| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Driver for Alauda-based card readers |
| * |
| * Current development and maintenance by: |
| * (c) 2005 Daniel Drake <dsd@gentoo.org> |
| * |
| * The 'Alauda' is a chip manufacturered by RATOC for OEM use. |
| * |
| * Alauda implements a vendor-specific command set to access two media reader |
| * ports (XD, SmartMedia). This driver converts SCSI commands to the commands |
| * which are accepted by these devices. |
| * |
| * The driver was developed through reverse-engineering, with the help of the |
| * sddr09 driver which has many similarities, and with some help from the |
| * (very old) vendor-supplied GPL sma03 driver. |
| * |
| * For protocol info, see http://alauda.sourceforge.net |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| |
| #include "usb.h" |
| #include "transport.h" |
| #include "protocol.h" |
| #include "debug.h" |
| #include "scsiglue.h" |
| |
| #define DRV_NAME "ums-alauda" |
| |
| MODULE_DESCRIPTION("Driver for Alauda-based card readers"); |
| MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Status bytes |
| */ |
| #define ALAUDA_STATUS_ERROR 0x01 |
| #define ALAUDA_STATUS_READY 0x40 |
| |
| /* |
| * Control opcodes (for request field) |
| */ |
| #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 |
| #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 |
| #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a |
| #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a |
| #define ALAUDA_GET_XD_MEDIA_SIG 0x86 |
| #define ALAUDA_GET_SM_MEDIA_SIG 0x96 |
| |
| /* |
| * Bulk command identity (byte 0) |
| */ |
| #define ALAUDA_BULK_CMD 0x40 |
| |
| /* |
| * Bulk opcodes (byte 1) |
| */ |
| #define ALAUDA_BULK_GET_REDU_DATA 0x85 |
| #define ALAUDA_BULK_READ_BLOCK 0x94 |
| #define ALAUDA_BULK_ERASE_BLOCK 0xa3 |
| #define ALAUDA_BULK_WRITE_BLOCK 0xb4 |
| #define ALAUDA_BULK_GET_STATUS2 0xb7 |
| #define ALAUDA_BULK_RESET_MEDIA 0xe0 |
| |
| /* |
| * Port to operate on (byte 8) |
| */ |
| #define ALAUDA_PORT_XD 0x00 |
| #define ALAUDA_PORT_SM 0x01 |
| |
| /* |
| * LBA and PBA are unsigned ints. Special values. |
| */ |
| #define UNDEF 0xffff |
| #define SPARE 0xfffe |
| #define UNUSABLE 0xfffd |
| |
| struct alauda_media_info { |
| unsigned long capacity; /* total media size in bytes */ |
| unsigned int pagesize; /* page size in bytes */ |
| unsigned int blocksize; /* number of pages per block */ |
| unsigned int uzonesize; /* number of usable blocks per zone */ |
| unsigned int zonesize; /* number of blocks per zone */ |
| unsigned int blockmask; /* mask to get page from address */ |
| |
| unsigned char pageshift; |
| unsigned char blockshift; |
| unsigned char zoneshift; |
| |
| u16 **lba_to_pba; /* logical to physical block map */ |
| u16 **pba_to_lba; /* physical to logical block map */ |
| }; |
| |
| struct alauda_info { |
| struct alauda_media_info port[2]; |
| int wr_ep; /* endpoint to write data out of */ |
| |
| unsigned char sense_key; |
| unsigned long sense_asc; /* additional sense code */ |
| unsigned long sense_ascq; /* additional sense code qualifier */ |
| }; |
| |
| #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) |
| #define LSB_of(s) ((s)&0xFF) |
| #define MSB_of(s) ((s)>>8) |
| |
| #define MEDIA_PORT(us) us->srb->device->lun |
| #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] |
| |
| #define PBA_LO(pba) ((pba & 0xF) << 5) |
| #define PBA_HI(pba) (pba >> 3) |
| #define PBA_ZONE(pba) (pba >> 11) |
| |
| static int init_alauda(struct us_data *us); |
| |
| |
| /* |
| * The table of devices |
| */ |
| #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ |
| vendorName, productName, useProtocol, useTransport, \ |
| initFunction, flags) \ |
| { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ |
| .driver_info = (flags) } |
| |
| static struct usb_device_id alauda_usb_ids[] = { |
| # include "unusual_alauda.h" |
| { } /* Terminating entry */ |
| }; |
| MODULE_DEVICE_TABLE(usb, alauda_usb_ids); |
| |
| #undef UNUSUAL_DEV |
| |
| /* |
| * The flags table |
| */ |
| #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ |
| vendor_name, product_name, use_protocol, use_transport, \ |
| init_function, Flags) \ |
| { \ |
| .vendorName = vendor_name, \ |
| .productName = product_name, \ |
| .useProtocol = use_protocol, \ |
