|  | /* | 
|  | * Copyright (C) 2008 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include "ctree.h" | 
|  | #include "transaction.h" | 
|  | #include "disk-io.h" | 
|  | #include "locking.h" | 
|  | #include "print-tree.h" | 
|  | #include "compat.h" | 
|  | #include "tree-log.h" | 
|  |  | 
|  | /* magic values for the inode_only field in btrfs_log_inode: | 
|  | * | 
|  | * LOG_INODE_ALL means to log everything | 
|  | * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
|  | * during log replay | 
|  | */ | 
|  | #define LOG_INODE_ALL 0 | 
|  | #define LOG_INODE_EXISTS 1 | 
|  |  | 
|  | /* | 
|  | * stages for the tree walking.  The first | 
|  | * stage (0) is to only pin down the blocks we find | 
|  | * the second stage (1) is to make sure that all the inodes | 
|  | * we find in the log are created in the subvolume. | 
|  | * | 
|  | * The last stage is to deal with directories and links and extents | 
|  | * and all the other fun semantics | 
|  | */ | 
|  | #define LOG_WALK_PIN_ONLY 0 | 
|  | #define LOG_WALK_REPLAY_INODES 1 | 
|  | #define LOG_WALK_REPLAY_ALL 2 | 
|  |  | 
|  | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | int inode_only); | 
|  | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, u64 objectid); | 
|  |  | 
|  | /* | 
|  | * tree logging is a special write ahead log used to make sure that | 
|  | * fsyncs and O_SYNCs can happen without doing full tree commits. | 
|  | * | 
|  | * Full tree commits are expensive because they require commonly | 
|  | * modified blocks to be recowed, creating many dirty pages in the | 
|  | * extent tree an 4x-6x higher write load than ext3. | 
|  | * | 
|  | * Instead of doing a tree commit on every fsync, we use the | 
|  | * key ranges and transaction ids to find items for a given file or directory | 
|  | * that have changed in this transaction.  Those items are copied into | 
|  | * a special tree (one per subvolume root), that tree is written to disk | 
|  | * and then the fsync is considered complete. | 
|  | * | 
|  | * After a crash, items are copied out of the log-tree back into the | 
|  | * subvolume tree.  Any file data extents found are recorded in the extent | 
|  | * allocation tree, and the log-tree freed. | 
|  | * | 
|  | * The log tree is read three times, once to pin down all the extents it is | 
|  | * using in ram and once, once to create all the inodes logged in the tree | 
|  | * and once to do all the other items. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * btrfs_add_log_tree adds a new per-subvolume log tree into the | 
|  | * tree of log tree roots.  This must be called with a tree log transaction | 
|  | * running (see start_log_trans). | 
|  | */ | 
|  | static int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_root_item root_item; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_root *new_root = root; | 
|  | int ret; | 
|  | u64 objectid = root->root_key.objectid; | 
|  |  | 
|  | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | 
|  | BTRFS_TREE_LOG_OBJECTID, | 
|  | trans->transid, 0, 0, 0); | 
|  | if (IS_ERR(leaf)) { | 
|  | ret = PTR_ERR(leaf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_set_header_nritems(leaf, 0); | 
|  | btrfs_set_header_level(leaf, 0); | 
|  | btrfs_set_header_bytenr(leaf, leaf->start); | 
|  | btrfs_set_header_generation(leaf, trans->transid); | 
|  | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | write_extent_buffer(leaf, root->fs_info->fsid, | 
|  | (unsigned long)btrfs_header_fsid(leaf), | 
|  | BTRFS_FSID_SIZE); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | inode_item = &root_item.inode; | 
|  | memset(inode_item, 0, sizeof(*inode_item)); | 
|  | inode_item->generation = cpu_to_le64(1); | 
|  | inode_item->size = cpu_to_le64(3); | 
|  | inode_item->nlink = cpu_to_le32(1); | 
|  | inode_item->nbytes = cpu_to_le64(root->leafsize); | 
|  | inode_item->mode = cpu_to_le32(S_IFDIR | 0755); | 
|  |  | 
|  | btrfs_set_root_bytenr(&root_item, leaf->start); | 
|  | btrfs_set_root_generation(&root_item, trans->transid); | 
|  | btrfs_set_root_level(&root_item, 0); | 
|  | btrfs_set_root_refs(&root_item, 0); | 
|  | btrfs_set_root_used(&root_item, 0); | 
|  |  | 
|  | memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); | 
|  | root_item.drop_level = 0; | 
|  |  | 
|  | btrfs_tree_unlock(leaf); | 
|  | free_extent_buffer(leaf); | 
|  | leaf = NULL; | 
|  |  | 
|  | btrfs_set_root_dirid(&root_item, 0); | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | key.offset = objectid; | 
|  | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | 
|  | ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key, | 
|  | &root_item); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree, | 
|  | &key); | 
|  | BUG_ON(!new_root); | 
|  |  | 
|  | WARN_ON(root->log_root); | 
|  | root->log_root = new_root; | 
|  |  | 
|  | /* | 
|  | * log trees do not get reference counted because they go away | 
|  | * before a real commit is actually done.  They do store pointers | 
|  | * to file data extents, and those reference counts still get | 
|  | * updated (along with back refs to the log tree). | 
|  | */ | 
|  | new_root->ref_cows = 0; | 
|  | new_root->last_trans = trans->transid; | 
|  |  | 
|  | /* | 
|  | * we need to make sure the root block for this new tree | 
|  | * is marked as dirty in the dirty_log_pages tree.  This | 
|  | * is how it gets flushed down to disk at tree log commit time. | 
|  | * | 
|  | * the tree logging mutex keeps others from coming in and changing | 
|  | * the new_root->node, so we can safely access it here | 
|  | */ | 
|  | set_extent_dirty(&new_root->dirty_log_pages, new_root->node->start, | 
|  | new_root->node->start + new_root->node->len - 1, | 
|  | GFP_NOFS); | 
|  |  | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start a sub transaction and setup the log tree | 
|  | * this increments the log tree writer count to make the people | 
|  | * syncing the tree wait for us to finish | 
|  | */ | 
|  | static int start_log_trans(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  | mutex_lock(&root->fs_info->tree_log_mutex); | 
|  | if (!root->fs_info->log_root_tree) { | 
|  | ret = btrfs_init_log_root_tree(trans, root->fs_info); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | if (!root->log_root) { | 
|  | ret = btrfs_add_log_tree(trans, root); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | atomic_inc(&root->fs_info->tree_log_writers); | 
|  | root->fs_info->tree_log_batch++; | 
|  | mutex_unlock(&root->fs_info->tree_log_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 0 if there was a log transaction running and we were able | 
|  | * to join, or returns -ENOENT if there were not transactions | 
|  | * in progress | 
|  | */ | 
|  | static int join_running_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | int ret = -ENOENT; | 
|  |  | 
|  | smp_mb(); | 
|  | if (!root->log_root) | 
|  | return -ENOENT; | 
|  |  | 
|  | mutex_lock(&root->fs_info->tree_log_mutex); | 
|  | if (root->log_root) { | 
|  | ret = 0; | 
|  | atomic_inc(&root->fs_info->tree_log_writers); | 
|  | root->fs_info->tree_log_batch++; | 
|  | } | 
|  | mutex_unlock(&root->fs_info->tree_log_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * indicate we're done making changes to the log tree | 
|  | * and wake up anyone waiting to do a sync | 
|  | */ | 
|  | static int end_log_trans(struct btrfs_root *root) | 
|  | { | 
|  | atomic_dec(&root->fs_info->tree_log_writers); | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&root->fs_info->tree_log_wait)) | 
|  | wake_up(&root->fs_info->tree_log_wait); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * the walk control struct is used to pass state down the chain when | 
|  | * processing the log tree.  The stage field tells us which part | 
|  | * of the log tree processing we are currently doing.  The others | 
|  | * are state fields used for that specific part | 
|  | */ | 
|  | struct walk_control { | 
|  | /* should we free the extent on disk when done?  This is used | 
|  | * at transaction commit time while freeing a log tree | 
|  | */ | 
|  | int free; | 
|  |  | 
|  | /* should we write out the extent buffer?  This is used | 
|  | * while flushing the log tree to disk during a sync | 
|  | */ | 
|  | int write; | 
|  |  | 
|  | /* should we wait for the extent buffer io to finish?  Also used | 
|  | * while flushing the log tree to disk for a sync | 
|  | */ | 
|  | int wait; | 
|  |  | 
|  | /* pin only walk, we record which extents on disk belong to the | 
|  | * log trees | 
|  | */ | 
|  | int pin; | 
|  |  | 
|  | /* what stage of the replay code we're currently in */ | 
|  | int stage; | 
|  |  | 
|  | /* the root we are currently replaying */ | 
|  | struct btrfs_root *replay_dest; | 
|  |  | 
|  | /* the trans handle for the current replay */ | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* the function that gets used to process blocks we find in the | 
|  | * tree.  Note the extent_buffer might not be up to date when it is | 
|  | * passed in, and it must be checked or read if you need the data | 
|  | * inside it | 
|  | */ | 
|  | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * process_func used to pin down extents, write them or wait on them | 
|  | */ | 
|  | static int process_one_buffer(struct btrfs_root *log, | 
|  | struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen) | 
|  | { | 
|  | if (wc->pin) { | 
|  | mutex_lock(&log->fs_info->pinned_mutex); | 
|  | btrfs_update_pinned_extents(log->fs_info->extent_root, | 
|  | eb->start, eb->len, 1); | 
|  | mutex_unlock(&log->fs_info->pinned_mutex); | 
|  | } | 
|  |  | 
|  | if (btrfs_buffer_uptodate(eb, gen)) { | 
|  | if (wc->write) | 
|  | btrfs_write_tree_block(eb); | 
|  | if (wc->wait) | 
|  | btrfs_wait_tree_block_writeback(eb); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Item overwrite used by replay and tree logging.  eb, slot and key all refer | 
|  | * to the src data we are copying out. | 
|  | * | 
|  | * root is the tree we are copying into, and path is a scratch | 
|  | * path for use in this function (it should be released on entry and | 
|  | * will be released on exit). | 
|  | * | 
|  | * If the key is already in the destination tree the existing item is | 
