blob: 42c02a20ec97cafa5336c63ccae019c5735021ae [file] [log] [blame]
/*
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/moduleparam.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include "wil6210.h"
#include "txrx.h"
#include "wmi.h"
#include "trace.h"
static uint max_assoc_sta = WIL6210_MAX_CID;
module_param(max_assoc_sta, uint, 0644);
MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
int agg_wsize; /* = 0; */
module_param(agg_wsize, int, 0644);
MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
" 0 - use default; < 0 - don't auto-establish");
u8 led_id = WIL_LED_INVALID_ID;
module_param(led_id, byte, 0444);
MODULE_PARM_DESC(led_id,
" 60G device led enablement. Set the led ID (0-2) to enable");
#define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
#define WIL_WMI_CALL_GENERAL_TO_MS 100
/**
* WMI event receiving - theory of operations
*
* When firmware about to report WMI event, it fills memory area
* in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
* the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
*
* @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
* event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
* and handles events within the @wmi_event_worker. Every event get detached
* from list, processed and deleted.
*
* Purpose for this mechanism is to release IRQ thread; otherwise,
* if WMI event handling involves another WMI command flow, this 2-nd flow
* won't be completed because of blocked IRQ thread.
*/
/**
* Addressing - theory of operations
*
* There are several buses present on the WIL6210 card.
* Same memory areas are visible at different address on
* the different busses. There are 3 main bus masters:
* - MAC CPU (ucode)
* - User CPU (firmware)
* - AHB (host)
*
* On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
* AHB addresses starting from 0x880000
*
* Internally, firmware uses addresses that allow faster access but
* are invisible from the host. To read from these addresses, alternative
* AHB address must be used.
*/
/**
* @sparrow_fw_mapping provides memory remapping table for sparrow
*
* array size should be in sync with the declaration in the wil6210.h
*
* Sparrow memory mapping:
* Linker address PCI/Host address
* 0x880000 .. 0xa80000 2Mb BAR0
* 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM
* 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH
*/
const struct fw_map sparrow_fw_mapping[] = {
/* FW code RAM 256k */
{0x000000, 0x040000, 0x8c0000, "fw_code", true, true},
/* FW data RAM 32k */
{0x800000, 0x808000, 0x900000, "fw_data", true, true},
/* periph data 128k */
{0x840000, 0x860000, 0x908000, "fw_peri", true, true},
/* various RGF 40k */
{0x880000, 0x88a000, 0x880000, "rgf", true, true},
/* AGC table 4k */
{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
/* Pcie_ext_rgf 4k */
{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
/* mac_ext_rgf 512b */
{0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true},
/* upper area 548k */
{0x8c0000, 0x949000, 0x8c0000, "upper", true, true},
/* UCODE areas - accessible by debugfs blobs but not by
* wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
*/
/* ucode code RAM 128k */
{0x000000, 0x020000, 0x920000, "uc_code", false, false},
/* ucode data RAM 16k */
{0x800000, 0x804000, 0x940000, "uc_data", false, false},
};
/**
* @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
* it is a bit larger to support extra features
*/
const struct fw_map sparrow_d0_mac_rgf_ext = {
0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true
};
/**
* @talyn_fw_mapping provides memory remapping table for Talyn
*
* array size should be in sync with the declaration in the wil6210.h
*
* Talyn memory mapping:
* Linker address PCI/Host address
* 0x880000 .. 0xc80000 4Mb BAR0
* 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
* 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
*/
const struct fw_map talyn_fw_mapping[] = {
/* FW code RAM 1M */
{0x000000, 0x100000, 0x900000, "fw_code", true, true},
/* FW data RAM 128k */
{0x800000, 0x820000, 0xa00000, "fw_data", true, true},
/* periph. data RAM 96k */
{0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
/* various RGF 40k */
{0x880000, 0x88a000, 0x880000, "rgf", true, true},
/* AGC table 4k */
{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
/* Pcie_ext_rgf 4k */
{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
/* mac_ext_rgf 1344b */
{0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true},
/* ext USER RGF 4k */
{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
/* OTP 4k */
{0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
/* DMA EXT RGF 64k */
{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
/* upper area 1536k */
{0x900000, 0xa80000, 0x900000, "upper", true, true},
/* UCODE areas - accessible by debugfs blobs but not by
* wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
*/
/* ucode code RAM 256k */
{0x000000, 0x040000, 0xa38000, "uc_code", false, false},
/* ucode data RAM 32k */
{0x800000, 0x808000, 0xa78000, "uc_data", false, false},
};
/**
* @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB
*
* array size should be in sync with the declaration in the wil6210.h
*
* Talyn MB memory mapping:
* Linker address PCI/Host address
* 0x880000 .. 0xc80000 4Mb BAR0
* 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
* 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
*/
const struct fw_map talyn_mb_fw_mapping[] = {
/* FW code RAM 768k */
{0x000000, 0x0c0000, 0x900000, "fw_code", true, true},
/* FW data RAM 128k */
{0x800000, 0x820000, 0xa00000, "fw_data", true, true},
/* periph. data RAM 96k */
{0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
/* various RGF 40k */
{0x880000, 0x88a000, 0x880000, "rgf", true, true},
/* AGC table 4k */
{0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
/* Pcie_ext_rgf 4k */
{0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
/* mac_ext_rgf 2256b */
{0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true},
/* ext USER RGF 4k */
{0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
/* SEC PKA 16k */
{0x890000, 0x894000, 0x890000, "sec_pka", true, true},
/* SEC KDF RGF 3096b */
{0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true},
/* SEC MAIN 2124b */
{0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true},
/* OTP 4k */
{0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
/* DMA EXT RGF 64k */
{0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
/* DUM USER RGF 528b */
{0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true},
/* DMA OFU 296b */
{0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true},
/* ucode debug 4k */
{0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true},
/* upper area 1536k */
{0x900000, 0xa80000, 0x900000, "upper", true, true},
/* UCODE areas - accessible by debugfs blobs but not by
* wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
*/
/* ucode code RAM 256k */
{0x000000, 0x040000, 0xa38000, "uc_code", false, false},
/* ucode data RAM 32k */
{0x800000, 0x808000, 0xa78000, "uc_data", false, false},
};
struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
struct blink_on_off_time led_blink_time[] = {
{WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
{WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
{WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
};
u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
/**
* return AHB address for given firmware internal (linker) address
* @x - internal address
* If address have no valid AHB mapping, return 0
*/
static u32 wmi_addr_remap(u32 x)
{
uint i;
for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
if (fw_mapping[i].fw &&
((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
return x + fw_mapping[i].host - fw_mapping[i].from;
}
return 0;
}
/**
* find fw_mapping entry by section name
* @section - section name
*
* Return pointer to section or NULL if not found
*/
struct fw_map *wil_find_fw_mapping(const char *section)
{
int i;
for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
if (fw_mapping[i].name &&
!strcmp(section, fw_mapping[i].name))
return &fw_mapping[i];
return NULL;
}
/**
* Check address validity for WMI buffer; remap if needed
* @ptr - internal (linker) fw/ucode address
* @size - if non zero, validate the block does not
* exceed the device memory (bar)
*
* Valid buffer should be DWORD aligned
*
* return address for accessing buffer from the host;
* if buffer is not valid, return NULL.
