|  | /* | 
|  | * Modified to interface to the Linux kernel | 
|  | * Copyright (c) 2009, Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
|  | * Place - Suite 330, Boston, MA 02111-1307 USA. | 
|  | */ | 
|  |  | 
|  | /* -------------------------------------------------------------------------- | 
|  | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | 
|  | * This implementation is herby placed in the public domain. | 
|  | * The authors offers no warranty. Use at your own risk. | 
|  | * Please send bug reports to the authors. | 
|  | * Last modified: 17 APR 08, 1700 PDT | 
|  | * ----------------------------------------------------------------------- */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <asm/byteorder.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <crypto/vmac.h> | 
|  | #include <crypto/internal/hash.h> | 
|  |  | 
|  | /* | 
|  | * Constants and masks | 
|  | */ | 
|  | #define UINT64_C(x) x##ULL | 
|  | const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */ | 
|  | const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */ | 
|  | const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */ | 
|  | const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */ | 
|  | const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */ | 
|  |  | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | #define INDEX_HIGH 1 | 
|  | #define INDEX_LOW 0 | 
|  | #else | 
|  | #define INDEX_HIGH 0 | 
|  | #define INDEX_LOW 1 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The following routines are used in this implementation. They are | 
|  | * written via macros to simulate zero-overhead call-by-reference. | 
|  | * | 
|  | * MUL64: 64x64->128-bit multiplication | 
|  | * PMUL64: assumes top bits cleared on inputs | 
|  | * ADD128: 128x128->128-bit addition | 
|  | */ | 
|  |  | 
|  | #define ADD128(rh, rl, ih, il)						\ | 
|  | do {								\ | 
|  | u64 _il = (il);						\ | 
|  | (rl) += (_il);						\ | 
|  | if ((rl) < (_il))					\ | 
|  | (rh)++;						\ | 
|  | (rh) += (ih);						\ | 
|  | } while (0) | 
|  |  | 
|  | #define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2)) | 
|  |  | 
|  | #define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\ | 
|  | do {								\ | 
|  | u64 _i1 = (i1), _i2 = (i2);				\ | 
|  | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\ | 
|  | rh = MUL32(_i1>>32, _i2>>32);				\ | 
|  | rl = MUL32(_i1, _i2);					\ | 
|  | ADD128(rh, rl, (m >> 32), (m << 32));			\ | 
|  | } while (0) | 
|  |  | 
|  | #define MUL64(rh, rl, i1, i2)						\ | 
|  | do {								\ | 
|  | u64 _i1 = (i1), _i2 = (i2);				\ | 
|  | u64 m1 = MUL32(_i1, _i2>>32);				\ | 
|  | u64 m2 = MUL32(_i1>>32, _i2);				\ | 
|  | rh = MUL32(_i1>>32, _i2>>32);				\ | 
|  | rl = MUL32(_i1, _i2);					\ | 
|  | ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\ | 
|  | ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * For highest performance the L1 NH and L2 polynomial hashes should be | 
|  | * carefully implemented to take advantage of one's target architechture. | 
|  | * Here these two hash functions are defined multiple time; once for | 
|  | * 64-bit architectures, once for 32-bit SSE2 architectures, and once | 
|  | * for the rest (32-bit) architectures. | 
|  | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | 
|  | * Optionally, nh_vmac_nhbytes can be defined (for multiples of | 
|  | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | 
