| #include <linux/dma-mapping.h> |
| #include <linux/dmar.h> |
| #include <linux/bootmem.h> |
| #include <linux/pci.h> |
| |
| #include <asm/proto.h> |
| #include <asm/dma.h> |
| #include <asm/gart.h> |
| #include <asm/calgary.h> |
| |
| int forbid_dac __read_mostly; |
| EXPORT_SYMBOL(forbid_dac); |
| |
| const struct dma_mapping_ops *dma_ops; |
| EXPORT_SYMBOL(dma_ops); |
| |
| static int iommu_sac_force __read_mostly; |
| |
| #ifdef CONFIG_IOMMU_DEBUG |
| int panic_on_overflow __read_mostly = 1; |
| int force_iommu __read_mostly = 1; |
| #else |
| int panic_on_overflow __read_mostly = 0; |
| int force_iommu __read_mostly = 0; |
| #endif |
| |
| int iommu_merge __read_mostly = 0; |
| |
| int no_iommu __read_mostly; |
| /* Set this to 1 if there is a HW IOMMU in the system */ |
| int iommu_detected __read_mostly = 0; |
| |
| /* This tells the BIO block layer to assume merging. Default to off |
| because we cannot guarantee merging later. */ |
| int iommu_bio_merge __read_mostly = 0; |
| EXPORT_SYMBOL(iommu_bio_merge); |
| |
| dma_addr_t bad_dma_address __read_mostly = 0; |
| EXPORT_SYMBOL(bad_dma_address); |
| |
| /* Dummy device used for NULL arguments (normally ISA). Better would |
| be probably a smaller DMA mask, but this is bug-to-bug compatible |
| to older i386. */ |
| struct device fallback_dev = { |
| .bus_id = "fallback device", |
| .coherent_dma_mask = DMA_32BIT_MASK, |
| .dma_mask = &fallback_dev.coherent_dma_mask, |
| }; |
| |
| int dma_set_mask(struct device *dev, u64 mask) |
| { |
| if (!dev->dma_mask || !dma_supported(dev, mask)) |
| return -EIO; |
| |
| *dev->dma_mask = mask; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_set_mask); |
| |
| #ifdef CONFIG_X86_64 |
| static __initdata void *dma32_bootmem_ptr; |
| static unsigned long dma32_bootmem_size __initdata = (128ULL<<20); |
| |
| static int __init parse_dma32_size_opt(char *p) |
| { |
| if (!p) |
| return -EINVAL; |
| dma32_bootmem_size = memparse(p, &p); |
| return 0; |
| } |
| early_param("dma32_size", parse_dma32_size_opt); |
| |
| void __init dma32_reserve_bootmem(void) |
| { |
| unsigned long size, align; |
| if (end_pfn <= MAX_DMA32_PFN) |
| return; |
| |
| align = 64ULL<<20; |
| size = round_up(dma32_bootmem_size, align); |
| dma32_bootmem_ptr = __alloc_bootmem_nopanic(size, align, |
| __pa(MAX_DMA_ADDRESS)); |
| if (dma32_bootmem_ptr) |
| dma32_bootmem_size = size; |
| else |
| dma32_bootmem_size = 0; |
| } |
| static void __init dma32_free_bootmem(void) |
| { |
| int node; |
| |
| if (end_pfn <= MAX_DMA32_PFN) |
| return; |
| |
| if (!dma32_bootmem_ptr) |
| return; |
| |
| for_each_online_node(node) |
| free_bootmem_node(NODE_DATA(node), __pa(dma32_bootmem_ptr), |
| dma32_bootmem_size); |
| |
| dma32_bootmem_ptr = NULL; |
| dma32_bootmem_size = 0; |
| } |
| |
| void __init pci_iommu_alloc(void) |
| { |
| /* free the range so iommu could get some range less than 4G */ |
| dma32_free_bootmem(); |
| /* |
| * The order of these functions is important for |
| * fall-back/fail-over reasons |
| */ |
| #ifdef CONFIG_GART_IOMMU |
| gart_iommu_hole_init(); |
| #endif |
| |
| #ifdef CONFIG_CALGARY_IOMMU |
| detect_calgary(); |
| #endif |
| |
| detect_intel_iommu(); |
| |
| #ifdef CONFIG_SWIOTLB |
| pci_swiotlb_init(); |
| #endif |
| } |
| #endif |
| |
| /* |
| * See <Documentation/x86_64/boot-options.txt> for the iommu kernel parameter |
| * documentation. |
| */ |
| static __init int iommu_setup(char *p) |
| { |
| iommu_merge = 1; |
| |
| if (!p) |