|  | * overwritten.  If the existing item isn't big enough, it is extended. | 
|  | * If it is too large, it is truncated. | 
|  | * | 
|  | * If the key isn't in the destination yet, a new item is inserted. | 
|  | */ | 
|  | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | u32 item_size; | 
|  | u64 saved_i_size = 0; | 
|  | int save_old_i_size = 0; | 
|  | unsigned long src_ptr; | 
|  | unsigned long dst_ptr; | 
|  | int overwrite_root = 0; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | overwrite_root = 1; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | src_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  |  | 
|  | /* look for the key in the destination tree */ | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret == 0) { | 
|  | char *src_copy; | 
|  | char *dst_copy; | 
|  | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (dst_size != item_size) | 
|  | goto insert; | 
|  |  | 
|  | if (item_size == 0) { | 
|  | btrfs_release_path(root, path); | 
|  | return 0; | 
|  | } | 
|  | dst_copy = kmalloc(item_size, GFP_NOFS); | 
|  | src_copy = kmalloc(item_size, GFP_NOFS); | 
|  |  | 
|  | read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
|  |  | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | 
|  | item_size); | 
|  | ret = memcmp(dst_copy, src_copy, item_size); | 
|  |  | 
|  | kfree(dst_copy); | 
|  | kfree(src_copy); | 
|  | /* | 
|  | * they have the same contents, just return, this saves | 
|  | * us from cowing blocks in the destination tree and doing | 
|  | * extra writes that may not have been done by a previous | 
|  | * sync | 
|  | */ | 
|  | if (ret == 0) { | 
|  | btrfs_release_path(root, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | } | 
|  | insert: | 
|  | btrfs_release_path(root, path); | 
|  | /* try to insert the key into the destination tree */ | 
|  | ret = btrfs_insert_empty_item(trans, root, path, | 
|  | key, item_size); | 
|  |  | 
|  | /* make sure any existing item is the correct size */ | 
|  | if (ret == -EEXIST) { | 
|  | u32 found_size; | 
|  | found_size = btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | if (found_size > item_size) { | 
|  | btrfs_truncate_item(trans, root, path, item_size, 1); | 
|  | } else if (found_size < item_size) { | 
|  | ret = btrfs_extend_item(trans, root, path, | 
|  | item_size - found_size); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } else if (ret) { | 
|  | BUG(); | 
|  | } | 
|  | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  |  | 
|  | /* don't overwrite an existing inode if the generation number | 
|  | * was logged as zero.  This is done when the tree logging code | 
|  | * is just logging an inode to make sure it exists after recovery. | 
|  | * | 
|  | * Also, don't overwrite i_size on directories during replay. | 
|  | * log replay inserts and removes directory items based on the | 
|  | * state of the tree found in the subvolume, and i_size is modified | 
|  | * as it goes | 
|  | */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
|  | struct btrfs_inode_item *src_item; | 
|  | struct btrfs_inode_item *dst_item; | 
|  |  | 
|  | src_item = (struct btrfs_inode_item *)src_ptr; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  |  | 
|  | if (btrfs_inode_generation(eb, src_item) == 0) | 
|  | goto no_copy; | 
|  |  | 
|  | if (overwrite_root && | 
|  | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
|  | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | 
|  | save_old_i_size = 1; | 
|  | saved_i_size = btrfs_inode_size(path->nodes[0], | 
|  | dst_item); | 
|  | } | 
|  | } | 
|  |  | 
|  | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | 
|  | src_ptr, item_size); | 
|  |  | 
|  | if (save_old_i_size) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | 
|  | } | 
|  |  | 
|  | /* make sure the generation is filled in */ | 
|  | if (key->type == BTRFS_INODE_ITEM_KEY) { | 
|  | struct btrfs_inode_item *dst_item; | 
|  | dst_item = (struct btrfs_inode_item *)dst_ptr; | 
|  | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | 
|  | btrfs_set_inode_generation(path->nodes[0], dst_item, | 
|  | trans->transid); | 
|  | } | 
|  | } | 
|  | no_copy: | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_release_path(root, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple helper to read an inode off the disk from a given root | 
|  | * This can only be called for subvolume roots and not for the log | 
|  | */ | 
|  | static noinline struct inode *read_one_inode(struct btrfs_root *root, | 
|  | u64 objectid) | 
|  | { | 
|  | struct inode *inode; | 
|  | inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | 
|  | if (inode->i_state & I_NEW) { | 
|  | BTRFS_I(inode)->root = root; | 
|  | BTRFS_I(inode)->location.objectid = objectid; | 
|  | BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | 
|  | BTRFS_I(inode)->location.offset = 0; | 
|  | btrfs_read_locked_inode(inode); | 
|  | unlock_new_inode(inode); | 
|  |  | 
|  | } | 
|  | if (is_bad_inode(inode)) { | 
|  | iput(inode); | 
|  | inode = NULL; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
|  | * subvolume 'root'.  path is released on entry and should be released | 
|  | * on exit. | 
|  | * | 
|  | * extents in the log tree have not been allocated out of the extent | 
|  | * tree yet.  So, this completes the allocation, taking a reference | 
|  | * as required if the extent already exists or creating a new extent | 
|  | * if it isn't in the extent allocation tree yet. | 
|  | * | 
|  | * The extent is inserted into the file, dropping any existing extents | 
|  | * from the file that overlap the new one. | 
|  | */ | 
|  | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int found_type; | 
|  | u64 mask = root->sectorsize - 1; | 
|  | u64 extent_end; | 
|  | u64 alloc_hint; | 
|  | u64 start = key->offset; | 
|  | u64 saved_nbytes; | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct inode *inode = NULL; | 
|  | unsigned long size; | 
|  | int ret = 0; | 
|  |  | 
|  | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(eb, item); | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) | 
|  | extent_end = start + btrfs_file_extent_num_bytes(eb, item); | 
|  | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | size = btrfs_file_extent_inline_len(eb, item); | 
|  | extent_end = (start + size + mask) & ~mask; | 
|  | } else { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | inode = read_one_inode(root, key->objectid); | 
|  | if (!inode) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * first check to see if we already have this extent in the | 
|  | * file.  This must be done before the btrfs_drop_extents run | 
|  | * so we don't try to drop this extent. | 
|  | */ | 
|  | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | 
|  | start, 0); | 
|  |  | 
|  | if (ret == 0 && | 
|  | (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
|  | struct btrfs_file_extent_item cmp1; | 
|  | struct btrfs_file_extent_item cmp2; | 
|  | struct btrfs_file_extent_item *existing; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | existing = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | read_extent_buffer(eb, &cmp1, (unsigned long)item, | 
|  | sizeof(cmp1)); | 
|  | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | 
|  | sizeof(cmp2)); | 
|  |  | 
|  | /* | 
|  | * we already have a pointer to this exact extent, | 
|  | * we don't have to do anything | 
|  | */ | 
|  | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | 
|  | btrfs_release_path(root, path); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | saved_nbytes = inode_get_bytes(inode); | 
|  | /* drop any overlapping extents */ | 
|  | ret = btrfs_drop_extents(trans, root, inode, | 
|  | start, extent_end, start, &alloc_hint); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | unsigned long dest_offset; | 
|  | struct btrfs_key ins; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, key, | 
|  | sizeof(*item)); | 
|  | BUG_ON(ret); | 
|  | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
|  | path->slots[0]); | 
|  | copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
|  | (unsigned long)item,  sizeof(*item)); | 
|  |  | 
|  | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
|  | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | if (ins.objectid > 0) { | 
|  | u64 csum_start; | 
|  | u64 csum_end; | 
|  | LIST_HEAD(ordered_sums); | 
|  | /* | 
|  | * is this extent already allocated in the extent | 
|  | * allocation tree?  If so, just add a reference | 
|  | */ | 
|  | ret = btrfs_lookup_extent(root, ins.objectid, | 
|  | ins.offset); | 
|  | if (ret == 0) { | 
|  | ret = btrfs_inc_extent_ref(trans, root, | 
|  | ins.objectid, ins.offset, | 
|  | path->nodes[0]->start, | 
|  | root->root_key.objectid, | 
|  | trans->transid, key->objectid); | 
|  | } else { | 
|  | /* | 
|  | * insert the extent pointer in the extent | 
|  | * allocation tree | 
|  | */ | 
|  | ret = btrfs_alloc_logged_extent(trans, root, | 
|  | path->nodes[0]->start, | 
|  | root->root_key.objectid, | 
|  | trans->transid, key->objectid, | 
|  | &ins); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | if (btrfs_file_extent_compression(eb, item)) { | 
|  | csum_start = ins.objectid; | 
|  | csum_end = csum_start + ins.offset; | 
|  | } else { | 
|  | csum_start = ins.objectid + | 
|  | btrfs_file_extent_offset(eb, item); | 
|  | csum_end = csum_start + | 
|  | btrfs_file_extent_num_bytes(eb, item); | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(root->log_root, | 
|  | csum_start, csum_end - 1, | 
|  | &ordered_sums); | 
|  | BUG_ON(ret); | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums; | 
|  | sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | ret = btrfs_csum_file_blocks(trans, | 
|  | root->fs_info->csum_root, | 
|  | sums); | 
|  | BUG_ON(ret); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | } else { | 
|  | btrfs_release_path(root, path); | 
|  | } | 
|  | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
|  | /* inline extents are easy, we just overwrite them */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | inode_set_bytes(inode, saved_nbytes); | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | out: | 
|  | if (inode) | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when cleaning up conflicts between the directory names in the | 