|  | * NH computations at once). | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  |  | 
|  | #define nh_16(mp, kp, nw, rh, rl)					\ | 
|  | do {								\ | 
|  | int i; u64 th, tl;					\ | 
|  | rh = rl = 0;						\ | 
|  | for (i = 0; i < nw; i += 2) {				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\ | 
|  | do {								\ | 
|  | int i; u64 th, tl;					\ | 
|  | rh1 = rl1 = rh = rl = 0;				\ | 
|  | for (i = 0; i < nw; i += 2) {				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+3]);	\ | 
|  | ADD128(rh1, rl1, th, tl);			\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | 
|  | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\ | 
|  | do {								\ | 
|  | int i; u64 th, tl;					\ | 
|  | rh = rl = 0;						\ | 
|  | for (i = 0; i < nw; i += 8) {				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2],	\ | 
|  | le64_to_cpup((mp)+i+3)+(kp)[i+3]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4],	\ | 
|  | le64_to_cpup((mp)+i+5)+(kp)[i+5]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6],	\ | 
|  | le64_to_cpup((mp)+i+7)+(kp)[i+7]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\ | 
|  | do {								\ | 
|  | int i; u64 th, tl;					\ | 
|  | rh1 = rl1 = rh = rl = 0;				\ | 
|  | for (i = 0; i < nw; i += 8) {				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2],	\ | 
|  | le64_to_cpup((mp)+i+1)+(kp)[i+3]);	\ | 
|  | ADD128(rh1, rl1, th, tl);			\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2],	\ | 
|  | le64_to_cpup((mp)+i+3)+(kp)[i+3]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4],	\ | 
|  | le64_to_cpup((mp)+i+3)+(kp)[i+5]);	\ | 
|  | ADD128(rh1, rl1, th, tl);			\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4],	\ | 
|  | le64_to_cpup((mp)+i+5)+(kp)[i+5]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6],	\ | 
|  | le64_to_cpup((mp)+i+5)+(kp)[i+7]);	\ | 
|  | ADD128(rh1, rl1, th, tl);			\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6],	\ | 
|  | le64_to_cpup((mp)+i+7)+(kp)[i+7]);	\ | 
|  | ADD128(rh, rl, th, tl);				\ | 
|  | MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8],	\ | 
|  | le64_to_cpup((mp)+i+7)+(kp)[i+9]);	\ | 
|  | ADD128(rh1, rl1, th, tl);			\ | 
|  | }							\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | #define poly_step(ah, al, kh, kl, mh, ml)				\ | 
|  | do {								\ | 
|  | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\ | 
|  | /* compute ab*cd, put bd into result registers */	\ | 
|  | PMUL64(t3h, t3l, al, kh);				\ | 
|  | PMUL64(t2h, t2l, ah, kl);				\ | 
|  | PMUL64(t1h, t1l, ah, 2*kh);				\ | 
|  | PMUL64(ah, al, al, kl);					\ | 
|  | /* add 2 * ac to result */				\ | 
|  | ADD128(ah, al, t1h, t1l);				\ | 
|  | /* add together ad + bc */				\ | 
|  | ADD128(t2h, t2l, t3h, t3l);				\ | 
|  | /* now (ah,al), (t2l,2*t2h) need summing */		\ | 
|  | /* first add the high registers, carrying into t2h */	\ | 
|  | ADD128(t2h, ah, z, t2l);				\ | 
|  | /* double t2h and add top bit of ah */			\ | 
|  | t2h = 2 * t2h + (ah >> 63);				\ | 
|  | ah &= m63;						\ | 
|  | /* now add the low registers */				\ | 
|  | ADD128(ah, al, mh, ml);					\ | 
|  | ADD128(ah, al, z, t2h);					\ | 
|  | } while (0) | 
|  |  | 
|  | #else /* ! CONFIG_64BIT */ | 
|  |  | 
|  | #ifndef nh_16 | 
|  | #define nh_16(mp, kp, nw, rh, rl)					\ | 
|  | do {								\ | 
|  | u64 t1, t2, m1, m2, t;					\ | 
|  | int i;							\ | 
|  | rh = rl = t = 0;					\ | 