| return -EINVAL; |
| |
| while (*p) { |
| if (!strncmp(p, "off", 3)) |
| no_iommu = 1; |
| /* gart_parse_options has more force support */ |
| if (!strncmp(p, "force", 5)) |
| force_iommu = 1; |
| if (!strncmp(p, "noforce", 7)) { |
| iommu_merge = 0; |
| force_iommu = 0; |
| } |
| |
| if (!strncmp(p, "biomerge", 8)) { |
| iommu_bio_merge = 4096; |
| iommu_merge = 1; |
| force_iommu = 1; |
| } |
| if (!strncmp(p, "panic", 5)) |
| panic_on_overflow = 1; |
| if (!strncmp(p, "nopanic", 7)) |
| panic_on_overflow = 0; |
| if (!strncmp(p, "merge", 5)) { |
| iommu_merge = 1; |
| force_iommu = 1; |
| } |
| if (!strncmp(p, "nomerge", 7)) |
| iommu_merge = 0; |
| if (!strncmp(p, "forcesac", 8)) |
| iommu_sac_force = 1; |
| if (!strncmp(p, "allowdac", 8)) |
| forbid_dac = 0; |
| if (!strncmp(p, "nodac", 5)) |
| forbid_dac = -1; |
| if (!strncmp(p, "usedac", 6)) { |
| forbid_dac = -1; |
| return 1; |
| } |
| #ifdef CONFIG_SWIOTLB |
| if (!strncmp(p, "soft", 4)) |
| swiotlb = 1; |
| #endif |
| |
| #ifdef CONFIG_GART_IOMMU |
| gart_parse_options(p); |
| #endif |
| |
| #ifdef CONFIG_CALGARY_IOMMU |
| if (!strncmp(p, "calgary", 7)) |
| use_calgary = 1; |
| #endif /* CONFIG_CALGARY_IOMMU */ |
| |
| p += strcspn(p, ","); |
| if (*p == ',') |
| ++p; |
| } |
| return 0; |
| } |
| early_param("iommu", iommu_setup); |
| |
| #ifdef CONFIG_X86_32 |
| int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, |
| dma_addr_t device_addr, size_t size, int flags) |
| { |
| void __iomem *mem_base = NULL; |
| int pages = size >> PAGE_SHIFT; |
| int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); |
| |
| if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0) |
| goto out; |
| if (!size) |
| goto out; |
| if (dev->dma_mem) |
| goto out; |
| |
| /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */ |
| |
| mem_base = ioremap(bus_addr, size); |
| if (!mem_base) |
| goto out; |
| |
| dev->dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); |
| if (!dev->dma_mem) |
| goto out; |
| dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!dev->dma_mem->bitmap) |
| goto free1_out; |
| |
| dev->dma_mem->virt_base = mem_base; |
| dev->dma_mem->device_base = device_addr; |
| dev->dma_mem->size = pages; |
| dev->dma_mem->flags = flags; |
| |
| if (flags & DMA_MEMORY_MAP) |
| return DMA_MEMORY_MAP; |
| |
| return DMA_MEMORY_IO; |
| |
| free1_out: |
| kfree(dev->dma_mem); |
| out: |
| if (mem_base) |
| iounmap(mem_base); |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_declare_coherent_memory); |
| |
| void dma_release_declared_memory(struct device *dev) |
| { |
| struct dma_coherent_mem *mem = dev->dma_mem; |
| |
| if (!mem) |
| return; |
| dev->dma_mem = NULL; |
| iounmap(mem->virt_base); |
| kfree(mem->bitmap); |
| kfree(mem); |
| } |
| EXPORT_SYMBOL(dma_release_declared_memory); |
| |
| void *dma_mark_declared_memory_occupied(struct device *dev, |
| dma_addr_t device_addr, size_t size) |
| { |
| struct dma_coherent_mem *mem = dev->dma_mem; |
| int pos, err; |
| int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1); |
| |
| pages >>= PAGE_SHIFT; |
| |
| if (!mem) |
| return ERR_PTR(-EINVAL); |
| |
| pos = (device_addr - mem->device_base) >> PAGE_SHIFT; |
| err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages)); |
| if (err != 0) |
| return ERR_PTR(err); |
| return mem->virt_base + (pos << PAGE_SHIFT); |
| } |
| EXPORT_SYMBOL(dma_mark_declared_memory_occupied); |
| |
| static int dma_alloc_from_coherent_mem(struct device *dev, ssize_t size, |