*/
void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
{
u32 off;
u32 ptr = le32_to_cpu(ptr_);
if (ptr % 4)
return NULL;
ptr = wmi_addr_remap(ptr);
if (ptr < WIL6210_FW_HOST_OFF)
return NULL;
off = HOSTADDR(ptr);
if (off > wil->bar_size - 4)
return NULL;
if (size && ((off + size > wil->bar_size) || (off + size < off)))
return NULL;
return wil->csr + off;
}
void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
{
return wmi_buffer_block(wil, ptr_, 0);
}
/**
* Check address validity
*/
void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
{
u32 off;
if (ptr % 4)
return NULL;
if (ptr < WIL6210_FW_HOST_OFF)
return NULL;
off = HOSTADDR(ptr);
if (off > wil->bar_size - 4)
return NULL;
return wil->csr + off;
}
int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
struct wil6210_mbox_hdr *hdr)
{
void __iomem *src = wmi_buffer(wil, ptr);
if (!src)
return -EINVAL;
wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
return 0;
}
static const char *cmdid2name(u16 cmdid)
{
switch (cmdid) {
case WMI_NOTIFY_REQ_CMDID:
return "WMI_NOTIFY_REQ_CMD";
case WMI_START_SCAN_CMDID:
return "WMI_START_SCAN_CMD";
case WMI_CONNECT_CMDID:
return "WMI_CONNECT_CMD";
case WMI_DISCONNECT_CMDID:
return "WMI_DISCONNECT_CMD";
case WMI_SW_TX_REQ_CMDID:
return "WMI_SW_TX_REQ_CMD";
case WMI_GET_RF_SECTOR_PARAMS_CMDID:
return "WMI_GET_RF_SECTOR_PARAMS_CMD";
case WMI_SET_RF_SECTOR_PARAMS_CMDID:
return "WMI_SET_RF_SECTOR_PARAMS_CMD";
case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
case WMI_BRP_SET_ANT_LIMIT_CMDID:
return "WMI_BRP_SET_ANT_LIMIT_CMD";
case WMI_TOF_SESSION_START_CMDID:
return "WMI_TOF_SESSION_START_CMD";
case WMI_AOA_MEAS_CMDID:
return "WMI_AOA_MEAS_CMD";
case WMI_PMC_CMDID:
return "WMI_PMC_CMD";
case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
case WMI_VRING_CFG_CMDID:
return "WMI_VRING_CFG_CMD";
case WMI_BCAST_VRING_CFG_CMDID:
return "WMI_BCAST_VRING_CFG_CMD";
case WMI_TRAFFIC_SUSPEND_CMDID:
return "WMI_TRAFFIC_SUSPEND_CMD";
case WMI_TRAFFIC_RESUME_CMDID:
return "WMI_TRAFFIC_RESUME_CMD";
case WMI_ECHO_CMDID:
return "WMI_ECHO_CMD";
case WMI_SET_MAC_ADDRESS_CMDID:
return "WMI_SET_MAC_ADDRESS_CMD";
case WMI_LED_CFG_CMDID:
return "WMI_LED_CFG_CMD";
case WMI_PCP_START_CMDID:
return "WMI_PCP_START_CMD";
case WMI_PCP_STOP_CMDID:
return "WMI_PCP_STOP_CMD";
case WMI_SET_SSID_CMDID:
return "WMI_SET_SSID_CMD";
case WMI_GET_SSID_CMDID:
return "WMI_GET_SSID_CMD";
case WMI_SET_PCP_CHANNEL_CMDID:
return "WMI_SET_PCP_CHANNEL_CMD";
case WMI_GET_PCP_CHANNEL_CMDID:
return "WMI_GET_PCP_CHANNEL_CMD";
case WMI_P2P_CFG_CMDID:
return "WMI_P2P_CFG_CMD";
case WMI_PORT_ALLOCATE_CMDID:
return "WMI_PORT_ALLOCATE_CMD";
case WMI_PORT_DELETE_CMDID:
return "WMI_PORT_DELETE_CMD";
case WMI_START_LISTEN_CMDID:
return "WMI_START_LISTEN_CMD";
case WMI_START_SEARCH_CMDID:
return "WMI_START_SEARCH_CMD";
case WMI_DISCOVERY_STOP_CMDID:
return "WMI_DISCOVERY_STOP_CMD";
case WMI_DELETE_CIPHER_KEY_CMDID:
return "WMI_DELETE_CIPHER_KEY_CMD";
case WMI_ADD_CIPHER_KEY_CMDID:
return "WMI_ADD_CIPHER_KEY_CMD";
case WMI_SET_APPIE_CMDID:
return "WMI_SET_APPIE_CMD";
case WMI_CFG_RX_CHAIN_CMDID:
return "WMI_CFG_RX_CHAIN_CMD";
case WMI_TEMP_SENSE_CMDID:
return "WMI_TEMP_SENSE_CMD";
case WMI_DEL_STA_CMDID:
return "WMI_DEL_STA_CMD";
case WMI_DISCONNECT_STA_CMDID:
return "WMI_DISCONNECT_STA_CMD";
case WMI_RING_BA_EN_CMDID:
return "WMI_RING_BA_EN_CMD";
case WMI_RING_BA_DIS_CMDID:
return "WMI_RING_BA_DIS_CMD";
case WMI_RCP_DELBA_CMDID:
return "WMI_RCP_DELBA_CMD";
case WMI_RCP_ADDBA_RESP_CMDID:
return "WMI_RCP_ADDBA_RESP_CMD";
case WMI_RCP_ADDBA_RESP_EDMA_CMDID:
return "WMI_RCP_ADDBA_RESP_EDMA_CMD";
case WMI_PS_DEV_PROFILE_CFG_CMDID:
return "WMI_PS_DEV_PROFILE_CFG_CMD";
case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
case WMI_ABORT_SCAN_CMDID:
return "WMI_ABORT_SCAN_CMD";
case WMI_NEW_STA_CMDID:
return "WMI_NEW_STA_CMD";
case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
case WMI_START_SCHED_SCAN_CMDID:
return "WMI_START_SCHED_SCAN_CMD";
case WMI_STOP_SCHED_SCAN_CMDID:
return "WMI_STOP_SCHED_SCAN_CMD";
case WMI_TX_STATUS_RING_ADD_CMDID:
return "WMI_TX_STATUS_RING_ADD_CMD";
case WMI_RX_STATUS_RING_ADD_CMDID:
return "WMI_RX_STATUS_RING_ADD_CMD";
case WMI_TX_DESC_RING_ADD_CMDID:
return "WMI_TX_DESC_RING_ADD_CMD";
case WMI_RX_DESC_RING_ADD_CMDID:
return "WMI_RX_DESC_RING_ADD_CMD";
case WMI_BCAST_DESC_RING_ADD_CMDID:
return "WMI_BCAST_DESC_RING_ADD_CMD";
case WMI_CFG_DEF_RX_OFFLOAD_CMDID:
return "WMI_CFG_DEF_RX_OFFLOAD_CMD";
case WMI_LINK_STATS_CMDID:
return "WMI_LINK_STATS_CMD";
case WMI_SW_TX_REQ_EXT_CMDID:
return "WMI_SW_TX_REQ_EXT_CMDID";
default:
return "Untracked CMD";
}
}
static const char *eventid2name(u16 eventid)
{
switch (eventid) {
case WMI_NOTIFY_REQ_DONE_EVENTID:
return "WMI_NOTIFY_REQ_DONE_EVENT";
case WMI_DISCONNECT_EVENTID:
return "WMI_DISCONNECT_EVENT";
case WMI_SW_TX_COMPLETE_EVENTID:
return "WMI_SW_TX_COMPLETE_EVENT";
case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
case WMI_BRP_SET_ANT_LIMIT_EVENTID:
return "WMI_BRP_SET_ANT_LIMIT_EVENT";
case WMI_FW_READY_EVENTID:
return "WMI_FW_READY_EVENT";
case WMI_TRAFFIC_RESUME_EVENTID:
return "WMI_TRAFFIC_RESUME_EVENT";
case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
case WMI_VRING_CFG_DONE_EVENTID:
return "WMI_VRING_CFG_DONE_EVENT";
case WMI_READY_EVENTID:
return "WMI_READY_EVENT";
case WMI_RX_MGMT_PACKET_EVENTID:
return "WMI_RX_MGMT_PACKET_EVENT";
case WMI_TX_MGMT_PACKET_EVENTID:
return "WMI_TX_MGMT_PACKET_EVENT";
case WMI_SCAN_COMPLETE_EVENTID:
return "WMI_SCAN_COMPLETE_EVENT";
case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
case WMI_CONNECT_EVENTID:
return "WMI_CONNECT_EVENT";
case WMI_EAPOL_RX_EVENTID:
return "WMI_EAPOL_RX_EVENT";
case WMI_BA_STATUS_EVENTID:
return "WMI_BA_STATUS_EVENT";
case WMI_RCP_ADDBA_REQ_EVENTID:
return "WMI_RCP_ADDBA_REQ_EVENT";
case WMI_DELBA_EVENTID:
return "WMI_DELBA_EVENT";
case WMI_RING_EN_EVENTID:
return "WMI_RING_EN_EVENT";
case WMI_DATA_PORT_OPEN_EVENTID:
return "WMI_DATA_PORT_OPEN_EVENT";
case WMI_AOA_MEAS_EVENTID:
return "WMI_AOA_MEAS_EVENT";
case WMI_TOF_SESSION_END_EVENTID:
return "WMI_TOF_SESSION_END_EVENT";
case WMI_TOF_GET_CAPABILITIES_EVENTID:
return "WMI_TOF_GET_CAPABILITIES_EVENT";
case WMI_TOF_SET_LCR_EVENTID:
return "WMI_TOF_SET_LCR_EVENT";
case WMI_TOF_SET_LCI_EVENTID:
return "WMI_TOF_SET_LCI_EVENT";
case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
case WMI_TOF_CHANNEL_INFO_EVENTID:
return "WMI_TOF_CHANNEL_INFO_EVENT";
case WMI_TRAFFIC_SUSPEND_EVENTID:
return "WMI_TRAFFIC_SUSPEND_EVENT";
case WMI_ECHO_RSP_EVENTID:
return "WMI_ECHO_RSP_EVENT";
case WMI_LED_CFG_DONE_EVENTID:
return "WMI_LED_CFG_DONE_EVENT";
case WMI_PCP_STARTED_EVENTID:
return "WMI_PCP_STARTED_EVENT";
case WMI_PCP_STOPPED_EVENTID:
return "WMI_PCP_STOPPED_EVENT";
case WMI_GET_SSID_EVENTID:
return "WMI_GET_SSID_EVENT";
case WMI_GET_PCP_CHANNEL_EVENTID:
return "WMI_GET_PCP_CHANNEL_EVENT";
case WMI_P2P_CFG_DONE_EVENTID:
return "WMI_P2P_CFG_DONE_EVENT";
case WMI_PORT_ALLOCATED_EVENTID:
return "WMI_PORT_ALLOCATED_EVENT";
case WMI_PORT_DELETED_EVENTID:
return "WMI_PORT_DELETED_EVENT";
case WMI_LISTEN_STARTED_EVENTID:
return "WMI_LISTEN_STARTED_EVENT";
case WMI_SEARCH_STARTED_EVENTID:
return "WMI_SEARCH_STARTED_EVENT";
case WMI_DISCOVERY_STOPPED_EVENTID:
return "WMI_DISCOVERY_STOPPED_EVENT";
case WMI_CFG_RX_CHAIN_DONE_EVENTID:
return "WMI_CFG_RX_CHAIN_DONE_EVENT";
case WMI_TEMP_SENSE_DONE_EVENTID:
return "WMI_TEMP_SENSE_DONE_EVENT";
case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
case WMI_PS_DEV_PROFILE_CFG_EVENTID:
return "WMI_PS_DEV_PROFILE_CFG_EVENT";
case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
case WMI_START_SCHED_SCAN_EVENTID:
return "WMI_START_SCHED_SCAN_EVENT";
case WMI_STOP_SCHED_SCAN_EVENTID:
return "WMI_STOP_SCHED_SCAN_EVENT";
case WMI_SCHED_SCAN_RESULT_EVENTID:
return "WMI_SCHED_SCAN_RESULT_EVENT";
case WMI_TX_STATUS_RING_CFG_DONE_EVENTID:
return "WMI_TX_STATUS_RING_CFG_DONE_EVENT";
case WMI_RX_STATUS_RING_CFG_DONE_EVENTID:
return "WMI_RX_STATUS_RING_CFG_DONE_EVENT";
case WMI_TX_DESC_RING_CFG_DONE_EVENTID:
return "WMI_TX_DESC_RING_CFG_DONE_EVENT";
case WMI_RX_DESC_RING_CFG_DONE_EVENTID:
return "WMI_RX_DESC_RING_CFG_DONE_EVENT";
case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID:
return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT";
case WMI_LINK_STATS_CONFIG_DONE_EVENTID:
return "WMI_LINK_STATS_CONFIG_DONE_EVENT";
case WMI_LINK_STATS_EVENTID:
return "WMI_LINK_STATS_EVENT";
default:
return "Untracked EVENT";
}
}
static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
void *buf, u16 len)
{
struct {
struct wil6210_mbox_hdr hdr;
struct wmi_cmd_hdr wmi;
} __packed cmd = {
.hdr = {
.type = WIL_MBOX_HDR_TYPE_WMI,
.flags = 0,
.len = cpu_to_le16(sizeof(cmd.wmi) + len),
},
.wmi = {
.mid = mid,
.command_id = cpu_to_le16(cmdid),
},
};
struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
struct wil6210_mbox_ring_desc d_head;
u32 next_head;
void __iomem *dst;
void __iomem *head = wmi_addr(wil, r->head);
uint retry;
int rc = 0;
if (len > r->entry_size - sizeof(cmd)) {
wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
(int)(sizeof(cmd) + len), r->entry_size);
return -ERANGE;
}
might_sleep();
if (!test_bit(wil_status_fwready, wil->status)) {
wil_err(wil, "WMI: cannot send command while FW not ready\n");
return -EAGAIN;
}
/* Allow sending only suspend / resume commands during susepnd flow */
if ((test_bit(wil_status_suspending, wil->status) ||
test_bit(wil_status_suspended, wil->status) ||
test_bit(wil_status_resuming, wil->status)) &&
((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
(cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
wil_err(wil, "WMI: reject send_command during suspend\n");
return -EINVAL;
}
if (!head) {
wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
return -EINVAL;
}
wil_halp_vote(wil);
/* read Tx head till it is not busy */
for (retry = 5; retry > 0; retry--) {
wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
if (d_head.sync == 0)
break;
msleep(20);
}
if (d_head.sync != 0) {
wil_err(wil, "WMI head busy\n");
rc = -EBUSY;
goto out;
}
/* next head */
next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
/* wait till FW finish with previous command */
for (retry = 5; retry > 0; retry--) {
if (!test_bit(wil_status_fwready, wil->status)) {
wil_err(wil, "WMI: cannot send command while FW not ready\n");