|  | for (i = 0; i < nw; i += 2)  {				\ | 
|  | t1 = le64_to_cpup(mp+i) + kp[i];		\ | 
|  | t2 = le64_to_cpup(mp+i+1) + kp[i+1];		\ | 
|  | m2 = MUL32(t1 >> 32, t2);			\ | 
|  | m1 = MUL32(t1, t2 >> 32);			\ | 
|  | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\ | 
|  | MUL32(t1, t2));				\ | 
|  | rh += (u64)(u32)(m1 >> 32)			\ | 
|  | + (u32)(m2 >> 32);			\ | 
|  | t += (u64)(u32)m1 + (u32)m2;			\ | 
|  | }							\ | 
|  | ADD128(rh, rl, (t >> 32), (t << 32));			\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | static void poly_step_func(u64 *ahi, u64 *alo, | 
|  | const u64 *kh, const u64 *kl, | 
|  | const u64 *mh, const u64 *ml) | 
|  | { | 
|  | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | 
|  | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | 
|  | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | 
|  | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | 
|  | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | 
|  | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | 
|  | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | 
|  | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | 
|  |  | 
|  | u64 p, q, t; | 
|  | u32 t2; | 
|  |  | 
|  | p = MUL32(a3, k3); | 
|  | p += p; | 
|  | p += *(u64 *)mh; | 
|  | p += MUL32(a0, k2); | 
|  | p += MUL32(a1, k1); | 
|  | p += MUL32(a2, k0); | 
|  | t = (u32)(p); | 
|  | p >>= 32; | 
|  | p += MUL32(a0, k3); | 
|  | p += MUL32(a1, k2); | 
|  | p += MUL32(a2, k1); | 
|  | p += MUL32(a3, k0); | 
|  | t |= ((u64)((u32)p & 0x7fffffff)) << 32; | 
|  | p >>= 31; | 
|  | p += (u64)(((u32 *)ml)[INDEX_LOW]); | 
|  | p += MUL32(a0, k0); | 
|  | q =  MUL32(a1, k3); | 
|  | q += MUL32(a2, k2); | 
|  | q += MUL32(a3, k1); | 
|  | q += q; | 
|  | p += q; | 
|  | t2 = (u32)(p); | 
|  | p >>= 32; | 
|  | p += (u64)(((u32 *)ml)[INDEX_HIGH]); | 
|  | p += MUL32(a0, k1); | 
|  | p += MUL32(a1, k0); | 
|  | q =  MUL32(a2, k3); | 
|  | q += MUL32(a3, k2); | 
|  | q += q; | 
|  | p += q; | 
|  | *(u64 *)(alo) = (p << 32) | t2; | 
|  | p >>= 32; | 
|  | *(u64 *)(ahi) = p + t; | 
|  |  | 
|  | #undef a0 | 
|  | #undef a1 | 
|  | #undef a2 | 
|  | #undef a3 | 
|  | #undef k0 | 
|  | #undef k1 | 
|  | #undef k2 | 
|  | #undef k3 | 
|  | } | 
|  |  | 
|  | #define poly_step(ah, al, kh, kl, mh, ml)				\ | 
|  | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | 
|  |  | 
|  | #endif  /* end of specialized NH and poly definitions */ | 
|  |  | 
|  | /* At least nh_16 is defined. Defined others as needed here */ | 
|  | #ifndef nh_16_2 | 
|  | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\ | 
|  | do { 								\ | 
|  | nh_16(mp, kp, nw, rh, rl);				\ | 
|  | nh_16(mp, ((kp)+2), nw, rh2, rl2);			\ | 
|  | } while (0) | 
|  | #endif | 
|  | #ifndef nh_vmac_nhbytes | 
|  | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\ | 
|  | nh_16(mp, kp, nw, rh, rl) | 
|  | #endif | 
|  | #ifndef nh_vmac_nhbytes_2 | 
|  | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\ | 
|  | do {								\ | 
|  | nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\ | 
|  | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | static void vhash_abort(struct vmac_ctx *ctx) | 
|  | { | 
|  | ctx->polytmp[0] = ctx->polykey[0] ; | 
|  | ctx->polytmp[1] = ctx->polykey[1] ; | 
|  | ctx->first_block_processed = 0; | 
|  | } | 
|  |  | 
|  | static u64 l3hash(u64 p1, u64 p2, | 
|  | u64 k1, u64 k2, u64 len) | 
|  | { | 
|  | u64 rh, rl, t, z = 0; | 
|  |  | 