| dma_addr_t *dma_handle, void **ret) |
| { |
| struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; |
| int order = get_order(size); |
| |
| if (mem) { |
| int page = bitmap_find_free_region(mem->bitmap, mem->size, |
| order); |
| if (page >= 0) { |
| *dma_handle = mem->device_base + (page << PAGE_SHIFT); |
| *ret = mem->virt_base + (page << PAGE_SHIFT); |
| memset(*ret, 0, size); |
| } |
| if (mem->flags & DMA_MEMORY_EXCLUSIVE) |
| *ret = NULL; |
| } |
| return (mem != NULL); |
| } |
| |
| static int dma_release_coherent(struct device *dev, int order, void *vaddr) |
| { |
| struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; |
| |
| if (mem && vaddr >= mem->virt_base && vaddr < |
| (mem->virt_base + (mem->size << PAGE_SHIFT))) { |
| int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; |
| |
| bitmap_release_region(mem->bitmap, page, order); |
| return 1; |
| } |
| return 0; |
| } |
| #else |
| #define dma_alloc_from_coherent_mem(dev, size, handle, ret) (0) |
| #define dma_release_coherent(dev, order, vaddr) (0) |
| #endif /* CONFIG_X86_32 */ |
| |
| int dma_supported(struct device *dev, u64 mask) |
| { |
| #ifdef CONFIG_PCI |
| if (mask > 0xffffffff && forbid_dac > 0) { |
| printk(KERN_INFO "PCI: Disallowing DAC for device %s\n", |
| dev->bus_id); |
| return 0; |
| } |
| #endif |
| |
| if (dma_ops->dma_supported) |
| return dma_ops->dma_supported(dev, mask); |
| |
| /* Copied from i386. Doesn't make much sense, because it will |
| only work for pci_alloc_coherent. |
| The caller just has to use GFP_DMA in this case. */ |
| if (mask < DMA_24BIT_MASK) |
| return 0; |
| |
| /* Tell the device to use SAC when IOMMU force is on. This |
| allows the driver to use cheaper accesses in some cases. |
| |
| Problem with this is that if we overflow the IOMMU area and |
| return DAC as fallback address the device may not handle it |
| correctly. |
| |
| As a special case some controllers have a 39bit address |
| mode that is as efficient as 32bit (aic79xx). Don't force |
| SAC for these. Assume all masks <= 40 bits are of this |
| type. Normally this doesn't make any difference, but gives |
| more gentle handling of IOMMU overflow. */ |
| if (iommu_sac_force && (mask >= DMA_40BIT_MASK)) { |
| printk(KERN_INFO "%s: Force SAC with mask %Lx\n", |
| dev->bus_id, mask); |
| return 0; |
| } |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(dma_supported); |
| |
| /* Allocate DMA memory on node near device */ |
| noinline struct page * |
| dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order) |
| { |
| int node; |
| |
| node = dev_to_node(dev); |
| |
| return alloc_pages_node(node, gfp, order); |
| } |
| |
| /* |
| * Allocate memory for a coherent mapping. |
| */ |
| void * |
| dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t gfp) |
| { |
| void *memory = NULL; |
| struct page *page; |
| unsigned long dma_mask = 0; |
| dma_addr_t bus; |
| int noretry = 0; |
| |
| /* ignore region specifiers */ |
| gfp &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
| |
| if (dma_alloc_from_coherent_mem(dev, size, dma_handle, &memory)) |
| return memory; |
| |
| if (!dev) { |
| dev = &fallback_dev; |
| gfp |= GFP_DMA; |
| } |
| dma_mask = dev->coherent_dma_mask; |
| if (dma_mask == 0) |
| dma_mask = (gfp & GFP_DMA) ? DMA_24BIT_MASK : DMA_32BIT_MASK; |
| |
| /* Device not DMA able */ |
| if (dev->dma_mask == NULL) |
| return NULL; |
| |
| /* Don't invoke OOM killer or retry in lower 16MB DMA zone */ |