|  | * subvolume, directory names in the log and directory names in the | 
|  | * inode back references, we may have to unlink inodes from directories. | 
|  | * | 
|  | * This is a helper function to do the unlink of a specific directory | 
|  | * item | 
|  | */ | 
|  | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct inode *dir, | 
|  | struct btrfs_dir_item *di) | 
|  | { | 
|  | struct inode *inode; | 
|  | char *name; | 
|  | int name_len; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key location; | 
|  | int ret; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
|  | name_len = btrfs_dir_name_len(leaf, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | 
|  | BUG_ON(ret); | 
|  | kfree(name); | 
|  |  | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to see if a given name and sequence number found | 
|  | * in an inode back reference are already in a directory and correctly | 
|  | * point to this inode | 
|  | */ | 
|  | static noinline int inode_in_dir(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, u64 objectid, u64 index, | 
|  | const char *name, int name_len) | 
|  | { | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_key location; | 
|  | int match = 0; | 
|  |  | 
|  | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
|  | index, name, name_len, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid != objectid) | 
|  | goto out; | 
|  | } else | 
|  | goto out; | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
|  | if (location.objectid != objectid) | 
|  | goto out; | 
|  | } else | 
|  | goto out; | 
|  | match = 1; | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to check a log tree for a named back reference in | 
|  | * an inode.  This is used to decide if a back reference that is | 
|  | * found in the subvolume conflicts with what we find in the log. | 
|  | * | 
|  | * inode backreferences may have multiple refs in a single item, | 
|  | * during replay we process one reference at a time, and we don't | 
|  | * want to delete valid links to a file from the subvolume if that | 
|  | * link is also in the log. | 
|  | */ | 
|  | static noinline int backref_in_log(struct btrfs_root *log, | 
|  | struct btrfs_key *key, | 
|  | char *name, int namelen) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_inode_ref *ref; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | unsigned long name_ptr; | 
|  | int found_name_len; | 
|  | int item_size; | 
|  | int ret; | 
|  | int match = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
|  | if (ret != 0) | 
|  | goto out; | 
|  |  | 
|  | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | 
|  | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | 
|  | if (found_name_len == namelen) { | 
|  | name_ptr = (unsigned long)(ref + 1); | 
|  | ret = memcmp_extent_buffer(path->nodes[0], name, | 
|  | name_ptr, namelen); | 
|  | if (ret == 0) { | 
|  | match = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ptr = (unsigned long)(ref + 1) + found_name_len; | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return match; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * replay one inode back reference item found in the log tree. | 
|  | * eb, slot and key refer to the buffer and key found in the log tree. | 
|  | * root is the destination we are replaying into, and path is for temp | 
|  | * use by this function.  (it should be released on return). | 
|  | */ | 
|  | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct inode *dir; | 
|  | int ret; | 
|  | struct btrfs_key location; | 
|  | struct btrfs_inode_ref *ref; | 
|  | struct btrfs_dir_item *di; | 
|  | struct inode *inode; | 
|  | char *name; | 
|  | int namelen; | 
|  | unsigned long ref_ptr; | 
|  | unsigned long ref_end; | 
|  |  | 
|  | location.objectid = key->objectid; | 
|  | location.type = BTRFS_INODE_ITEM_KEY; | 
|  | location.offset = 0; | 
|  |  | 
|  | /* | 
|  | * it is possible that we didn't log all the parent directories | 
|  | * for a given inode.  If we don't find the dir, just don't | 
|  | * copy the back ref in.  The link count fixup code will take | 
|  | * care of the rest | 
|  | */ | 
|  | dir = read_one_inode(root, key->offset); | 
|  | if (!dir) | 
|  | return -ENOENT; | 
|  |  | 
|  | inode = read_one_inode(root, key->objectid); | 
|  | BUG_ON(!dir); | 
|  |  | 
|  | ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | 
|  |  | 
|  | again: | 
|  | ref = (struct btrfs_inode_ref *)ref_ptr; | 
|  |  | 
|  | namelen = btrfs_inode_ref_name_len(eb, ref); | 
|  | name = kmalloc(namelen, GFP_NOFS); | 
|  | BUG_ON(!name); | 
|  |  | 
|  | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | 
|  |  | 
|  | /* if we already have a perfect match, we're done */ | 
|  | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | 
|  | btrfs_inode_ref_index(eb, ref), | 
|  | name, namelen)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for a conflicting back reference in the metadata. | 
|  | * if we find one we have to unlink that name of the file | 
|  | * before we add our new link.  Later on, we overwrite any | 
|  | * existing back reference, and we don't want to create | 
|  | * dangling pointers in the directory. | 
|  | */ | 
|  | conflict_again: | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret == 0) { | 
|  | char *victim_name; | 
|  | int victim_name_len; | 
|  | struct btrfs_inode_ref *victim_ref; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  |  | 
|  | /* are we trying to overwrite a back ref for the root directory | 
|  | * if so, just jump out, we're done | 
|  | */ | 
|  | if (key->objectid == key->offset) | 
|  | goto out_nowrite; | 
|  |  | 
|  | /* check all the names in this back reference to see | 
|  | * if they are in the log.  if so, we allow them to stay | 
|  | * otherwise they must be unlinked as a conflict | 
|  | */ | 
|  | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | victim_ref = (struct btrfs_inode_ref *)ptr; | 
|  | victim_name_len = btrfs_inode_ref_name_len(leaf, | 
|  | victim_ref); | 
|  | victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
|  | BUG_ON(!victim_name); | 
|  |  | 
|  | read_extent_buffer(leaf, victim_name, | 
|  | (unsigned long)(victim_ref + 1), | 
|  | victim_name_len); | 
|  |  | 
|  | if (!backref_in_log(log, key, victim_name, | 
|  | victim_name_len)) { | 
|  | btrfs_inc_nlink(inode); | 
|  | btrfs_release_path(root, path); | 
|  | ret = btrfs_unlink_inode(trans, root, dir, | 
|  | inode, victim_name, | 
|  | victim_name_len); | 
|  | kfree(victim_name); | 
|  | btrfs_release_path(root, path); | 
|  | goto conflict_again; | 
|  | } | 
|  | kfree(victim_name); | 
|  | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | 
|  | } | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | /* look for a conflicting sequence number */ | 
|  | di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | 
|  | btrfs_inode_ref_index(eb, ref), | 
|  | name, namelen, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = drop_one_dir_item(trans, root, path, dir, di); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  |  | 
|  | /* look for a conflicting name */ | 
|  | di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | 
|  | name, namelen, 0); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = drop_one_dir_item(trans, root, path, dir, di); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | /* insert our name */ | 
|  | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | 
|  | btrfs_inode_ref_index(eb, ref)); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_update_inode(trans, root, inode); | 
|  |  | 
|  | out: | 
|  | ref_ptr = (unsigned long)(ref + 1) + namelen; | 
|  | kfree(name); | 
|  | if (ref_ptr < ref_end) | 
|  | goto again; | 
|  |  | 
|  | /* finally write the back reference in the inode */ | 
|  | ret = overwrite_item(trans, root, path, eb, slot, key); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | out_nowrite: | 
|  | btrfs_release_path(root, path); | 
|  | iput(dir); | 
|  | iput(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a few corners where the link count of the file can't | 
|  | * be properly maintained during replay.  So, instead of adding | 
|  | * lots of complexity to the log code, we just scan the backrefs | 
|  | * for any file that has been through replay. | 
|  | * | 
|  | * The scan will update the link count on the inode to reflect the | 
|  | * number of back refs found.  If it goes down to zero, the iput | 
|  | * will free the inode. | 
|  | */ | 
|  | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | u64 nlink = 0; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | int name_len; | 
|  |  | 
|  | key.objectid = inode->i_ino; | 
|  | key.type = BTRFS_INODE_REF_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid != inode->i_ino || | 
|  | key.type != BTRFS_INODE_REF_KEY) | 
|  | break; | 
|  | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
|  | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | 
|  | path->slots[0]); | 
|  | while (ptr < ptr_end) { | 
|  | struct btrfs_inode_ref *ref; | 
|  |  | 
|  | ref = (struct btrfs_inode_ref *)ptr; | 
|  | name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
|  | ref); | 
|  | ptr = (unsigned long)(ref + 1) + name_len; | 
|  | nlink++; | 
|  | } | 
|  |  | 
|  | if (key.offset == 0) | 
|  | break; | 
|  | key.offset--; | 
|  | btrfs_release_path(root, path); | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | if (nlink != inode->i_nlink) { | 
|  | inode->i_nlink = nlink; | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | } | 
|  | BTRFS_I(inode)->index_cnt = (u64)-1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | key.type = BTRFS_ORPHAN_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (ret == 1) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
|  | key.type != BTRFS_ORPHAN_ITEM_KEY) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_release_path(root, path); | 
|  | inode = read_one_inode(root, key.offset); | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | ret = fixup_inode_link_count(trans, root, inode); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | iput(inode); | 
|  |  | 
|  | if (key.offset == 0) | 
|  | break; | 
|  | key.offset--; | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * record a given inode in the fixup dir so we can check its link | 