|  | /* fully reduce (p1,p2)+(len,0) mod p127 */ | 
|  | t = p1 >> 63; | 
|  | p1 &= m63; | 
|  | ADD128(p1, p2, len, t); | 
|  | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ | 
|  | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | 
|  | ADD128(p1, p2, z, t); | 
|  | p1 &= m63; | 
|  |  | 
|  | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | 
|  | t = p1 + (p2 >> 32); | 
|  | t += (t >> 32); | 
|  | t += (u32)t > 0xfffffffeu; | 
|  | p1 += (t >> 32); | 
|  | p2 += (p1 << 32); | 
|  |  | 
|  | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ | 
|  | p1 += k1; | 
|  | p1 += (0 - (p1 < k1)) & 257; | 
|  | p2 += k2; | 
|  | p2 += (0 - (p2 < k2)) & 257; | 
|  |  | 
|  | /* compute (p1+k1)*(p2+k2)%p64 */ | 
|  | MUL64(rh, rl, p1, p2); | 
|  | t = rh >> 56; | 
|  | ADD128(t, rl, z, rh); | 
|  | rh <<= 8; | 
|  | ADD128(t, rl, z, rh); | 
|  | t += t << 8; | 
|  | rl += t; | 
|  | rl += (0 - (rl < t)) & 257; | 
|  | rl += (0 - (rl > p64-1)) & 257; | 
|  | return rl; | 
|  | } | 
|  |  | 
|  | static void vhash_update(const unsigned char *m, | 
|  | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ | 
|  | struct vmac_ctx *ctx) | 
|  | { | 
|  | u64 rh, rl, *mptr; | 
|  | const u64 *kptr = (u64 *)ctx->nhkey; | 
|  | int i; | 
|  | u64 ch, cl; | 
|  | u64 pkh = ctx->polykey[0]; | 
|  | u64 pkl = ctx->polykey[1]; | 
|  |  | 
|  | mptr = (u64 *)m; | 
|  | i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */ | 
|  |  | 
|  | ch = ctx->polytmp[0]; | 
|  | cl = ctx->polytmp[1]; | 
|  |  | 
|  | if (!ctx->first_block_processed) { | 
|  | ctx->first_block_processed = 1; | 
|  | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
|  | rh &= m62; | 
|  | ADD128(ch, cl, rh, rl); | 
|  | mptr += (VMAC_NHBYTES/sizeof(u64)); | 
|  | i--; | 
|  | } | 
|  |  | 
|  | while (i--) { | 
|  | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
|  | rh &= m62; | 
|  | poly_step(ch, cl, pkh, pkl, rh, rl); | 
|  | mptr += (VMAC_NHBYTES/sizeof(u64)); | 
|  | } | 
|  |  | 
|  | ctx->polytmp[0] = ch; | 
|  | ctx->polytmp[1] = cl; | 
|  | } | 
|  |  | 
|  | static u64 vhash(unsigned char m[], unsigned int mbytes, | 
|  | u64 *tagl, struct vmac_ctx *ctx) | 
|  | { | 
|  | u64 rh, rl, *mptr; | 
|  | const u64 *kptr = (u64 *)ctx->nhkey; | 
|  | int i, remaining; | 
|  | u64 ch, cl; | 
|  | u64 pkh = ctx->polykey[0]; | 
|  | u64 pkl = ctx->polykey[1]; | 
|  |  | 
|  | mptr = (u64 *)m; | 
|  | i = mbytes / VMAC_NHBYTES; | 
|  | remaining = mbytes % VMAC_NHBYTES; | 
|  |  | 
|  | if (ctx->first_block_processed) { | 
|  | ch = ctx->polytmp[0]; | 
|  | cl = ctx->polytmp[1]; | 
|  | } else if (i) { | 
|  | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); | 
|  | ch &= m62; | 
|  | ADD128(ch, cl, pkh, pkl); | 
|  | mptr += (VMAC_NHBYTES/sizeof(u64)); | 
|  | i--; | 
|  | } else if (remaining) { | 
|  | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); | 
|  | ch &= m62; | 
|  | ADD128(ch, cl, pkh, pkl); | 
|  | mptr += (VMAC_NHBYTES/sizeof(u64)); | 
|  | goto do_l3; | 
|  | } else {/* Empty String */ | 
|  | ch = pkh; cl = pkl; | 
|  | goto do_l3; | 
|  | } | 
|  |  | 
|  | while (i--) { | 
|  | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
|  | rh &= m62; | 
|  | poly_step(ch, cl, pkh, pkl, rh, rl); | 
|  | mptr += (VMAC_NHBYTES/sizeof(u64)); | 
|  | } | 
|  | if (remaining) { | 
|  | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); | 
|  | rh &= m62; | 
|  | poly_step(ch, cl, pkh, pkl, rh, rl); | 