| .useTransport = use_transport, \ |
| .initFunction = init_function, \ |
| } |
| |
| static struct us_unusual_dev alauda_unusual_dev_list[] = { |
| # include "unusual_alauda.h" |
| { } /* Terminating entry */ |
| }; |
| |
| #undef UNUSUAL_DEV |
| |
| |
| /* |
| * Media handling |
| */ |
| |
| struct alauda_card_info { |
| unsigned char id; /* id byte */ |
| unsigned char chipshift; /* 1<<cs bytes total capacity */ |
| unsigned char pageshift; /* 1<<ps bytes in a page */ |
| unsigned char blockshift; /* 1<<bs pages per block */ |
| unsigned char zoneshift; /* 1<<zs blocks per zone */ |
| }; |
| |
| static struct alauda_card_info alauda_card_ids[] = { |
| /* NAND flash */ |
| { 0x6e, 20, 8, 4, 8}, /* 1 MB */ |
| { 0xe8, 20, 8, 4, 8}, /* 1 MB */ |
| { 0xec, 20, 8, 4, 8}, /* 1 MB */ |
| { 0x64, 21, 8, 4, 9}, /* 2 MB */ |
| { 0xea, 21, 8, 4, 9}, /* 2 MB */ |
| { 0x6b, 22, 9, 4, 9}, /* 4 MB */ |
| { 0xe3, 22, 9, 4, 9}, /* 4 MB */ |
| { 0xe5, 22, 9, 4, 9}, /* 4 MB */ |
| { 0xe6, 23, 9, 4, 10}, /* 8 MB */ |
| { 0x73, 24, 9, 5, 10}, /* 16 MB */ |
| { 0x75, 25, 9, 5, 10}, /* 32 MB */ |
| { 0x76, 26, 9, 5, 10}, /* 64 MB */ |
| { 0x79, 27, 9, 5, 10}, /* 128 MB */ |
| { 0x71, 28, 9, 5, 10}, /* 256 MB */ |
| |
| /* MASK ROM */ |
| { 0x5d, 21, 9, 4, 8}, /* 2 MB */ |
| { 0xd5, 22, 9, 4, 9}, /* 4 MB */ |
| { 0xd6, 23, 9, 4, 10}, /* 8 MB */ |
| { 0x57, 24, 9, 4, 11}, /* 16 MB */ |
| { 0x58, 25, 9, 4, 12}, /* 32 MB */ |
| { 0,} |
| }; |
| |
| static struct alauda_card_info *alauda_card_find_id(unsigned char id) |
| { |
| int i; |
| |
| for (i = 0; alauda_card_ids[i].id != 0; i++) |
| if (alauda_card_ids[i].id == id) |
| return &(alauda_card_ids[i]); |
| return NULL; |
| } |
| |
| /* |
| * ECC computation. |
| */ |
| |
| static unsigned char parity[256]; |
| static unsigned char ecc2[256]; |
| |
| static void nand_init_ecc(void) |
| { |
| int i, j, a; |
| |
| parity[0] = 0; |
| for (i = 1; i < 256; i++) |
| parity[i] = (parity[i&(i-1)] ^ 1); |
| |
| for (i = 0; i < 256; i++) { |
| a = 0; |
| for (j = 0; j < 8; j++) { |
| if (i & (1<<j)) { |
| if ((j & 1) == 0) |
| a ^= 0x04; |
| if ((j & 2) == 0) |
| a ^= 0x10; |
| if ((j & 4) == 0) |
| a ^= 0x40; |
| } |
| } |
| ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); |
| } |
| } |
| |
| /* compute 3-byte ecc on 256 bytes */ |
| static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) |
| { |
| int i, j, a; |
| unsigned char par = 0, bit, bits[8] = {0}; |
| |
| /* collect 16 checksum bits */ |
| for (i = 0; i < 256; i++) { |
| par ^= data[i]; |
| bit = parity[data[i]]; |
| for (j = 0; j < 8; j++) |
| if ((i & (1<<j)) == 0) |
| bits[j] ^= bit; |
| } |
| |
| /* put 4+4+4 = 12 bits in the ecc */ |
| a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; |
| ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); |
| |
| a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; |
| ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); |
| |
| ecc[2] = ecc2[par]; |
| } |
| |
| static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) |
| { |
| return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); |
| } |
| |
| static void nand_store_ecc(unsigned char *data, unsigned char *ecc) |
| { |
| memcpy(data, ecc, 3); |
| } |
| |
| /* |
| * Alauda driver |
| */ |
| |
| /* |
| * Forget our PBA <---> LBA mappings for a particular port |
| */ |
| static void alauda_free_maps (struct alauda_media_info *media_info) |
| { |
| unsigned int shift = media_info->zoneshift |
| + media_info->blockshift + media_info->pageshift; |
| unsigned int num_zones = media_info->capacity >> shift; |
| unsigned int i; |
| |
| if (media_info->lba_to_pba != NULL) |
| for (i = 0; i < num_zones; i++) { |
| kfree(media_info->lba_to_pba[i]); |
| media_info->lba_to_pba[i] = NULL; |
| } |
| |
| if (media_info->pba_to_lba != NULL) |
| for (i = 0; i < num_zones; i++) { |
| kfree(media_info->pba_to_lba[i]); |
| media_info->pba_to_lba[i] = NULL; |
| } |
| } |
| |
| /* |
| * Returns 2 bytes of status data |
| * The first byte describes media status, and second byte describes door status |
| */ |
| static int alauda_get_media_status(struct us_data *us, unsigned char *data) |
| { |
| int rc; |
| unsigned char command; |
| |
| if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| command = ALAUDA_GET_XD_MEDIA_STATUS; |
| else |