|  | * count when replay is done.  The link count is incremented here | 
|  | * so the inode won't go away until we check it | 
|  | */ | 
|  | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = read_one_inode(root, objectid); | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
|  | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | 
|  | key.offset = objectid; | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
|  |  | 
|  | btrfs_release_path(root, path); | 
|  | if (ret == 0) { | 
|  | btrfs_inc_nlink(inode); | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | } else if (ret == -EEXIST) { | 
|  | ret = 0; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | iput(inode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when replaying the log for a directory, we only insert names | 
|  | * for inodes that actually exist.  This means an fsync on a directory | 
|  | * does not implicitly fsync all the new files in it | 
|  | */ | 
|  | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, u64 index, | 
|  | char *name, int name_len, u8 type, | 
|  | struct btrfs_key *location) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct inode *dir; | 
|  | int ret; | 
|  |  | 
|  | inode = read_one_inode(root, location->objectid); | 
|  | if (!inode) | 
|  | return -ENOENT; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | if (!dir) { | 
|  | iput(inode); | 
|  | return -EIO; | 
|  | } | 
|  | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | 
|  |  | 
|  | /* FIXME, put inode into FIXUP list */ | 
|  |  | 
|  | iput(inode); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * take a single entry in a log directory item and replay it into | 
|  | * the subvolume. | 
|  | * | 
|  | * if a conflicting item exists in the subdirectory already, | 
|  | * the inode it points to is unlinked and put into the link count | 
|  | * fix up tree. | 
|  | * | 
|  | * If a name from the log points to a file or directory that does | 
|  | * not exist in the FS, it is skipped.  fsyncs on directories | 
|  | * do not force down inodes inside that directory, just changes to the | 
|  | * names or unlinks in a directory. | 
|  | */ | 
|  | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, | 
|  | struct btrfs_dir_item *di, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | char *name; | 
|  | int name_len; | 
|  | struct btrfs_dir_item *dst_di; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key log_key; | 
|  | struct inode *dir; | 
|  | u8 log_type; | 
|  | int exists; | 
|  | int ret; | 
|  |  | 
|  | dir = read_one_inode(root, key->objectid); | 
|  | BUG_ON(!dir); | 
|  |  | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | log_type = btrfs_dir_type(eb, di); | 
|  | read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
|  | name_len); | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
|  | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
|  | if (exists == 0) | 
|  | exists = 1; | 
|  | else | 
|  | exists = 0; | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | if (key->type == BTRFS_DIR_ITEM_KEY) { | 
|  | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
|  | name, name_len, 1); | 
|  | } else if (key->type == BTRFS_DIR_INDEX_KEY) { | 
|  | dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
|  | key->objectid, | 
|  | key->offset, name, | 
|  | name_len, 1); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | if (!dst_di || IS_ERR(dst_di)) { | 
|  | /* we need a sequence number to insert, so we only | 
|  | * do inserts for the BTRFS_DIR_INDEX_KEY types | 
|  | */ | 
|  | if (key->type != BTRFS_DIR_INDEX_KEY) | 
|  | goto out; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
|  | /* the existing item matches the logged item */ | 
|  | if (found_key.objectid == log_key.objectid && | 
|  | found_key.type == log_key.type && | 
|  | found_key.offset == log_key.offset && | 
|  | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * don't drop the conflicting directory entry if the inode | 
|  | * for the new entry doesn't exist | 
|  | */ | 
|  | if (!exists) | 
|  | goto out; | 
|  |  | 
|  | ret = drop_one_dir_item(trans, root, path, dir, dst_di); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (key->type == BTRFS_DIR_INDEX_KEY) | 
|  | goto insert; | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | kfree(name); | 
|  | iput(dir); | 
|  | return 0; | 
|  |  | 
|  | insert: | 
|  | btrfs_release_path(root, path); | 
|  | ret = insert_one_name(trans, root, path, key->objectid, key->offset, | 
|  | name, name_len, log_type, &log_key); | 
|  |  | 
|  | if (ret && ret != -ENOENT) | 
|  | BUG(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find all the names in a directory item and reconcile them into | 
|  | * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than | 
|  | * one name in a directory item, but the same code gets used for | 
|  | * both directory index types | 
|  | */ | 
|  | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct extent_buffer *eb, int slot, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | int ret; | 
|  | u32 item_size = btrfs_item_size_nr(eb, slot); | 
|  | struct btrfs_dir_item *di; | 
|  | int name_len; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  |  | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | di = (struct btrfs_dir_item *)ptr; | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | ret = replay_one_name(trans, root, path, eb, di, key); | 
|  | BUG_ON(ret); | 
|  | ptr = (unsigned long)(di + 1); | 
|  | ptr += name_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * directory replay has two parts.  There are the standard directory | 
|  | * items in the log copied from the subvolume, and range items | 
|  | * created in the log while the subvolume was logged. | 
|  | * | 
|  | * The range items tell us which parts of the key space the log | 
|  | * is authoritative for.  During replay, if a key in the subvolume | 
|  | * directory is in a logged range item, but not actually in the log | 
|  | * that means it was deleted from the directory before the fsync | 
|  | * and should be removed. | 
|  | */ | 
|  | static noinline int find_dir_range(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid, int key_type, | 
|  | u64 *start_ret, u64 *end_ret) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | u64 found_end; | 
|  | struct btrfs_dir_log_item *item; | 
|  | int ret; | 
|  | int nritems; | 
|  |  | 
|  | if (*start_ret == (u64)-1) | 
|  | return 1; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.type = key_type; | 
|  | key.offset = *start_ret; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  | path->slots[0]--; | 
|  | } | 
|  | if (ret != 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != key_type || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto next; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  |  | 
|  | if (*start_ret >= key.offset && *start_ret <= found_end) { | 
|  | ret = 0; | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | goto out; | 
|  | } | 
|  | ret = 1; | 
|  | next: | 
|  | /* check the next slot in the tree to see if it is a valid item */ | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | } else { | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
|  |  | 
|  | if (key.type != key_type || key.objectid != dirid) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | found_end = btrfs_dir_log_end(path->nodes[0], item); | 
|  | *start_ret = key.offset; | 
|  | *end_ret = found_end; | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this looks for a given directory item in the log.  If the directory | 
|  | * item is not in the log, the item is removed and the inode it points | 
|  | * to is unlinked | 
|  | */ | 
|  | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *log_path, | 
|  | struct inode *dir, | 
|  | struct btrfs_key *dir_key) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *eb; | 
|  | int slot; | 
|  | u32 item_size; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_dir_item *log_di; | 
|  | int name_len; | 
|  | unsigned long ptr; | 
|  | unsigned long ptr_end; | 
|  | char *name; | 
|  | struct inode *inode; | 
|  | struct btrfs_key location; | 
|  |  | 
|  | again: | 
|  | eb = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | item_size = btrfs_item_size_nr(eb, slot); | 
|  | ptr = btrfs_item_ptr_offset(eb, slot); | 
|  | ptr_end = ptr + item_size; | 
|  | while (ptr < ptr_end) { | 
|  | di = (struct btrfs_dir_item *)ptr; | 
|  | name_len = btrfs_dir_name_len(eb, di); | 
|  | name = kmalloc(name_len, GFP_NOFS); | 
|  | if (!name) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
|  | name_len); | 
|  | log_di = NULL; | 
|  | if (dir_key->type == BTRFS_DIR_ITEM_KEY) { | 
|  | log_di = btrfs_lookup_dir_item(trans, log, log_path, | 
|  | dir_key->objectid, | 
|  | name, name_len, 0); | 
|  | } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { | 
|  | log_di = btrfs_lookup_dir_index_item(trans, log, | 
|  | log_path, | 
|  | dir_key->objectid, | 
|  | dir_key->offset, | 
|  | name, name_len, 0); | 
|  | } | 
|  | if (!log_di || IS_ERR(log_di)) { | 
|  | btrfs_dir_item_key_to_cpu(eb, di, &location); | 
|  | btrfs_release_path(root, path); | 
|  | btrfs_release_path(log, log_path); | 
|  | inode = read_one_inode(root, location.objectid); | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | ret = link_to_fixup_dir(trans, root, | 
|  | path, location.objectid); | 
|  | BUG_ON(ret); | 
|  | btrfs_inc_nlink(inode); | 
|  | ret = btrfs_unlink_inode(trans, root, dir, inode, | 
|  | name, name_len); | 
|  | BUG_ON(ret); | 
|  | kfree(name); | 
|  | iput(inode); | 
|  |  | 
|  | /* there might still be more names under this key | 
|  | * check and repeat if required | 
|  | */ | 
|  | ret = btrfs_search_slot(NULL, root, dir_key, path, | 
|  | 0, 0); | 
|  | if (ret == 0) | 
|  | goto again; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(log, log_path); | 
|  | kfree(name); | 
|  |  | 
|  | ptr = (unsigned long)(di + 1); | 
|  | ptr += name_len; | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | btrfs_release_path(log, log_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deletion replay happens before we copy any new directory items | 
|  | * out of the log or out of backreferences from inodes.  It | 