rc = -EAGAIN;
goto out;
}
r->tail = wil_r(wil, RGF_MBOX +
offsetof(struct wil6210_mbox_ctl, tx.tail));
if (next_head != r->tail)
break;
msleep(20);
}
if (next_head == r->tail) {
wil_err(wil, "WMI ring full\n");
rc = -EBUSY;
goto out;
}
dst = wmi_buffer(wil, d_head.addr);
if (!dst) {
wil_err(wil, "invalid WMI buffer: 0x%08x\n",
le32_to_cpu(d_head.addr));
rc = -EAGAIN;
goto out;
}
cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
/* set command */
wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
cmdid2name(cmdid), cmdid, len, mid);
wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
sizeof(cmd), true);
wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
len, true);
wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
/* mark entry as full */
wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
/* advance next ptr */
wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
r->head = next_head);
trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
/* interrupt to FW */
wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
SW_INT_MBOX);
out:
wil_halp_unvote(wil);
return rc;
}
int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
{
int rc;
mutex_lock(&wil->wmi_mutex);
rc = __wmi_send(wil, cmdid, mid, buf, len);
mutex_unlock(&wil->wmi_mutex);
return rc;
}
/*=== Event handlers ===*/
static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wiphy *wiphy = wil_to_wiphy(wil);
struct wmi_ready_event *evt = d;
wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
wil->fw_version, le32_to_cpu(evt->sw_version),
evt->mac, evt->numof_additional_mids);
if (evt->numof_additional_mids + 1 < wil->max_vifs) {
wil_err(wil, "FW does not support enough MIDs (need %d)",
wil->max_vifs - 1);
return; /* FW load will fail after timeout */
}
/* ignore MAC address, we already have it from the boot loader */
strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
wil_dbg_wmi(wil, "rfc calibration result %d\n",
evt->rfc_read_calib_result);
wil->fw_calib_result = evt->rfc_read_calib_result;
}
wil_set_recovery_state(wil, fw_recovery_idle);
set_bit(wil_status_fwready, wil->status);
/* let the reset sequence continue */
complete(&wil->wmi_ready);
}
static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_rx_mgmt_packet_event *data = d;
struct wiphy *wiphy = wil_to_wiphy(wil);
struct ieee80211_mgmt *rx_mgmt_frame =
(struct ieee80211_mgmt *)data->payload;
int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
int ch_no;
u32 freq;
struct ieee80211_channel *channel;
s32 signal;
__le16 fc;
u32 d_len;
u16 d_status;
if (flen < 0) {
wil_err(wil, "MGMT Rx: short event, len %d\n", len);
return;
}
d_len = le32_to_cpu(data->info.len);
if (d_len != flen) {
wil_err(wil,
"MGMT Rx: length mismatch, d_len %d should be %d\n",
d_len, flen);
return;
}
ch_no = data->info.channel + 1;
freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
channel = ieee80211_get_channel(wiphy, freq);
if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
signal = 100 * data->info.rssi;
else
signal = data->info.sqi;
d_status = le16_to_cpu(data->info.status);
fc = rx_mgmt_frame->frame_control;
wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
data->info.channel, data->info.mcs, data->info.rssi,
data->info.sqi);
wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
le16_to_cpu(fc));
wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
data->info.qid, data->info.mid, data->info.cid);
wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
d_len, true);
if (!channel) {
wil_err(wil, "Frame on unsupported channel\n");
return;
}
if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
struct cfg80211_bss *bss;
u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
u.beacon.variable);
wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
ie_len, true);
wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
d_len, signal, GFP_KERNEL);
if (bss) {
wil_dbg_wmi(wil, "Added BSS %pM\n",
rx_mgmt_frame->bssid);
cfg80211_put_bss(wiphy, bss);
} else {
wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
}
} else {
mutex_lock(&wil->vif_mutex);
cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
(void *)rx_mgmt_frame, d_len, 0);
mutex_unlock(&wil->vif_mutex);
}
}
static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wmi_tx_mgmt_packet_event *data = d;
struct ieee80211_mgmt *mgmt_frame =
(struct ieee80211_mgmt *)data->payload;
int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
flen, true);
}
static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
mutex_lock(&wil->vif_mutex);
if (vif->scan_request) {
struct wmi_scan_complete_event *data = d;
int status = le32_to_cpu(data->status);
struct cfg80211_scan_info info = {
.aborted = ((status != WMI_SCAN_SUCCESS) &&
(status != WMI_SCAN_ABORT_REJECTED)),
};
wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
vif->scan_request, info.aborted);
del_timer_sync(&vif->scan_timer);
cfg80211_scan_done(vif->scan_request, &info);
if (vif->mid == 0)
wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
vif->scan_request = NULL;
wake_up_interruptible(&wil->wq);
if (vif->p2p.pending_listen_wdev) {
wil_dbg_misc(wil, "Scheduling delayed listen\n");
schedule_work(&vif->p2p.delayed_listen_work);
}
} else {
wil_err(wil, "SCAN_COMPLETE while not scanning\n");
}
mutex_unlock(&wil->vif_mutex);
}
static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct net_device *ndev = vif_to_ndev(vif);
struct wireless_dev *wdev = vif_to_wdev(vif);
struct wmi_connect_event *evt = d;
int ch; /* channel number */
struct station_info *sinfo;
u8 *assoc_req_ie, *assoc_resp_ie;
size_t assoc_req_ielen, assoc_resp_ielen;
/* capinfo(u16) + listen_interval(u16) + IEs */
const size_t assoc_req_ie_offset = sizeof(u16) * 2;
/* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
int rc;
if (len < sizeof(*evt)) {
wil_err(wil, "Connect event too short : %d bytes\n", len);
return;
}
if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
evt->assoc_resp_len) {
wil_err(wil,
"Connect event corrupted : %d != %d + %d + %d + %d\n",
len, (int)sizeof(*evt), evt->beacon_ie_len,
evt->assoc_req_len, evt->assoc_resp_len);
return;
}
if (evt->cid >= WIL6210_MAX_CID) {
wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
return;
}
ch = evt->channel + 1;
wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
evt->bssid, ch, evt->cid, evt->aid);
wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
evt->assoc_info, len - sizeof(*evt), true);
/* figure out IE's */
assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
assoc_req_ie_offset];
assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
if (evt->assoc_req_len <= assoc_req_ie_offset) {
assoc_req_ie = NULL;
assoc_req_ielen = 0;
}
assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
evt->assoc_req_len +
assoc_resp_ie_offset];
assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
assoc_resp_ie = NULL;
assoc_resp_ielen = 0;
}
if (test_bit(wil_status_resetting, wil->status) ||
!test_bit(wil_status_fwready, wil->status)) {
wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
evt->cid);
/* no need for cleanup, wil_reset will do that */
return;
}
mutex_lock(&wil->mutex);
if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
(wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
if (!test_bit(wil_vif_fwconnecting, vif->status)) {
wil_err(wil, "Not in connecting state\n");
mutex_unlock(&wil->mutex);
return;
}
del_timer_sync(&vif->connect_timer);
} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
(wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
if (wil->sta[evt->cid].status != wil_sta_unused) {
wil_err(wil, "AP: Invalid status %d for CID %d\n",
wil->sta[evt->cid].status, evt->cid);
mutex_unlock(&wil->mutex);
return;
}
}
ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
wil->sta[evt->cid].mid = vif->mid;
wil->sta[evt->cid].status = wil_sta_conn_pending;
rc = wil_ring_init_tx(vif, evt->cid);
if (rc) {
wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
evt->cid, rc);
wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
WLAN_REASON_UNSPECIFIED, false, false);
} else {
wil_info(wil, "successful connection to CID %d\n", evt->cid);
}
if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
(wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
if (rc) {
netif_carrier_off(ndev);
wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
wil_err(wil, "cfg80211_connect_result with failure\n");
cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
goto out;
} else {
struct wiphy *wiphy = wil_to_wiphy(wil);
cfg80211_ref_bss(wiphy, vif->bss);
cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
assoc_req_ie, assoc_req_ielen,
assoc_resp_ie, assoc_resp_ielen,
WLAN_STATUS_SUCCESS, GFP_KERNEL,
NL80211_TIMEOUT_UNSPECIFIED);
}
vif->bss = NULL;
} else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
(wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
if (rc) {
if (disable_ap_sme)
/* notify new_sta has failed */
cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
goto out;
}
sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
if (!sinfo) {
rc = -ENOMEM;
goto out;
}
sinfo->generation = wil->sinfo_gen++;
if (assoc_req_ie) {
sinfo->assoc_req_ies = assoc_req_ie;
sinfo->assoc_req_ies_len = assoc_req_ielen;
}
cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL);
kfree(sinfo);
} else {
wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
evt->cid);
goto out;
}
wil->sta[evt->cid].status = wil_sta_connected;
wil->sta[evt->cid].aid = evt->aid;
if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
atomic_inc(&wil->connected_vifs);
wil_update_net_queues_bh(wil, vif, NULL, false);
out:
if (rc) {
wil->sta[evt->cid].status = wil_sta_unused;
wil->sta[evt->cid].mid = U8_MAX;
}
clear_bit(wil_vif_fwconnecting, vif->status);
mutex_unlock(&wil->mutex);
}
static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_disconnect_event *evt = d;
u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
evt->bssid, reason_code, evt->disconnect_reason);
wil->sinfo_gen++;
if (test_bit(wil_status_resetting, wil->status) ||
!test_bit(wil_status_fwready, wil->status)) {
wil_err(wil, "status_resetting, cancel disconnect event\n");
/* no need for cleanup, wil_reset will do that */
return;
}
mutex_lock(&wil->mutex);
wil6210_disconnect(vif, evt->bssid, reason_code, true);
mutex_unlock(&wil->mutex);
}
/*
* Firmware reports EAPOL frame using WME event.
