_POL_IDLE_LOW; | 
 | 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); | 
 |  | 
 | 	if (spi->mode & SPI_CPHA) | 
 | 		tmp = SSP_CLK_SECOND_EDGE; | 
 | 	else | 
 | 		tmp = SSP_CLK_FIRST_EDGE; | 
 | 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); | 
 |  | 
 | 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); | 
 | 	/* Loopback is available on all versions except PL023 */ | 
 | 	if (pl022->vendor->loopback) { | 
 | 		if (spi->mode & SPI_LOOP) | 
 | 			tmp = LOOPBACK_ENABLED; | 
 | 		else | 
 | 			tmp = LOOPBACK_DISABLED; | 
 | 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); | 
 | 	} | 
 | 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); | 
 | 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); | 
 | 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, | 
 | 		3); | 
 |  | 
 | 	/* Save controller_state */ | 
 | 	spi_set_ctldata(spi, chip); | 
 | 	return status; | 
 |  err_config_params: | 
 | 	spi_set_ctldata(spi, NULL); | 
 | 	kfree(chip); | 
 | 	return status; | 
 | } | 
 |  | 
 | /** | 
 |  * pl022_cleanup - cleanup function registered to SPI master framework | 
 |  * @spi: spi device which is requesting cleanup | 
 |  * | 
 |  * This function is registered to the SPI framework for this SPI master | 
 |  * controller. It will free the runtime state of chip. | 
 |  */ | 
 | static void pl022_cleanup(struct spi_device *spi) | 
 | { | 
 | 	struct chip_data *chip = spi_get_ctldata(spi); | 
 |  | 
 | 	spi_set_ctldata(spi, NULL); | 
 | 	kfree(chip); | 
 | } | 
 |  | 
 | static struct pl022_ssp_controller * | 
 | pl022_platform_data_dt_get(struct device *dev) | 
 | { | 
 | 	struct device_node *np = dev->of_node; | 
 | 	struct pl022_ssp_controller *pd; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (!np) { | 
 | 		dev_err(dev, "no dt node defined\n"); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); | 
 | 	if (!pd) | 
 | 		return NULL; | 
 |  | 
 | 	pd->bus_id = -1; | 
 | 	pd->enable_dma = 1; | 
 | 	of_property_read_u32(np, "num-cs", &tmp); | 
 | 	pd->num_chipselect = tmp; | 
 | 	of_property_read_u32(np, "pl022,autosuspend-delay", | 
 | 			     &pd->autosuspend_delay); | 
 | 	pd->rt = of_property_read_bool(np, "pl022,rt"); | 
 |  | 
 | 	return pd; | 
 | } | 
 |  | 
 | static int pl022_probe(struct amba_device *adev, const struct amba_id *id) | 
 | { | 
 | 	struct device *dev = &adev->dev; | 
 | 	struct pl022_ssp_controller *platform_info = | 
 | 			dev_get_platdata(&adev->dev); | 
 | 	struct spi_master *master; | 
 | 	struct pl022 *pl022 = NULL;	/*Data for this driver */ | 
 | 	struct device_node *np = adev->dev.of_node; | 
 | 	int status = 0, i, num_cs; | 
 |  | 
 | 	dev_info(&adev->dev, | 
 | 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); | 
 | 	if (!platform_info && IS_ENABLED(CONFIG_OF)) | 
 | 		platform_info = pl022_platform_data_dt_get(dev); | 
 |  | 
 | 	if (!platform_info) { | 
 | 		dev_err(dev, "probe: no platform data defined\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (platform_info->num_chipselect) { | 
 | 		num_cs = platform_info->num_chipselect; | 
 | 	} else { | 
 | 		dev_err(dev, "probe: no chip select defined\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Allocate master with space for data */ | 
 | 	master = spi_alloc_master(dev, sizeof(struct pl022)); | 
 | 	if (master == NULL) { | 
 | 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pl022 = spi_master_get_devdata(master); | 
 | 	pl022->master = master; | 
 | 	pl022->master_info = platform_info; | 