|  | * scans the log to find ranges of keys that log is authoritative for, | 
|  | * and then scans the directory to find items in those ranges that are | 
|  | * not present in the log. | 
|  | * | 
|  | * Anything we don't find in the log is unlinked and removed from the | 
|  | * directory. | 
|  | */ | 
|  | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 dirid) | 
|  | { | 
|  | u64 range_start; | 
|  | u64 range_end; | 
|  | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | 
|  | int ret = 0; | 
|  | struct btrfs_key dir_key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_path *log_path; | 
|  | struct inode *dir; | 
|  |  | 
|  | dir_key.objectid = dirid; | 
|  | dir_key.type = BTRFS_DIR_ITEM_KEY; | 
|  | log_path = btrfs_alloc_path(); | 
|  | if (!log_path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dir = read_one_inode(root, dirid); | 
|  | /* it isn't an error if the inode isn't there, that can happen | 
|  | * because we replay the deletes before we copy in the inode item | 
|  | * from the log | 
|  | */ | 
|  | if (!dir) { | 
|  | btrfs_free_path(log_path); | 
|  | return 0; | 
|  | } | 
|  | again: | 
|  | range_start = 0; | 
|  | range_end = 0; | 
|  | while (1) { | 
|  | ret = find_dir_range(log, path, dirid, key_type, | 
|  | &range_start, &range_end); | 
|  | if (ret != 0) | 
|  | break; | 
|  |  | 
|  | dir_key.offset = range_start; | 
|  | while (1) { | 
|  | int nritems; | 
|  | ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
|  | 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | if (found_key.objectid != dirid || | 
|  | found_key.type != dir_key.type) | 
|  | goto next_type; | 
|  |  | 
|  | if (found_key.offset > range_end) | 
|  | break; | 
|  |  | 
|  | ret = check_item_in_log(trans, root, log, path, | 
|  | log_path, dir, &found_key); | 
|  | BUG_ON(ret); | 
|  | if (found_key.offset == (u64)-1) | 
|  | break; | 
|  | dir_key.offset = found_key.offset + 1; | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  | if (range_end == (u64)-1) | 
|  | break; | 
|  | range_start = range_end + 1; | 
|  | } | 
|  |  | 
|  | next_type: | 
|  | ret = 0; | 
|  | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | 
|  | key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | dir_key.type = BTRFS_DIR_INDEX_KEY; | 
|  | btrfs_release_path(root, path); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | btrfs_release_path(root, path); | 
|  | btrfs_free_path(log_path); | 
|  | iput(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the process_func used to replay items from the log tree.  This | 
|  | * gets called in two different stages.  The first stage just looks | 
|  | * for inodes and makes sure they are all copied into the subvolume. | 
|  | * | 
|  | * The second stage copies all the other item types from the log into | 
|  | * the subvolume.  The two stage approach is slower, but gets rid of | 
|  | * lots of complexity around inodes referencing other inodes that exist | 
|  | * only in the log (references come from either directory items or inode | 
|  | * back refs). | 
|  | */ | 
|  | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
|  | struct walk_control *wc, u64 gen) | 
|  | { | 
|  | int nritems; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *root = wc->replay_dest; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | int level; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | btrfs_read_buffer(eb, gen); | 
|  |  | 
|  | level = btrfs_header_level(eb); | 
|  |  | 
|  | if (level != 0) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | nritems = btrfs_header_nritems(eb); | 
|  | for (i = 0; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(eb, &key, i); | 
|  | item_size = btrfs_item_size_nr(eb, i); | 
|  |  | 
|  | /* inode keys are done during the first stage */ | 
|  | if (key.type == BTRFS_INODE_ITEM_KEY && | 
|  | wc->stage == LOG_WALK_REPLAY_INODES) { | 
|  | struct inode *inode; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | u32 mode; | 
|  |  | 
|  | inode_item = btrfs_item_ptr(eb, i, | 
|  | struct btrfs_inode_item); | 
|  | mode = btrfs_inode_mode(eb, inode_item); | 
|  | if (S_ISDIR(mode)) { | 
|  | ret = replay_dir_deletes(wc->trans, | 
|  | root, log, path, key.objectid); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | /* for regular files, truncate away | 
|  | * extents past the new EOF | 
|  | */ | 
|  | if (S_ISREG(mode)) { | 
|  | inode = read_one_inode(root, | 
|  | key.objectid); | 
|  | BUG_ON(!inode); | 
|  |  | 
|  | ret = btrfs_truncate_inode_items(wc->trans, | 
|  | root, inode, inode->i_size, | 
|  | BTRFS_EXTENT_DATA_KEY); | 
|  | BUG_ON(ret); | 
|  | iput(inode); | 
|  | } | 
|  | ret = link_to_fixup_dir(wc->trans, root, | 
|  | path, key.objectid); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | if (wc->stage < LOG_WALK_REPLAY_ALL) | 
|  | continue; | 
|  |  | 
|  | /* these keys are simply copied */ | 
|  | if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
|  | ret = overwrite_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | BUG_ON(ret); | 
|  | } else if (key.type == BTRFS_INODE_REF_KEY) { | 
|  | ret = add_inode_ref(wc->trans, root, log, path, | 
|  | eb, i, &key); | 
|  | BUG_ON(ret && ret != -ENOENT); | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
|  | ret = replay_one_extent(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | BUG_ON(ret); | 
|  | } else if (key.type == BTRFS_DIR_ITEM_KEY || | 
|  | key.type == BTRFS_DIR_INDEX_KEY) { | 
|  | ret = replay_one_dir_item(wc->trans, root, path, | 
|  | eb, i, &key); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | u64 root_owner; | 
|  | u64 root_gen; | 
|  | u64 bytenr; | 
|  | u64 ptr_gen; | 
|  | struct extent_buffer *next; | 
|  | struct extent_buffer *cur; | 
|  | struct extent_buffer *parent; | 
|  | u32 blocksize; | 
|  | int ret = 0; | 
|  |  | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  |  | 
|  | while (*level > 0) { | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  | cur = path->nodes[*level]; | 
|  |  | 
|  | if (btrfs_header_level(cur) != *level) | 
|  | WARN_ON(1); | 
|  |  | 
|  | if (path->slots[*level] >= | 
|  | btrfs_header_nritems(cur)) | 
|  | break; | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
|  | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
|  | blocksize = btrfs_level_size(root, *level - 1); | 
|  |  | 
|  | parent = path->nodes[*level]; | 
|  | root_owner = btrfs_header_owner(parent); | 
|  | root_gen = btrfs_header_generation(parent); | 
|  |  | 
|  | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  |  | 
|  | wc->process_func(root, next, wc, ptr_gen); | 
|  |  | 
|  | if (*level == 1) { | 
|  | path->slots[*level]++; | 
|  | if (wc->free) { | 
|  | btrfs_read_buffer(next, ptr_gen); | 
|  |  | 
|  | btrfs_tree_lock(next); | 
|  | clean_tree_block(trans, root, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  |  | 
|  | ret = btrfs_drop_leaf_ref(trans, root, next); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | WARN_ON(root_owner != | 
|  | BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_reserved_extent(root, | 
|  | bytenr, blocksize); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | free_extent_buffer(next); | 
|  | continue; | 
|  | } | 
|  | btrfs_read_buffer(next, ptr_gen); | 
|  |  | 
|  | WARN_ON(*level <= 0); | 
|  | if (path->nodes[*level-1]) | 
|  | free_extent_buffer(path->nodes[*level-1]); | 
|  | path->nodes[*level-1] = next; | 
|  | *level = btrfs_header_level(next); | 
|  | path->slots[*level] = 0; | 
|  | cond_resched(); | 
|  | } | 
|  | WARN_ON(*level < 0); | 
|  | WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
|  |  | 
|  | if (path->nodes[*level] == root->node) | 
|  | parent = path->nodes[*level]; | 
|  | else | 
|  | parent = path->nodes[*level + 1]; | 
|  |  | 
|  | bytenr = path->nodes[*level]->start; | 
|  |  | 
|  | blocksize = btrfs_level_size(root, *level); | 
|  | root_owner = btrfs_header_owner(parent); | 
|  | root_gen = btrfs_header_generation(parent); | 
|  |  | 
|  | wc->process_func(root, path->nodes[*level], wc, | 
|  | btrfs_header_generation(path->nodes[*level])); | 
|  |  | 
|  | if (wc->free) { | 
|  | next = path->nodes[*level]; | 
|  | btrfs_tree_lock(next); | 
|  | clean_tree_block(trans, root, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  |  | 
|  | if (*level == 0) { | 
|  | ret = btrfs_drop_leaf_ref(trans, root, next); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | *level += 1; | 
|  |  | 
|  | cond_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, int *level, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | u64 root_owner; | 
|  | u64 root_gen; | 
|  | int i; | 
|  | int slot; | 
|  | int ret; | 
|  |  | 
|  | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
|  | slot = path->slots[i]; | 
|  | if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | 
|  | struct extent_buffer *node; | 
|  | node = path->nodes[i]; | 
|  | path->slots[i]++; | 
|  | *level = i; | 
|  | WARN_ON(*level == 0); | 
|  | return 0; | 
|  | } else { | 
|  | struct extent_buffer *parent; | 
|  | if (path->nodes[*level] == root->node) | 
|  | parent = path->nodes[*level]; | 
|  | else | 
|  | parent = path->nodes[*level + 1]; | 
|  |  | 
|  | root_owner = btrfs_header_owner(parent); | 
|  | root_gen = btrfs_header_generation(parent); | 
|  | wc->process_func(root, path->nodes[*level], wc, | 
|  | btrfs_header_generation(path->nodes[*level])); | 
|  | if (wc->free) { | 
|  | struct extent_buffer *next; | 
|  |  | 
|  | next = path->nodes[*level]; | 
|  |  | 
|  | btrfs_tree_lock(next); | 
|  | clean_tree_block(trans, root, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  |  | 
|  | if (*level == 0) { | 
|  | ret = btrfs_drop_leaf_ref(trans, root, | 
|  | next); | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_reserved_extent(root, | 
|  | path->nodes[*level]->start, | 
|  | path->nodes[*level]->len); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | free_extent_buffer(path->nodes[*level]); | 
|  | path->nodes[*level] = NULL; | 
|  | *level = i + 1; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop the reference count on the tree rooted at 'snap'.  This traverses | 
|  | * the tree freeing any blocks that have a ref count of zero after being | 
|  | * decremented. | 
|  | */ | 
