| /* | 
 |  *  CFQ, or complete fairness queueing, disk scheduler. | 
 |  * | 
 |  *  Based on ideas from a previously unfinished io | 
 |  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. | 
 |  * | 
 |  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/elevator.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/ioprio.h> | 
 | #include <linux/blktrace_api.h> | 
 |  | 
 | /* | 
 |  * tunables | 
 |  */ | 
 | /* max queue in one round of service */ | 
 | static const int cfq_quantum = 4; | 
 | static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; | 
 | /* maximum backwards seek, in KiB */ | 
 | static const int cfq_back_max = 16 * 1024; | 
 | /* penalty of a backwards seek */ | 
 | static const int cfq_back_penalty = 2; | 
 | static const int cfq_slice_sync = HZ / 10; | 
 | static int cfq_slice_async = HZ / 25; | 
 | static const int cfq_slice_async_rq = 2; | 
 | static int cfq_slice_idle = HZ / 125; | 
 |  | 
 | /* | 
 |  * offset from end of service tree | 
 |  */ | 
 | #define CFQ_IDLE_DELAY		(HZ / 5) | 
 |  | 
 | /* | 
 |  * below this threshold, we consider thinktime immediate | 
 |  */ | 
 | #define CFQ_MIN_TT		(2) | 
 |  | 
 | #define CFQ_SLICE_SCALE		(5) | 
 | #define CFQ_HW_QUEUE_MIN	(5) | 
 |  | 
 | #define RQ_CIC(rq)		\ | 
 | 	((struct cfq_io_context *) (rq)->elevator_private) | 
 | #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2) | 
 |  | 
 | static struct kmem_cache *cfq_pool; | 
 | static struct kmem_cache *cfq_ioc_pool; | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, ioc_count); | 
 | static struct completion *ioc_gone; | 
 | static DEFINE_SPINLOCK(ioc_gone_lock); | 
 |  | 
 | #define CFQ_PRIO_LISTS		IOPRIO_BE_NR | 
 | #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) | 
 | #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT) | 
 |  | 
 | #define ASYNC			(0) | 
 | #define SYNC			(1) | 
 |  | 
 | #define sample_valid(samples)	((samples) > 80) | 
 |  | 
 | /* | 
 |  * Most of our rbtree usage is for sorting with min extraction, so | 
 |  * if we cache the leftmost node we don't have to walk down the tree | 
 |  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should | 
 |  * move this into the elevator for the rq sorting as well. | 
 |  */ | 
 | struct cfq_rb_root { | 
 | 	struct rb_root rb; | 
 | 	struct rb_node *left; | 
 | }; | 
 | #define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, } | 
 |  | 
 | /* | 
 |  * Per block device queue structure | 
 |  */ | 
 | struct cfq_data { | 
 | 	struct request_queue *queue; | 
 |  | 
 | 	/* | 
 | 	 * rr list of queues with requests and the count of them | 
 | 	 */ | 
 | 	struct cfq_rb_root service_tree; | 
 | 	unsigned int busy_queues; | 
 |  | 
 | 	int rq_in_driver; | 
 | 	int sync_flight; | 
 |  | 
 | 	/* | 
 | 	 * queue-depth detection | 
 | 	 */ | 
 | 	int rq_queued; | 
 | 	int hw_tag; | 
 | 	int hw_tag_samples; | 
 | 	int rq_in_driver_peak; | 
 |  | 
 | 	/* | 
 | 	 * idle window management | 
 | 	 */ | 
 | 	struct timer_list idle_slice_timer; | 
 | 	struct work_struct unplug_work; | 
 |  | 
 | 	struct cfq_queue *active_queue; | 
 | 	struct cfq_io_context *active_cic; | 
 |  | 
 | 	/* | 
 | 	 * async queue for each priority case | 
 | 	 */ | 
 | 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR]; | 
 | 	struct cfq_queue *async_idle_cfqq; | 
 |  | 
 | 	sector_t last_position; | 
 | 	unsigned long last_end_request; | 
 |  | 
 | 	/* | 
 | 	 * tunables, see top of file | 
 | 	 */ | 
 | 	unsigned int cfq_quantum; | 
 | 	unsigned int cfq_fifo_expire[2]; | 
 | 	unsigned int cfq_back_penalty; | 
 | 	unsigned int cfq_back_max; | 
 | 	unsigned int cfq_slice[2]; | 
 | 	unsigned int cfq_slice_async_rq; | 
 | 	unsigned int cfq_slice_idle; | 
 |  | 
 | 	struct list_head cic_list; | 
 | }; | 
 |  | 
 | /* | 
 |  * Per process-grouping structure | 
 |  */ | 
 | struct cfq_queue { | 
 | 	/* reference count */ | 
 | 	atomic_t ref; | 
 | 	/* various state flags, see below */ | 
 | 	unsigned int flags; | 
 | 	/* parent cfq_data */ | 
 | 	struct cfq_data *cfqd; | 
 | 	/* service_tree member */ | 
 | 	struct rb_node rb_node; | 
 | 	/* service_tree key */ | 
 | 	unsigned long rb_key; | 
 | 	/* sorted list of pending requests */ | 
 | 	struct rb_root sort_list; | 
 | 	/* if fifo isn't expired, next request to serve */ | 
 | 	struct request *next_rq; | 
 | 	/* requests queued in sort_list */ | 
 | 	int queued[2]; | 
 | 	/* currently allocated requests */ | 
 | 	int allocated[2]; | 
 | 	/* fifo list of requests in sort_list */ | 
 | 	struct list_head fifo; | 
 |  | 
 | 	unsigned long slice_end; | 
 | 	long slice_resid; | 
 |  | 
 | 	/* pending metadata requests */ | 
 | 	int meta_pending; | 
 | 	/* number of requests that are on the dispatch list or inside driver */ | 
 | 	int dispatched; | 
 |  | 
 | 	/* io prio of this group */ | 
 | 	unsigned short ioprio, org_ioprio; | 
 | 	unsigned short ioprio_class, org_ioprio_class; | 
 |  | 
 | 	pid_t pid; | 
 | }; | 
 |  | 
 | enum cfqq_state_flags { | 
 | 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */ | 
 | 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */ | 
 | 	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */ | 
 | 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */ | 
 | 	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */ | 
 | 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */ | 
 | 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */ | 
 | 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */ | 
 | 	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */ | 
 | 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */ | 
 | 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */ | 
 | }; | 
 |  | 
 | #define CFQ_CFQQ_FNS(name)						\ | 
 | static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\ | 
 | {									\ | 
 | 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\ | 
 | }									\ | 
 | static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\ | 
 | {									\ | 
 | 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\ | 
 | }									\ | 
 | static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\ | 
 | {									\ | 
 | 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\ | 
 | } | 
 |  | 
 | CFQ_CFQQ_FNS(on_rr); | 
 | CFQ_CFQQ_FNS(wait_request); | 
 | CFQ_CFQQ_FNS(must_alloc); | 
 | CFQ_CFQQ_FNS(must_alloc_slice); | 
 | CFQ_CFQQ_FNS(must_dispatch); | 
 | CFQ_CFQQ_FNS(fifo_expire); | 
 | CFQ_CFQQ_FNS(idle_window); | 
 | CFQ_CFQQ_FNS(prio_changed); | 
 | CFQ_CFQQ_FNS(queue_new); | 
 | CFQ_CFQQ_FNS(slice_new); | 
 | CFQ_CFQQ_FNS(sync); | 
 | #undef CFQ_CFQQ_FNS | 
 |  | 
 | #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args) | 
 | #define cfq_log(cfqd, fmt, args...)	\ | 
 | 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args) | 
 |  | 
 | static void cfq_dispatch_insert(struct request_queue *, struct request *); | 
 | static struct cfq_queue *cfq_get_queue(struct cfq_data *, int, | 
 | 				       struct io_context *, gfp_t); | 
 | static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *, | 
 | 						struct io_context *); | 
 |  | 
 | static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic, | 
 | 					    int is_sync) | 
 | { | 
 | 	return cic->cfqq[!!is_sync]; | 
 | } | 
 |  | 
 | static inline void cic_set_cfqq(struct cfq_io_context *cic, | 
 | 				struct cfq_queue *cfqq, int is_sync) | 
 | { | 
 | 	cic->cfqq[!!is_sync] = cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * We regard a request as SYNC, if it's either a read or has the SYNC bit | 
 |  * set (in which case it could also be direct WRITE). | 
 |  */ | 
 | static inline int cfq_bio_sync(struct bio *bio) | 
 | { | 
 | 	if (bio_data_dir(bio) == READ || bio_sync(bio)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * scheduler run of queue, if there are requests pending and no one in the | 
 |  * driver that will restart queueing | 
 |  */ | 
 | static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) | 
 | { | 
 | 	if (cfqd->busy_queues) { | 
 | 		cfq_log(cfqd, "schedule dispatch"); | 
 | 		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work); | 
 | 	} | 
 | } | 
 |  | 
 | static int cfq_queue_empty(struct request_queue *q) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	return !cfqd->busy_queues; | 
 | } | 
 |  | 
 | /* | 
 |  * Scale schedule slice based on io priority. Use the sync time slice only | 
 |  * if a queue is marked sync and has sync io queued. A sync queue with async | 
 |  * io only, should not get full sync slice length. | 
 |  */ | 
 | static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync, | 
 | 				 unsigned short prio) | 
 | { | 
 | 	const int base_slice = cfqd->cfq_slice[sync]; | 
 |  | 
 | 	WARN_ON(prio >= IOPRIO_BE_NR); | 
 |  | 
 | 	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio)); | 