| command = ALAUDA_GET_SM_MEDIA_STATUS; |
| |
| rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, |
| command, 0xc0, 0, 1, data, 2); |
| |
| usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); |
| |
| return rc; |
| } |
| |
| /* |
| * Clears the "media was changed" bit so that we know when it changes again |
| * in the future. |
| */ |
| static int alauda_ack_media(struct us_data *us) |
| { |
| unsigned char command; |
| |
| if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| command = ALAUDA_ACK_XD_MEDIA_CHANGE; |
| else |
| command = ALAUDA_ACK_SM_MEDIA_CHANGE; |
| |
| return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, |
| command, 0x40, 0, 1, NULL, 0); |
| } |
| |
| /* |
| * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, |
| * and some other details. |
| */ |
| static int alauda_get_media_signature(struct us_data *us, unsigned char *data) |
| { |
| unsigned char command; |
| |
| if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| command = ALAUDA_GET_XD_MEDIA_SIG; |
| else |
| command = ALAUDA_GET_SM_MEDIA_SIG; |
| |
| return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, |
| command, 0xc0, 0, 0, data, 4); |
| } |
| |
| /* |
| * Resets the media status (but not the whole device?) |
| */ |
| static int alauda_reset_media(struct us_data *us) |
| { |
| unsigned char *command = us->iobuf; |
| |
| memset(command, 0, 9); |
| command[0] = ALAUDA_BULK_CMD; |
| command[1] = ALAUDA_BULK_RESET_MEDIA; |
| command[8] = MEDIA_PORT(us); |
| |
| return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| } |
| |
| /* |
| * Examines the media and deduces capacity, etc. |
| */ |
| static int alauda_init_media(struct us_data *us) |
| { |
| unsigned char *data = us->iobuf; |
| int ready = 0; |
| struct alauda_card_info *media_info; |
| unsigned int num_zones; |
| |
| while (ready == 0) { |
| msleep(20); |
| |
| if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| if (data[0] & 0x10) |
| ready = 1; |
| } |
| |
| usb_stor_dbg(us, "We are ready for action!\n"); |
| |
| if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| msleep(10); |
| |
| if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| if (data[0] != 0x14) { |
| usb_stor_dbg(us, "Media not ready after ack\n"); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| usb_stor_dbg(us, "Media signature: %4ph\n", data); |
| media_info = alauda_card_find_id(data[1]); |
| if (media_info == NULL) { |
| pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", |
| data); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| MEDIA_INFO(us).capacity = 1 << media_info->chipshift; |
| usb_stor_dbg(us, "Found media with capacity: %ldMB\n", |
| MEDIA_INFO(us).capacity >> 20); |
| |
| MEDIA_INFO(us).pageshift = media_info->pageshift; |
| MEDIA_INFO(us).blockshift = media_info->blockshift; |
| MEDIA_INFO(us).zoneshift = media_info->zoneshift; |
| |
| MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; |
| MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; |
| MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; |
| |
| MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; |
| MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; |
| |
| num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift |
| + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); |
| MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); |
| MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); |
| |
| if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| /* |
| * Examines the media status and does the right thing when the media has gone, |
| * appeared, or changed. |
| */ |
| static int alauda_check_media(struct us_data *us) |
| { |
| struct alauda_info *info = (struct alauda_info *) us->extra; |
| unsigned char status[2]; |
| int rc; |
| |
| rc = alauda_get_media_status(us, status); |
| |
| /* Check for no media or door open */ |
| if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) |
| || ((status[1] & 0x01) == 0)) { |
| usb_stor_dbg(us, "No media, or door open\n"); |
| alauda_free_maps(&MEDIA_INFO(us)); |
| info->sense_key = 0x02; |
| info->sense_asc = 0x3A; |
| info->sense_ascq = 0x00; |
| return USB_STOR_TRANSPORT_FAILED; |
| } |
| |
| /* Check for media change */ |
| if (status[0] & 0x08) { |
| usb_stor_dbg(us, "Media change detected\n"); |
