blob: 0625e36d0a924077d8a2dc531faa952081a92e3c [file] [log] [blame]
/*
* Montage M88TS2022 silicon tuner driver
*
* Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Some calculations are taken from existing TS2020 driver.
*/
#include "m88ts2022_priv.h"
/* write multiple registers */
static int m88ts2022_wr_regs(struct m88ts2022_priv *priv,
u8 reg, const u8 *val, int len)
{
int ret;
u8 buf[1 + len];
struct i2c_msg msg[1] = {
{
.addr = priv->cfg->i2c_addr,
.flags = 0,
.len = sizeof(buf),
.buf = buf,
}
};
buf[0] = reg;
memcpy(&buf[1], val, len);
ret = i2c_transfer(priv->i2c, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev,
"%s: i2c wr failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int m88ts2022_rd_regs(struct m88ts2022_priv *priv, u8 reg,
u8 *val, int len)
{
int ret;
u8 buf[len];
struct i2c_msg msg[2] = {
{
.addr = priv->cfg->i2c_addr,
.flags = 0,
.len = 1,
.buf = &reg,
}, {
.addr = priv->cfg->i2c_addr,
.flags = I2C_M_RD,
.len = sizeof(buf),
.buf = buf,
}
};
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret == 2) {
memcpy(val, buf, len);
ret = 0;
} else {
dev_warn(&priv->i2c->dev,
"%s: i2c rd failed=%d reg=%02x len=%d\n",
KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write single register */
static int m88ts2022_wr_reg(struct m88ts2022_priv *priv, u8 reg, u8 val)
{
return m88ts2022_wr_regs(priv, reg, &val, 1);
}
/* read single register */
static int m88ts2022_rd_reg(struct m88ts2022_priv *priv, u8 reg, u8 *val)
{
return m88ts2022_rd_regs(priv, reg, val, 1);
}
/* write single register with mask */
static int m88ts2022_wr_reg_mask(struct m88ts2022_priv *priv,
u8 reg, u8 val, u8 mask)
{
int ret;
u8 u8tmp;
/* no need for read if whole reg is written */
if (mask != 0xff) {
ret = m88ts2022_rd_regs(priv, reg, &u8tmp, 1);
if (ret)
return ret;
val &= mask;
u8tmp &= ~mask;
val |= u8tmp;
}
return m88ts2022_wr_regs(priv, reg, &val, 1);
}
static int m88ts2022_cmd(struct dvb_frontend *fe,
int op, int sleep, u8 reg, u8 mask, u8 val, u8 *reg_val)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
int ret, i;
u8 u8tmp;
struct m88ts2022_reg_val reg_vals[] = {
{0x51, 0x1f - op},
{0x51, 0x1f},
{0x50, 0x00 + op},
{0x50, 0x00},
};
for (i = 0; i < 2; i++) {
dev_dbg(&priv->i2c->dev,
"%s: i=%d op=%02x reg=%02x mask=%02x val=%02x\n",
__func__, i, op, reg, mask, val);
for (i = 0; i < ARRAY_SIZE(reg_vals); i++) {
ret = m88ts2022_wr_reg(priv, reg_vals[i].reg,
reg_vals[i].val);
if (ret)
goto err;
}
usleep_range(sleep * 1000, sleep * 10000);
ret = m88ts2022_rd_reg(priv, reg, &u8tmp);
if (ret)
goto err;
if ((u8tmp & mask) != val)
break;
}
if (reg_val)
*reg_val = u8tmp;
err:
return ret;
}
static int m88ts2022_set_params(struct dvb_frontend *fe)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret = 0, div;
u8 buf[3], u8tmp, cap_code, lpf_mxdiv, div_max, div_min;
u16 N_reg, N, K;
u32 lpf_gm, lpf_coeff, gdiv28, frequency_khz, frequency_offset;
u32 freq_3db;
dev_dbg(&priv->i2c->dev,
"%s: frequency=%d symbol_rate=%d rolloff=%d\n",
__func__, c->frequency, c->symbol_rate, c->rolloff);
if (c->symbol_rate < 5000000)
frequency_offset = 3000000; /* 3 MHz */
else
frequency_offset = 0;
frequency_khz = c->frequency + (frequency_offset / 1000);
if (frequency_khz < 1103000) {
div = 2;
u8tmp = 0x1b;
} else {
div = 1;
u8tmp = 0x0b;
}
buf[0] = u8tmp;
buf[1] = 0x40;
ret = m88ts2022_wr_regs(priv, 0x10, buf, 2);
if (ret)
goto err;
K = DIV_ROUND_CLOSEST((priv->cfg->clock / 2), 1000000);
N = 1ul * frequency_khz * K * div * 2 / (priv->cfg->clock / 1000);
N += N % 2;
if (N < 4095)
N_reg = N - 1024;
else if (N < 6143)
N_reg = N + 1024;
else
N_reg = N + 3072;
buf[0] = (N_reg >> 8) & 0x3f;
buf[1] = (N_reg >> 0) & 0xff;
buf[2] = K - 8;
ret = m88ts2022_wr_regs(priv, 0x01, buf, 3);
if (ret)
goto err;
priv->frequency_khz = 1ul * N * (priv->cfg->clock / 1000) / K / div / 2;
dev_dbg(&priv->i2c->dev,
"%s: frequency=%d offset=%d K=%d N=%d div=%d\n",