* Reconstruct Ethernet frame and deliver it via normal Rx
*/
static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct net_device *ndev = vif_to_ndev(vif);
struct wmi_eapol_rx_event *evt = d;
u16 eapol_len = le16_to_cpu(evt->eapol_len);
int sz = eapol_len + ETH_HLEN;
struct sk_buff *skb;
struct ethhdr *eth;
int cid;
struct wil_net_stats *stats = NULL;
wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
evt->src_mac, vif->mid);
cid = wil_find_cid(wil, vif->mid, evt->src_mac);
if (cid >= 0)
stats = &wil->sta[cid].stats;
if (eapol_len > 196) { /* TODO: revisit size limit */
wil_err(wil, "EAPOL too large\n");
return;
}
skb = alloc_skb(sz, GFP_KERNEL);
if (!skb) {
wil_err(wil, "Failed to allocate skb\n");
return;
}
eth = skb_put(skb, ETH_HLEN);
ether_addr_copy(eth->h_dest, ndev->dev_addr);
ether_addr_copy(eth->h_source, evt->src_mac);
eth->h_proto = cpu_to_be16(ETH_P_PAE);
skb_put_data(skb, evt->eapol, eapol_len);
skb->protocol = eth_type_trans(skb, ndev);
if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += sz;
if (stats) {
stats->rx_packets++;
stats->rx_bytes += sz;
}
} else {
ndev->stats.rx_dropped++;
if (stats)
stats->rx_dropped++;
}
}
static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_ring_en_event *evt = d;
u8 vri = evt->ring_index;
struct wireless_dev *wdev = vif_to_wdev(vif);
wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
if (vri >= ARRAY_SIZE(wil->ring_tx)) {
wil_err(wil, "Enable for invalid vring %d\n", vri);
return;
}
if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
/* in AP mode with disable_ap_sme, this is done by
* wil_cfg80211_change_station()
*/
wil->ring_tx_data[vri].dot1x_open = true;
if (vri == vif->bcast_ring) /* no BA for bcast */
return;
if (agg_wsize >= 0)
wil_addba_tx_request(wil, vri, agg_wsize);
}
static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_ba_status_event *evt = d;
struct wil_ring_tx_data *txdata;
wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
evt->ringid,
evt->status == WMI_BA_AGREED ? "OK" : "N/A",
evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
evt->amsdu ? "+" : "-");
if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
wil_err(wil, "invalid ring id %d\n", evt->ringid);
return;
}
if (evt->status != WMI_BA_AGREED) {
evt->ba_timeout = 0;
evt->agg_wsize = 0;
evt->amsdu = 0;
}
txdata = &wil->ring_tx_data[evt->ringid];
txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
txdata->agg_wsize = evt->agg_wsize;
txdata->agg_amsdu = evt->amsdu;
txdata->addba_in_progress = false;
}
static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_rcp_addba_req_event *evt = d;
wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
evt->ba_param_set, evt->ba_timeout,
evt->ba_seq_ctrl);
}
static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_delba_event *evt = d;
u8 cid, tid;
u16 reason = __le16_to_cpu(evt->reason);
struct wil_sta_info *sta;
struct wil_tid_ampdu_rx *r;
might_sleep();
parse_cidxtid(evt->cidxtid, &cid, &tid);
wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
vif->mid, cid, tid,
evt->from_initiator ? "originator" : "recipient",
reason);
if (!evt->from_initiator) {
int i;
/* find Tx vring it belongs to */
for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
if (wil->ring2cid_tid[i][0] == cid &&
wil->ring2cid_tid[i][1] == tid) {
struct wil_ring_tx_data *txdata =
&wil->ring_tx_data[i];
wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
txdata->agg_timeout = 0;
txdata->agg_wsize = 0;
txdata->addba_in_progress = false;
break; /* max. 1 matching ring */
}
}
if (i >= ARRAY_SIZE(wil->ring2cid_tid))
wil_err(wil, "DELBA: unable to find Tx vring\n");
return;
}
sta = &wil->sta[cid];
spin_lock_bh(&sta->tid_rx_lock);
r = sta->tid_rx[tid];
sta->tid_rx[tid] = NULL;
wil_tid_ampdu_rx_free(wil, r);
spin_unlock_bh(&sta->tid_rx_lock);
}
static void
wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_sched_scan_result_event *data = d;
struct wiphy *wiphy = wil_to_wiphy(wil);
struct ieee80211_mgmt *rx_mgmt_frame =
(struct ieee80211_mgmt *)data->payload;
int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
int ch_no;
u32 freq;
struct ieee80211_channel *channel;
s32 signal;
__le16 fc;
u32 d_len;
struct cfg80211_bss *bss;
if (flen < 0) {
wil_err(wil, "sched scan result event too short, len %d\n",
len);
return;
}
d_len = le32_to_cpu(data->info.len);
if (d_len != flen) {
wil_err(wil,
"sched scan result length mismatch, d_len %d should be %d\n",
d_len, flen);
return;
}
fc = rx_mgmt_frame->frame_control;
if (!ieee80211_is_probe_resp(fc)) {
wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
fc);
return;
}
ch_no = data->info.channel + 1;
freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
channel = ieee80211_get_channel(wiphy, freq);
if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
signal = 100 * data->info.rssi;
else
signal = data->info.sqi;
wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
data->info.channel, data->info.mcs, data->info.rssi);
wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
d_len, data->info.qid, data->info.mid, data->info.cid);
wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
d_len, true);
if (!channel) {
wil_err(wil, "Frame on unsupported channel\n");
return;
}
bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
d_len, signal, GFP_KERNEL);
if (bss) {
wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
cfg80211_put_bss(wiphy, bss);
} else {
wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
}
cfg80211_sched_scan_results(wiphy, 0);
}
static void wil_link_stats_store_basic(struct wil6210_vif *vif,
struct wmi_link_stats_basic *basic)
{
struct wil6210_priv *wil = vif_to_wil(vif);
u8 cid = basic->cid;
struct wil_sta_info *sta;
if (cid < 0 || cid >= WIL6210_MAX_CID) {
wil_err(wil, "invalid cid %d\n", cid);
return;
}
sta = &wil->sta[cid];
sta->fw_stats_basic = *basic;
}
static void wil_link_stats_store_global(struct wil6210_vif *vif,
struct wmi_link_stats_global *global)
{
struct wil6210_priv *wil = vif_to_wil(vif);
wil->fw_stats_global.stats = *global;
}
static void wmi_link_stats_parse(struct wil6210_vif *vif, u64 tsf,
bool has_next, void *payload,
size_t payload_size)
{
struct wil6210_priv *wil = vif_to_wil(vif);
size_t hdr_size = sizeof(struct wmi_link_stats_record);
size_t stats_size, record_size, expected_size;
struct wmi_link_stats_record *hdr;
if (payload_size < hdr_size) {
wil_err(wil, "link stats wrong event size %zu\n", payload_size);
return;
}
while (payload_size >= hdr_size) {
hdr = payload;
stats_size = le16_to_cpu(hdr->record_size);
record_size = hdr_size + stats_size;
if (payload_size < record_size) {
wil_err(wil, "link stats payload ended unexpectedly, size %zu < %zu\n",
payload_size, record_size);
return;
}
switch (hdr->record_type_id) {
case WMI_LINK_STATS_TYPE_BASIC:
expected_size = sizeof(struct wmi_link_stats_basic);
if (stats_size < expected_size) {
wil_err(wil, "link stats invalid basic record size %zu < %zu\n",
stats_size, expected_size);
return;
}
if (vif->fw_stats_ready) {
/* clean old statistics */
vif->fw_stats_tsf = 0;
vif->fw_stats_ready = 0;
}
wil_link_stats_store_basic(vif, payload + hdr_size);
if (!has_next) {
vif->fw_stats_tsf = tsf;
vif->fw_stats_ready = 1;
}
break;
case WMI_LINK_STATS_TYPE_GLOBAL:
expected_size = sizeof(struct wmi_link_stats_global);
if (stats_size < sizeof(struct wmi_link_stats_global)) {
wil_err(wil, "link stats invalid global record size %zu < %zu\n",
stats_size, expected_size);
return;
}
if (wil->fw_stats_global.ready) {
/* clean old statistics */
wil->fw_stats_global.tsf = 0;
wil->fw_stats_global.ready = 0;
}
wil_link_stats_store_global(vif, payload + hdr_size);
if (!has_next) {
wil->fw_stats_global.tsf = tsf;
wil->fw_stats_global.ready = 1;
}
break;
default:
break;
}
/* skip to next record */
payload += record_size;
payload_size -= record_size;
}
}
static void
wmi_evt_link_stats(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_link_stats_event *evt = d;
size_t payload_size;
if (len < offsetof(struct wmi_link_stats_event, payload)) {
wil_err(wil, "stats event way too short %d\n", len);
return;
}