| alauda_free_maps(&MEDIA_INFO(us)); |
| alauda_init_media(us); |
| |
| info->sense_key = UNIT_ATTENTION; |
| info->sense_asc = 0x28; |
| info->sense_ascq = 0x00; |
| return USB_STOR_TRANSPORT_FAILED; |
| } |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| /* |
| * Checks the status from the 2nd status register |
| * Returns 3 bytes of status data, only the first is known |
| */ |
| static int alauda_check_status2(struct us_data *us) |
| { |
| int rc; |
| unsigned char command[] = { |
| ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, |
| 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) |
| }; |
| unsigned char data[3]; |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| data, 3, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| usb_stor_dbg(us, "%3ph\n", data); |
| if (data[0] & ALAUDA_STATUS_ERROR) |
| return USB_STOR_XFER_ERROR; |
| |
| return USB_STOR_XFER_GOOD; |
| } |
| |
| /* |
| * Gets the redundancy data for the first page of a PBA |
| * Returns 16 bytes. |
| */ |
| static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) |
| { |
| int rc; |
| unsigned char command[] = { |
| ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, |
| PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) |
| }; |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| data, 16, NULL); |
| } |
| |
| /* |
| * Finds the first unused PBA in a zone |
| * Returns the absolute PBA of an unused PBA, or 0 if none found. |
| */ |
| static u16 alauda_find_unused_pba(struct alauda_media_info *info, |
| unsigned int zone) |
| { |
| u16 *pba_to_lba = info->pba_to_lba[zone]; |
| unsigned int i; |
| |
| for (i = 0; i < info->zonesize; i++) |
| if (pba_to_lba[i] == UNDEF) |
| return (zone << info->zoneshift) + i; |
| |
| return 0; |
| } |
| |
| /* |
| * Reads the redundancy data for all PBA's in a zone |
| * Produces lba <--> pba mappings |
| */ |
| static int alauda_read_map(struct us_data *us, unsigned int zone) |
| { |
| unsigned char *data = us->iobuf; |
| int result; |
| int i, j; |
| unsigned int zonesize = MEDIA_INFO(us).zonesize; |
| unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| unsigned int lba_offset, lba_real, blocknum; |
| unsigned int zone_base_lba = zone * uzonesize; |
| unsigned int zone_base_pba = zone * zonesize; |
| u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); |
| u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); |
| if (lba_to_pba == NULL || pba_to_lba == NULL) { |
| result = USB_STOR_TRANSPORT_ERROR; |
| goto error; |
| } |
| |
| usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); |
| |
| /* 1024 PBA's per zone */ |
| for (i = 0; i < zonesize; i++) |
| lba_to_pba[i] = pba_to_lba[i] = UNDEF; |
| |
| for (i = 0; i < zonesize; i++) { |
| blocknum = zone_base_pba + i; |
| |
| result = alauda_get_redu_data(us, blocknum, data); |
| if (result != USB_STOR_XFER_GOOD) { |
| result = USB_STOR_TRANSPORT_ERROR; |
| goto error; |
| } |
| |
| /* special PBAs have control field 0^16 */ |
| for (j = 0; j < 16; j++) |
| if (data[j] != 0) |
| goto nonz; |
| pba_to_lba[i] = UNUSABLE; |
| usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); |
| continue; |
| |
| nonz: |
| /* unwritten PBAs have control field FF^16 */ |
| for (j = 0; j < 16; j++) |
| if (data[j] != 0xff) |
| goto nonff; |
| continue; |
| |
| nonff: |
| /* normal PBAs start with six FFs */ |
| if (j < 6) { |
| usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", |
| blocknum, |
| data[0], data[1], data[2], data[3], |
| data[4], data[5]); |
| pba_to_lba[i] = UNUSABLE; |
| continue; |
| } |
| |
| if ((data[6] >> 4) != 0x01) { |
| usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", |
| blocknum, data[6], data[7], |
| data[11], data[12]); |
| pba_to_lba[i] = UNUSABLE; |
| continue; |
| } |
| |
| /* check even parity */ |
| if (parity[data[6] ^ data[7]]) { |
| printk(KERN_WARNING |
| "alauda_read_map: Bad parity in LBA for block %d" |
| " (%02X %02X)\n", i, data[6], data[7]); |
| pba_to_lba[i] = UNUSABLE; |
| continue; |
| } |
| |
| lba_offset = short_pack(data[7], data[6]); |
| lba_offset = (lba_offset & 0x07FF) >> 1; |
| lba_real = lba_offset + zone_base_lba; |
| |
| /* |
| * Every 1024 physical blocks ("zone"), the LBA numbers |
| * go back to zero, but are within a higher block of LBA's. |
| * Also, there is a maximum of 1000 LBA's per zone. |