 | } | 
 |  | 
 | static inline int | 
 | cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio); | 
 | } | 
 |  | 
 | static inline void | 
 | cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies; | 
 | 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end | 
 |  * isn't valid until the first request from the dispatch is activated | 
 |  * and the slice time set. | 
 |  */ | 
 | static inline int cfq_slice_used(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfq_cfqq_slice_new(cfqq)) | 
 | 		return 0; | 
 | 	if (time_before(jiffies, cfqq->slice_end)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Lifted from AS - choose which of rq1 and rq2 that is best served now. | 
 |  * We choose the request that is closest to the head right now. Distance | 
 |  * behind the head is penalized and only allowed to a certain extent. | 
 |  */ | 
 | static struct request * | 
 | cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2) | 
 | { | 
 | 	sector_t last, s1, s2, d1 = 0, d2 = 0; | 
 | 	unsigned long back_max; | 
 | #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */ | 
 | #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */ | 
 | 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */ | 
 |  | 
 | 	if (rq1 == NULL || rq1 == rq2) | 
 | 		return rq2; | 
 | 	if (rq2 == NULL) | 
 | 		return rq1; | 
 |  | 
 | 	if (rq_is_sync(rq1) && !rq_is_sync(rq2)) | 
 | 		return rq1; | 
 | 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) | 
 | 		return rq2; | 
 | 	if (rq_is_meta(rq1) && !rq_is_meta(rq2)) | 
 | 		return rq1; | 
 | 	else if (rq_is_meta(rq2) && !rq_is_meta(rq1)) | 
 | 		return rq2; | 
 |  | 
 | 	s1 = rq1->sector; | 
 | 	s2 = rq2->sector; | 
 |  | 
 | 	last = cfqd->last_position; | 
 |  | 
 | 	/* | 
 | 	 * by definition, 1KiB is 2 sectors | 
 | 	 */ | 
 | 	back_max = cfqd->cfq_back_max * 2; | 
 |  | 
 | 	/* | 
 | 	 * Strict one way elevator _except_ in the case where we allow | 
 | 	 * short backward seeks which are biased as twice the cost of a | 
 | 	 * similar forward seek. | 
 | 	 */ | 
 | 	if (s1 >= last) | 
 | 		d1 = s1 - last; | 
 | 	else if (s1 + back_max >= last) | 
 | 		d1 = (last - s1) * cfqd->cfq_back_penalty; | 
 | 	else | 
 | 		wrap |= CFQ_RQ1_WRAP; | 
 |  | 
 | 	if (s2 >= last) | 
 | 		d2 = s2 - last; | 
 | 	else if (s2 + back_max >= last) | 
 | 		d2 = (last - s2) * cfqd->cfq_back_penalty; | 
 | 	else | 
 | 		wrap |= CFQ_RQ2_WRAP; | 
 |  | 
 | 	/* Found required data */ | 
 |  | 
 | 	/* | 
 | 	 * By doing switch() on the bit mask "wrap" we avoid having to | 
 | 	 * check two variables for all permutations: --> faster! | 
 | 	 */ | 
 | 	switch (wrap) { | 
 | 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ | 
 | 		if (d1 < d2) | 
 | 			return rq1; | 
 | 		else if (d2 < d1) | 
 | 			return rq2; | 
 | 		else { | 
 | 			if (s1 >= s2) | 
 | 				return rq1; | 
 | 			else | 
 | 				return rq2; | 
 | 		} | 
 |  | 
 | 	case CFQ_RQ2_WRAP: | 
 | 		return rq1; | 
 | 	case CFQ_RQ1_WRAP: | 
 | 		return rq2; | 
 | 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */ | 
 | 	default: | 
 | 		/* | 
 | 		 * Since both rqs are wrapped, | 
 | 		 * start with the one that's further behind head | 
 | 		 * (--> only *one* back seek required), | 
 | 		 * since back seek takes more time than forward. | 
 | 		 */ | 
 | 		if (s1 <= s2) | 
 | 			return rq1; | 
 | 		else | 
 | 			return rq2; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The below is leftmost cache rbtree addon | 
 |  */ | 
 | static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root) | 
 | { | 
 | 	if (!root->left) | 
 | 		root->left = rb_first(&root->rb); | 
 |  | 
 | 	if (root->left) | 
 | 		return rb_entry(root->left, struct cfq_queue, rb_node); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root) | 
 | { | 
 | 	if (root->left == n) | 
 | 		root->left = NULL; | 
 |  | 
 | 	rb_erase(n, &root->rb); | 
 | 	RB_CLEAR_NODE(n); | 
 | } | 
 |  | 
 | /* | 
 |  * would be nice to take fifo expire time into account as well | 
 |  */ | 
 | static struct request * | 
 | cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		  struct request *last) | 
 | { | 
 | 	struct rb_node *rbnext = rb_next(&last->rb_node); | 
 | 	struct rb_node *rbprev = rb_prev(&last->rb_node); | 
 | 	struct request *next = NULL, *prev = NULL; | 
 |  | 
 | 	BUG_ON(RB_EMPTY_NODE(&last->rb_node)); | 
 |  | 
 | 	if (rbprev) | 
 | 		prev = rb_entry_rq(rbprev); | 
 |  | 
 | 	if (rbnext) | 
 | 		next = rb_entry_rq(rbnext); | 
 | 	else { | 
 | 		rbnext = rb_first(&cfqq->sort_list); | 
 | 		if (rbnext && rbnext != &last->rb_node) | 
 | 			next = rb_entry_rq(rbnext); | 
 | 	} | 
 |  | 
 | 	return cfq_choose_req(cfqd, next, prev); | 
 | } | 
 |  | 
 | static unsigned long cfq_slice_offset(struct cfq_data *cfqd, | 
 | 				      struct cfq_queue *cfqq) | 
 | { | 
 | 	/* | 
 | 	 * just an approximation, should be ok. | 
 | 	 */ | 
 | 	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) - | 
 | 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio)); | 
 | } | 
 |  | 
 | /* | 
 |  * The cfqd->service_tree holds all pending cfq_queue's that have | 
 |  * requests waiting to be processed. It is sorted in the order that | 
 |  * we will service the queues. | 
 |  */ | 
 | static void cfq_service_tree_add(struct cfq_data *cfqd, | 
 | 				    struct cfq_queue *cfqq, int add_front) | 
 | { | 
 | 	struct rb_node **p, *parent; | 
 | 	struct cfq_queue *__cfqq; | 
 | 	unsigned long rb_key; | 
 | 	int left; | 
 |  | 
 | 	if (cfq_class_idle(cfqq)) { | 
 | 		rb_key = CFQ_IDLE_DELAY; | 
 | 		parent = rb_last(&cfqd->service_tree.rb); | 
 | 		if (parent && parent != &cfqq->rb_node) { | 
 | 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
 | 			rb_key += __cfqq->rb_key; | 
 | 		} else | 
 | 			rb_key += jiffies; | 
 | 	} else if (!add_front) { | 
 | 		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies; | 
 | 		rb_key += cfqq->slice_resid; | 
 | 		cfqq->slice_resid = 0; | 
 | 	} else | 
 | 		rb_key = 0; | 
 |  | 
 | 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) { | 
 | 		/* | 
 | 		 * same position, nothing more to do | 
 | 		 */ | 
 | 		if (rb_key == cfqq->rb_key) | 
 | 			return; | 
 |  | 
 | 		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree); | 
 | 	} | 
 |  | 
 | 	left = 1; | 
 | 	parent = NULL; | 
 | 	p = &cfqd->service_tree.rb.rb_node; | 
 | 	while (*p) { | 
 | 		struct rb_node **n; | 
 |  | 
 | 		parent = *p; | 
 | 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node); | 
 |  | 
 | 		/* | 
 | 		 * sort RT queues first, we always want to give | 
 | 		 * preference to them. IDLE queues goes to the back. | 
 | 		 * after that, sort on the next service time. | 
 | 		 */ | 
 | 		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq)) | 
 | 			n = &(*p)->rb_left; | 
 | 		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq)) | 
 | 			n = &(*p)->rb_right; | 
 | 		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq)) | 
 | 			n = &(*p)->rb_left; | 
 | 		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq)) | 
 | 			n = &(*p)->rb_right; | 
 | 		else if (rb_key < __cfqq->rb_key) | 
 | 			n = &(*p)->rb_left; | 
 | 		else | 
 | 			n = &(*p)->rb_right; | 
 |  | 
 | 		if (n == &(*p)->rb_right) | 
 | 			left = 0; | 
 |  | 
 | 		p = n; | 
 | 	} | 
 |  | 
 | 	if (left) | 
 | 		cfqd->service_tree.left = &cfqq->rb_node; | 
 |  | 
 | 	cfqq->rb_key = rb_key; | 
 | 	rb_link_node(&cfqq->rb_node, parent, p); | 
 | 	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb); | 
 | } | 
 |  | 
 | /* | 
 |  * Update cfqq's position in the service tree. | 
 |  */ | 
 | static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	/* | 
 | 	 * Resorting requires the cfqq to be on the RR list already. | 
 | 	 */ | 
 | 	if (cfq_cfqq_on_rr(cfqq)) | 
 | 		cfq_service_tree_add(cfqd, cfqq, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * add to busy list of queues for service, trying to be fair in ordering | 
 |  * the pending list according to last request service | 
 |  */ | 
 | static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr"); | 
 | 	BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
 | 	cfq_mark_cfqq_on_rr(cfqq); | 
 | 	cfqd->busy_queues++; | 
 |  | 
 | 	cfq_resort_rr_list(cfqd, cfqq); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the cfqq no longer has requests pending, remove it from | 
 |  * the service tree. | 
 |  */ | 
 | static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr"); | 
 | 	BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
 | 	cfq_clear_cfqq_on_rr(cfqq); | 
 |  | 
 | 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) | 
 | 		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree); | 
 |  | 
 | 	BUG_ON(!cfqd->busy_queues); | 
 | 	cfqd->busy_queues--; | 
 | } | 
 |  | 