payload_size = le16_to_cpu(evt->payload_size);
if (len < sizeof(struct wmi_link_stats_event) + payload_size) {
wil_err(wil, "stats event too short %d\n", len);
return;
}
wmi_link_stats_parse(vif, le64_to_cpu(evt->tsf), evt->has_next,
evt->payload, payload_size);
}
/**
* Some events are ignored for purpose; and need not be interpreted as
* "unhandled events"
*/
static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
{
struct wil6210_priv *wil = vif_to_wil(vif);
wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
}
static const struct {
int eventid;
void (*handler)(struct wil6210_vif *vif,
int eventid, void *data, int data_len);
} wmi_evt_handlers[] = {
{WMI_READY_EVENTID, wmi_evt_ready},
{WMI_FW_READY_EVENTID, wmi_evt_ignore},
{WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
{WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt},
{WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
{WMI_CONNECT_EVENTID, wmi_evt_connect},
{WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
{WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
{WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
{WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req},
{WMI_DELBA_EVENTID, wmi_evt_delba},
{WMI_RING_EN_EVENTID, wmi_evt_ring_en},
{WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore},
{WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result},
{WMI_LINK_STATS_EVENTID, wmi_evt_link_stats},
};
/*
* Run in IRQ context
* Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
* that will be eventually handled by the @wmi_event_worker in the thread
* context of thread "wil6210_wmi"
*/
void wmi_recv_cmd(struct wil6210_priv *wil)
{
struct wil6210_mbox_ring_desc d_tail;
struct wil6210_mbox_hdr hdr;
struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
struct pending_wmi_event *evt;
u8 *cmd;
void __iomem *src;
ulong flags;
unsigned n;
unsigned int num_immed_reply = 0;
if (!test_bit(wil_status_mbox_ready, wil->status)) {
wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
return;
}
if (test_bit(wil_status_suspended, wil->status)) {
wil_err(wil, "suspended. cannot handle WMI event\n");
return;
}
for (n = 0;; n++) {
u16 len;
bool q;
bool immed_reply = false;
r->head = wil_r(wil, RGF_MBOX +
offsetof(struct wil6210_mbox_ctl, rx.head));
if (r->tail == r->head)
break;
wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
r->head, r->tail);
/* read cmd descriptor from tail */
wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
sizeof(struct wil6210_mbox_ring_desc));
if (d_tail.sync == 0) {
wil_err(wil, "Mbox evt not owned by FW?\n");
break;
}
/* read cmd header from descriptor */
if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
wil_err(wil, "Mbox evt at 0x%08x?\n",
le32_to_cpu(d_tail.addr));
break;
}
len = le16_to_cpu(hdr.len);
wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
hdr.flags);
/* read cmd buffer from descriptor */
src = wmi_buffer(wil, d_tail.addr) +
sizeof(struct wil6210_mbox_hdr);
evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
event.wmi) + len, 4),
GFP_KERNEL);
if (!evt)
break;
evt->event.hdr = hdr;
cmd = (void *)&evt->event.wmi;
wil_memcpy_fromio_32(cmd, src, len);
/* mark entry as empty */
wil_w(wil, r->tail +
offsetof(struct wil6210_mbox_ring_desc, sync), 0);
/* indicate */
if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
(len >= sizeof(struct wmi_cmd_hdr))) {
struct wmi_cmd_hdr *wmi = &evt->event.wmi;
u16 id = le16_to_cpu(wmi->command_id);
u8 mid = wmi->mid;
u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
if (test_bit(wil_status_resuming, wil->status)) {
if (id == WMI_TRAFFIC_RESUME_EVENTID)
clear_bit(wil_status_resuming,
wil->status);
else
wil_err(wil,
"WMI evt %d while resuming\n",
id);
}
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
if (wil->reply_id && wil->reply_id == id &&
wil->reply_mid == mid) {
if (wil->reply_buf) {
memcpy(wil->reply_buf, wmi,
min(len, wil->reply_size));
immed_reply = true;
}
if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
wil_dbg_wmi(wil,
"set suspend_resp_rcvd\n");
wil->suspend_resp_rcvd = true;
}
}
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
eventid2name(id), id, wmi->mid, tstamp);
trace_wil6210_wmi_event(wmi, &wmi[1],
len - sizeof(*wmi));
}
wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
&evt->event.hdr, sizeof(hdr) + len, true);
/* advance tail */
r->tail = r->base + ((r->tail - r->base +
sizeof(struct wil6210_mbox_ring_desc)) % r->size);
wil_w(wil, RGF_MBOX +
offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
if (immed_reply) {
wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
wil->reply_id);
kfree(evt);
num_immed_reply++;
complete(&wil->wmi_call);
} else {
/* add to the pending list */
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
list_add_tail(&evt->list, &wil->pending_wmi_ev);
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
wil_dbg_wmi(wil, "queue_work -> %d\n", q);
}
}
/* normally, 1 event per IRQ should be processed */
wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
n - num_immed_reply, num_immed_reply);
}
int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
u16 reply_id, void *reply, u16 reply_size, int to_msec)
{
int rc;
unsigned long remain;
mutex_lock(&wil->wmi_mutex);
spin_lock(&wil->wmi_ev_lock);
wil->reply_id = reply_id;
wil->reply_mid = mid;
wil->reply_buf = reply;
wil->reply_size = reply_size;
reinit_completion(&wil->wmi_call);
spin_unlock(&wil->wmi_ev_lock);
rc = __wmi_send(wil, cmdid, mid, buf, len);
if (rc)
goto out;
remain = wait_for_completion_timeout(&wil->wmi_call,
msecs_to_jiffies(to_msec));
if (0 == remain) {
wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
cmdid, reply_id, to_msec);
rc = -ETIME;
} else {
wil_dbg_wmi(wil,
"wmi_call(0x%04x->0x%04x) completed in %d msec\n",
cmdid, reply_id,
to_msec - jiffies_to_msecs(remain));
}
out:
spin_lock(&wil->wmi_ev_lock);
wil->reply_id = 0;
wil->reply_mid = U8_MAX;
wil->reply_buf = NULL;
wil->reply_size = 0;
spin_unlock(&wil->wmi_ev_lock);
mutex_unlock(&wil->wmi_mutex);
return rc;
}
int wmi_echo(struct wil6210_priv *wil)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
struct wmi_echo_cmd cmd = {
.value = cpu_to_le32(0x12345678),
};
return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
}
int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
struct wmi_set_mac_address_cmd cmd;
ether_addr_copy(cmd.mac, addr);
wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
&cmd, sizeof(cmd));
}
int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc = 0;
struct wmi_led_cfg_cmd cmd = {
.led_mode = enable,
.id = led_id,
.slow_blink_cfg.blink_on =
cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
.slow_blink_cfg.blink_off =
cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
.medium_blink_cfg.blink_on =
cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
.medium_blink_cfg.blink_off =
cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
.fast_blink_cfg.blink_on =
cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
.fast_blink_cfg.blink_off =
cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
.led_polarity = led_polarity,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_led_cfg_done_event evt;
} __packed reply = {
.evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)},
};
if (led_id == WIL_LED_INVALID_ID)
goto out;
if (led_id > WIL_LED_MAX_ID) {
wil_err(wil, "Invalid led id %d\n", led_id);
rc = -EINVAL;
goto out;
}
wil_dbg_wmi(wil,
"%s led %d\n",
enable ? "enabling" : "disabling", led_id);
rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
100);
if (rc)
goto out;
if (reply.evt.status) {
wil_err(wil, "led %d cfg failed with status %d\n",
led_id, le32_to_cpu(reply.evt.status));
rc = -EINVAL;
}
out:
return rc;
}
int wmi_pcp_start(struct wil6210_vif *vif,
int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_pcp_start_cmd cmd = {
.bcon_interval = cpu_to_le16(bi),
.network_type = wmi_nettype,
.disable_sec_offload = 1,
.channel = chan - 1,
.pcp_max_assoc_sta = max_assoc_sta,
.hidden_ssid = hidden_ssid,
.is_go = is_go,
.ap_sme_offload_mode = disable_ap_sme ?