| * In other words, in PBA 1024-2047 you will find LBA 0-999 |
| * which are really LBA 1000-1999. This allows for 24 bad |
| * or special physical blocks per zone. |
| */ |
| |
| if (lba_offset >= uzonesize) { |
| printk(KERN_WARNING |
| "alauda_read_map: Bad low LBA %d for block %d\n", |
| lba_real, blocknum); |
| continue; |
| } |
| |
| if (lba_to_pba[lba_offset] != UNDEF) { |
| printk(KERN_WARNING |
| "alauda_read_map: " |
| "LBA %d seen for PBA %d and %d\n", |
| lba_real, lba_to_pba[lba_offset], blocknum); |
| continue; |
| } |
| |
| pba_to_lba[i] = lba_real; |
| lba_to_pba[lba_offset] = blocknum; |
| continue; |
| } |
| |
| MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; |
| MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; |
| result = 0; |
| goto out; |
| |
| error: |
| kfree(lba_to_pba); |
| kfree(pba_to_lba); |
| out: |
| return result; |
| } |
| |
| /* |
| * Checks to see whether we have already mapped a certain zone |
| * If we haven't, the map is generated |
| */ |
| static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) |
| { |
| if (MEDIA_INFO(us).lba_to_pba[zone] == NULL |
| || MEDIA_INFO(us).pba_to_lba[zone] == NULL) |
| alauda_read_map(us, zone); |
| } |
| |
| /* |
| * Erases an entire block |
| */ |
| static int alauda_erase_block(struct us_data *us, u16 pba) |
| { |
| int rc; |
| unsigned char command[] = { |
| ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), |
| PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) |
| }; |
| unsigned char buf[2]; |
| |
| usb_stor_dbg(us, "Erasing PBA %d\n", pba); |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| buf, 2, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); |
| return rc; |
| } |
| |
| /* |
| * Reads data from a certain offset page inside a PBA, including interleaved |
| * redundancy data. Returns (pagesize+64)*pages bytes in data. |
| */ |
| static int alauda_read_block_raw(struct us_data *us, u16 pba, |
| unsigned int page, unsigned int pages, unsigned char *data) |
| { |
| int rc; |
| unsigned char command[] = { |
| ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), |
| PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) |
| }; |
| |
| usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); |
| } |
| |
| /* |
| * Reads data from a certain offset page inside a PBA, excluding redundancy |
| * data. Returns pagesize*pages bytes in data. Note that data must be big enough |
| * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' |
| * trailing bytes outside this function. |
| */ |
| static int alauda_read_block(struct us_data *us, u16 pba, |
| unsigned int page, unsigned int pages, unsigned char *data) |
| { |
| int i, rc; |
| unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| |
| rc = alauda_read_block_raw(us, pba, page, pages, data); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| /* Cut out the redundancy data */ |
| for (i = 0; i < pages; i++) { |
| int dest_offset = i * pagesize; |
| int src_offset = i * (pagesize + 64); |
| memmove(data + dest_offset, data + src_offset, pagesize); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Writes an entire block of data and checks status after write. |
| * Redundancy data must be already included in data. Data should be |
| * (pagesize+64)*blocksize bytes in length. |
| */ |
| static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) |
| { |
| int rc; |
| struct alauda_info *info = (struct alauda_info *) us->extra; |
| unsigned char command[] = { |
| ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), |
| PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) |
| }; |
| |
| usb_stor_dbg(us, "pba %d\n", pba); |
| |
| rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| command, 9, NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, |
| (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, |
| NULL); |
| if (rc != USB_STOR_XFER_GOOD) |
| return rc; |
| |
| return alauda_check_status2(us); |
| } |
| |
| /* |
| * Write some data to a specific LBA. |
| */ |
| static int alauda_write_lba(struct us_data *us, u16 lba, |
| unsigned int page, unsigned int pages, |
| unsigned char *ptr, unsigned char *blockbuffer) |
| { |
| u16 pba, lbap, new_pba; |
| unsigned char *bptr, *cptr, *xptr; |
| unsigned char ecc[3]; |
| int i, result; |
| unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| unsigned int zonesize = MEDIA_INFO(us).zonesize; |
| unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| unsigned int lba_offset = lba % uzonesize; |
| unsigned int new_pba_offset; |
| unsigned int zone = lba / uzonesize; |
| |
| alauda_ensure_map_for_zone(us, zone); |
| |
| pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; |
| if (pba == 1) { |
| /* |
| * Maybe it is impossible to write to PBA 1. |
| * Fake success, but don't do anything. |
| */ |
| printk(KERN_WARNING |
| "alauda_write_lba: avoid writing to pba 1\n"); |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); |
| if (!new_pba) { |
| printk(KERN_WARNING |
| "alauda_write_lba: Out of unused blocks\n"); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* read old contents */ |
| if (pba != UNDEF) { |
| result = alauda_read_block_raw(us, pba, 0, |
| blocksize, blockbuffer); |
| if (result != USB_STOR_XFER_GOOD) |
| return result; |
| } else { |
| memset(blockbuffer, 0, blocksize * (pagesize + 64)); |
| } |
| |
| lbap = (lba_offset << 1) | 0x1000; |
| if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) |
| lbap ^= 1; |
| |
| /* check old contents and fill lba */ |
| for (i = 0; i < blocksize; i++) { |
| bptr = blockbuffer + (i * (pagesize + 64)); |
| cptr = bptr + pagesize; |
| nand_compute_ecc(bptr, ecc); |
| if (!nand_compare_ecc(cptr+13, ecc)) { |
| usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", |
| i, pba); |
| nand_store_ecc(cptr+13, ecc); |
| } |
| nand_compute_ecc(bptr + (pagesize / 2), ecc); |
| if (!nand_compare_ecc(cptr+8, ecc)) { |
| usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", |
| i, pba); |
| nand_store_ecc(cptr+8, ecc); |
| } |
| cptr[6] = cptr[11] = MSB_of(lbap); |
| cptr[7] = cptr[12] = LSB_of(lbap); |
| } |
| |
| /* copy in new stuff and compute ECC */ |
| xptr = ptr; |
| for (i = page; i < page+pages; i++) { |
| bptr = blockbuffer + (i * (pagesize + 64)); |
| cptr = bptr + pagesize; |
| memcpy(bptr, xptr, pagesize); |
| xptr += pagesize; |
| nand_compute_ecc(bptr, ecc); |
| nand_store_ecc(cptr+13, ecc); |
| nand_compute_ecc(bptr + (pagesize / 2), ecc); |
| nand_store_ecc(cptr+8, ecc); |
| } |
| |
| result = alauda_write_block(us, new_pba, blockbuffer); |
| if (result != USB_STOR_XFER_GOOD) |
| return result; |
| |
| new_pba_offset = new_pba - (zone * zonesize); |
| MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; |
| MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; |
| usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); |
| |
| if (pba != UNDEF) { |
| unsigned int pba_offset = pba - (zone * zonesize); |
| result = alauda_erase_block(us, pba); |
| if (result != USB_STOR_XFER_GOOD) |
| return result; |
| MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; |
| } |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| /* |
| * Read data from a specific sector address |
| */ |
| static int alauda_read_data(struct us_data *us, unsigned long address, |
| unsigned int sectors) |
| { |
| unsigned char *buffer; |
| u16 lba, max_lba; |
| unsigned int page, len, offset; |
| unsigned int blockshift = MEDIA_INFO(us).blockshift; |
| unsigned int pageshift = MEDIA_INFO(us).pageshift; |
| unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| struct scatterlist *sg; |
| int result; |
| |
| /* |
| * Since we only read in one block at a time, we have to create |
| * a bounce buffer and move the data a piece at a time between the |
| * bounce buffer and the actual transfer buffer. |
| * We make this buffer big enough to hold temporary redundancy data, |
| * which we use when reading the data blocks. |
| */ |
| |
| len = min(sectors, blocksize) * (pagesize + 64); |
| buffer = kmalloc(len, GFP_NOIO); |
| if (!buffer) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* Figure out the initial LBA and page */ |
| lba = address >> blockshift; |
| page = (address & MEDIA_INFO(us).blockmask); |
| max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); |
| |
| result = USB_STOR_TRANSPORT_GOOD; |
| offset = 0; |
| sg = NULL; |
| |
| while (sectors > 0) { |
| unsigned int zone = lba / uzonesize; /* integer division */ |
| unsigned int lba_offset = lba - (zone * uzonesize); |
| unsigned int pages; |
| u16 pba; |
| alauda_ensure_map_for_zone(us, zone); |