 | /* | 
 |  * rb tree support functions | 
 |  */ | 
 | static void cfq_del_rq_rb(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	const int sync = rq_is_sync(rq); | 
 |  | 
 | 	BUG_ON(!cfqq->queued[sync]); | 
 | 	cfqq->queued[sync]--; | 
 |  | 
 | 	elv_rb_del(&cfqq->sort_list, rq); | 
 |  | 
 | 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		cfq_del_cfqq_rr(cfqd, cfqq); | 
 | } | 
 |  | 
 | static void cfq_add_rq_rb(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	struct request *__alias; | 
 |  | 
 | 	cfqq->queued[rq_is_sync(rq)]++; | 
 |  | 
 | 	/* | 
 | 	 * looks a little odd, but the first insert might return an alias. | 
 | 	 * if that happens, put the alias on the dispatch list | 
 | 	 */ | 
 | 	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL) | 
 | 		cfq_dispatch_insert(cfqd->queue, __alias); | 
 |  | 
 | 	if (!cfq_cfqq_on_rr(cfqq)) | 
 | 		cfq_add_cfqq_rr(cfqd, cfqq); | 
 |  | 
 | 	/* | 
 | 	 * check if this request is a better next-serve candidate | 
 | 	 */ | 
 | 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq); | 
 | 	BUG_ON(!cfqq->next_rq); | 
 | } | 
 |  | 
 | static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq) | 
 | { | 
 | 	elv_rb_del(&cfqq->sort_list, rq); | 
 | 	cfqq->queued[rq_is_sync(rq)]--; | 
 | 	cfq_add_rq_rb(rq); | 
 | } | 
 |  | 
 | static struct request * | 
 | cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct cfq_io_context *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
 | 	if (!cic) | 
 | 		return NULL; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
 | 	if (cfqq) { | 
 | 		sector_t sector = bio->bi_sector + bio_sectors(bio); | 
 |  | 
 | 		return elv_rb_find(&cfqq->sort_list, sector); | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void cfq_activate_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	cfqd->rq_in_driver++; | 
 | 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d", | 
 | 						cfqd->rq_in_driver); | 
 |  | 
 | 	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors; | 
 | } | 
 |  | 
 | static void cfq_deactivate_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 |  | 
 | 	WARN_ON(!cfqd->rq_in_driver); | 
 | 	cfqd->rq_in_driver--; | 
 | 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d", | 
 | 						cfqd->rq_in_driver); | 
 | } | 
 |  | 
 | static void cfq_remove_request(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	if (cfqq->next_rq == rq) | 
 | 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq); | 
 |  | 
 | 	list_del_init(&rq->queuelist); | 
 | 	cfq_del_rq_rb(rq); | 
 |  | 
 | 	cfqq->cfqd->rq_queued--; | 
 | 	if (rq_is_meta(rq)) { | 
 | 		WARN_ON(!cfqq->meta_pending); | 
 | 		cfqq->meta_pending--; | 
 | 	} | 
 | } | 
 |  | 
 | static int cfq_merge(struct request_queue *q, struct request **req, | 
 | 		     struct bio *bio) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct request *__rq; | 
 |  | 
 | 	__rq = cfq_find_rq_fmerge(cfqd, bio); | 
 | 	if (__rq && elv_rq_merge_ok(__rq, bio)) { | 
 | 		*req = __rq; | 
 | 		return ELEVATOR_FRONT_MERGE; | 
 | 	} | 
 |  | 
 | 	return ELEVATOR_NO_MERGE; | 
 | } | 
 |  | 
 | static void cfq_merged_request(struct request_queue *q, struct request *req, | 
 | 			       int type) | 
 | { | 
 | 	if (type == ELEVATOR_FRONT_MERGE) { | 
 | 		struct cfq_queue *cfqq = RQ_CFQQ(req); | 
 |  | 
 | 		cfq_reposition_rq_rb(cfqq, req); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | cfq_merged_requests(struct request_queue *q, struct request *rq, | 
 | 		    struct request *next) | 
 | { | 
 | 	/* | 
 | 	 * reposition in fifo if next is older than rq | 
 | 	 */ | 
 | 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && | 
 | 	    time_before(next->start_time, rq->start_time)) | 
 | 		list_move(&rq->queuelist, &next->queuelist); | 
 |  | 
 | 	cfq_remove_request(next); | 
 | } | 
 |  | 
 | static int cfq_allow_merge(struct request_queue *q, struct request *rq, | 
 | 			   struct bio *bio) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_io_context *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	/* | 
 | 	 * Disallow merge of a sync bio into an async request. | 
 | 	 */ | 
 | 	if (cfq_bio_sync(bio) && !rq_is_sync(rq)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Lookup the cfqq that this bio will be queued with. Allow | 
 | 	 * merge only if rq is queued there. | 
 | 	 */ | 
 | 	cic = cfq_cic_lookup(cfqd, current->io_context); | 
 | 	if (!cic) | 
 | 		return 0; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio)); | 
 | 	if (cfqq == RQ_CFQQ(rq)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __cfq_set_active_queue(struct cfq_data *cfqd, | 
 | 				   struct cfq_queue *cfqq) | 
 | { | 
 | 	if (cfqq) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "set_active"); | 
 | 		cfqq->slice_end = 0; | 
 | 		cfq_clear_cfqq_must_alloc_slice(cfqq); | 
 | 		cfq_clear_cfqq_fifo_expire(cfqq); | 
 | 		cfq_mark_cfqq_slice_new(cfqq); | 
 | 		cfq_clear_cfqq_queue_new(cfqq); | 
 | 	} | 
 |  | 
 | 	cfqd->active_queue = cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * current cfqq expired its slice (or was too idle), select new one | 
 |  */ | 
 | static void | 
 | __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		    int timed_out) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out); | 
 |  | 
 | 	if (cfq_cfqq_wait_request(cfqq)) | 
 | 		del_timer(&cfqd->idle_slice_timer); | 
 |  | 
 | 	cfq_clear_cfqq_must_dispatch(cfqq); | 
 | 	cfq_clear_cfqq_wait_request(cfqq); | 
 |  | 
 | 	/* | 
 | 	 * store what was left of this slice, if the queue idled/timed out | 
 | 	 */ | 
 | 	if (timed_out && !cfq_cfqq_slice_new(cfqq)) { | 
 | 		cfqq->slice_resid = cfqq->slice_end - jiffies; | 
 | 		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid); | 
 | 	} | 
 |  | 
 | 	cfq_resort_rr_list(cfqd, cfqq); | 
 |  | 
 | 	if (cfqq == cfqd->active_queue) | 
 | 		cfqd->active_queue = NULL; | 
 |  | 
 | 	if (cfqd->active_cic) { | 
 | 		put_io_context(cfqd->active_cic->ioc); | 
 | 		cfqd->active_cic = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out) | 
 | { | 
 | 	struct cfq_queue *cfqq = cfqd->active_queue; | 
 |  | 
 | 	if (cfqq) | 
 | 		__cfq_slice_expired(cfqd, cfqq, timed_out); | 
 | } | 
 |  | 
 | /* | 
 |  * Get next queue for service. Unless we have a queue preemption, | 
 |  * we'll simply select the first cfqq in the service tree. | 
 |  */ | 
 | static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd) | 
 | { | 
 | 	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb)) | 
 | 		return NULL; | 
 |  | 
 | 	return cfq_rb_first(&cfqd->service_tree); | 
 | } | 
 |  | 
 | /* | 
 |  * Get and set a new active queue for service. | 
 |  */ | 
 | static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cfqq = cfq_get_next_queue(cfqd); | 
 | 	__cfq_set_active_queue(cfqd, cfqq); | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd, | 
 | 					  struct request *rq) | 
 | { | 
 | 	if (rq->sector >= cfqd->last_position) | 
 | 		return rq->sector - cfqd->last_position; | 
 | 	else | 
 | 		return cfqd->last_position - rq->sector; | 
 | } | 
 |  | 
 | static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq) | 
 | { | 
 | 	struct cfq_io_context *cic = cfqd->active_cic; | 
 |  | 
 | 	if (!sample_valid(cic->seek_samples)) | 
 | 		return 0; | 
 |  | 
 | 	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean; | 
 | } | 
 |  | 
 | static int cfq_close_cooperator(struct cfq_data *cfq_data, | 
 | 				struct cfq_queue *cfqq) | 
 | { | 
 | 	/* | 
 | 	 * We should notice if some of the queues are cooperating, eg | 
 | 	 * working closely on the same area of the disk. In that case, | 
 | 	 * we can group them together and don't waste time idling. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024)) | 
 |  | 
 | static void cfq_arm_slice_timer(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq = cfqd->active_queue; | 
 | 	struct cfq_io_context *cic; | 
 | 	unsigned long sl; | 
 |  | 
 | 	/* | 
 | 	 * SSD device without seek penalty, disable idling. But only do so | 
 | 	 * for devices that support queuing, otherwise we still have a problem | 
 | 	 * with sync vs async workloads. | 
 | 	 */ | 
 | 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list)); | 
 | 	WARN_ON(cfq_cfqq_slice_new(cfqq)); | 
 |  | 
 | 	/* | 
 | 	 * idle is disabled, either manually or by past process history | 
 | 	 */ | 
 | 	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * still requests with the driver, don't idle | 
 | 	 */ | 
 | 	if (cfqd->rq_in_driver) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * task has exited, don't wait | 
 | 	 */ | 
 | 	cic = cfqd->active_cic; | 
 | 	if (!cic || !atomic_read(&cic->ioc->nr_tasks)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * See if this prio level has a good candidate | 
 | 	 */ | 