WMI_AP_SME_OFFLOAD_PARTIAL :
WMI_AP_SME_OFFLOAD_FULL,
.abft_len = wil->abft_len,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_pcp_started_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
if (!vif->privacy)
cmd.disable_sec = 1;
if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
(cmd.pcp_max_assoc_sta <= 0)) {
wil_info(wil,
"Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
}
if (disable_ap_sme &&
!test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
wil->fw_capabilities)) {
wil_err(wil, "disable_ap_sme not supported by FW\n");
return -EOPNOTSUPP;
}
/*
* Processing time may be huge, in case of secure AP it takes about
* 3500ms for FW to start AP
*/
rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
if (rc)
return rc;
if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
rc = -EINVAL;
if (wmi_nettype != WMI_NETTYPE_P2P)
/* Don't fail due to error in the led configuration */
wmi_led_cfg(wil, true);
return rc;
}
int wmi_pcp_stop(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
rc = wmi_led_cfg(wil, false);
if (rc)
return rc;
return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
}
int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_set_ssid_cmd cmd = {
.ssid_len = cpu_to_le32(ssid_len),
};
if (ssid_len > sizeof(cmd.ssid))
return -EINVAL;
memcpy(cmd.ssid, ssid, ssid_len);
return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
}
int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_set_ssid_cmd cmd;
} __packed reply;
int len; /* reply.cmd.ssid_len in CPU order */
memset(&reply, 0, sizeof(reply));
rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
if (rc)
return rc;
len = le32_to_cpu(reply.cmd.ssid_len);
if (len > sizeof(reply.cmd.ssid))
return -EINVAL;
*ssid_len = len;
memcpy(ssid, reply.cmd.ssid, len);
return 0;
}
int wmi_set_channel(struct wil6210_priv *wil, int channel)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
struct wmi_set_pcp_channel_cmd cmd = {
.channel = channel - 1,
};
return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
&cmd, sizeof(cmd));
}
int wmi_get_channel(struct wil6210_priv *wil, int *channel)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_set_pcp_channel_cmd cmd;
} __packed reply;
memset(&reply, 0, sizeof(reply));
rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
if (rc)
return rc;
if (reply.cmd.channel > 3)
return -EINVAL;
*channel = reply.cmd.channel + 1;
return 0;
}
int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_p2p_cfg_cmd cmd = {
.discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
.bcon_interval = cpu_to_le16(bi),
.channel = channel - 1,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_p2p_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
rc = -EINVAL;
}
return rc;
}
int wmi_start_listen(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_listen_started_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "device failed to start listen. status %d\n",
reply.evt.status);
rc = -EINVAL;
}
return rc;
}
int wmi_start_search(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_search_started_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "device failed to start search. status %d\n",
reply.evt.status);
rc = -EINVAL;
}
return rc;
}
int wmi_stop_discovery(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
if (rc)
wil_err(wil, "Failed to stop discovery\n");
return rc;
}
int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
const void *mac_addr, int key_usage)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_delete_cipher_key_cmd cmd = {
.key_index = key_index,
};
if (mac_addr)
memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
&cmd, sizeof(cmd));
}
int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
const void *mac_addr, int key_len, const void *key,
int key_usage)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_add_cipher_key_cmd cmd = {
.key_index = key_index,
.key_usage = key_usage,
.key_len = key_len,
};
if (!key || (key_len > sizeof(cmd.key)))
return -EINVAL;
memcpy(cmd.key, key, key_len);
if (mac_addr)
memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
&cmd, sizeof(cmd));
}
int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
{
struct wil6210_priv *wil = vif_to_wil(vif);
static const char *const names[] = {
[WMI_FRAME_BEACON] = "BEACON",
[WMI_FRAME_PROBE_REQ] = "PROBE_REQ",
[WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP",
[WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ",
[WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP",
};
int rc;
u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
struct wmi_set_appie_cmd *cmd;
if (len < ie_len) {
rc = -EINVAL;
goto out;
}
cmd = kzalloc(len, GFP_KERNEL);
if (!cmd) {
rc = -ENOMEM;
goto out;
}
if (!ie)
ie_len = 0;
cmd->mgmt_frm_type = type;
/* BUG: FW API define ieLen as u8. Will fix FW */
cmd->ie_len = cpu_to_le16(ie_len);
memcpy(cmd->ie_info, ie, ie_len);
rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
kfree(cmd);
out:
if (rc) {
const char *name = type < ARRAY_SIZE(names) ?
names[type] : "??";
wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
}
return rc;
}
/**
* wmi_rxon - turn radio on/off
* @on: turn on if true, off otherwise
*
* Only switch radio. Channel should be set separately.
* No timeout for rxon - radio turned on forever unless some other call
* turns it off
*/
int wmi_rxon(struct wil6210_priv *wil, bool on)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_listen_started_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_info(wil, "(%s)\n", on ? "on" : "off");
if (on) {
rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
WMI_LISTEN_STARTED_EVENTID,
&reply, sizeof(reply), 100);
if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
rc = -EINVAL;
} else {
rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
}
return rc;
}
int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring)
{
struct net_device *ndev = wil->main_ndev;
struct wireless_dev *wdev = ndev->ieee80211_ptr;
struct wil6210_vif *vif = ndev_to_vif(ndev);
struct wmi_cfg_rx_chain_cmd cmd = {
.action = WMI_RX_CHAIN_ADD,
.rx_sw_ring = {
.max_mpdu_size = cpu_to_le16(
wil_mtu2macbuf(wil->rx_buf_len)),
.ring_mem_base = cpu_to_le64(vring->pa),
.ring_size = cpu_to_le16(vring->size),
},
.mid = 0, /* TODO - what is it? */
.decap_trans_type = WMI_DECAP_TYPE_802_3,
.reorder_type = WMI_RX_SW_REORDER,
.host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_cfg_rx_chain_done_event evt;
} __packed evt;
int rc;
memset(&evt, 0, sizeof(evt));
if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
struct ieee80211_channel *ch = wil->monitor_chandef.chan;
cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
if (ch)
cmd.sniffer_cfg.channel = ch->hw_value - 1;
cmd.sniffer_cfg.phy_info_mode =
cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
cmd.sniffer_cfg.phy_support =
cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
} else {
/* Initialize offload (in non-sniffer mode).
* Linux IP stack always calculates IP checksum
* HW always calculate TCP/UDP checksum
*/
cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
}
if (rx_align_2)
cmd.l2_802_3_offload_ctrl |=
L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
/* typical time for secure PCP is 840ms */
rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
if (rc)
return rc;
if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
rc = -EINVAL;
vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
le32_to_cpu(evt.evt.status), vring->hwtail);
return rc;
}
int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct wmi_temp_sense_cmd cmd = {
.measure_baseband_en = cpu_to_le32(!!t_bb),
.measure_rf_en = cpu_to_le32(!!t_rf),
.measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_temp_sense_done_event evt;
} __packed reply;
memset(&reply, 0, sizeof(reply));
rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
if (rc)
return rc;
if (t_bb)
*t_bb = le32_to_cpu(reply.evt.baseband_t1000);
if (t_rf)
*t_rf = le32_to_cpu(reply.evt.rf_t1000);
return 0;
}
int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
u16 reason, bool full_disconnect, bool del_sta)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
u16 reason_code;
struct wmi_disconnect_sta_cmd disc_sta_cmd = {
.disconnect_reason = cpu_to_le16(reason),
};
struct wmi_del_sta_cmd del_sta_cmd = {
.disconnect_reason = cpu_to_le16(reason),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_disconnect_event evt;
} __packed reply;
wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
memset(&reply, 0, sizeof(reply));
vif->locally_generated_disc = true;
if (del_sta) {
ether_addr_copy(del_sta_cmd.dst_mac, mac);
rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
&reply, sizeof(reply), 1000);
} else {
ether_addr_copy(disc_sta_cmd.dst_mac, mac);
rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
&disc_sta_cmd, sizeof(disc_sta_cmd),
WMI_DISCONNECT_EVENTID,
&reply, sizeof(reply), 1000);
}
/* failure to disconnect in reasonable time treated as FW error */
if (rc) {
wil_fw_error_recovery(wil);
return rc;
}
if (full_disconnect) {
/* call event handler manually after processing wmi_call,
* to avoid deadlock - disconnect event handler acquires
* wil->mutex while it is already held here
*/
reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
reply.evt.bssid, reason_code,
reply.evt.disconnect_reason);
wil->sinfo_gen++;
wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
}
return 0;
}
int wmi_addba(struct wil6210_priv *wil, u8 mid,
u8 ringid, u8 size, u16 timeout)
{
u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering &&
test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) &&
wil->amsdu_en;
struct wmi_ring_ba_en_cmd cmd = {
.ring_id = ringid,
.agg_max_wsize = size,
.ba_timeout = cpu_to_le16(timeout),
.amsdu = amsdu,
};
wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n",
ringid, size, timeout, amsdu);
return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
}
int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
{
struct wmi_ring_ba_dis_cmd cmd = {
.ring_id = ringid,
.reason = cpu_to_le16(reason),
};
wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
}
int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
{
struct wmi_rcp_delba_cmd cmd = {
.cidxtid = cidxtid,
.reason = cpu_to_le16(reason),
};
wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
(cidxtid >> 4) & 0xf, reason);
return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
}
int wmi_addba_rx_resp(struct wil6210_priv *wil,
u8 mid, u8 cid, u8 tid, u8 token,
u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
{
int rc;
struct wmi_rcp_addba_resp_cmd cmd = {
.cidxtid = mk_cidxtid(cid, tid),
.dialog_token = token,
.status_code = cpu_to_le16(status),
/* bit 0: A-MSDU supported
* bit 1: policy (should be 0 for us)
* bits 2..5: TID
* bits 6..15: buffer size
*/
.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
(agg_wsize << 6)),
.ba_timeout = cpu_to_le16(timeout),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_rcp_addba_resp_sent_event evt;
} __packed reply = {
.evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
};
wil_dbg_wmi(wil,
"ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
mid, cid, tid, agg_wsize,
timeout, status, amsdu ? "+" : "-");
rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