 | 	pl022->adev = adev; | 
 | 	pl022->vendor = id->data; | 
 | 	pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int), | 
 | 					  GFP_KERNEL); | 
 | 	if (!pl022->chipselects) { | 
 | 		status = -ENOMEM; | 
 | 		goto err_no_mem; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Bus Number Which has been Assigned to this SSP controller | 
 | 	 * on this board | 
 | 	 */ | 
 | 	master->bus_num = platform_info->bus_id; | 
 | 	master->num_chipselect = num_cs; | 
 | 	master->cleanup = pl022_cleanup; | 
 | 	master->setup = pl022_setup; | 
 | 	master->auto_runtime_pm = true; | 
 | 	master->transfer_one_message = pl022_transfer_one_message; | 
 | 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; | 
 | 	master->rt = platform_info->rt; | 
 | 	master->dev.of_node = dev->of_node; | 
 |  | 
 | 	if (platform_info->num_chipselect && platform_info->chipselects) { | 
 | 		for (i = 0; i < num_cs; i++) | 
 | 			pl022->chipselects[i] = platform_info->chipselects[i]; | 
 | 	} else if (pl022->vendor->internal_cs_ctrl) { | 
 | 		for (i = 0; i < num_cs; i++) | 
 | 			pl022->chipselects[i] = i; | 
 | 	} else if (IS_ENABLED(CONFIG_OF)) { | 
 | 		for (i = 0; i < num_cs; i++) { | 
 | 			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i); | 
 |  | 
 | 			if (cs_gpio == -EPROBE_DEFER) { | 
 | 				status = -EPROBE_DEFER; | 
 | 				goto err_no_gpio; | 
 | 			} | 
 |  | 
 | 			pl022->chipselects[i] = cs_gpio; | 
 |  | 
 | 			if (gpio_is_valid(cs_gpio)) { | 
 | 				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022")) | 
 | 					dev_err(&adev->dev, | 
 | 						"could not request %d gpio\n", | 
 | 						cs_gpio); | 
 | 				else if (gpio_direction_output(cs_gpio, 1)) | 
 | 					dev_err(&adev->dev, | 
 | 						"could not set gpio %d as output\n", | 
 | 						cs_gpio); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Supports mode 0-3, loopback, and active low CS. Transfers are | 
 | 	 * always MS bit first on the original pl022. | 
 | 	 */ | 
 | 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; | 
 | 	if (pl022->vendor->extended_cr) | 
 | 		master->mode_bits |= SPI_LSB_FIRST; | 
 |  | 
 | 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); | 
 |  | 
 | 	status = amba_request_regions(adev, NULL); | 
 | 	if (status) | 
 | 		goto err_no_ioregion; | 
 |  | 
 | 	pl022->phybase = adev->res.start; | 
 | 	pl022->virtbase = devm_ioremap(dev, adev->res.start, | 
 | 				       resource_size(&adev->res)); | 
 | 	if (pl022->virtbase == NULL) { | 
 | 		status = -ENOMEM; | 
 | 		goto err_no_ioremap; | 
 | 	} | 
 | 	dev_info(&adev->dev, "mapped registers from %pa to %p\n", | 
 | 		&adev->res.start, pl022->virtbase); | 
 |  | 
 | 	pl022->clk = devm_clk_get(&adev->dev, NULL); | 
 | 	if (IS_ERR(pl022->clk)) { | 
 | 		status = PTR_ERR(pl022->clk); | 
 | 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); | 
 | 		goto err_no_clk; | 
 | 	} | 
 |  | 
 | 	status = clk_prepare_enable(pl022->clk); | 
 | 	if (status) { | 
 | 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); | 
 | 		goto err_no_clk_en; | 
 | 	} | 
 |  | 
 | 	/* Initialize transfer pump */ | 
 | 	tasklet_init(&pl022->pump_transfers, pump_transfers, | 
 | 		     (unsigned long)pl022); | 
 |  | 
 | 	/* Disable SSP */ | 
 | 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), | 
 | 	       SSP_CR1(pl022->virtbase)); | 
 | 	load_ssp_default_config(pl022); | 
 |  | 
 | 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, | 
 | 				  0, "pl022", pl022); | 