 | 	if (cfq_close_cooperator(cfqd, cfqq) && | 
 | 	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2)) | 
 | 		return; | 
 |  | 
 | 	cfq_mark_cfqq_must_dispatch(cfqq); | 
 | 	cfq_mark_cfqq_wait_request(cfqq); | 
 |  | 
 | 	/* | 
 | 	 * we don't want to idle for seeks, but we do want to allow | 
 | 	 * fair distribution of slice time for a process doing back-to-back | 
 | 	 * seeks. so allow a little bit of time for him to submit a new rq | 
 | 	 */ | 
 | 	sl = cfqd->cfq_slice_idle; | 
 | 	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic)) | 
 | 		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT)); | 
 |  | 
 | 	mod_timer(&cfqd->idle_slice_timer, jiffies + sl); | 
 | 	cfq_log(cfqd, "arm_idle: %lu", sl); | 
 | } | 
 |  | 
 | /* | 
 |  * Move request from internal lists to the request queue dispatch list. | 
 |  */ | 
 | static void cfq_dispatch_insert(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert"); | 
 |  | 
 | 	cfq_remove_request(rq); | 
 | 	cfqq->dispatched++; | 
 | 	elv_dispatch_sort(q, rq); | 
 |  | 
 | 	if (cfq_cfqq_sync(cfqq)) | 
 | 		cfqd->sync_flight++; | 
 | } | 
 |  | 
 | /* | 
 |  * return expired entry, or NULL to just start from scratch in rbtree | 
 |  */ | 
 | static struct request *cfq_check_fifo(struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	struct request *rq; | 
 | 	int fifo; | 
 |  | 
 | 	if (cfq_cfqq_fifo_expire(cfqq)) | 
 | 		return NULL; | 
 |  | 
 | 	cfq_mark_cfqq_fifo_expire(cfqq); | 
 |  | 
 | 	if (list_empty(&cfqq->fifo)) | 
 | 		return NULL; | 
 |  | 
 | 	fifo = cfq_cfqq_sync(cfqq); | 
 | 	rq = rq_entry_fifo(cfqq->fifo.next); | 
 |  | 
 | 	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) | 
 | 		rq = NULL; | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq); | 
 | 	return rq; | 
 | } | 
 |  | 
 | static inline int | 
 | cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	const int base_rq = cfqd->cfq_slice_async_rq; | 
 |  | 
 | 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | 
 |  | 
 | 	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio)); | 
 | } | 
 |  | 
 | /* | 
 |  * Select a queue for service. If we have a current active queue, | 
 |  * check whether to continue servicing it, or retrieve and set a new one. | 
 |  */ | 
 | static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (!cfqq) | 
 | 		goto new_queue; | 
 |  | 
 | 	/* | 
 | 	 * The active queue has run out of time, expire it and select new. | 
 | 	 */ | 
 | 	if (cfq_slice_used(cfqq)) | 
 | 		goto expire; | 
 |  | 
 | 	/* | 
 | 	 * The active queue has requests and isn't expired, allow it to | 
 | 	 * dispatch. | 
 | 	 */ | 
 | 	if (!RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 		goto keep_queue; | 
 |  | 
 | 	/* | 
 | 	 * No requests pending. If the active queue still has requests in | 
 | 	 * flight or is idling for a new request, allow either of these | 
 | 	 * conditions to happen (or time out) before selecting a new queue. | 
 | 	 */ | 
 | 	if (timer_pending(&cfqd->idle_slice_timer) || | 
 | 	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) { | 
 | 		cfqq = NULL; | 
 | 		goto keep_queue; | 
 | 	} | 
 |  | 
 | expire: | 
 | 	cfq_slice_expired(cfqd, 0); | 
 | new_queue: | 
 | 	cfqq = cfq_set_active_queue(cfqd); | 
 | keep_queue: | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * Dispatch some requests from cfqq, moving them to the request queue | 
 |  * dispatch list. | 
 |  */ | 
 | static int | 
 | __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 			int max_dispatch) | 
 | { | 
 | 	int dispatched = 0; | 
 |  | 
 | 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list)); | 
 |  | 
 | 	do { | 
 | 		struct request *rq; | 
 |  | 
 | 		/* | 
 | 		 * follow expired path, else get first next available | 
 | 		 */ | 
 | 		rq = cfq_check_fifo(cfqq); | 
 | 		if (rq == NULL) | 
 | 			rq = cfqq->next_rq; | 
 |  | 
 | 		/* | 
 | 		 * finally, insert request into driver dispatch list | 
 | 		 */ | 
 | 		cfq_dispatch_insert(cfqd->queue, rq); | 
 |  | 
 | 		dispatched++; | 
 |  | 
 | 		if (!cfqd->active_cic) { | 
 | 			atomic_inc(&RQ_CIC(rq)->ioc->refcount); | 
 | 			cfqd->active_cic = RQ_CIC(rq); | 
 | 		} | 
 |  | 
 | 		if (RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 			break; | 
 |  | 
 | 	} while (dispatched < max_dispatch); | 
 |  | 
 | 	/* | 
 | 	 * expire an async queue immediately if it has used up its slice. idle | 
 | 	 * queue always expire after 1 dispatch round. | 
 | 	 */ | 
 | 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) && | 
 | 	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) || | 
 | 	    cfq_class_idle(cfqq))) { | 
 | 		cfqq->slice_end = jiffies + 1; | 
 | 		cfq_slice_expired(cfqd, 0); | 
 | 	} | 
 |  | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq) | 
 | { | 
 | 	int dispatched = 0; | 
 |  | 
 | 	while (cfqq->next_rq) { | 
 | 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq); | 
 | 		dispatched++; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!list_empty(&cfqq->fifo)); | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | /* | 
 |  * Drain our current requests. Used for barriers and when switching | 
 |  * io schedulers on-the-fly. | 
 |  */ | 
 | static int cfq_forced_dispatch(struct cfq_data *cfqd) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 | 	int dispatched = 0; | 
 |  | 
 | 	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL) | 
 | 		dispatched += __cfq_forced_dispatch_cfqq(cfqq); | 
 |  | 
 | 	cfq_slice_expired(cfqd, 0); | 
 |  | 
 | 	BUG_ON(cfqd->busy_queues); | 
 |  | 
 | 	cfq_log(cfqd, "forced_dispatch=%d\n", dispatched); | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | static int cfq_dispatch_requests(struct request_queue *q, int force) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq; | 
 | 	int dispatched; | 
 |  | 
 | 	if (!cfqd->busy_queues) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(force)) | 
 | 		return cfq_forced_dispatch(cfqd); | 
 |  | 
 | 	dispatched = 0; | 
 | 	while ((cfqq = cfq_select_queue(cfqd)) != NULL) { | 
 | 		int max_dispatch; | 
 |  | 
 | 		max_dispatch = cfqd->cfq_quantum; | 
 | 		if (cfq_class_idle(cfqq)) | 
 | 			max_dispatch = 1; | 
 |  | 
 | 		if (cfqq->dispatched >= max_dispatch && cfqd->busy_queues > 1) | 
 | 			break; | 
 |  | 
 | 		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq)) | 
 | 			break; | 
 |  | 
 | 		cfq_clear_cfqq_must_dispatch(cfqq); | 
 | 		cfq_clear_cfqq_wait_request(cfqq); | 
 | 		del_timer(&cfqd->idle_slice_timer); | 
 |  | 
 | 		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch); | 
 | 	} | 
 |  | 
 | 	cfq_log(cfqd, "dispatched=%d", dispatched); | 
 | 	return dispatched; | 
 | } | 
 |  | 
 | /* | 
 |  * task holds one reference to the queue, dropped when task exits. each rq | 
 |  * in-flight on this queue also holds a reference, dropped when rq is freed. | 
 |  * | 
 |  * queue lock must be held here. | 
 |  */ | 
 | static void cfq_put_queue(struct cfq_queue *cfqq) | 
 | { | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 |  | 
 | 	BUG_ON(atomic_read(&cfqq->ref) <= 0); | 
 |  | 
 | 	if (!atomic_dec_and_test(&cfqq->ref)) | 
 | 		return; | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "put_queue"); | 
 | 	BUG_ON(rb_first(&cfqq->sort_list)); | 
 | 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); | 
 | 	BUG_ON(cfq_cfqq_on_rr(cfqq)); | 
 |  | 
 | 	if (unlikely(cfqd->active_queue == cfqq)) { | 
 | 		__cfq_slice_expired(cfqd, cfqq, 0); | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(cfq_pool, cfqq); | 
 | } | 
 |  | 
 | /* | 
 |  * Must always be called with the rcu_read_lock() held | 
 |  */ | 
 | static void | 
 | __call_for_each_cic(struct io_context *ioc, | 
 | 		    void (*func)(struct io_context *, struct cfq_io_context *)) | 
 | { | 
 | 	struct cfq_io_context *cic; | 
 | 	struct hlist_node *n; | 
 |  | 
 | 	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list) | 
 | 		func(ioc, cic); | 
 | } | 
 |  | 
 | /* | 
 |  * Call func for each cic attached to this ioc. | 
 |  */ | 
 | static void | 
 | call_for_each_cic(struct io_context *ioc, | 
 | 		  void (*func)(struct io_context *, struct cfq_io_context *)) | 
 | { | 
 | 	rcu_read_lock(); | 
 | 	__call_for_each_cic(ioc, func); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void cfq_cic_free_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct cfq_io_context *cic; | 
 |  | 
 | 	cic = container_of(head, struct cfq_io_context, rcu_head); | 
 |  | 
 | 	kmem_cache_free(cfq_ioc_pool, cic); | 
 | 	elv_ioc_count_dec(ioc_count); | 
 |  | 
 | 	if (ioc_gone) { | 
 | 		/* | 
 | 		 * CFQ scheduler is exiting, grab exit lock and check | 
 | 		 * the pending io context count. If it hits zero, | 
 | 		 * complete ioc_gone and set it back to NULL | 
 | 		 */ | 
 | 		spin_lock(&ioc_gone_lock); | 