100);
if (rc)
return rc;
if (reply.evt.status) {
wil_err(wil, "ADDBA response failed with status %d\n",
le16_to_cpu(reply.evt.status));
rc = -EINVAL;
}
return rc;
}
int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid,
u8 token, u16 status, bool amsdu, u16 agg_wsize,
u16 timeout)
{
int rc;
struct wmi_rcp_addba_resp_edma_cmd cmd = {
.cid = cid,
.tid = tid,
.dialog_token = token,
.status_code = cpu_to_le16(status),
/* bit 0: A-MSDU supported
* bit 1: policy (should be 0 for us)
* bits 2..5: TID
* bits 6..15: buffer size
*/
.ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
(agg_wsize << 6)),
.ba_timeout = cpu_to_le16(timeout),
/* route all the connections to status ring 0 */
.status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_rcp_addba_resp_sent_event evt;
} __packed reply = {
.evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
};
wil_dbg_wmi(wil,
"ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n",
cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-",
WIL_DEFAULT_RX_STATUS_RING_ID);
rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd,
sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
return rc;
if (reply.evt.status) {
wil_err(wil, "ADDBA response failed with status %d\n",
le16_to_cpu(reply.evt.status));
rc = -EINVAL;
}
return rc;
}
int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
enum wmi_ps_profile_type ps_profile)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct wmi_ps_dev_profile_cfg_cmd cmd = {
.ps_profile = ps_profile,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_ps_dev_profile_cfg_event evt;
} __packed reply = {
.evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)},
};
u32 status;
wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
&cmd, sizeof(cmd),
WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
100);
if (rc)
return rc;
status = le32_to_cpu(reply.evt.status);
if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
wil_err(wil, "ps dev profile cfg failed with status %d\n",
status);
rc = -EINVAL;
}
return rc;
}
int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct wmi_set_mgmt_retry_limit_cmd cmd = {
.mgmt_retry_limit = retry_short,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_set_mgmt_retry_limit_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
return -ENOTSUPP;
rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
&cmd, sizeof(cmd),
WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
100);
if (rc)
return rc;
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "set mgmt retry limit failed with status %d\n",
reply.evt.status);
rc = -EINVAL;
}
return rc;
}
int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_get_mgmt_retry_limit_event evt;
} __packed reply;
wil_dbg_wmi(wil, "getting mgmt retry short\n");
if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
return -ENOTSUPP;
memset(&reply, 0, sizeof(reply));
rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
100);
if (rc)
return rc;
if (retry_short)
*retry_short = reply.evt.mgmt_retry_limit;
return 0;
}
int wmi_abort_scan(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
if (rc)
wil_err(wil, "Failed to abort scan (%d)\n", rc);
return rc;
}
int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct wmi_new_sta_cmd cmd = {
.aid = aid,
};
wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
ether_addr_copy(cmd.dst_mac, mac);
rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
if (rc)
wil_err(wil, "Failed to send new sta (%d)\n", rc);
return rc;
}
void wmi_event_flush(struct wil6210_priv *wil)
{
ulong flags;
struct pending_wmi_event *evt, *t;
wil_dbg_wmi(wil, "event_flush\n");
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
list_del(&evt->list);
kfree(evt);
}
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
}
static const char *suspend_status2name(u8 status)
{
switch (status) {
case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
return "LINK_NOT_IDLE";
default:
return "Untracked status";
}
}
int wmi_suspend(struct wil6210_priv *wil)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct wmi_traffic_suspend_cmd cmd = {
.wakeup_trigger = wil->wakeup_trigger,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_traffic_suspend_event evt;
} __packed reply = {
.evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE},
};
u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
wil->suspend_resp_rcvd = false;
wil->suspend_resp_comp = false;
rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
&cmd, sizeof(cmd),
WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
suspend_to);
if (rc) {
wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
if (rc == -ETIME)
/* wmi_call TO */
wil->suspend_stats.rejected_by_device++;
else
wil->suspend_stats.rejected_by_host++;
goto out;
}
wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
rc = wait_event_interruptible_timeout(wil->wq,
wil->suspend_resp_comp,
msecs_to_jiffies(suspend_to));
if (rc == 0) {
wil_err(wil, "TO waiting for suspend_response_completed\n");
if (wil->suspend_resp_rcvd)
/* Device responded but we TO due to another reason */
wil->suspend_stats.rejected_by_host++;
else
wil->suspend_stats.rejected_by_device++;
rc = -EBUSY;
goto out;
}
wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
wil_dbg_pm(wil, "device rejected the suspend, %s\n",
suspend_status2name(reply.evt.status));
wil->suspend_stats.rejected_by_device++;
}
rc = reply.evt.status;
out:
wil->suspend_resp_rcvd = false;
wil->suspend_resp_comp = false;
return rc;
}
static void resume_triggers2string(u32 triggers, char *string, int str_size)
{
string[0] = '\0';
if (!triggers) {
strlcat(string, " UNKNOWN", str_size);
return;
}
if (triggers & WMI_RESUME_TRIGGER_HOST)
strlcat(string, " HOST", str_size);
if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
strlcat(string, " UCAST_RX", str_size);
if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
strlcat(string, " BCAST_RX", str_size);
if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
strlcat(string, " WMI_EVT", str_size);
}
int wmi_resume(struct wil6210_priv *wil)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
char string[100];
struct {
struct wmi_cmd_hdr wmi;
struct wmi_traffic_resume_event evt;
} __packed reply = {
.evt = {.status = WMI_TRAFFIC_RESUME_FAILED,
.resume_triggers =
cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)},
};
rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
if (rc)
return rc;
resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
sizeof(string));
wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
reply.evt.status ? "failed" : "passed", string,
le32_to_cpu(reply.evt.resume_triggers));
return reply.evt.status;
}
int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
const u8 *mac, enum nl80211_iftype iftype)
{
int rc;
struct wmi_port_allocate_cmd cmd = {
.mid = mid,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_port_allocated_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
mid, iftype, mac);
ether_addr_copy(cmd.mac, mac);
switch (iftype) {
case NL80211_IFTYPE_STATION:
cmd.port_role = WMI_PORT_STA;
break;
case NL80211_IFTYPE_AP:
cmd.port_role = WMI_PORT_AP;
break;
case NL80211_IFTYPE_P2P_CLIENT:
cmd.port_role = WMI_PORT_P2P_CLIENT;
break;
case NL80211_IFTYPE_P2P_GO:
cmd.port_role = WMI_PORT_P2P_GO;
break;
/* what about monitor??? */
default:
wil_err(wil, "unsupported iftype: %d\n", iftype);
return -EINVAL;
}
rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
&cmd, sizeof(cmd),
WMI_PORT_ALLOCATED_EVENTID, &reply,
sizeof(reply), 300);
if (rc) {
wil_err(wil, "failed to allocate port, status %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
reply.evt.status);
return -EINVAL;
}
return 0;
}
int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
{
int rc;
struct wmi_port_delete_cmd cmd = {
.mid = mid,
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_port_deleted_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
wil_dbg_misc(wil, "port delete, mid %d\n", mid);
rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
&cmd, sizeof(cmd),
WMI_PORT_DELETED_EVENTID, &reply,
sizeof(reply), 2000);
if (rc) {
wil_err(wil, "failed to delete port, status %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
reply.evt.status);
return -EINVAL;
}
return 0;
}
static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
void *d, int len)
{
uint i;
for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
if (wmi_evt_handlers[i].eventid == id) {
wmi_evt_handlers[i].handler(vif, id, d, len);
return true;
}
}
return false;
}
static void wmi_event_handle(struct wil6210_priv *wil,
struct wil6210_mbox_hdr *hdr)
{
u16 len = le16_to_cpu(hdr->len);
struct wil6210_vif *vif;
if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
(len >= sizeof(struct wmi_cmd_hdr))) {
struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
void *evt_data = (void *)(&wmi[1]);
u16 id = le16_to_cpu(wmi->command_id);
u8 mid = wmi->mid;
wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
eventid2name(id), id, wil->reply_id,
wil->reply_mid);
if (mid == MID_BROADCAST)
mid = 0;
if (mid >= wil->max_vifs) {
wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
mid);
return;
}
vif = wil->vifs[mid];
if (!vif) {
wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
mid);
return;
}
/* check if someone waits for this event */
if (wil->reply_id && wil->reply_id == id &&
wil->reply_mid == mid) {
WARN_ON(wil->reply_buf);
wmi_evt_call_handler(vif, id, evt_data,
len - sizeof(*wmi));
wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
id);
complete(&wil->wmi_call);
return;
}
/* unsolicited event */
/* search for handler */
if (!wmi_evt_call_handler(vif, id, evt_data,
len - sizeof(*wmi))) {
wil_info(wil, "Unhandled event 0x%04x\n", id);
}
} else {
wil_err(wil, "Unknown event type\n");
print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
hdr, sizeof(*hdr) + len, true);
}
}
/*
* Retrieve next WMI event from the pending list
*/
static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
{
ulong flags;
struct list_head *ret = NULL;
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
if (!list_empty(&wil->pending_wmi_ev)) {
ret = wil->pending_wmi_ev.next;
list_del(ret);
}
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
return ret;
}
/*
* Handler for the WMI events
*/
void wmi_event_worker(struct work_struct *work)
{
struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
wmi_event_worker);
struct pending_wmi_event *evt;
struct list_head *lh;
wil_dbg_wmi(wil, "event_worker: Start\n");
while ((lh = next_wmi_ev(wil)) != NULL) {
evt = list_entry(lh, struct pending_wmi_event, list);
wmi_event_handle(wil, &evt->event.hdr);
kfree(evt);
}
wil_dbg_wmi(wil, "event_worker: Finished\n");
}
bool wil_is_wmi_idle(struct wil6210_priv *wil)
{
ulong flags;
struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
bool rc = false;
spin_lock_irqsave(&wil->wmi_ev_lock, flags);
/* Check if there are pending WMI events in the events queue */
if (!list_empty(&wil->pending_wmi_ev)) {
wil_dbg_pm(wil, "Pending WMI events in queue\n");
goto out;
}
/* Check if there is a pending WMI call */
if (wil->reply_id) {
wil_dbg_pm(wil, "Pending WMI call\n");
goto out;
}
/* Check if there are pending RX events in mbox */