|  | } | 
|  |  | 
|  | do_l3: | 
|  | vhash_abort(ctx); | 
|  | remaining *= 8; | 
|  | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); | 
|  | } | 
|  |  | 
|  | static u64 vmac(unsigned char m[], unsigned int mbytes, | 
|  | unsigned char n[16], u64 *tagl, | 
|  | struct vmac_ctx_t *ctx) | 
|  | { | 
|  | u64 *in_n, *out_p; | 
|  | u64 p, h; | 
|  | int i; | 
|  |  | 
|  | in_n = ctx->__vmac_ctx.cached_nonce; | 
|  | out_p = ctx->__vmac_ctx.cached_aes; | 
|  |  | 
|  | i = n[15] & 1; | 
|  | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { | 
|  | in_n[0] = *(u64 *)(n); | 
|  | in_n[1] = *(u64 *)(n+8); | 
|  | ((unsigned char *)in_n)[15] &= 0xFE; | 
|  | crypto_cipher_encrypt_one(ctx->child, | 
|  | (unsigned char *)out_p, (unsigned char *)in_n); | 
|  |  | 
|  | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); | 
|  | } | 
|  | p = be64_to_cpup(out_p + i); | 
|  | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); | 
|  | return p + h; | 
|  | } | 
|  |  | 
|  | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) | 
|  | { | 
|  | u64 in[2] = {0}, out[2]; | 
|  | unsigned i; | 
|  | int err = 0; | 
|  |  | 
|  | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Fill nh key */ | 
|  | ((unsigned char *)in)[0] = 0x80; | 
|  | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { | 
|  | crypto_cipher_encrypt_one(ctx->child, | 
|  | (unsigned char *)out, (unsigned char *)in); | 
|  | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); | 
|  | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); | 
|  | ((unsigned char *)in)[15] += 1; | 
|  | } | 
|  |  | 
|  | /* Fill poly key */ | 
|  | ((unsigned char *)in)[0] = 0xC0; | 
|  | in[1] = 0; | 
|  | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { | 
|  | crypto_cipher_encrypt_one(ctx->child, | 
|  | (unsigned char *)out, (unsigned char *)in); | 
|  | ctx->__vmac_ctx.polytmp[i] = | 
|  | ctx->__vmac_ctx.polykey[i] = | 
|  | be64_to_cpup(out) & mpoly; | 
|  | ctx->__vmac_ctx.polytmp[i+1] = | 
|  | ctx->__vmac_ctx.polykey[i+1] = | 
|  | be64_to_cpup(out+1) & mpoly; | 
|  | ((unsigned char *)in)[15] += 1; | 
|  | } | 
|  |  | 
|  | /* Fill ip key */ | 
|  | ((unsigned char *)in)[0] = 0xE0; | 
|  | in[1] = 0; | 
|  | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { | 
|  | do { | 
|  | crypto_cipher_encrypt_one(ctx->child, | 
|  | (unsigned char *)out, (unsigned char *)in); | 
|  | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); | 
|  | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); | 
|  | ((unsigned char *)in)[15] += 1; | 
|  | } while (ctx->__vmac_ctx.l3key[i] >= p64 | 
|  | || ctx->__vmac_ctx.l3key[i+1] >= p64); | 
|  | } | 
|  |  | 
|  | /* Invalidate nonce/aes cache and reset other elements */ | 
|  | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ | 
|  | ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */ | 
|  | ctx->__vmac_ctx.first_block_processed = 0; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int vmac_setkey(struct crypto_shash *parent, | 
|  | const u8 *key, unsigned int keylen) | 
|  | { | 
|  | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
|  |  | 
|  | if (keylen != VMAC_KEY_LEN) { | 
|  | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return vmac_set_key((u8 *)key, ctx); | 
|  | } | 
|  |  | 
|  | static int vmac_init(struct shash_desc *pdesc) | 
|  | { | 
|  | struct crypto_shash *parent = pdesc->tfm; | 