 | 		if (ioc_gone && !elv_ioc_count_read(ioc_count)) { | 
 | 			complete(ioc_gone); | 
 | 			ioc_gone = NULL; | 
 | 		} | 
 | 		spin_unlock(&ioc_gone_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_cic_free(struct cfq_io_context *cic) | 
 | { | 
 | 	call_rcu(&cic->rcu_head, cfq_cic_free_rcu); | 
 | } | 
 |  | 
 | static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON(!cic->dead_key); | 
 |  | 
 | 	spin_lock_irqsave(&ioc->lock, flags); | 
 | 	radix_tree_delete(&ioc->radix_root, cic->dead_key); | 
 | 	hlist_del_rcu(&cic->cic_list); | 
 | 	spin_unlock_irqrestore(&ioc->lock, flags); | 
 |  | 
 | 	cfq_cic_free(cic); | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called with rcu_read_lock() held or preemption otherwise disabled. | 
 |  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(), | 
 |  * and ->trim() which is called with the task lock held | 
 |  */ | 
 | static void cfq_free_io_context(struct io_context *ioc) | 
 | { | 
 | 	/* | 
 | 	 * ioc->refcount is zero here, or we are called from elv_unregister(), | 
 | 	 * so no more cic's are allowed to be linked into this ioc.  So it | 
 | 	 * should be ok to iterate over the known list, we will see all cic's | 
 | 	 * since no new ones are added. | 
 | 	 */ | 
 | 	__call_for_each_cic(ioc, cic_free_func); | 
 | } | 
 |  | 
 | static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	if (unlikely(cfqq == cfqd->active_queue)) { | 
 | 		__cfq_slice_expired(cfqd, cfqq, 0); | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | 	} | 
 |  | 
 | 	cfq_put_queue(cfqq); | 
 | } | 
 |  | 
 | static void __cfq_exit_single_io_context(struct cfq_data *cfqd, | 
 | 					 struct cfq_io_context *cic) | 
 | { | 
 | 	struct io_context *ioc = cic->ioc; | 
 |  | 
 | 	list_del_init(&cic->queue_list); | 
 |  | 
 | 	/* | 
 | 	 * Make sure key == NULL is seen for dead queues | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	cic->dead_key = (unsigned long) cic->key; | 
 | 	cic->key = NULL; | 
 |  | 
 | 	if (ioc->ioc_data == cic) | 
 | 		rcu_assign_pointer(ioc->ioc_data, NULL); | 
 |  | 
 | 	if (cic->cfqq[ASYNC]) { | 
 | 		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]); | 
 | 		cic->cfqq[ASYNC] = NULL; | 
 | 	} | 
 |  | 
 | 	if (cic->cfqq[SYNC]) { | 
 | 		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]); | 
 | 		cic->cfqq[SYNC] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_exit_single_io_context(struct io_context *ioc, | 
 | 				       struct cfq_io_context *cic) | 
 | { | 
 | 	struct cfq_data *cfqd = cic->key; | 
 |  | 
 | 	if (cfqd) { | 
 | 		struct request_queue *q = cfqd->queue; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(q->queue_lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Ensure we get a fresh copy of the ->key to prevent | 
 | 		 * race between exiting task and queue | 
 | 		 */ | 
 | 		smp_read_barrier_depends(); | 
 | 		if (cic->key) | 
 | 			__cfq_exit_single_io_context(cfqd, cic); | 
 |  | 
 | 		spin_unlock_irqrestore(q->queue_lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The process that ioc belongs to has exited, we need to clean up | 
 |  * and put the internal structures we have that belongs to that process. | 
 |  */ | 
 | static void cfq_exit_io_context(struct io_context *ioc) | 
 | { | 
 | 	call_for_each_cic(ioc, cfq_exit_single_io_context); | 
 | } | 
 |  | 
 | static struct cfq_io_context * | 
 | cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask) | 
 | { | 
 | 	struct cfq_io_context *cic; | 
 |  | 
 | 	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO, | 
 | 							cfqd->queue->node); | 
 | 	if (cic) { | 
 | 		cic->last_end_request = jiffies; | 
 | 		INIT_LIST_HEAD(&cic->queue_list); | 
 | 		INIT_HLIST_NODE(&cic->cic_list); | 
 | 		cic->dtor = cfq_free_io_context; | 
 | 		cic->exit = cfq_exit_io_context; | 
 | 		elv_ioc_count_inc(ioc_count); | 
 | 	} | 
 |  | 
 | 	return cic; | 
 | } | 
 |  | 
 | static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	int ioprio_class; | 
 |  | 
 | 	if (!cfq_cfqq_prio_changed(cfqq)) | 
 | 		return; | 
 |  | 
 | 	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio); | 
 | 	switch (ioprio_class) { | 
 | 	default: | 
 | 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); | 
 | 	case IOPRIO_CLASS_NONE: | 
 | 		/* | 
 | 		 * no prio set, inherit CPU scheduling settings | 
 | 		 */ | 
 | 		cfqq->ioprio = task_nice_ioprio(tsk); | 
 | 		cfqq->ioprio_class = task_nice_ioclass(tsk); | 
 | 		break; | 
 | 	case IOPRIO_CLASS_RT: | 
 | 		cfqq->ioprio = task_ioprio(ioc); | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_RT; | 
 | 		break; | 
 | 	case IOPRIO_CLASS_BE: | 
 | 		cfqq->ioprio = task_ioprio(ioc); | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_BE; | 
 | 		break; | 
 | 	case IOPRIO_CLASS_IDLE: | 
 | 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE; | 
 | 		cfqq->ioprio = 7; | 
 | 		cfq_clear_cfqq_idle_window(cfqq); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * keep track of original prio settings in case we have to temporarily | 
 | 	 * elevate the priority of this queue | 
 | 	 */ | 
 | 	cfqq->org_ioprio = cfqq->ioprio; | 
 | 	cfqq->org_ioprio_class = cfqq->ioprio_class; | 
 | 	cfq_clear_cfqq_prio_changed(cfqq); | 
 | } | 
 |  | 
 | static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic) | 
 | { | 
 | 	struct cfq_data *cfqd = cic->key; | 
 | 	struct cfq_queue *cfqq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (unlikely(!cfqd)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(cfqd->queue->queue_lock, flags); | 
 |  | 
 | 	cfqq = cic->cfqq[ASYNC]; | 
 | 	if (cfqq) { | 
 | 		struct cfq_queue *new_cfqq; | 
 | 		new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC); | 
 | 		if (new_cfqq) { | 
 | 			cic->cfqq[ASYNC] = new_cfqq; | 
 | 			cfq_put_queue(cfqq); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cfqq = cic->cfqq[SYNC]; | 
 | 	if (cfqq) | 
 | 		cfq_mark_cfqq_prio_changed(cfqq); | 
 |  | 
 | 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | 
 | } | 
 |  | 
 | static void cfq_ioc_set_ioprio(struct io_context *ioc) | 
 | { | 
 | 	call_for_each_cic(ioc, changed_ioprio); | 
 | 	ioc->ioprio_changed = 0; | 
 | } | 
 |  | 
 | static struct cfq_queue * | 
 | cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync, | 
 | 		     struct io_context *ioc, gfp_t gfp_mask) | 
 | { | 
 | 	struct cfq_queue *cfqq, *new_cfqq = NULL; | 
 | 	struct cfq_io_context *cic; | 
 |  | 
 | retry: | 
 | 	cic = cfq_cic_lookup(cfqd, ioc); | 
 | 	/* cic always exists here */ | 
 | 	cfqq = cic_to_cfqq(cic, is_sync); | 
 |  | 
 | 	if (!cfqq) { | 
 | 		if (new_cfqq) { | 
 | 			cfqq = new_cfqq; | 
 | 			new_cfqq = NULL; | 
 | 		} else if (gfp_mask & __GFP_WAIT) { | 
 | 			/* | 
 | 			 * Inform the allocator of the fact that we will | 
 | 			 * just repeat this allocation if it fails, to allow | 
 | 			 * the allocator to do whatever it needs to attempt to | 
 | 			 * free memory. | 
 | 			 */ | 
 | 			spin_unlock_irq(cfqd->queue->queue_lock); | 
 | 			new_cfqq = kmem_cache_alloc_node(cfq_pool, | 
 | 					gfp_mask | __GFP_NOFAIL | __GFP_ZERO, | 
 | 					cfqd->queue->node); | 
 | 			spin_lock_irq(cfqd->queue->queue_lock); | 
 | 			goto retry; | 
 | 		} else { | 
 | 			cfqq = kmem_cache_alloc_node(cfq_pool, | 
 | 					gfp_mask | __GFP_ZERO, | 
 | 					cfqd->queue->node); | 
 | 			if (!cfqq) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		RB_CLEAR_NODE(&cfqq->rb_node); | 
 | 		INIT_LIST_HEAD(&cfqq->fifo); | 
 |  | 
 | 		atomic_set(&cfqq->ref, 0); | 
 | 		cfqq->cfqd = cfqd; | 
 |  | 
 | 		cfq_mark_cfqq_prio_changed(cfqq); | 
 | 		cfq_mark_cfqq_queue_new(cfqq); | 
 |  | 
 | 		cfq_init_prio_data(cfqq, ioc); | 
 |  | 
 | 		if (is_sync) { | 
 | 			if (!cfq_class_idle(cfqq)) | 
 | 				cfq_mark_cfqq_idle_window(cfqq); | 
 | 			cfq_mark_cfqq_sync(cfqq); | 
 | 		} | 
 | 		cfqq->pid = current->pid; | 
 | 		cfq_log_cfqq(cfqd, cfqq, "alloced"); | 
 | 	} | 
 |  | 
 | 	if (new_cfqq) | 
 | 		kmem_cache_free(cfq_pool, new_cfqq); | 
 |  | 
 | out: | 
 | 	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq); | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | static struct cfq_queue ** | 
 | cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio) | 
 | { | 
 | 	switch (ioprio_class) { | 
 | 	case IOPRIO_CLASS_RT: | 
 | 		return &cfqd->async_cfqq[0][ioprio]; | 
 | 	case IOPRIO_CLASS_BE: | 
 | 		return &cfqd->async_cfqq[1][ioprio]; | 
 | 	case IOPRIO_CLASS_IDLE: | 
 | 		return &cfqd->async_idle_cfqq; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static struct cfq_queue * | 
 | cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc, | 
 | 	      gfp_t gfp_mask) | 
 | { | 
 | 	const int ioprio = task_ioprio(ioc); | 
 | 	const int ioprio_class = task_ioprio_class(ioc); | 
 | 	struct cfq_queue **async_cfqq = NULL; | 