r->head = wil_r(wil, RGF_MBOX +
offsetof(struct wil6210_mbox_ctl, rx.head));
if (r->tail != r->head)
wil_dbg_pm(wil, "Pending WMI mbox events\n");
else
rc = true;
out:
spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
return rc;
}
static void
wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
struct wmi_start_sched_scan_cmd *cmd,
struct cfg80211_ssid *ssids, int n_ssids,
struct cfg80211_match_set *match_sets,
int n_match_sets)
{
int i;
if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
n_match_sets, WMI_MAX_PNO_SSID_NUM);
n_match_sets = WMI_MAX_PNO_SSID_NUM;
}
cmd->num_of_ssids = n_match_sets;
for (i = 0; i < n_match_sets; i++) {
struct wmi_sched_scan_ssid_match *wmi_match =
&cmd->ssid_for_match[i];
struct cfg80211_match_set *cfg_match = &match_sets[i];
int j;
wmi_match->ssid_len = cfg_match->ssid.ssid_len;
memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
wmi_match->rssi_threshold = S8_MIN;
if (cfg_match->rssi_thold >= S8_MIN &&
cfg_match->rssi_thold <= S8_MAX)
wmi_match->rssi_threshold = cfg_match->rssi_thold;
for (j = 0; j < n_ssids; j++)
if (wmi_match->ssid_len == ssids[j].ssid_len &&
memcmp(wmi_match->ssid, ssids[j].ssid,
wmi_match->ssid_len) == 0)
wmi_match->add_ssid_to_probe = true;
}
}
static void
wmi_sched_scan_set_channels(struct wil6210_priv *wil,
struct wmi_start_sched_scan_cmd *cmd,
u32 n_channels,
struct ieee80211_channel **channels)
{
int i;
if (n_channels > WMI_MAX_CHANNEL_NUM) {
wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
n_channels, WMI_MAX_CHANNEL_NUM);
n_channels = WMI_MAX_CHANNEL_NUM;
}
cmd->num_of_channels = n_channels;
for (i = 0; i < n_channels; i++) {
struct ieee80211_channel *cfg_chan = channels[i];
cmd->channel_list[i] = cfg_chan->hw_value - 1;
}
}
static void
wmi_sched_scan_set_plans(struct wil6210_priv *wil,
struct wmi_start_sched_scan_cmd *cmd,
struct cfg80211_sched_scan_plan *scan_plans,
int n_scan_plans)
{
int i;
if (n_scan_plans > WMI_MAX_PLANS_NUM) {
wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
n_scan_plans, WMI_MAX_PLANS_NUM);
n_scan_plans = WMI_MAX_PLANS_NUM;
}
for (i = 0; i < n_scan_plans; i++) {
struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
cmd->scan_plans[i].interval_sec =
cpu_to_le16(cfg_plan->interval);
cmd->scan_plans[i].num_of_iterations =
cpu_to_le16(cfg_plan->iterations);
}
}
int wmi_start_sched_scan(struct wil6210_priv *wil,
struct cfg80211_sched_scan_request *request)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct wmi_start_sched_scan_cmd cmd = {
.min_rssi_threshold = S8_MIN,
.initial_delay_sec = cpu_to_le16(request->delay),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_start_sched_scan_event evt;
} __packed reply = {
.evt = {.result = WMI_PNO_REJECT},
};
if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
return -ENOTSUPP;
if (request->min_rssi_thold >= S8_MIN &&
request->min_rssi_thold <= S8_MAX)
cmd.min_rssi_threshold = request->min_rssi_thold;
wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
request->match_sets, request->n_match_sets);
wmi_sched_scan_set_channels(wil, &cmd,
request->n_channels, request->channels);
wmi_sched_scan_set_plans(wil, &cmd,
request->scan_plans, request->n_scan_plans);
rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
&cmd, sizeof(cmd),
WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
return rc;
if (reply.evt.result != WMI_PNO_SUCCESS) {
wil_err(wil, "start sched scan failed, result %d\n",
reply.evt.result);
return -EINVAL;
}
return 0;
}
int wmi_stop_sched_scan(struct wil6210_priv *wil)
{
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_stop_sched_scan_event evt;
} __packed reply = {
.evt = {.result = WMI_PNO_REJECT},
};
if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
return -ENOTSUPP;
rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
WIL_WMI_CALL_GENERAL_TO_MS);
if (rc)
return rc;
if (reply.evt.result != WMI_PNO_SUCCESS) {
wil_err(wil, "stop sched scan failed, result %d\n",
reply.evt.result);
return -EINVAL;
}
return 0;
}
int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len)
{
size_t total;
struct wil6210_priv *wil = vif_to_wil(vif);
struct ieee80211_mgmt *mgmt_frame = (void *)buf;
struct wmi_sw_tx_req_cmd *cmd;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_sw_tx_complete_event evt;
} __packed evt = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
int rc;
wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid);
wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
len, true);
if (len < sizeof(struct ieee80211_hdr_3addr))
return -EINVAL;
total = sizeof(*cmd) + len;
if (total < len) {
wil_err(wil, "mgmt_tx invalid len %zu\n", len);
return -EINVAL;
}
cmd = kmalloc(total, GFP_KERNEL);
if (!cmd)
return -ENOMEM;
memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
cmd->len = cpu_to_le16(len);
memcpy(cmd->payload, buf, len);
rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total,
WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "mgmt_tx failed with status %d\n", evt.evt.status);
rc = -EINVAL;
}
kfree(cmd);
return rc;
}
int wmi_mgmt_tx_ext(struct wil6210_vif *vif, const u8 *buf, size_t len,
u8 channel, u16 duration_ms)
{
size_t total;
struct wil6210_priv *wil = vif_to_wil(vif);
struct ieee80211_mgmt *mgmt_frame = (void *)buf;
struct wmi_sw_tx_req_ext_cmd *cmd;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_sw_tx_complete_event evt;
} __packed evt = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
int rc;
wil_dbg_wmi(wil, "mgmt_tx_ext mid %d channel %d duration %d\n",
vif->mid, channel, duration_ms);
wil_hex_dump_wmi("mgmt_tx_ext frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
len, true);
if (len < sizeof(struct ieee80211_hdr_3addr)) {
wil_err(wil, "short frame. len %zu\n", len);
return -EINVAL;
}
total = sizeof(*cmd) + len;
if (total < len) {
wil_err(wil, "mgmt_tx_ext invalid len %zu\n", len);
return -EINVAL;
}
cmd = kzalloc(total, GFP_KERNEL);
if (!cmd)
return -ENOMEM;
memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
cmd->len = cpu_to_le16(len);
memcpy(cmd->payload, buf, len);
cmd->channel = channel - 1;
cmd->duration_ms = cpu_to_le16(duration_ms);
rc = wmi_call(wil, WMI_SW_TX_REQ_EXT_CMDID, vif->mid, cmd, total,
WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "mgmt_tx_ext failed with status %d\n",
evt.evt.status);
rc = -EINVAL;
}
kfree(cmd);
return rc;
}
int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id)
{
int rc;
struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
struct wil_status_ring *sring = &wil->srings[ring_id];
struct wmi_tx_status_ring_add_cmd cmd = {
.ring_cfg = {
.ring_size = cpu_to_le16(sring->size),
},
.irq_index = WIL_TX_STATUS_IRQ_IDX
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_tx_status_ring_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
cmd.ring_cfg.ring_id = ring_id;
cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID,
&reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
return 0;
}
int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc)
{
struct net_device *ndev = wil->main_ndev;
struct wil6210_vif *vif = ndev_to_vif(ndev);
int rc;
struct wmi_cfg_def_rx_offload_cmd cmd = {
.max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)),
.max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc),
.decap_trans_type = WMI_DECAP_TYPE_802_3,
.l2_802_3_offload_ctrl = 0,
.l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS,
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_cfg_def_rx_offload_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
return 0;
}
int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id)
{
struct net_device *ndev = wil->main_ndev;
struct wil6210_vif *vif = ndev_to_vif(ndev);
struct wil_status_ring *sring = &wil->srings[ring_id];
int rc;
struct wmi_rx_status_ring_add_cmd cmd = {
.ring_cfg = {
.ring_size = cpu_to_le16(sring->size),
.ring_id = ring_id,
},
.rx_msg_type = wil->use_compressed_rx_status ?
WMI_RX_MSG_TYPE_COMPRESSED :
WMI_RX_MSG_TYPE_EXTENDED,
.irq_index = WIL_RX_STATUS_IRQ_IDX,
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_rx_status_ring_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
return 0;
}
int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id)
{
struct net_device *ndev = wil->main_ndev;
struct wil6210_vif *vif = ndev_to_vif(ndev);
struct wil_ring *ring = &wil->ring_rx;
int rc;
struct wmi_rx_desc_ring_add_cmd cmd = {
.ring_cfg = {
.ring_size = cpu_to_le16(ring->size),
.ring_id = WIL_RX_DESC_RING_ID,
},
.status_ring_id = status_ring_id,
.irq_index = WIL_RX_STATUS_IRQ_IDX,
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_rx_desc_ring_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa);
rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
return 0;
}
int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid,
int tid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int sring_id = wil->tx_sring_idx; /* there is only one TX sring */
int rc;
struct wil_ring *ring = &wil->ring_tx[ring_id];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
struct wmi_tx_desc_ring_add_cmd cmd = {
.ring_cfg = {
.ring_size = cpu_to_le16(ring->size),
.ring_id = ring_id,
},
.status_ring_id = sring_id,
.cid = cid,
.tid = tid,
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
.max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
.schd_params = {
.priority = cpu_to_le16(0),
.timeslot_us = cpu_to_le16(0xfff),
}
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_tx_desc_ring_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
spin_lock_bh(&txdata->lock);
ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
txdata->mid = vif->mid;
txdata->enabled = 1;
spin_unlock_bh(&txdata->lock);
return 0;
}
int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wil_ring *ring = &wil->ring_tx[ring_id];
int rc;
struct wmi_bcast_desc_ring_add_cmd cmd = {
.ring_cfg = {
.ring_size = cpu_to_le16(ring->size),
.ring_id = ring_id,
},
.status_ring_id = wil->tx_sring_idx,
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
};
struct {
struct wmi_cmd_hdr hdr;
struct wmi_rx_desc_ring_cfg_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd,
sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "Broadcast Tx config failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
spin_lock_bh(&txdata->lock);
ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
txdata->mid = vif->mid;
txdata->enabled = 1;
spin_unlock_bh(&txdata->lock);
return 0;
}
int wmi_link_stats_cfg(struct wil6210_vif *vif, u32 type, u8 cid, u32 interval)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wmi_link_stats_cmd cmd = {
.record_type_mask = cpu_to_le32(type),
.cid = cid,
.action = WMI_LINK_STATS_SNAPSHOT,
.interval_msec = cpu_to_le32(interval),
};
struct {
struct wmi_cmd_hdr wmi;
struct wmi_link_stats_config_done_event evt;
} __packed reply = {
.evt = {.status = WMI_FW_STATUS_FAILURE},
};
int rc;
rc = wmi_call(wil, WMI_LINK_STATS_CMDID, vif->mid, &cmd, sizeof(cmd),
WMI_LINK_STATS_CONFIG_DONE_EVENTID, &reply,
sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
if (rc) {
wil_err(wil, "WMI_LINK_STATS_CMDID failed, rc %d\n", rc);
return rc;
}
if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
wil_err(wil, "Link statistics config failed, status %d\n",
reply.evt.status);
return -EINVAL;
}
return 0;
}