|  | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, struct walk_control *wc) | 
|  | { | 
|  | int ret = 0; | 
|  | int wret; | 
|  | int level; | 
|  | struct btrfs_path *path; | 
|  | int i; | 
|  | int orig_level; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | level = btrfs_header_level(log->node); | 
|  | orig_level = level; | 
|  | path->nodes[level] = log->node; | 
|  | extent_buffer_get(log->node); | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  |  | 
|  | wret = walk_up_log_tree(trans, log, path, &level, wc); | 
|  | if (wret > 0) | 
|  | break; | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | } | 
|  |  | 
|  | /* was the root node processed? if not, catch it here */ | 
|  | if (path->nodes[orig_level]) { | 
|  | wc->process_func(log, path->nodes[orig_level], wc, | 
|  | btrfs_header_generation(path->nodes[orig_level])); | 
|  | if (wc->free) { | 
|  | struct extent_buffer *next; | 
|  |  | 
|  | next = path->nodes[orig_level]; | 
|  |  | 
|  | btrfs_tree_lock(next); | 
|  | clean_tree_block(trans, log, next); | 
|  | btrfs_wait_tree_block_writeback(next); | 
|  | btrfs_tree_unlock(next); | 
|  |  | 
|  | if (orig_level == 0) { | 
|  | ret = btrfs_drop_leaf_ref(trans, log, | 
|  | next); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | WARN_ON(log->root_key.objectid != | 
|  | BTRFS_TREE_LOG_OBJECTID); | 
|  | ret = btrfs_free_reserved_extent(log, next->start, | 
|  | next->len); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= orig_level; i++) { | 
|  | if (path->nodes[i]) { | 
|  | free_extent_buffer(path->nodes[i]); | 
|  | path->nodes[i] = NULL; | 
|  | } | 
|  | } | 
|  | btrfs_free_path(path); | 
|  | if (wc->free) | 
|  | free_extent_buffer(log->node); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int wait_log_commit(struct btrfs_root *log) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | u64 transid = log->fs_info->tree_log_transid; | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | mutex_unlock(&log->fs_info->tree_log_mutex); | 
|  | if (atomic_read(&log->fs_info->tree_log_commit)) | 
|  | schedule(); | 
|  | finish_wait(&log->fs_info->tree_log_wait, &wait); | 
|  | mutex_lock(&log->fs_info->tree_log_mutex); | 
|  | } while (transid == log->fs_info->tree_log_transid && | 
|  | atomic_read(&log->fs_info->tree_log_commit)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_sync_log does sends a given tree log down to the disk and | 
|  | * updates the super blocks to record it.  When this call is done, | 
|  | * you know that any inodes previously logged are safely on disk | 
|  | */ | 
|  | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  | unsigned long batch; | 
|  | struct btrfs_root *log = root->log_root; | 
|  |  | 
|  | mutex_lock(&log->fs_info->tree_log_mutex); | 
|  | if (atomic_read(&log->fs_info->tree_log_commit)) { | 
|  | wait_log_commit(log); | 
|  | goto out; | 
|  | } | 
|  | atomic_set(&log->fs_info->tree_log_commit, 1); | 
|  |  | 
|  | while (1) { | 
|  | batch = log->fs_info->tree_log_batch; | 
|  | mutex_unlock(&log->fs_info->tree_log_mutex); | 
|  | schedule_timeout_uninterruptible(1); | 
|  | mutex_lock(&log->fs_info->tree_log_mutex); | 
|  |  | 
|  | while (atomic_read(&log->fs_info->tree_log_writers)) { | 
|  | DEFINE_WAIT(wait); | 
|  | prepare_to_wait(&log->fs_info->tree_log_wait, &wait, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | mutex_unlock(&log->fs_info->tree_log_mutex); | 
|  | if (atomic_read(&log->fs_info->tree_log_writers)) | 
|  | schedule(); | 
|  | mutex_lock(&log->fs_info->tree_log_mutex); | 
|  | finish_wait(&log->fs_info->tree_log_wait, &wait); | 
|  | } | 
|  | if (batch == log->fs_info->tree_log_batch) | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree, | 
|  | &root->fs_info->log_root_tree->dirty_log_pages); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | 
|  | log->fs_info->log_root_tree->node->start); | 
|  | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | 
|  | btrfs_header_level(log->fs_info->log_root_tree->node)); | 
|  |  | 
|  | write_ctree_super(trans, log->fs_info->tree_root, 2); | 
|  | log->fs_info->tree_log_transid++; | 
|  | log->fs_info->tree_log_batch = 0; | 
|  | atomic_set(&log->fs_info->tree_log_commit, 0); | 
|  | smp_mb(); | 
|  | if (waitqueue_active(&log->fs_info->tree_log_wait)) | 
|  | wake_up(&log->fs_info->tree_log_wait); | 
|  | out: | 
|  | mutex_unlock(&log->fs_info->tree_log_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* * free all the extents used by the tree log.  This should be called | 
|  | * at commit time of the full transaction | 
|  | */ | 
|  | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *log; | 
|  | struct key; | 
|  | u64 start; | 
|  | u64 end; | 
|  | struct walk_control wc = { | 
|  | .free = 1, | 
|  | .process_func = process_one_buffer | 
|  | }; | 
|  |  | 
|  | if (!root->log_root || root->fs_info->log_root_recovering) | 
|  | return 0; | 
|  |  | 
|  | log = root->log_root; | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(&log->dirty_log_pages, | 
|  | 0, &start, &end, EXTENT_DIRTY); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | clear_extent_dirty(&log->dirty_log_pages, | 
|  | start, end, GFP_NOFS); | 
|  | } | 
|  |  | 
|  | log = root->log_root; | 
|  | ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | 
|  | &log->root_key); | 
|  | BUG_ON(ret); | 
|  | root->log_root = NULL; | 
|  | kfree(root->log_root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to update the item for a given subvolumes log root | 
|  | * in the tree of log roots | 
|  | */ | 
|  | static int update_log_root(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log) | 
|  | { | 
|  | u64 bytenr = btrfs_root_bytenr(&log->root_item); | 
|  | int ret; | 
|  |  | 
|  | if (log->node->start == bytenr) | 
|  | return 0; | 
|  |  | 
|  | btrfs_set_root_bytenr(&log->root_item, log->node->start); | 
|  | btrfs_set_root_generation(&log->root_item, trans->transid); | 
|  | btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | 
|  | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | 
|  | &log->root_key, &log->root_item); | 
|  | BUG_ON(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If both a file and directory are logged, and unlinks or renames are | 
|  | * mixed in, we have a few interesting corners: | 
|  | * | 
|  | * create file X in dir Y | 
|  | * link file X to X.link in dir Y | 
|  | * fsync file X | 
|  | * unlink file X but leave X.link | 
|  | * fsync dir Y | 
|  | * | 
|  | * After a crash we would expect only X.link to exist.  But file X | 
|  | * didn't get fsync'd again so the log has back refs for X and X.link. | 
|  | * | 
|  | * We solve this by removing directory entries and inode backrefs from the | 
|  | * log when a file that was logged in the current transaction is | 
|  | * unlinked.  Any later fsync will include the updated log entries, and | 
|  | * we'll be able to reconstruct the proper directory items from backrefs. | 
|  | * | 
|  | * This optimizations allows us to avoid relogging the entire inode | 
|  | * or the entire directory. | 
|  | */ | 
|  | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const char *name, int name_len, | 
|  | struct inode *dir, u64 index) | 
|  | { | 
|  | struct btrfs_root *log; | 
|  | struct btrfs_dir_item *di; | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int bytes_del = 0; | 
|  |  | 
|  | if (BTRFS_I(dir)->logged_trans < trans->transid) | 
|  | return 0; | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&BTRFS_I(dir)->log_mutex); | 
|  |  | 
|  | log = root->log_root; | 
|  | path = btrfs_alloc_path(); | 
|  | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | 
|  | name, name_len, -1); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
|  | bytes_del += name_len; | 
|  | BUG_ON(ret); | 
|  | } | 
|  | btrfs_release_path(log, path); | 
|  | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | 
|  | index, name, name_len, -1); | 
|  | if (di && !IS_ERR(di)) { | 
|  | ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
|  | bytes_del += name_len; | 
|  | BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* update the directory size in the log to reflect the names | 
|  | * we have removed | 
|  | */ | 
|  | if (bytes_del) { | 
|  | struct btrfs_key key; | 
|  |  | 
|  | key.objectid = dir->i_ino; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | btrfs_release_path(log, path); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | 
|  | if (ret == 0) { | 
|  | struct btrfs_inode_item *item; | 
|  | u64 i_size; | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | i_size = btrfs_inode_size(path->nodes[0], item); | 
|  | if (i_size > bytes_del) | 
|  | i_size -= bytes_del; | 
|  | else | 
|  | i_size = 0; | 
|  | btrfs_set_inode_size(path->nodes[0], item, i_size); | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | } else | 
|  | ret = 0; | 
|  | btrfs_release_path(log, path); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | mutex_unlock(&BTRFS_I(dir)->log_mutex); | 
|  | end_log_trans(root); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* see comments for btrfs_del_dir_entries_in_log */ | 
|  | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | const char *name, int name_len, | 
|  | struct inode *inode, u64 dirid) | 
|  | { | 
|  | struct btrfs_root *log; | 
|  | u64 index; | 
|  | int ret; | 
|  |  | 
|  | if (BTRFS_I(inode)->logged_trans < trans->transid) | 
|  | return 0; | 
|  |  | 
|  | ret = join_running_log_trans(root); | 
|  | if (ret) | 
|  | return 0; | 
|  | log = root->log_root; | 
|  | mutex_lock(&BTRFS_I(inode)->log_mutex); | 
|  |  | 
|  | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | 
|  | dirid, &index); | 
|  | mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
|  | end_log_trans(root); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * creates a range item in the log for 'dirid'.  first_offset and | 
|  | * last_offset tell us which parts of the key space the log should | 
|  | * be considered authoritative for. | 
|  | */ | 
|  | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | int key_type, u64 dirid, | 
|  | u64 first_offset, u64 last_offset) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_dir_log_item *item; | 
|  |  | 
|  | key.objectid = dirid; | 
|  | key.offset = first_offset; | 
|  | if (key_type == BTRFS_DIR_ITEM_KEY) | 
