blob: 84b059ed04fc2b461ff7ba4e8182d4be4cd11012 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Huawei Ltd.
* Author: Jiang Liu <liuj97@gmail.com>
*
* Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
*/
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/fixmap.h>
#include <asm/insn.h>
#include <asm/kprobes.h>
#define AARCH64_INSN_SF_BIT BIT(31)
#define AARCH64_INSN_N_BIT BIT(22)
#define AARCH64_INSN_LSL_12 BIT(22)
static int aarch64_insn_encoding_class[] = {
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_UNKNOWN,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_REG,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_FPSIMD,
AARCH64_INSN_CLS_DP_IMM,
AARCH64_INSN_CLS_DP_IMM,
AARCH64_INSN_CLS_BR_SYS,
AARCH64_INSN_CLS_BR_SYS,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_REG,
AARCH64_INSN_CLS_LDST,
AARCH64_INSN_CLS_DP_FPSIMD,
};
enum aarch64_insn_encoding_class __kprobes aarch64_get_insn_class(u32 insn)
{
return aarch64_insn_encoding_class[(insn >> 25) & 0xf];
}
/* NOP is an alias of HINT */
bool __kprobes aarch64_insn_is_nop(u32 insn)
{
if (!aarch64_insn_is_hint(insn))
return false;
switch (insn & 0xFE0) {
case AARCH64_INSN_HINT_YIELD:
case AARCH64_INSN_HINT_WFE:
case AARCH64_INSN_HINT_WFI:
case AARCH64_INSN_HINT_SEV:
case AARCH64_INSN_HINT_SEVL:
return false;
default:
return true;
}
}
bool aarch64_insn_is_branch_imm(u32 insn)
{
return (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn) ||
aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn) ||
aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
aarch64_insn_is_bcond(insn));
}
static DEFINE_RAW_SPINLOCK(patch_lock);
static void __kprobes *patch_map(void *addr, int fixmap)
{
unsigned long uintaddr = (uintptr_t) addr;
bool module = !core_kernel_text(uintaddr);
struct page *page;
if (module && IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
page = vmalloc_to_page(addr);
else if (!module)
page = phys_to_page(__pa_symbol(addr));
else
return addr;
BUG_ON(!page);
return (void *)set_fixmap_offset(fixmap, page_to_phys(page) +
(uintaddr & ~PAGE_MASK));
}
static void __kprobes patch_unmap(int fixmap)
{
clear_fixmap(fixmap);
}
/*
* In ARMv8-A, A64 instructions have a fixed length of 32 bits and are always
* little-endian.
*/
int __kprobes aarch64_insn_read(void *addr, u32 *insnp)
{
int ret;
__le32 val;
ret = probe_kernel_read(&val, addr, AARCH64_INSN_SIZE);
if (!ret)
*insnp = le32_to_cpu(val);
return ret;
}
static int __kprobes __aarch64_insn_write(void *addr, __le32 insn)
{
void *waddr = addr;
unsigned long flags = 0;
int ret;
raw_spin_lock_irqsave(&patch_lock, flags);
waddr = patch_map(addr, FIX_TEXT_POKE0);
ret = probe_kernel_write(waddr, &insn, AARCH64_INSN_SIZE);
patch_unmap(FIX_TEXT_POKE0);
raw_spin_unlock_irqrestore(&patch_lock, flags);
return ret;
}
int __kprobes aarch64_insn_write(void *addr, u32 insn)
{
return __aarch64_insn_write(addr, cpu_to_le32(insn));
}
bool __kprobes aarch64_insn_uses_literal(u32 insn)
{
/* ldr/ldrsw (literal), prfm */
return aarch64_insn_is_ldr_lit(insn) ||
aarch64_insn_is_ldrsw_lit(insn) ||
aarch64_insn_is_adr_adrp(insn) ||
aarch64_insn_is_prfm_lit(insn);
}
bool __kprobes aarch64_insn_is_branch(u32 insn)
{
/* b, bl, cb*, tb*, b.cond, br, blr */
return aarch64_insn_is_b(insn) ||
aarch64_insn_is_bl(insn) ||
aarch64_insn_is_cbz(insn) ||
aarch64_insn_is_cbnz(insn) ||
aarch64_insn_is_tbz(insn) ||
aarch64_insn_is_tbnz(insn) ||
aarch64_insn_is_ret(insn) ||
aarch64_insn_is_br(insn) ||
aarch64_insn_is_blr(insn) ||
aarch64_insn_is_bcond(insn);
}