|  | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
|  |  | 
|  | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmac_update(struct shash_desc *pdesc, const u8 *p, | 
|  | unsigned int len) | 
|  | { | 
|  | struct crypto_shash *parent = pdesc->tfm; | 
|  | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
|  |  | 
|  | vhash_update(p, len, &ctx->__vmac_ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmac_final(struct shash_desc *pdesc, u8 *out) | 
|  | { | 
|  | struct crypto_shash *parent = pdesc->tfm; | 
|  | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
|  | vmac_t mac; | 
|  | u8 nonce[16] = {}; | 
|  |  | 
|  | mac = vmac(NULL, 0, nonce, NULL, ctx); | 
|  | memcpy(out, &mac, sizeof(vmac_t)); | 
|  | memset(&mac, 0, sizeof(vmac_t)); | 
|  | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmac_init_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_cipher *cipher; | 
|  | struct crypto_instance *inst = (void *)tfm->__crt_alg; | 
|  | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | 
|  | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | cipher = crypto_spawn_cipher(spawn); | 
|  | if (IS_ERR(cipher)) | 
|  | return PTR_ERR(cipher); | 
|  |  | 
|  | ctx->child = cipher; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmac_exit_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | 
|  | crypto_free_cipher(ctx->child); | 
|  | } | 
|  |  | 
|  | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) | 
|  | { | 
|  | struct shash_instance *inst; | 
|  | struct crypto_alg *alg; | 
|  | int err; | 
|  |  | 
|  | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | 
|  | CRYPTO_ALG_TYPE_MASK); | 
|  | if (IS_ERR(alg)) | 
|  | return PTR_ERR(alg); | 
|  |  | 
|  | inst = shash_alloc_instance("vmac", alg); | 
|  | err = PTR_ERR(inst); | 
|  | if (IS_ERR(inst)) | 
|  | goto out_put_alg; | 
|  |  | 
|  | err = crypto_init_spawn(shash_instance_ctx(inst), alg, | 
|  | shash_crypto_instance(inst), | 
|  | CRYPTO_ALG_TYPE_MASK); | 
|  | if (err) | 
|  | goto out_free_inst; | 
|  |  | 
|  | inst->alg.base.cra_priority = alg->cra_priority; | 
|  | inst->alg.base.cra_blocksize = alg->cra_blocksize; | 
|  | inst->alg.base.cra_alignmask = alg->cra_alignmask; | 
|  |  | 
|  | inst->alg.digestsize = sizeof(vmac_t); | 
|  | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); | 
|  | inst->alg.base.cra_init = vmac_init_tfm; | 
|  | inst->alg.base.cra_exit = vmac_exit_tfm; | 
|  |  | 
|  | inst->alg.init = vmac_init; | 
|  | inst->alg.update = vmac_update; | 
|  | inst->alg.final = vmac_final; | 
|  | inst->alg.setkey = vmac_setkey; | 
|  |  | 
|  | err = shash_register_instance(tmpl, inst); | 
|  | if (err) { | 
|  | out_free_inst: | 
|  | shash_free_instance(shash_crypto_instance(inst)); | 
|  | } | 
|  |  | 
|  | out_put_alg: | 
|  | crypto_mod_put(alg); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct crypto_template vmac_tmpl = { | 
|  | .name = "vmac", | 
|  | .create = vmac_create, | 
|  | .free = shash_free_instance, | 
|  | .module = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init vmac_module_init(void) | 
|  | { | 
|  | return crypto_register_template(&vmac_tmpl); | 
|  | } | 
|  |  | 
|  | static void __exit vmac_module_exit(void) | 
|  | { | 
|  | crypto_unregister_template(&vmac_tmpl); | 
|  | } | 
|  |  | 
|  | module_init(vmac_module_init); | 
|  | module_exit(vmac_module_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("VMAC hash algorithm"); | 
|  |  |