| |
| /* Not overflowing capacity? */ |
| if (lba >= max_lba) { |
| usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", |
| lba, max_lba); |
| result = USB_STOR_TRANSPORT_ERROR; |
| break; |
| } |
| |
| /* Find number of pages we can read in this block */ |
| pages = min(sectors, blocksize - page); |
| len = pages << pageshift; |
| |
| /* Find where this lba lives on disk */ |
| pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; |
| |
| if (pba == UNDEF) { /* this lba was never written */ |
| usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", |
| pages, lba, page); |
| |
| /* |
| * This is not really an error. It just means |
| * that the block has never been written. |
| * Instead of returning USB_STOR_TRANSPORT_ERROR |
| * it is better to return all zero data. |
| */ |
| |
| memset(buffer, 0, len); |
| } else { |
| usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", |
| pages, pba, lba, page); |
| |
| result = alauda_read_block(us, pba, page, pages, buffer); |
| if (result != USB_STOR_TRANSPORT_GOOD) |
| break; |
| } |
| |
| /* Store the data in the transfer buffer */ |
| usb_stor_access_xfer_buf(buffer, len, us->srb, |
| &sg, &offset, TO_XFER_BUF); |
| |
| page = 0; |
| lba++; |
| sectors -= pages; |
| } |
| |
| kfree(buffer); |
| return result; |
| } |
| |
| /* |
| * Write data to a specific sector address |
| */ |
| static int alauda_write_data(struct us_data *us, unsigned long address, |
| unsigned int sectors) |
| { |
| unsigned char *buffer, *blockbuffer; |
| unsigned int page, len, offset; |
| unsigned int blockshift = MEDIA_INFO(us).blockshift; |
| unsigned int pageshift = MEDIA_INFO(us).pageshift; |
| unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| struct scatterlist *sg; |
| u16 lba, max_lba; |
| int result; |
| |
| /* |
| * Since we don't write the user data directly to the device, |
| * we have to create a bounce buffer and move the data a piece |
| * at a time between the bounce buffer and the actual transfer buffer. |
| */ |
| |
| len = min(sectors, blocksize) * pagesize; |
| buffer = kmalloc(len, GFP_NOIO); |
| if (!buffer) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| /* |
| * We also need a temporary block buffer, where we read in the old data, |
| * overwrite parts with the new data, and manipulate the redundancy data |
| */ |
| blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO); |
| if (!blockbuffer) { |
| kfree(buffer); |
| return USB_STOR_TRANSPORT_ERROR; |
| } |
| |
| /* Figure out the initial LBA and page */ |
| lba = address >> blockshift; |
| page = (address & MEDIA_INFO(us).blockmask); |
| max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); |
| |
| result = USB_STOR_TRANSPORT_GOOD; |
| offset = 0; |
| sg = NULL; |
| |
| while (sectors > 0) { |
| /* Write as many sectors as possible in this block */ |
| unsigned int pages = min(sectors, blocksize - page); |
| len = pages << pageshift; |
| |
| /* Not overflowing capacity? */ |
| if (lba >= max_lba) { |
| usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", |
| lba, max_lba); |
| result = USB_STOR_TRANSPORT_ERROR; |
| break; |
| } |
| |
| /* Get the data from the transfer buffer */ |
| usb_stor_access_xfer_buf(buffer, len, us->srb, |
| &sg, &offset, FROM_XFER_BUF); |
| |
| result = alauda_write_lba(us, lba, page, pages, buffer, |
| blockbuffer); |
| if (result != USB_STOR_TRANSPORT_GOOD) |
| break; |
| |
| page = 0; |
| lba++; |
| sectors -= pages; |
| } |
| |
| kfree(buffer); |
| kfree(blockbuffer); |
| return result; |
| } |
| |
| /* |
| * Our interface with the rest of the world |
| */ |
| |
| static void alauda_info_destructor(void *extra) |
| { |
| struct alauda_info *info = (struct alauda_info *) extra; |
| int port; |
| |
| if (!info) |
| return; |
| |
| for (port = 0; port < 2; port++) { |
| struct alauda_media_info *media_info = &info->port[port]; |
| |
| alauda_free_maps(media_info); |
| kfree(media_info->lba_to_pba); |
| kfree(media_info->pba_to_lba); |
| } |
| } |
| |
| /* |
| * Initialize alauda_info struct and find the data-write endpoint |
| */ |
| static int init_alauda(struct us_data *us) |
| { |
| struct alauda_info *info; |
| struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; |
| nand_init_ecc(); |
| |
| us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); |