|  | key.type = BTRFS_DIR_LOG_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
|  | struct btrfs_dir_log_item); | 
|  | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_release_path(log, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * log all the items included in the current transaction for a given | 
|  | * directory.  This also creates the range items in the log tree required | 
|  | * to replay anything deleted before the fsync | 
|  | */ | 
|  | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path, int key_type, | 
|  | u64 min_offset, u64 *last_offset_ret) | 
|  | { | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_key max_key; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct extent_buffer *src; | 
|  | int ret; | 
|  | int i; | 
|  | int nritems; | 
|  | u64 first_offset = min_offset; | 
|  | u64 last_offset = (u64)-1; | 
|  |  | 
|  | log = root->log_root; | 
|  | max_key.objectid = inode->i_ino; | 
|  | max_key.offset = (u64)-1; | 
|  | max_key.type = key_type; | 
|  |  | 
|  | min_key.objectid = inode->i_ino; | 
|  | min_key.type = key_type; | 
|  | min_key.offset = min_offset; | 
|  |  | 
|  | path->keep_locks = 1; | 
|  |  | 
|  | ret = btrfs_search_forward(root, &min_key, &max_key, | 
|  | path, 0, trans->transid); | 
|  |  | 
|  | /* | 
|  | * we didn't find anything from this transaction, see if there | 
|  | * is anything at all | 
|  | */ | 
|  | if (ret != 0 || min_key.objectid != inode->i_ino || | 
|  | min_key.type != key_type) { | 
|  | min_key.objectid = inode->i_ino; | 
|  | min_key.type = key_type; | 
|  | min_key.offset = (u64)-1; | 
|  | btrfs_release_path(root, path); | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(root, path); | 
|  | return ret; | 
|  | } | 
|  | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | 
|  |  | 
|  | /* if ret == 0 there are items for this type, | 
|  | * create a range to tell us the last key of this type. | 
|  | * otherwise, there are no items in this directory after | 
|  | * *min_offset, and we create a range to indicate that. | 
|  | */ | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
|  | path->slots[0]); | 
|  | if (key_type == tmp.type) | 
|  | first_offset = max(min_offset, tmp.offset) + 1; | 
|  | } | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* go backward to find any previous key */ | 
|  | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | 
|  | if (ret == 0) { | 
|  | struct btrfs_key tmp; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
|  | if (key_type == tmp.type) { | 
|  | first_offset = tmp.offset; | 
|  | ret = overwrite_item(trans, log, dst_path, | 
|  | path->nodes[0], path->slots[0], | 
|  | &tmp); | 
|  | } | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | /* find the first key from this transaction again */ | 
|  | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
|  | if (ret != 0) { | 
|  | WARN_ON(1); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we have a block from this transaction, log every item in it | 
|  | * from our directory | 
|  | */ | 
|  | while (1) { | 
|  | struct btrfs_key tmp; | 
|  | src = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(src); | 
|  | for (i = path->slots[0]; i < nritems; i++) { | 
|  | btrfs_item_key_to_cpu(src, &min_key, i); | 
|  |  | 
|  | if (min_key.objectid != inode->i_ino || | 
|  | min_key.type != key_type) | 
|  | goto done; | 
|  | ret = overwrite_item(trans, log, dst_path, src, i, | 
|  | &min_key); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | path->slots[0] = nritems; | 
|  |  | 
|  | /* | 
|  | * look ahead to the next item and see if it is also | 
|  | * from this directory and from this transaction | 
|  | */ | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 1) { | 
|  | last_offset = (u64)-1; | 
|  | goto done; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
|  | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | 
|  | last_offset = (u64)-1; | 
|  | goto done; | 
|  | } | 
|  | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
|  | ret = overwrite_item(trans, log, dst_path, | 
|  | path->nodes[0], path->slots[0], | 
|  | &tmp); | 
|  |  | 
|  | BUG_ON(ret); | 
|  | last_offset = tmp.offset; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | done: | 
|  | *last_offset_ret = last_offset; | 
|  | btrfs_release_path(root, path); | 
|  | btrfs_release_path(log, dst_path); | 
|  |  | 
|  | /* insert the log range keys to indicate where the log is valid */ | 
|  | ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | 
|  | first_offset, last_offset); | 
|  | BUG_ON(ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * logging directories is very similar to logging inodes, We find all the items | 
|  | * from the current transaction and write them to the log. | 
|  | * | 
|  | * The recovery code scans the directory in the subvolume, and if it finds a | 
|  | * key in the range logged that is not present in the log tree, then it means | 
|  | * that dir entry was unlinked during the transaction. | 
|  | * | 
|  | * In order for that scan to work, we must include one key smaller than | 
|  | * the smallest logged by this transaction and one key larger than the largest | 
|  | * key logged by this transaction. | 
|  | */ | 
|  | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_path *dst_path) | 
|  | { | 
|  | u64 min_key; | 
|  | u64 max_key; | 
|  | int ret; | 
|  | int key_type = BTRFS_DIR_ITEM_KEY; | 
|  |  | 
|  | again: | 
|  | min_key = 0; | 
|  | max_key = 0; | 
|  | while (1) { | 
|  | ret = log_dir_items(trans, root, inode, path, | 
|  | dst_path, key_type, min_key, | 
|  | &max_key); | 
|  | BUG_ON(ret); | 
|  | if (max_key == (u64)-1) | 
|  | break; | 
|  | min_key = max_key + 1; | 
|  | } | 
|  |  | 
|  | if (key_type == BTRFS_DIR_ITEM_KEY) { | 
|  | key_type = BTRFS_DIR_INDEX_KEY; | 
|  | goto again; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a helper function to drop items from the log before we relog an | 
|  | * inode.  max_key_type indicates the highest item type to remove. | 
|  | * This cannot be run for file data extents because it does not | 
|  | * free the extents they point to. | 
|  | */ | 
|  | static int drop_objectid_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, int max_key_type) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = max_key_type; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
|  |  | 
|  | if (ret != 1) | 
|  | break; | 
|  |  | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  |  | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  |  | 
|  | if (found_key.objectid != objectid) | 
|  | break; | 
|  |  | 
|  | ret = btrfs_del_item(trans, log, path); | 
|  | BUG_ON(ret); | 
|  | btrfs_release_path(log, path); | 
|  | } | 
|  | btrfs_release_path(log, path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *log, | 
|  | struct btrfs_path *dst_path, | 
|  | struct extent_buffer *src, | 
|  | int start_slot, int nr, int inode_only) | 
|  | { | 
|  | unsigned long src_offset; | 
|  | unsigned long dst_offset; | 
|  | struct btrfs_file_extent_item *extent; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | int ret; | 
|  | struct btrfs_key *ins_keys; | 
|  | u32 *ins_sizes; | 
|  | char *ins_data; | 
|  | int i; | 
|  | struct list_head ordered_sums; | 
|  |  | 
|  | INIT_LIST_HEAD(&ordered_sums); | 
|  |  | 
|  | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
|  | nr * sizeof(u32), GFP_NOFS); | 
|  | ins_sizes = (u32 *)ins_data; | 
|  | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | 
|  | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | 
|  | } | 
|  | ret = btrfs_insert_empty_items(trans, log, dst_path, | 
|  | ins_keys, ins_sizes, nr); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | 
|  | dst_path->slots[0]); | 
|  |  | 
|  | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | 
|  |  | 
|  | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
|  | src_offset, ins_sizes[i]); | 
|  |  | 
|  | if (inode_only == LOG_INODE_EXISTS && | 
|  | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | 
|  | inode_item = btrfs_item_ptr(dst_path->nodes[0], | 
|  | dst_path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | 
|  |  | 
|  | /* set the generation to zero so the recover code | 
|  | * can tell the difference between an logging | 
|  | * just to say 'this inode exists' and a logging | 
|  | * to say 'update this inode with these values' | 
|  | */ | 
|  | btrfs_set_inode_generation(dst_path->nodes[0], | 
|  | inode_item, 0); | 
|  | } | 
|  | /* take a reference on file data extents so that truncates | 
|  | * or deletes of this inode don't have to relog the inode | 
|  | * again | 
|  | */ | 
|  | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | 
|  | int found_type; | 
|  | extent = btrfs_item_ptr(src, start_slot + i, | 
|  | struct btrfs_file_extent_item); | 
|  |  | 
|  | found_type = btrfs_file_extent_type(src, extent); | 
|  | if (found_type == BTRFS_FILE_EXTENT_REG || | 
|  | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
|  | u64 ds = btrfs_file_extent_disk_bytenr(src, | 
|  | extent); | 
|  | u64 dl = btrfs_file_extent_disk_num_bytes(src, | 
|  | extent); | 
|  | u64 cs = btrfs_file_extent_offset(src, extent); | 
|  | u64 cl = btrfs_file_extent_num_bytes(src, | 
|  | extent);; | 
|  | if (btrfs_file_extent_compression(src, | 
|  | extent)) { | 
|  | cs = 0; | 
|  | cl = dl; | 
|  | } | 
|  | /* ds == 0 is a hole */ | 
|  | if (ds != 0) { | 
|  | ret = btrfs_inc_extent_ref(trans, log, | 
|  | ds, dl, | 
|  | dst_path->nodes[0]->start, | 
|  | BTRFS_TREE_LOG_OBJECTID, | 
|  | trans->transid, | 
|  | ins_keys[i].objectid); | 
|  | BUG_ON(ret); | 
|  | ret = btrfs_lookup_csums_range( | 
|  | log->fs_info->csum_root, | 
|  | ds + cs, ds + cs + cl - 1, | 
|  | &ordered_sums); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | } | 
|  | } | 
|  | dst_path->slots[0]++; | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | 
|  | btrfs_release_path(log, dst_path); | 
|  | kfree(ins_data); | 
|  |  | 
|  | /* | 
|  | * we have to do this after the loop above to avoid changing the | 
|  | * log tree while trying to change the log tree. | 
|  | */ | 
|  | while (!list_empty(&ordered_sums)) { | 
|  | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
|  | struct btrfs_ordered_sum, | 