 | 	struct cfq_queue *cfqq = NULL; | 
 |  | 
 | 	if (!is_sync) { | 
 | 		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio); | 
 | 		cfqq = *async_cfqq; | 
 | 	} | 
 |  | 
 | 	if (!cfqq) { | 
 | 		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask); | 
 | 		if (!cfqq) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * pin the queue now that it's allocated, scheduler exit will prune it | 
 | 	 */ | 
 | 	if (!is_sync && !(*async_cfqq)) { | 
 | 		atomic_inc(&cfqq->ref); | 
 | 		*async_cfqq = cfqq; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&cfqq->ref); | 
 | 	return cfqq; | 
 | } | 
 |  | 
 | /* | 
 |  * We drop cfq io contexts lazily, so we may find a dead one. | 
 |  */ | 
 | static void | 
 | cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc, | 
 | 		  struct cfq_io_context *cic) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	WARN_ON(!list_empty(&cic->queue_list)); | 
 |  | 
 | 	spin_lock_irqsave(&ioc->lock, flags); | 
 |  | 
 | 	BUG_ON(ioc->ioc_data == cic); | 
 |  | 
 | 	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd); | 
 | 	hlist_del_rcu(&cic->cic_list); | 
 | 	spin_unlock_irqrestore(&ioc->lock, flags); | 
 |  | 
 | 	cfq_cic_free(cic); | 
 | } | 
 |  | 
 | static struct cfq_io_context * | 
 | cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc) | 
 | { | 
 | 	struct cfq_io_context *cic; | 
 | 	unsigned long flags; | 
 | 	void *k; | 
 |  | 
 | 	if (unlikely(!ioc)) | 
 | 		return NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	/* | 
 | 	 * we maintain a last-hit cache, to avoid browsing over the tree | 
 | 	 */ | 
 | 	cic = rcu_dereference(ioc->ioc_data); | 
 | 	if (cic && cic->key == cfqd) { | 
 | 		rcu_read_unlock(); | 
 | 		return cic; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd); | 
 | 		rcu_read_unlock(); | 
 | 		if (!cic) | 
 | 			break; | 
 | 		/* ->key must be copied to avoid race with cfq_exit_queue() */ | 
 | 		k = cic->key; | 
 | 		if (unlikely(!k)) { | 
 | 			cfq_drop_dead_cic(cfqd, ioc, cic); | 
 | 			rcu_read_lock(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&ioc->lock, flags); | 
 | 		rcu_assign_pointer(ioc->ioc_data, cic); | 
 | 		spin_unlock_irqrestore(&ioc->lock, flags); | 
 | 		break; | 
 | 	} while (1); | 
 |  | 
 | 	return cic; | 
 | } | 
 |  | 
 | /* | 
 |  * Add cic into ioc, using cfqd as the search key. This enables us to lookup | 
 |  * the process specific cfq io context when entered from the block layer. | 
 |  * Also adds the cic to a per-cfqd list, used when this queue is removed. | 
 |  */ | 
 | static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc, | 
 | 			struct cfq_io_context *cic, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	ret = radix_tree_preload(gfp_mask); | 
 | 	if (!ret) { | 
 | 		cic->ioc = ioc; | 
 | 		cic->key = cfqd; | 
 |  | 
 | 		spin_lock_irqsave(&ioc->lock, flags); | 
 | 		ret = radix_tree_insert(&ioc->radix_root, | 
 | 						(unsigned long) cfqd, cic); | 
 | 		if (!ret) | 
 | 			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list); | 
 | 		spin_unlock_irqrestore(&ioc->lock, flags); | 
 |  | 
 | 		radix_tree_preload_end(); | 
 |  | 
 | 		if (!ret) { | 
 | 			spin_lock_irqsave(cfqd->queue->queue_lock, flags); | 
 | 			list_add(&cic->queue_list, &cfqd->cic_list); | 
 | 			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		printk(KERN_ERR "cfq: cic link failed!\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Setup general io context and cfq io context. There can be several cfq | 
 |  * io contexts per general io context, if this process is doing io to more | 
 |  * than one device managed by cfq. | 
 |  */ | 
 | static struct cfq_io_context * | 
 | cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask) | 
 | { | 
 | 	struct io_context *ioc = NULL; | 
 | 	struct cfq_io_context *cic; | 
 |  | 
 | 	might_sleep_if(gfp_mask & __GFP_WAIT); | 
 |  | 
 | 	ioc = get_io_context(gfp_mask, cfqd->queue->node); | 
 | 	if (!ioc) | 
 | 		return NULL; | 
 |  | 
 | 	cic = cfq_cic_lookup(cfqd, ioc); | 
 | 	if (cic) | 
 | 		goto out; | 
 |  | 
 | 	cic = cfq_alloc_io_context(cfqd, gfp_mask); | 
 | 	if (cic == NULL) | 
 | 		goto err; | 
 |  | 
 | 	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask)) | 
 | 		goto err_free; | 
 |  | 
 | out: | 
 | 	smp_read_barrier_depends(); | 
 | 	if (unlikely(ioc->ioprio_changed)) | 
 | 		cfq_ioc_set_ioprio(ioc); | 
 |  | 
 | 	return cic; | 
 | err_free: | 
 | 	cfq_cic_free(cic); | 
 | err: | 
 | 	put_io_context(ioc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic) | 
 | { | 
 | 	unsigned long elapsed = jiffies - cic->last_end_request; | 
 | 	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle); | 
 |  | 
 | 	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8; | 
 | 	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8; | 
 | 	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples; | 
 | } | 
 |  | 
 | static void | 
 | cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic, | 
 | 		       struct request *rq) | 
 | { | 
 | 	sector_t sdist; | 
 | 	u64 total; | 
 |  | 
 | 	if (cic->last_request_pos < rq->sector) | 
 | 		sdist = rq->sector - cic->last_request_pos; | 
 | 	else | 
 | 		sdist = cic->last_request_pos - rq->sector; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow the seek distance to get too large from the | 
 | 	 * odd fragment, pagein, etc | 
 | 	 */ | 
 | 	if (cic->seek_samples <= 60) /* second&third seek */ | 
 | 		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024); | 
 | 	else | 
 | 		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64); | 
 |  | 
 | 	cic->seek_samples = (7*cic->seek_samples + 256) / 8; | 
 | 	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8; | 
 | 	total = cic->seek_total + (cic->seek_samples/2); | 
 | 	do_div(total, cic->seek_samples); | 
 | 	cic->seek_mean = (sector_t)total; | 
 | } | 
 |  | 
 | /* | 
 |  * Disable idle window if the process thinks too long or seeks so much that | 
 |  * it doesn't matter | 
 |  */ | 
 | static void | 
 | cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		       struct cfq_io_context *cic) | 
 | { | 
 | 	int old_idle, enable_idle; | 
 |  | 
 | 	/* | 
 | 	 * Don't idle for async or idle io prio class | 
 | 	 */ | 
 | 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq)) | 
 | 		return; | 
 |  | 
 | 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq); | 
 |  | 
 | 	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle || | 
 | 	    (cfqd->hw_tag && CIC_SEEKY(cic))) | 
 | 		enable_idle = 0; | 
 | 	else if (sample_valid(cic->ttime_samples)) { | 
 | 		if (cic->ttime_mean > cfqd->cfq_slice_idle) | 
 | 			enable_idle = 0; | 
 | 		else | 
 | 			enable_idle = 1; | 
 | 	} | 
 |  | 
 | 	if (old_idle != enable_idle) { | 
 | 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle); | 
 | 		if (enable_idle) | 
 | 			cfq_mark_cfqq_idle_window(cfqq); | 
 | 		else | 
 | 			cfq_clear_cfqq_idle_window(cfqq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check if new_cfqq should preempt the currently active queue. Return 0 for | 
 |  * no or if we aren't sure, a 1 will cause a preempt. | 
 |  */ | 
 | static int | 
 | cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, | 
 | 		   struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (!cfqq) | 
 | 		return 0; | 
 |  | 
 | 	if (cfq_slice_used(cfqq)) | 
 | 		return 1; | 
 |  | 
 | 	if (cfq_class_idle(new_cfqq)) | 
 | 		return 0; | 
 |  | 
 | 	if (cfq_class_idle(cfqq)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * if the new request is sync, but the currently running queue is | 
 | 	 * not, let the sync request have priority. | 
 | 	 */ | 
 | 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * So both queues are sync. Let the new request get disk time if | 
 | 	 * it's a metadata request and the current queue is doing regular IO. | 
 | 	 */ | 
 | 	if (rq_is_meta(rq) && !cfqq->meta_pending) | 
 | 		return 1; | 
 |  | 
 | 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * if this request is as-good as one we would expect from the | 
 | 	 * current cfqq, let it preempt | 
 | 	 */ | 
 | 	if (cfq_rq_close(cfqd, rq)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * cfqq preempts the active queue. if we allowed preempt with no slice left, | 
 |  * let it have half of its nominal slice. | 
 |  */ | 
 | static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | 
 | { | 
 | 	cfq_log_cfqq(cfqd, cfqq, "preempt"); | 
 | 	cfq_slice_expired(cfqd, 1); | 
 |  | 
 | 	/* | 
 | 	 * Put the new queue at the front of the of the current list, | 
 | 	 * so we know that it will be selected next. | 
 | 	 */ | 
 | 	BUG_ON(!cfq_cfqq_on_rr(cfqq)); | 
 |  | 
 | 	cfq_service_tree_add(cfqd, cfqq, 1); | 
 |  | 
 | 	cfqq->slice_end = 0; | 