 | 	if (status < 0) { | 
 | 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); | 
 | 		goto err_no_irq; | 
 | 	} | 
 |  | 
 | 	/* Get DMA channels, try autoconfiguration first */ | 
 | 	status = pl022_dma_autoprobe(pl022); | 
 |  | 
 | 	/* If that failed, use channels from platform_info */ | 
 | 	if (status == 0) | 
 | 		platform_info->enable_dma = 1; | 
 | 	else if (platform_info->enable_dma) { | 
 | 		status = pl022_dma_probe(pl022); | 
 | 		if (status != 0) | 
 | 			platform_info->enable_dma = 0; | 
 | 	} | 
 |  | 
 | 	/* Register with the SPI framework */ | 
 | 	amba_set_drvdata(adev, pl022); | 
 | 	status = devm_spi_register_master(&adev->dev, master); | 
 | 	if (status != 0) { | 
 | 		dev_err(&adev->dev, | 
 | 			"probe - problem registering spi master\n"); | 
 | 		goto err_spi_register; | 
 | 	} | 
 | 	dev_dbg(dev, "probe succeeded\n"); | 
 |  | 
 | 	/* let runtime pm put suspend */ | 
 | 	if (platform_info->autosuspend_delay > 0) { | 
 | 		dev_info(&adev->dev, | 
 | 			"will use autosuspend for runtime pm, delay %dms\n", | 
 | 			platform_info->autosuspend_delay); | 
 | 		pm_runtime_set_autosuspend_delay(dev, | 
 | 			platform_info->autosuspend_delay); | 
 | 		pm_runtime_use_autosuspend(dev); | 
 | 	} | 
 | 	pm_runtime_put(dev); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err_spi_register: | 
 | 	if (platform_info->enable_dma) | 
 | 		pl022_dma_remove(pl022); | 
 |  err_no_irq: | 
 | 	clk_disable_unprepare(pl022->clk); | 
 |  err_no_clk_en: | 
 |  err_no_clk: | 
 |  err_no_ioremap: | 
 | 	amba_release_regions(adev); | 
 |  err_no_ioregion: | 
 |  err_no_gpio: | 
 |  err_no_mem: | 
 | 	spi_master_put(master); | 
 | 	return status; | 
 | } | 
 |  | 
 | static int | 
 | pl022_remove(struct amba_device *adev) | 
 | { | 
 | 	struct pl022 *pl022 = amba_get_drvdata(adev); | 
 |  | 
 | 	if (!pl022) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * undo pm_runtime_put() in probe.  I assume that we're not | 
 | 	 * accessing the primecell here. | 
 | 	 */ | 
 | 	pm_runtime_get_noresume(&adev->dev); | 
 |  | 
 | 	load_ssp_default_config(pl022); | 
 | 	if (pl022->master_info->enable_dma) | 
 | 		pl022_dma_remove(pl022); | 
 |  | 
 | 	clk_disable_unprepare(pl022->clk); | 
 | 	amba_release_regions(adev); | 
 | 	tasklet_disable(&pl022->pump_transfers); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int pl022_suspend(struct device *dev) | 
 | { | 
 | 	struct pl022 *pl022 = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = spi_master_suspend(pl022->master); | 
 | 	if (ret) { | 
 | 		dev_warn(dev, "cannot suspend master\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = pm_runtime_force_suspend(dev); | 
 | 	if (ret) { | 
 | 		spi_master_resume(pl022->master); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	pinctrl_pm_select_sleep_state(dev); | 
 |  | 
 | 	dev_dbg(dev, "suspended\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pl022_resume(struct device *dev) | 
 | { | 
 | 	struct pl022 *pl022 = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = pm_runtime_force_resume(dev); | 
 | 	if (ret) | 
 | 		dev_err(dev, "problem resuming\n"); | 
 |  | 
 | 	/* Start the queue running */ | 
 | 	ret = spi_master_resume(pl022->master); | 
 | 	if (ret) | 
 | 		dev_err(dev, "problem starting queue (%d)\n", ret); | 
 | 	else | 
 | 		dev_dbg(dev, "resumed\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int pl022_runtime_suspend(struct device *dev) | 
 | { | 
 | 	struct pl022 *pl022 = dev_get_drvdata(dev); | 