| if (!us->extra) |
| return USB_STOR_TRANSPORT_ERROR; |
| |
| info = (struct alauda_info *) us->extra; |
| us->extra_destructor = alauda_info_destructor; |
| |
| info->wr_ep = usb_sndbulkpipe(us->pusb_dev, |
| altsetting->endpoint[0].desc.bEndpointAddress |
| & USB_ENDPOINT_NUMBER_MASK); |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) |
| { |
| int rc; |
| struct alauda_info *info = (struct alauda_info *) us->extra; |
| unsigned char *ptr = us->iobuf; |
| static unsigned char inquiry_response[36] = { |
| 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 |
| }; |
| |
| if (srb->cmnd[0] == INQUIRY) { |
| usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); |
| memcpy(ptr, inquiry_response, sizeof(inquiry_response)); |
| fill_inquiry_response(us, ptr, 36); |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == TEST_UNIT_READY) { |
| usb_stor_dbg(us, "TEST_UNIT_READY\n"); |
| return alauda_check_media(us); |
| } |
| |
| if (srb->cmnd[0] == READ_CAPACITY) { |
| unsigned int num_zones; |
| unsigned long capacity; |
| |
| rc = alauda_check_media(us); |
| if (rc != USB_STOR_TRANSPORT_GOOD) |
| return rc; |
| |
| num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift |
| + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); |
| |
| capacity = num_zones * MEDIA_INFO(us).uzonesize |
| * MEDIA_INFO(us).blocksize; |
| |
| /* Report capacity and page size */ |
| ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); |
| ((__be32 *) ptr)[1] = cpu_to_be32(512); |
| |
| usb_stor_set_xfer_buf(ptr, 8, srb); |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == READ_10) { |
| unsigned int page, pages; |
| |
| rc = alauda_check_media(us); |
| if (rc != USB_STOR_TRANSPORT_GOOD) |
| return rc; |
| |
| page = short_pack(srb->cmnd[3], srb->cmnd[2]); |
| page <<= 16; |
| page |= short_pack(srb->cmnd[5], srb->cmnd[4]); |
| pages = short_pack(srb->cmnd[8], srb->cmnd[7]); |
| |
| usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); |
| |
| return alauda_read_data(us, page, pages); |
| } |
| |
| if (srb->cmnd[0] == WRITE_10) { |
| unsigned int page, pages; |
| |
| rc = alauda_check_media(us); |
| if (rc != USB_STOR_TRANSPORT_GOOD) |
| return rc; |
| |
| page = short_pack(srb->cmnd[3], srb->cmnd[2]); |
| page <<= 16; |
| page |= short_pack(srb->cmnd[5], srb->cmnd[4]); |
| pages = short_pack(srb->cmnd[8], srb->cmnd[7]); |
| |
| usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); |
| |
| return alauda_write_data(us, page, pages); |
| } |
| |
| if (srb->cmnd[0] == REQUEST_SENSE) { |
| usb_stor_dbg(us, "REQUEST_SENSE\n"); |
| |
| memset(ptr, 0, 18); |
| ptr[0] = 0xF0; |
| ptr[2] = info->sense_key; |
| ptr[7] = 11; |
| ptr[12] = info->sense_asc; |
| ptr[13] = info->sense_ascq; |
| usb_stor_set_xfer_buf(ptr, 18, srb); |
| |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { |
| /* |
| * sure. whatever. not like we can stop the user from popping |
| * the media out of the device (no locking doors, etc) |
| */ |
| return USB_STOR_TRANSPORT_GOOD; |
| } |
| |
| usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", |
| srb->cmnd[0], srb->cmnd[0]); |
| info->sense_key = 0x05; |
| info->sense_asc = 0x20; |
| info->sense_ascq = 0x00; |
| return USB_STOR_TRANSPORT_FAILED; |
| } |
| |
| static struct scsi_host_template alauda_host_template; |
| |
| static int alauda_probe(struct usb_interface *intf, |
| const struct usb_device_id *id) |
| { |
| struct us_data *us; |
| int result; |
| |
| result = usb_stor_probe1(&us, intf, id, |
| (id - alauda_usb_ids) + alauda_unusual_dev_list, |
| &alauda_host_template); |
| if (result) |
| return result; |
| |
| us->transport_name = "Alauda Control/Bulk"; |
| us->transport = alauda_transport; |
| us->transport_reset = usb_stor_Bulk_reset; |
| us->max_lun = 1; |
| |
| result = usb_stor_probe2(us); |
| return result; |
| } |
| |
| static struct usb_driver alauda_driver = { |
| .name = DRV_NAME, |
| .probe = alauda_probe, |
| .disconnect = usb_stor_disconnect, |
| .suspend = usb_stor_suspend, |
| .resume = usb_stor_resume, |
| .reset_resume = usb_stor_reset_resume, |
| .pre_reset = usb_stor_pre_reset, |
| .post_reset = usb_stor_post_reset, |
| .id_table = alauda_usb_ids, |
| .soft_unbind = 1, |
| .no_dynamic_id = 1, |
| }; |
| |
| module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME); |