 | 	cfq_mark_cfqq_slice_new(cfqq); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a new fs request (rq) is added (to cfqq). Check if there's | 
 |  * something we should do about it | 
 |  */ | 
 | static void | 
 | cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, | 
 | 		struct request *rq) | 
 | { | 
 | 	struct cfq_io_context *cic = RQ_CIC(rq); | 
 |  | 
 | 	cfqd->rq_queued++; | 
 | 	if (rq_is_meta(rq)) | 
 | 		cfqq->meta_pending++; | 
 |  | 
 | 	cfq_update_io_thinktime(cfqd, cic); | 
 | 	cfq_update_io_seektime(cfqd, cic, rq); | 
 | 	cfq_update_idle_window(cfqd, cfqq, cic); | 
 |  | 
 | 	cic->last_request_pos = rq->sector + rq->nr_sectors; | 
 |  | 
 | 	if (cfqq == cfqd->active_queue) { | 
 | 		/* | 
 | 		 * if we are waiting for a request for this queue, let it rip | 
 | 		 * immediately and flag that we must not expire this queue | 
 | 		 * just now | 
 | 		 */ | 
 | 		if (cfq_cfqq_wait_request(cfqq)) { | 
 | 			cfq_mark_cfqq_must_dispatch(cfqq); | 
 | 			del_timer(&cfqd->idle_slice_timer); | 
 | 			blk_start_queueing(cfqd->queue); | 
 | 		} | 
 | 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) { | 
 | 		/* | 
 | 		 * not the active queue - expire current slice if it is | 
 | 		 * idle and has expired it's mean thinktime or this new queue | 
 | 		 * has some old slice time left and is of higher priority | 
 | 		 */ | 
 | 		cfq_preempt_queue(cfqd, cfqq); | 
 | 		cfq_mark_cfqq_must_dispatch(cfqq); | 
 | 		blk_start_queueing(cfqd->queue); | 
 | 	} | 
 | } | 
 |  | 
 | static void cfq_insert_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	cfq_log_cfqq(cfqd, cfqq, "insert_request"); | 
 | 	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc); | 
 |  | 
 | 	cfq_add_rq_rb(rq); | 
 |  | 
 | 	list_add_tail(&rq->queuelist, &cfqq->fifo); | 
 |  | 
 | 	cfq_rq_enqueued(cfqd, cfqq, rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Update hw_tag based on peak queue depth over 50 samples under | 
 |  * sufficient load. | 
 |  */ | 
 | static void cfq_update_hw_tag(struct cfq_data *cfqd) | 
 | { | 
 | 	if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak) | 
 | 		cfqd->rq_in_driver_peak = cfqd->rq_in_driver; | 
 |  | 
 | 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN && | 
 | 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN) | 
 | 		return; | 
 |  | 
 | 	if (cfqd->hw_tag_samples++ < 50) | 
 | 		return; | 
 |  | 
 | 	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN) | 
 | 		cfqd->hw_tag = 1; | 
 | 	else | 
 | 		cfqd->hw_tag = 0; | 
 |  | 
 | 	cfqd->hw_tag_samples = 0; | 
 | 	cfqd->rq_in_driver_peak = 0; | 
 | } | 
 |  | 
 | static void cfq_completed_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 | 	struct cfq_data *cfqd = cfqq->cfqd; | 
 | 	const int sync = rq_is_sync(rq); | 
 | 	unsigned long now; | 
 |  | 
 | 	now = jiffies; | 
 | 	cfq_log_cfqq(cfqd, cfqq, "complete"); | 
 |  | 
 | 	cfq_update_hw_tag(cfqd); | 
 |  | 
 | 	WARN_ON(!cfqd->rq_in_driver); | 
 | 	WARN_ON(!cfqq->dispatched); | 
 | 	cfqd->rq_in_driver--; | 
 | 	cfqq->dispatched--; | 
 |  | 
 | 	if (cfq_cfqq_sync(cfqq)) | 
 | 		cfqd->sync_flight--; | 
 |  | 
 | 	if (!cfq_class_idle(cfqq)) | 
 | 		cfqd->last_end_request = now; | 
 |  | 
 | 	if (sync) | 
 | 		RQ_CIC(rq)->last_end_request = now; | 
 |  | 
 | 	/* | 
 | 	 * If this is the active queue, check if it needs to be expired, | 
 | 	 * or if we want to idle in case it has no pending requests. | 
 | 	 */ | 
 | 	if (cfqd->active_queue == cfqq) { | 
 | 		if (cfq_cfqq_slice_new(cfqq)) { | 
 | 			cfq_set_prio_slice(cfqd, cfqq); | 
 | 			cfq_clear_cfqq_slice_new(cfqq); | 
 | 		} | 
 | 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq)) | 
 | 			cfq_slice_expired(cfqd, 1); | 
 | 		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) | 
 | 			cfq_arm_slice_timer(cfqd); | 
 | 	} | 
 |  | 
 | 	if (!cfqd->rq_in_driver) | 
 | 		cfq_schedule_dispatch(cfqd); | 
 | } | 
 |  | 
 | /* | 
 |  * we temporarily boost lower priority queues if they are holding fs exclusive | 
 |  * resources. they are boosted to normal prio (CLASS_BE/4) | 
 |  */ | 
 | static void cfq_prio_boost(struct cfq_queue *cfqq) | 
 | { | 
 | 	if (has_fs_excl()) { | 
 | 		/* | 
 | 		 * boost idle prio on transactions that would lock out other | 
 | 		 * users of the filesystem | 
 | 		 */ | 
 | 		if (cfq_class_idle(cfqq)) | 
 | 			cfqq->ioprio_class = IOPRIO_CLASS_BE; | 
 | 		if (cfqq->ioprio > IOPRIO_NORM) | 
 | 			cfqq->ioprio = IOPRIO_NORM; | 
 | 	} else { | 
 | 		/* | 
 | 		 * check if we need to unboost the queue | 
 | 		 */ | 
 | 		if (cfqq->ioprio_class != cfqq->org_ioprio_class) | 
 | 			cfqq->ioprio_class = cfqq->org_ioprio_class; | 
 | 		if (cfqq->ioprio != cfqq->org_ioprio) | 
 | 			cfqq->ioprio = cfqq->org_ioprio; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int __cfq_may_queue(struct cfq_queue *cfqq) | 
 | { | 
 | 	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) && | 
 | 	    !cfq_cfqq_must_alloc_slice(cfqq)) { | 
 | 		cfq_mark_cfqq_must_alloc_slice(cfqq); | 
 | 		return ELV_MQUEUE_MUST; | 
 | 	} | 
 |  | 
 | 	return ELV_MQUEUE_MAY; | 
 | } | 
 |  | 
 | static int cfq_may_queue(struct request_queue *q, int rw) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct task_struct *tsk = current; | 
 | 	struct cfq_io_context *cic; | 
 | 	struct cfq_queue *cfqq; | 
 |  | 
 | 	/* | 
 | 	 * don't force setup of a queue from here, as a call to may_queue | 
 | 	 * does not necessarily imply that a request actually will be queued. | 
 | 	 * so just lookup a possibly existing queue, or return 'may queue' | 
 | 	 * if that fails | 
 | 	 */ | 
 | 	cic = cfq_cic_lookup(cfqd, tsk->io_context); | 
 | 	if (!cic) | 
 | 		return ELV_MQUEUE_MAY; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC); | 
 | 	if (cfqq) { | 
 | 		cfq_init_prio_data(cfqq, cic->ioc); | 
 | 		cfq_prio_boost(cfqq); | 
 |  | 
 | 		return __cfq_may_queue(cfqq); | 
 | 	} | 
 |  | 
 | 	return ELV_MQUEUE_MAY; | 
 | } | 
 |  | 
 | /* | 
 |  * queue lock held here | 
 |  */ | 
 | static void cfq_put_request(struct request *rq) | 
 | { | 
 | 	struct cfq_queue *cfqq = RQ_CFQQ(rq); | 
 |  | 
 | 	if (cfqq) { | 
 | 		const int rw = rq_data_dir(rq); | 
 |  | 
 | 		BUG_ON(!cfqq->allocated[rw]); | 
 | 		cfqq->allocated[rw]--; | 
 |  | 
 | 		put_io_context(RQ_CIC(rq)->ioc); | 
 |  | 
 | 		rq->elevator_private = NULL; | 
 | 		rq->elevator_private2 = NULL; | 
 |  | 
 | 		cfq_put_queue(cfqq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate cfq data structures associated with this request. | 
 |  */ | 
 | static int | 
 | cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask) | 
 | { | 
 | 	struct cfq_data *cfqd = q->elevator->elevator_data; | 
 | 	struct cfq_io_context *cic; | 
 | 	const int rw = rq_data_dir(rq); | 
 | 	const int is_sync = rq_is_sync(rq); | 
 | 	struct cfq_queue *cfqq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	might_sleep_if(gfp_mask & __GFP_WAIT); | 
 |  | 
 | 	cic = cfq_get_io_context(cfqd, gfp_mask); | 
 |  | 
 | 	spin_lock_irqsave(q->queue_lock, flags); | 
 |  | 
 | 	if (!cic) | 
 | 		goto queue_fail; | 
 |  | 
 | 	cfqq = cic_to_cfqq(cic, is_sync); | 
 | 	if (!cfqq) { | 
 | 		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask); | 
 |  | 
 | 		if (!cfqq) | 
 | 			goto queue_fail; | 
 |  | 
 | 		cic_set_cfqq(cic, cfqq, is_sync); | 
 | 	} | 
 |  | 
 | 	cfqq->allocated[rw]++; | 
 | 	cfq_clear_cfqq_must_alloc(cfqq); | 
 | 	atomic_inc(&cfqq->ref); | 
 |  | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 |  | 
 | 	rq->elevator_private = cic; | 
 | 	rq->elevator_private2 = cfqq; | 
 | 	return 0; | 
 |  | 
 | queue_fail: | 
 | 	if (cic) | 
 | 		put_io_context(cic->ioc); | 
 |  | 
 | 	cfq_schedule_dispatch(cfqd); | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 | 	cfq_log(cfqd, "set_request fail"); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void cfq_kick_queue(struct work_struct *work) | 
 | { | 
 | 	struct cfq_data *cfqd = | 
 | 		container_of(work, struct cfq_data, unplug_work); | 
 | 	struct request_queue *q = cfqd->queue; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(q->queue_lock, flags); | 
 | 	blk_start_queueing(q); | 
 | 	spin_unlock_irqrestore(q->queue_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Timer running if the active_queue is currently idling inside its time slice | 
 |  */ | 
 | static void cfq_idle_slice_timer(unsigned long data) | 
 | { | 
 | 	struct cfq_data *cfqd = (struct cfq_data *) data; | 
 | 	struct cfq_queue *cfqq; | 
 | 	unsigned long flags; | 
 | 	int timed_out = 1; | 
 |  | 
 | 	cfq_log(cfqd, "idle timer fired"); | 
 |  | 
 | 	spin_lock_irqsave(cfqd->queue->queue_lock, flags); | 
 |  | 
 | 	cfqq = cfqd->active_queue; | 
 | 	if (cfqq) { | 
 | 		timed_out = 0; | 
 |  | 
 | 		/* | 
 | 		 * expired | 
 | 		 */ | 
 | 		if (cfq_slice_used(cfqq)) | 
 | 			goto expire; | 