 |  | 
 | 	clk_disable_unprepare(pl022->clk); | 
 | 	pinctrl_pm_select_idle_state(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pl022_runtime_resume(struct device *dev) | 
 | { | 
 | 	struct pl022 *pl022 = dev_get_drvdata(dev); | 
 |  | 
 | 	pinctrl_pm_select_default_state(dev); | 
 | 	clk_prepare_enable(pl022->clk); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static const struct dev_pm_ops pl022_dev_pm_ops = { | 
 | 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) | 
 | 	SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) | 
 | }; | 
 |  | 
 | static struct vendor_data vendor_arm = { | 
 | 	.fifodepth = 8, | 
 | 	.max_bpw = 16, | 
 | 	.unidir = false, | 
 | 	.extended_cr = false, | 
 | 	.pl023 = false, | 
 | 	.loopback = true, | 
 | 	.internal_cs_ctrl = false, | 
 | }; | 
 |  | 
 | static struct vendor_data vendor_st = { | 
 | 	.fifodepth = 32, | 
 | 	.max_bpw = 32, | 
 | 	.unidir = false, | 
 | 	.extended_cr = true, | 
 | 	.pl023 = false, | 
 | 	.loopback = true, | 
 | 	.internal_cs_ctrl = false, | 
 | }; | 
 |  | 
 | static struct vendor_data vendor_st_pl023 = { | 
 | 	.fifodepth = 32, | 
 | 	.max_bpw = 32, | 
 | 	.unidir = false, | 
 | 	.extended_cr = true, | 
 | 	.pl023 = true, | 
 | 	.loopback = false, | 
 | 	.internal_cs_ctrl = false, | 
 | }; | 
 |  | 
 | static struct vendor_data vendor_lsi = { | 
 | 	.fifodepth = 8, | 
 | 	.max_bpw = 16, | 
 | 	.unidir = false, | 
 | 	.extended_cr = false, | 
 | 	.pl023 = false, | 
 | 	.loopback = true, | 
 | 	.internal_cs_ctrl = true, | 
 | }; | 
 |  | 
 | static struct amba_id pl022_ids[] = { | 
 | 	{ | 
 | 		/* | 
 | 		 * ARM PL022 variant, this has a 16bit wide | 
 | 		 * and 8 locations deep TX/RX FIFO | 
 | 		 */ | 
 | 		.id	= 0x00041022, | 
 | 		.mask	= 0x000fffff, | 
 | 		.data	= &vendor_arm, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * ST Micro derivative, this has 32bit wide | 
 | 		 * and 32 locations deep TX/RX FIFO | 
 | 		 */ | 
 | 		.id	= 0x01080022, | 
 | 		.mask	= 0xffffffff, | 
 | 		.data	= &vendor_st, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * ST-Ericsson derivative "PL023" (this is not | 
 | 		 * an official ARM number), this is a PL022 SSP block | 
 | 		 * stripped to SPI mode only, it has 32bit wide | 
 | 		 * and 32 locations deep TX/RX FIFO but no extended | 
 | 		 * CR0/CR1 register | 
 | 		 */ | 
 | 		.id	= 0x00080023, | 
 | 		.mask	= 0xffffffff, | 
 | 		.data	= &vendor_st_pl023, | 
 | 	}, | 
 | 	{ | 
 | 		/* | 
 | 		 * PL022 variant that has a chip select control register whih | 
 | 		 * allows control of 5 output signals nCS[0:4]. | 
 | 		 */ | 
 | 		.id	= 0x000b6022, | 
 | 		.mask	= 0x000fffff, | 
 | 		.data	= &vendor_lsi, | 
 | 	}, | 
 | 	{ 0, 0 }, | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(amba, pl022_ids); | 
 |  | 
 | static struct amba_driver pl022_driver = { | 
 | 	.drv = { | 
 | 		.name	= "ssp-pl022", | 
 | 		.pm	= &pl022_dev_pm_ops, | 
 | 	}, | 
 | 	.id_table	= pl022_ids, | 
 | 	.probe		= pl022_probe, | 
 | 	.remove		= pl022_remove, | 
 | }; | 
 |  | 
 | static int __init pl022_init(void) | 
 | { | 
 | 	return amba_driver_register(&pl022_driver); | 
 | } | 
 | subsys_initcall(pl022_init); | 
 |  | 
 | static void __exit pl022_exit(void) | 
 | { | 
 | 	amba_driver_unregister(&pl022_driver); | 
 | } | 
 | module_exit(pl022_exit); | 
 |  | 
 | MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); | 
 | MODULE_DESCRIPTION("PL022 SSP Controller Driver"); | 
 | MODULE_LICENSE("GPL"); |