__func__, priv->frequency_khz,
priv->frequency_khz - c->frequency, K, N, div);
ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL);
if (ret)
goto err;
ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp);
if (ret)
goto err;
u8tmp &= 0x7f;
if (u8tmp < 64) {
ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x80, 0x80);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x11, 0x6f);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x10, 5, 0x15, 0x40, 0x00, NULL);
if (ret)
goto err;
}
ret = m88ts2022_rd_reg(priv, 0x14, &u8tmp);
if (ret)
goto err;
u8tmp &= 0x1f;
if (u8tmp > 19) {
ret = m88ts2022_wr_reg_mask(priv, 0x10, 0x00, 0x02);
if (ret)
goto err;
}
ret = m88ts2022_cmd(fe, 0x08, 5, 0x3c, 0xff, 0x00, NULL);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x25, 0x00);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x27, 0x70);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x41, 0x09);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x08, 0x0b);
if (ret)
goto err;
gdiv28 = DIV_ROUND_CLOSEST(priv->cfg->clock / 1000000 * 1694, 1000);
ret = m88ts2022_wr_reg(priv, 0x04, gdiv28);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
if (ret)
goto err;
cap_code = u8tmp & 0x3f;
ret = m88ts2022_wr_reg(priv, 0x41, 0x0d);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
if (ret)
goto err;
u8tmp &= 0x3f;
cap_code = (cap_code + u8tmp) / 2;
gdiv28 = gdiv28 * 207 / (cap_code * 2 + 151);
div_max = gdiv28 * 135 / 100;
div_min = gdiv28 * 78 / 100;
if (div_max > 63)
div_max = 63;
freq_3db = 1ul * c->symbol_rate * 135 / 200 + 2000000;
freq_3db += frequency_offset;
if (freq_3db < 7000000)
freq_3db = 7000000;
if (freq_3db > 40000000)
freq_3db = 40000000;
lpf_coeff = 3200;
lpf_gm = DIV_ROUND_CLOSEST(freq_3db * gdiv28, lpf_coeff *
(priv->cfg->clock / 1000));
if (lpf_gm > 23)
lpf_gm = 23;
if (lpf_gm < 1)
lpf_gm = 1;
lpf_mxdiv = DIV_ROUND_CLOSEST(lpf_gm * lpf_coeff *
(priv->cfg->clock / 1000), freq_3db);
if (lpf_mxdiv < div_min) {
lpf_gm++;
lpf_mxdiv = DIV_ROUND_CLOSEST(lpf_gm * lpf_coeff *
(priv->cfg->clock / 1000), freq_3db);
}
if (lpf_mxdiv > div_max)
lpf_mxdiv = div_max;
ret = m88ts2022_wr_reg(priv, 0x04, lpf_mxdiv);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x06, lpf_gm);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
if (ret)
goto err;
cap_code = u8tmp & 0x3f;
ret = m88ts2022_wr_reg(priv, 0x41, 0x09);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x04, 2, 0x26, 0xff, 0x00, &u8tmp);
if (ret)
goto err;
u8tmp &= 0x3f;
cap_code = (cap_code + u8tmp) / 2;
u8tmp = cap_code | 0x80;
ret = m88ts2022_wr_reg(priv, 0x25, u8tmp);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x27, 0x30);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x08, 0x09);
if (ret)
goto err;
ret = m88ts2022_cmd(fe, 0x01, 20, 0x21, 0xff, 0x00, NULL);
if (ret)
goto err;
err:
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int m88ts2022_init(struct dvb_frontend *fe)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
int ret, i;
u8 u8tmp;
static const struct m88ts2022_reg_val reg_vals[] = {
{0x7d, 0x9d},
{0x7c, 0x9a},
{0x7a, 0x76},
{0x3b, 0x01},
{0x63, 0x88},
{0x61, 0x85},
{0x22, 0x30},
{0x30, 0x40},
{0x20, 0x23},
{0x24, 0x02},
{0x12, 0xa0},
};
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
ret = m88ts2022_wr_reg(priv, 0x00, 0x01);
if (ret)
goto err;
ret = m88ts2022_wr_reg(priv, 0x00, 0x03);
if (ret)
goto err;
switch (priv->cfg->clock_out) {
case M88TS2022_CLOCK_OUT_DISABLED:
u8tmp = 0x60;
break;
case M88TS2022_CLOCK_OUT_ENABLED:
u8tmp = 0x70;
ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg->clock_out_div);
if (ret)
goto err;
break;
case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
goto err;
}
ret = m88ts2022_wr_reg(priv, 0x42, u8tmp);
if (ret)
goto err;
if (priv->cfg->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ret = m88ts2022_wr_reg(priv, 0x62, u8tmp);
if (ret)
goto err;
for (i = 0; i < ARRAY_SIZE(reg_vals); i++) {
ret = m88ts2022_wr_reg(priv, reg_vals[i].reg, reg_vals[i].val);