|  | list); | 
|  | ret = btrfs_csum_file_blocks(trans, log, sums); | 
|  | BUG_ON(ret); | 
|  | list_del(&sums->list); | 
|  | kfree(sums); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* log a single inode in the tree log. | 
|  | * At least one parent directory for this inode must exist in the tree | 
|  | * or be logged already. | 
|  | * | 
|  | * Any items from this inode changed by the current transaction are copied | 
|  | * to the log tree.  An extra reference is taken on any extents in this | 
|  | * file, allowing us to avoid a whole pile of corner cases around logging | 
|  | * blocks that have been removed from the tree. | 
|  | * | 
|  | * See LOG_INODE_ALL and related defines for a description of what inode_only | 
|  | * does. | 
|  | * | 
|  | * This handles both files and directories. | 
|  | */ | 
|  | static int __btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | int inode_only) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_path *dst_path; | 
|  | struct btrfs_key min_key; | 
|  | struct btrfs_key max_key; | 
|  | struct btrfs_root *log = root->log_root; | 
|  | struct extent_buffer *src = NULL; | 
|  | u32 size; | 
|  | int ret; | 
|  | int nritems; | 
|  | int ins_start_slot = 0; | 
|  | int ins_nr; | 
|  |  | 
|  | log = root->log_root; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | dst_path = btrfs_alloc_path(); | 
|  |  | 
|  | min_key.objectid = inode->i_ino; | 
|  | min_key.type = BTRFS_INODE_ITEM_KEY; | 
|  | min_key.offset = 0; | 
|  |  | 
|  | max_key.objectid = inode->i_ino; | 
|  | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | 
|  | max_key.type = BTRFS_XATTR_ITEM_KEY; | 
|  | else | 
|  | max_key.type = (u8)-1; | 
|  | max_key.offset = (u64)-1; | 
|  |  | 
|  | /* | 
|  | * if this inode has already been logged and we're in inode_only | 
|  | * mode, we don't want to delete the things that have already | 
|  | * been written to the log. | 
|  | * | 
|  | * But, if the inode has been through an inode_only log, | 
|  | * the logged_trans field is not set.  This allows us to catch | 
|  | * any new names for this inode in the backrefs by logging it | 
|  | * again | 
|  | */ | 
|  | if (inode_only == LOG_INODE_EXISTS && | 
|  | BTRFS_I(inode)->logged_trans == trans->transid) { | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  | goto out; | 
|  | } | 
|  | mutex_lock(&BTRFS_I(inode)->log_mutex); | 
|  |  | 
|  | /* | 
|  | * a brute force approach to making sure we get the most uptodate | 
|  | * copies of everything. | 
|  | */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
|  |  | 
|  | if (inode_only == LOG_INODE_EXISTS) | 
|  | max_key_type = BTRFS_XATTR_ITEM_KEY; | 
|  | ret = drop_objectid_items(trans, log, path, | 
|  | inode->i_ino, max_key_type); | 
|  | } else { | 
|  | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | 
|  | } | 
|  | BUG_ON(ret); | 
|  | path->keep_locks = 1; | 
|  |  | 
|  | while (1) { | 
|  | ins_nr = 0; | 
|  | ret = btrfs_search_forward(root, &min_key, &max_key, | 
|  | path, 0, trans->transid); | 
|  | if (ret != 0) | 
|  | break; | 
|  | again: | 
|  | /* note, ins_nr might be > 0 here, cleanup outside the loop */ | 
|  | if (min_key.objectid != inode->i_ino) | 
|  | break; | 
|  | if (min_key.type > max_key.type) | 
|  | break; | 
|  |  | 
|  | src = path->nodes[0]; | 
|  | size = btrfs_item_size_nr(src, path->slots[0]); | 
|  | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
|  | ins_nr++; | 
|  | goto next_slot; | 
|  | } else if (!ins_nr) { | 
|  | ins_start_slot = path->slots[0]; | 
|  | ins_nr = 1; | 
|  | goto next_slot; | 
|  | } | 
|  |  | 
|  | ret = copy_items(trans, log, dst_path, src, ins_start_slot, | 
|  | ins_nr, inode_only); | 
|  | BUG_ON(ret); | 
|  | ins_nr = 1; | 
|  | ins_start_slot = path->slots[0]; | 
|  | next_slot: | 
|  |  | 
|  | nritems = btrfs_header_nritems(path->nodes[0]); | 
|  | path->slots[0]++; | 
|  | if (path->slots[0] < nritems) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | 
|  | path->slots[0]); | 
|  | goto again; | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, log, dst_path, src, | 
|  | ins_start_slot, | 
|  | ins_nr, inode_only); | 
|  | BUG_ON(ret); | 
|  | ins_nr = 0; | 
|  | } | 
|  | btrfs_release_path(root, path); | 
|  |  | 
|  | if (min_key.offset < (u64)-1) | 
|  | min_key.offset++; | 
|  | else if (min_key.type < (u8)-1) | 
|  | min_key.type++; | 
|  | else if (min_key.objectid < (u64)-1) | 
|  | min_key.objectid++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (ins_nr) { | 
|  | ret = copy_items(trans, log, dst_path, src, | 
|  | ins_start_slot, | 
|  | ins_nr, inode_only); | 
|  | BUG_ON(ret); | 
|  | ins_nr = 0; | 
|  | } | 
|  | WARN_ON(ins_nr); | 
|  | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | 
|  | btrfs_release_path(root, path); | 
|  | btrfs_release_path(log, dst_path); | 
|  | BTRFS_I(inode)->log_dirty_trans = 0; | 
|  | ret = log_directory_changes(trans, root, inode, path, dst_path); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | BTRFS_I(inode)->logged_trans = trans->transid; | 
|  | mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(dst_path); | 
|  |  | 
|  | mutex_lock(&root->fs_info->tree_log_mutex); | 
|  | ret = update_log_root(trans, log); | 
|  | BUG_ON(ret); | 
|  | mutex_unlock(&root->fs_info->tree_log_mutex); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct inode *inode, | 
|  | int inode_only) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | start_log_trans(trans, root); | 
|  | ret = __btrfs_log_inode(trans, root, inode, inode_only); | 
|  | end_log_trans(root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function around btrfs_log_inode to make sure newly created | 
|  | * parent directories also end up in the log.  A minimal inode and backref | 
|  | * only logging is done of any parent directories that are older than | 
|  | * the last committed transaction | 
|  | */ | 
|  | int btrfs_log_dentry(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct dentry *dentry) | 
|  | { | 
|  | int inode_only = LOG_INODE_ALL; | 
|  | struct super_block *sb; | 
|  | int ret; | 
|  |  | 
|  | start_log_trans(trans, root); | 
|  | sb = dentry->d_inode->i_sb; | 
|  | while (1) { | 
|  | ret = __btrfs_log_inode(trans, root, dentry->d_inode, | 
|  | inode_only); | 
|  | BUG_ON(ret); | 
|  | inode_only = LOG_INODE_EXISTS; | 
|  |  | 
|  | dentry = dentry->d_parent; | 
|  | if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) | 
|  | break; | 
|  |  | 
|  | if (BTRFS_I(dentry->d_inode)->generation <= | 
|  | root->fs_info->last_trans_committed) | 
|  | break; | 
|  | } | 
|  | end_log_trans(root); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * it is not safe to log dentry if the chunk root has added new | 
|  | * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
|  | * If this returns 1, you must commit the transaction to safely get your | 
|  | * data on disk. | 
|  | */ | 
|  | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, struct dentry *dentry) | 
|  | { | 
|  | u64 gen; | 
|  | gen = root->fs_info->last_trans_new_blockgroup; | 
|  | if (gen > root->fs_info->last_trans_committed) | 
|  | return 1; | 
|  | else | 
|  | return btrfs_log_dentry(trans, root, dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * should be called during mount to recover any replay any log trees | 
|  | * from the FS | 
|  | */ | 
|  | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_key tmp_key; | 
|  | struct btrfs_root *log; | 
|  | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
|  | u64 highest_inode; | 
|  | struct walk_control wc = { | 
|  | .process_func = process_one_buffer, | 
|  | .stage = 0, | 
|  | }; | 
|  |  | 
|  | fs_info->log_root_recovering = 1; | 
|  | path = btrfs_alloc_path(); | 
|  | BUG_ON(!path); | 
|  |  | 
|  | trans = btrfs_start_transaction(fs_info->tree_root, 1); | 
|  |  | 
|  | wc.trans = trans; | 
|  | wc.pin = 1; | 
|  |  | 
|  | walk_log_tree(trans, log_root_tree, &wc); | 
|  |  | 
|  | again: | 
|  | key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | key.offset = (u64)-1; | 
|  | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] == 0) | 
|  | break; | 
|  | path->slots[0]--; | 
|  | } | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
|  | path->slots[0]); | 
|  | btrfs_release_path(log_root_tree, path); | 
|  | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | break; | 
|  |  | 
|  | log = btrfs_read_fs_root_no_radix(log_root_tree, | 
|  | &found_key); | 
|  | BUG_ON(!log); | 
|  |  | 
|  |  | 
|  | tmp_key.objectid = found_key.offset; | 
|  | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | tmp_key.offset = (u64)-1; | 
|  |  | 
|  | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | 
|  | BUG_ON(!wc.replay_dest); | 
|  |  | 
|  | wc.replay_dest->log_root = log; | 
|  | btrfs_record_root_in_trans(wc.replay_dest); | 
|  | ret = walk_log_tree(trans, log, &wc); | 
|  | BUG_ON(ret); | 
|  |  | 
|  | if (wc.stage == LOG_WALK_REPLAY_ALL) { | 
|  | ret = fixup_inode_link_counts(trans, wc.replay_dest, | 
|  | path); | 
|  | BUG_ON(ret); | 
|  | } | 
|  | ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | 
|  | if (ret == 0) { | 
|  | wc.replay_dest->highest_inode = highest_inode; | 
|  | wc.replay_dest->last_inode_alloc = highest_inode; | 
|  | } | 
|  |  | 
|  | key.offset = found_key.offset - 1; | 
|  | wc.replay_dest->log_root = NULL; | 
|  | free_extent_buffer(log->node); | 
|  | kfree(log); | 
|  |  | 
|  | if (found_key.offset == 0) | 
|  | break; | 
|  | } | 
|  | btrfs_release_path(log_root_tree, path); | 
|  |  | 
|  | /* step one is to pin it all, step two is to replay just inodes */ | 
|  | if (wc.pin) { | 
|  | wc.pin = 0; | 
|  | wc.process_func = replay_one_buffer; | 
|  | wc.stage = LOG_WALK_REPLAY_INODES; | 
|  | goto again; | 
|  | } | 
|  | /* step three is to replay everything */ | 
|  | if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
|  | wc.stage++; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | free_extent_buffer(log_root_tree->node); | 
|  | log_root_tree->log_root = NULL; | 
|  | fs_info->log_root_recovering = 0; | 
|  |  | 
|  | /* step 4: commit the transaction, which also unpins the blocks */ | 
|  | btrfs_commit_transaction(trans, fs_info->tree_root); | 
|  |  | 
|  | kfree(log_root_tree); | 
|  | return 0; | 
|  | } |