 |  | 
 | 		/* | 
 | 		 * only expire and reinvoke request handler, if there are | 
 | 		 * other queues with pending requests | 
 | 		 */ | 
 | 		if (!cfqd->busy_queues) | 
 | 			goto out_cont; | 
 |  | 
 | 		/* | 
 | 		 * not expired and it has a request pending, let it dispatch | 
 | 		 */ | 
 | 		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) { | 
 | 			cfq_mark_cfqq_must_dispatch(cfqq); | 
 | 			goto out_kick; | 
 | 		} | 
 | 	} | 
 | expire: | 
 | 	cfq_slice_expired(cfqd, timed_out); | 
 | out_kick: | 
 | 	cfq_schedule_dispatch(cfqd); | 
 | out_cont: | 
 | 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | 
 | } | 
 |  | 
 | static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) | 
 | { | 
 | 	del_timer_sync(&cfqd->idle_slice_timer); | 
 | 	cancel_work_sync(&cfqd->unplug_work); | 
 | } | 
 |  | 
 | static void cfq_put_async_queues(struct cfq_data *cfqd) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < IOPRIO_BE_NR; i++) { | 
 | 		if (cfqd->async_cfqq[0][i]) | 
 | 			cfq_put_queue(cfqd->async_cfqq[0][i]); | 
 | 		if (cfqd->async_cfqq[1][i]) | 
 | 			cfq_put_queue(cfqd->async_cfqq[1][i]); | 
 | 	} | 
 |  | 
 | 	if (cfqd->async_idle_cfqq) | 
 | 		cfq_put_queue(cfqd->async_idle_cfqq); | 
 | } | 
 |  | 
 | static void cfq_exit_queue(struct elevator_queue *e) | 
 | { | 
 | 	struct cfq_data *cfqd = e->elevator_data; | 
 | 	struct request_queue *q = cfqd->queue; | 
 |  | 
 | 	cfq_shutdown_timer_wq(cfqd); | 
 |  | 
 | 	spin_lock_irq(q->queue_lock); | 
 |  | 
 | 	if (cfqd->active_queue) | 
 | 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0); | 
 |  | 
 | 	while (!list_empty(&cfqd->cic_list)) { | 
 | 		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next, | 
 | 							struct cfq_io_context, | 
 | 							queue_list); | 
 |  | 
 | 		__cfq_exit_single_io_context(cfqd, cic); | 
 | 	} | 
 |  | 
 | 	cfq_put_async_queues(cfqd); | 
 |  | 
 | 	spin_unlock_irq(q->queue_lock); | 
 |  | 
 | 	cfq_shutdown_timer_wq(cfqd); | 
 |  | 
 | 	kfree(cfqd); | 
 | } | 
 |  | 
 | static void *cfq_init_queue(struct request_queue *q) | 
 | { | 
 | 	struct cfq_data *cfqd; | 
 |  | 
 | 	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node); | 
 | 	if (!cfqd) | 
 | 		return NULL; | 
 |  | 
 | 	cfqd->service_tree = CFQ_RB_ROOT; | 
 | 	INIT_LIST_HEAD(&cfqd->cic_list); | 
 |  | 
 | 	cfqd->queue = q; | 
 |  | 
 | 	init_timer(&cfqd->idle_slice_timer); | 
 | 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer; | 
 | 	cfqd->idle_slice_timer.data = (unsigned long) cfqd; | 
 |  | 
 | 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue); | 
 |  | 
 | 	cfqd->last_end_request = jiffies; | 
 | 	cfqd->cfq_quantum = cfq_quantum; | 
 | 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; | 
 | 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; | 
 | 	cfqd->cfq_back_max = cfq_back_max; | 
 | 	cfqd->cfq_back_penalty = cfq_back_penalty; | 
 | 	cfqd->cfq_slice[0] = cfq_slice_async; | 
 | 	cfqd->cfq_slice[1] = cfq_slice_sync; | 
 | 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq; | 
 | 	cfqd->cfq_slice_idle = cfq_slice_idle; | 
 | 	cfqd->hw_tag = 1; | 
 |  | 
 | 	return cfqd; | 
 | } | 
 |  | 
 | static void cfq_slab_kill(void) | 
 | { | 
 | 	/* | 
 | 	 * Caller already ensured that pending RCU callbacks are completed, | 
 | 	 * so we should have no busy allocations at this point. | 
 | 	 */ | 
 | 	if (cfq_pool) | 
 | 		kmem_cache_destroy(cfq_pool); | 
 | 	if (cfq_ioc_pool) | 
 | 		kmem_cache_destroy(cfq_ioc_pool); | 
 | } | 
 |  | 
 | static int __init cfq_slab_setup(void) | 
 | { | 
 | 	cfq_pool = KMEM_CACHE(cfq_queue, 0); | 
 | 	if (!cfq_pool) | 
 | 		goto fail; | 
 |  | 
 | 	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0); | 
 | 	if (!cfq_ioc_pool) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	cfq_slab_kill(); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * sysfs parts below --> | 
 |  */ | 
 | static ssize_t | 
 | cfq_var_show(unsigned int var, char *page) | 
 | { | 
 | 	return sprintf(page, "%d\n", var); | 
 | } | 
 |  | 
 | static ssize_t | 
 | cfq_var_store(unsigned int *var, const char *page, size_t count) | 
 | { | 
 | 	char *p = (char *) page; | 
 |  | 
 | 	*var = simple_strtoul(p, &p, 10); | 
 | 	return count; | 
 | } | 
 |  | 
 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, char *page)		\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	unsigned int __data = __VAR;					\ | 
 | 	if (__CONV)							\ | 
 | 		__data = jiffies_to_msecs(__data);			\ | 
 | 	return cfq_var_show(__data, (page));				\ | 
 | } | 
 | SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); | 
 | SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); | 
 | SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); | 
 | SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0); | 
 | SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0); | 
 | SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); | 
 | SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); | 
 | SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); | 
 | SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); | 
 | #undef SHOW_FUNCTION | 
 |  | 
 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\ | 
 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\ | 
 | {									\ | 
 | 	struct cfq_data *cfqd = e->elevator_data;			\ | 
 | 	unsigned int __data;						\ | 
 | 	int ret = cfq_var_store(&__data, (page), count);		\ | 
 | 	if (__data < (MIN))						\ | 
 | 		__data = (MIN);						\ | 
 | 	else if (__data > (MAX))					\ | 
 | 		__data = (MAX);						\ | 
 | 	if (__CONV)							\ | 
 | 		*(__PTR) = msecs_to_jiffies(__data);			\ | 
 | 	else								\ | 
 | 		*(__PTR) = __data;					\ | 
 | 	return ret;							\ | 
 | } | 
 | STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, | 
 | 		UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, | 
 | 		UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, | 
 | 		UINT_MAX, 0); | 
 | STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); | 
 | STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, | 
 | 		UINT_MAX, 0); | 
 | #undef STORE_FUNCTION | 
 |  | 
 | #define CFQ_ATTR(name) \ | 
 | 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store) | 
 |  | 
 | static struct elv_fs_entry cfq_attrs[] = { | 
 | 	CFQ_ATTR(quantum), | 
 | 	CFQ_ATTR(fifo_expire_sync), | 
 | 	CFQ_ATTR(fifo_expire_async), | 
 | 	CFQ_ATTR(back_seek_max), | 
 | 	CFQ_ATTR(back_seek_penalty), | 
 | 	CFQ_ATTR(slice_sync), | 
 | 	CFQ_ATTR(slice_async), | 
 | 	CFQ_ATTR(slice_async_rq), | 
 | 	CFQ_ATTR(slice_idle), | 
 | 	__ATTR_NULL | 
 | }; | 
 |  | 
 | static struct elevator_type iosched_cfq = { | 
 | 	.ops = { | 
 | 		.elevator_merge_fn = 		cfq_merge, | 
 | 		.elevator_merged_fn =		cfq_merged_request, | 
 | 		.elevator_merge_req_fn =	cfq_merged_requests, | 
 | 		.elevator_allow_merge_fn =	cfq_allow_merge, | 
 | 		.elevator_dispatch_fn =		cfq_dispatch_requests, | 
 | 		.elevator_add_req_fn =		cfq_insert_request, | 
 | 		.elevator_activate_req_fn =	cfq_activate_request, | 
 | 		.elevator_deactivate_req_fn =	cfq_deactivate_request, | 
 | 		.elevator_queue_empty_fn =	cfq_queue_empty, | 
 | 		.elevator_completed_req_fn =	cfq_completed_request, | 
 | 		.elevator_former_req_fn =	elv_rb_former_request, | 
 | 		.elevator_latter_req_fn =	elv_rb_latter_request, | 
 | 		.elevator_set_req_fn =		cfq_set_request, | 
 | 		.elevator_put_req_fn =		cfq_put_request, | 
 | 		.elevator_may_queue_fn =	cfq_may_queue, | 
 | 		.elevator_init_fn =		cfq_init_queue, | 
 | 		.elevator_exit_fn =		cfq_exit_queue, | 
 | 		.trim =				cfq_free_io_context, | 
 | 	}, | 
 | 	.elevator_attrs =	cfq_attrs, | 
 | 	.elevator_name =	"cfq", | 
 | 	.elevator_owner =	THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init cfq_init(void) | 
 | { | 
 | 	/* | 
 | 	 * could be 0 on HZ < 1000 setups | 
 | 	 */ | 
 | 	if (!cfq_slice_async) | 
 | 		cfq_slice_async = 1; | 
 | 	if (!cfq_slice_idle) | 
 | 		cfq_slice_idle = 1; | 
 |  | 
 | 	if (cfq_slab_setup()) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	elv_register(&iosched_cfq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit cfq_exit(void) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(all_gone); | 
 | 	elv_unregister(&iosched_cfq); | 
 | 	ioc_gone = &all_gone; | 
 | 	/* ioc_gone's update must be visible before reading ioc_count */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* | 
 | 	 * this also protects us from entering cfq_slab_kill() with | 
 | 	 * pending RCU callbacks | 
 | 	 */ | 
 | 	if (elv_ioc_count_read(ioc_count)) | 
 | 		wait_for_completion(&all_gone); | 
 | 	cfq_slab_kill(); | 
 | } | 
 |  | 
 | module_init(cfq_init); | 
 | module_exit(cfq_exit); | 
 |  | 
 | MODULE_AUTHOR("Jens Axboe"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); |