| if (gfp & __GFP_DMA) |
| noretry = 1; |
| |
| #ifdef CONFIG_X86_64 |
| /* Why <=? Even when the mask is smaller than 4GB it is often |
| larger than 16MB and in this case we have a chance of |
| finding fitting memory in the next higher zone first. If |
| not retry with true GFP_DMA. -AK */ |
| if (dma_mask <= DMA_32BIT_MASK && !(gfp & GFP_DMA)) { |
| gfp |= GFP_DMA32; |
| if (dma_mask < DMA_32BIT_MASK) |
| noretry = 1; |
| } |
| #endif |
| |
| again: |
| page = dma_alloc_pages(dev, |
| noretry ? gfp | __GFP_NORETRY : gfp, get_order(size)); |
| if (page == NULL) |
| return NULL; |
| |
| { |
| int high, mmu; |
| bus = page_to_phys(page); |
| memory = page_address(page); |
| high = (bus + size) >= dma_mask; |
| mmu = high; |
| if (force_iommu && !(gfp & GFP_DMA)) |
| mmu = 1; |
| else if (high) { |
| free_pages((unsigned long)memory, |
| get_order(size)); |
| |
| /* Don't use the 16MB ZONE_DMA unless absolutely |
| needed. It's better to use remapping first. */ |
| if (dma_mask < DMA_32BIT_MASK && !(gfp & GFP_DMA)) { |
| gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
| goto again; |
| } |
| |
| /* Let low level make its own zone decisions */ |
| gfp &= ~(GFP_DMA32|GFP_DMA); |
| |
| if (dma_ops->alloc_coherent) |
| return dma_ops->alloc_coherent(dev, size, |
| dma_handle, gfp); |
| return NULL; |
| } |
| |
| memset(memory, 0, size); |
| if (!mmu) { |
| *dma_handle = bus; |
| return memory; |
| } |
| } |
| |
| if (dma_ops->alloc_coherent) { |
| free_pages((unsigned long)memory, get_order(size)); |
| gfp &= ~(GFP_DMA|GFP_DMA32); |
| return dma_ops->alloc_coherent(dev, size, dma_handle, gfp); |
| } |
| |
| if (dma_ops->map_simple) { |
| *dma_handle = dma_ops->map_simple(dev, virt_to_phys(memory), |
| size, |
| PCI_DMA_BIDIRECTIONAL); |
| if (*dma_handle != bad_dma_address) |
| return memory; |
| } |
| |
| if (panic_on_overflow) |
| panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n", |
| (unsigned long)size); |
| free_pages((unsigned long)memory, get_order(size)); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dma_alloc_coherent); |
| |
| /* |
| * Unmap coherent memory. |
| * The caller must ensure that the device has finished accessing the mapping. |
| */ |
| void dma_free_coherent(struct device *dev, size_t size, |
| void *vaddr, dma_addr_t bus) |
| { |
| int order = get_order(size); |
| WARN_ON(irqs_disabled()); /* for portability */ |
| if (dma_release_coherent(dev, order, vaddr)) |
| return; |
| if (dma_ops->unmap_single) |
| dma_ops->unmap_single(dev, bus, size, 0); |
| free_pages((unsigned long)vaddr, order); |
| } |
| EXPORT_SYMBOL(dma_free_coherent); |
| |
| static int __init pci_iommu_init(void) |
| { |
| #ifdef CONFIG_CALGARY_IOMMU |
| calgary_iommu_init(); |
| #endif |
| |
| intel_iommu_init(); |
| |
| #ifdef CONFIG_GART_IOMMU |
| gart_iommu_init(); |
| #endif |
| |
| no_iommu_init(); |
| return 0; |
| } |
| |
| void pci_iommu_shutdown(void) |
| { |
| gart_iommu_shutdown(); |
| } |
| /* Must execute after PCI subsystem */ |
| fs_initcall(pci_iommu_init); |
| |
| #ifdef CONFIG_PCI |
| /* Many VIA bridges seem to corrupt data for DAC. Disable it here */ |
| |
| static __devinit void via_no_dac(struct pci_dev *dev) |
| { |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && forbid_dac == 0) { |
| printk(KERN_INFO "PCI: VIA PCI bridge detected." |
| "Disabling DAC.\n"); |
| forbid_dac = 1; |
| } |
| } |
| DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_VIA, PCI_ANY_ID, via_no_dac); |
| #endif |