if (ret)
goto err;
}
err:
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int m88ts2022_sleep(struct dvb_frontend *fe)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
int ret;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
ret = m88ts2022_wr_reg(priv, 0x00, 0x00);
if (ret)
goto err;
err:
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int m88ts2022_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
*frequency = priv->frequency_khz;
return 0;
}
static int m88ts2022_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
*frequency = 0; /* Zero-IF */
return 0;
}
static int m88ts2022_get_rf_strength(struct dvb_frontend *fe, u16 *strength)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
u8 u8tmp, gain1, gain2, gain3;
u16 gain, u16tmp;
int ret;
ret = m88ts2022_rd_reg(priv, 0x3d, &u8tmp);
if (ret)
goto err;
gain1 = (u8tmp >> 0) & 0x1f;
if (gain1 > 15)
gain1 = 15;
ret = m88ts2022_rd_reg(priv, 0x21, &u8tmp);
if (ret)
goto err;
gain2 = (u8tmp >> 0) & 0x1f;
if (gain2 < 2)
gain2 = 2;
if (gain2 > 16)
gain2 = 16;
ret = m88ts2022_rd_reg(priv, 0x66, &u8tmp);
if (ret)
goto err;
gain3 = (u8tmp >> 3) & 0x07;
if (gain3 > 6)
gain3 = 6;
gain = gain1 * 265 + gain2 * 338 + gain3 * 285;
/* scale value to 0x0000-0xffff */
u16tmp = (0xffff - gain);
if (u16tmp < 59000)
u16tmp = 59000;
else if (u16tmp > 61500)
u16tmp = 61500;
*strength = (u16tmp - 59000) * 0xffff / (61500 - 59000);
err:
if (ret)
dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int m88ts2022_release(struct dvb_frontend *fe)
{
struct m88ts2022_priv *priv = fe->tuner_priv;
dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
kfree(fe->tuner_priv);
return 0;
}
static const struct dvb_tuner_ops m88ts2022_tuner_ops = {
.info = {
.name = "Montage M88TS2022",
.frequency_min = 950000,
.frequency_max = 2150000,
},
.release = m88ts2022_release,
.init = m88ts2022_init,
.sleep = m88ts2022_sleep,
.set_params = m88ts2022_set_params,
.get_frequency = m88ts2022_get_frequency,
.get_if_frequency = m88ts2022_get_if_frequency,
.get_rf_strength = m88ts2022_get_rf_strength,
};
struct dvb_frontend *m88ts2022_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, const struct m88ts2022_config *cfg)
{
struct m88ts2022_priv *priv;
int ret;
u8 chip_id, u8tmp;
priv = kzalloc(sizeof(struct m88ts2022_priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
goto err;
}
priv->cfg = cfg;
priv->i2c = i2c;
priv->fe = fe;
/* check if the tuner is there */
ret = m88ts2022_rd_reg(priv, 0x00, &u8tmp);
if (ret)
goto err;
if ((u8tmp & 0x03) == 0x00) {
ret = m88ts2022_wr_reg(priv, 0x00, 0x01);
if (ret < 0)
goto err;
usleep_range(2000, 50000);
}
ret = m88ts2022_wr_reg(priv, 0x00, 0x03);
if (ret)
goto err;
usleep_range(2000, 50000);
ret = m88ts2022_rd_reg(priv, 0x00, &chip_id);
if (ret)
goto err;
dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
switch (chip_id) {
case 0xc3:
case 0x83:
break;
default:
goto err;
}
switch (priv->cfg->clock_out) {
case M88TS2022_CLOCK_OUT_DISABLED:
u8tmp = 0x60;
break;
case M88TS2022_CLOCK_OUT_ENABLED:
u8tmp = 0x70;
ret = m88ts2022_wr_reg(priv, 0x05, priv->cfg->clock_out_div);
if (ret)
goto err;
break;
case M88TS2022_CLOCK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
goto err;
}
ret = m88ts2022_wr_reg(priv, 0x42, u8tmp);
if (ret)
goto err;
if (priv->cfg->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ret = m88ts2022_wr_reg(priv, 0x62, u8tmp);
if (ret)
goto err;
/* sleep */
ret = m88ts2022_wr_reg(priv, 0x00, 0x00);
if (ret)
goto err;
dev_info(&priv->i2c->dev,
"%s: Montage M88TS2022 successfully identified\n",
KBUILD_MODNAME);
fe->tuner_priv = priv;
memcpy(&fe->ops.tuner_ops, &m88ts2022_tuner_ops,
sizeof(struct dvb_tuner_ops));
err:
if (ret) {
dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
kfree(priv);
return NULL;
}
return fe;
}
EXPORT_SYMBOL(m88ts2022_attach);
MODULE_DESCRIPTION("Montage M88TS2022 silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");