int __kprobes aarch64_insn_patch_text_nosync(void *addr, u32 insn)
{
u32 *tp = addr;
int ret;
/* A64 instructions must be word aligned */
if ((uintptr_t)tp & 0x3)
return -EINVAL;
ret = aarch64_insn_write(tp, insn);
if (ret == 0)
__flush_icache_range((uintptr_t)tp,
(uintptr_t)tp + AARCH64_INSN_SIZE);
return ret;
}
struct aarch64_insn_patch {
void **text_addrs;
u32 *new_insns;
int insn_cnt;
atomic_t cpu_count;
};
static int __kprobes aarch64_insn_patch_text_cb(void *arg)
{
int i, ret = 0;
struct aarch64_insn_patch *pp = arg;
/* The first CPU becomes master */
if (atomic_inc_return(&pp->cpu_count) == 1) {
for (i = 0; ret == 0 && i < pp->insn_cnt; i++)
ret = aarch64_insn_patch_text_nosync(pp->text_addrs[i],
pp->new_insns[i]);
/* Notify other processors with an additional increment. */
atomic_inc(&pp->cpu_count);
} else {
while (atomic_read(&pp->cpu_count) <= num_online_cpus())
cpu_relax();
isb();
}
return ret;
}
int __kprobes aarch64_insn_patch_text(void *addrs[], u32 insns[], int cnt)
{
struct aarch64_insn_patch patch = {
.text_addrs = addrs,
.new_insns = insns,
.insn_cnt = cnt,
.cpu_count = ATOMIC_INIT(0),
};
if (cnt <= 0)
return -EINVAL;
return stop_machine_cpuslocked(aarch64_insn_patch_text_cb, &patch,
cpu_online_mask);
}
static int __kprobes aarch64_get_imm_shift_mask(enum aarch64_insn_imm_type type,
u32 *maskp, int *shiftp)
{
u32 mask;
int shift;
switch (type) {
case AARCH64_INSN_IMM_26:
mask = BIT(26) - 1;
shift = 0;
break;
case AARCH64_INSN_IMM_19:
mask = BIT(19) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_16:
mask = BIT(16) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_14:
mask = BIT(14) - 1;
shift = 5;
break;
case AARCH64_INSN_IMM_12:
mask = BIT(12) - 1;
shift = 10;
break;
case AARCH64_INSN_IMM_9:
mask = BIT(9) - 1;
shift = 12;
break;
case AARCH64_INSN_IMM_7:
mask = BIT(7) - 1;
shift = 15;
break;
case AARCH64_INSN_IMM_6:
case AARCH64_INSN_IMM_S:
mask = BIT(6) - 1;
shift = 10;
break;
case AARCH64_INSN_IMM_R:
mask = BIT(6) - 1;
shift = 16;
break;
case AARCH64_INSN_IMM_N:
mask = 1;
shift = 22;
break;
default:
return -EINVAL;
}
*maskp = mask;
*shiftp = shift;
return 0;
}
#define ADR_IMM_HILOSPLIT 2
#define ADR_IMM_SIZE SZ_2M
#define ADR_IMM_LOMASK ((1 << ADR_IMM_HILOSPLIT) - 1)
#define ADR_IMM_HIMASK ((ADR_IMM_SIZE >> ADR_IMM_HILOSPLIT) - 1)
#define ADR_IMM_LOSHIFT 29
#define ADR_IMM_HISHIFT 5
u64 aarch64_insn_decode_immediate(enum aarch64_insn_imm_type type, u32 insn)
{
u32 immlo, immhi, mask;
int shift;
switch (type) {
case AARCH64_INSN_IMM_ADR:
shift = 0;
immlo = (insn >> ADR_IMM_LOSHIFT) & ADR_IMM_LOMASK;
immhi = (insn >> ADR_IMM_HISHIFT) & ADR_IMM_HIMASK;
insn = (immhi << ADR_IMM_HILOSPLIT) | immlo;
mask = ADR_IMM_SIZE - 1;
break;
default:
if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) {
pr_err("aarch64_insn_decode_immediate: unknown immediate encoding %d\n",
type);
return 0;
}
}
return (insn >> shift) & mask;
}
u32 __kprobes aarch64_insn_encode_immediate(enum aarch64_insn_imm_type type,
u32 insn, u64 imm)
{
u32 immlo, immhi, mask;
int shift;
if (insn == AARCH64_BREAK_FAULT)
return AARCH64_BREAK_FAULT;
switch (type) {
case AARCH64_INSN_IMM_ADR:
shift = 0;
immlo = (imm & ADR_IMM_LOMASK) << ADR_IMM_LOSHIFT;
imm >>= ADR_IMM_HILOSPLIT;
immhi = (imm & ADR_IMM_HIMASK) << ADR_IMM_HISHIFT;
imm = immlo | immhi;
mask = ((ADR_IMM_LOMASK << ADR_IMM_LOSHIFT) |
(ADR_IMM_HIMASK << ADR_IMM_HISHIFT));
break;
default:
if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) {
pr_err("aarch64_insn_encode_immediate: unknown immediate encoding %d\n",
type);
return AARCH64_BREAK_FAULT;
}
}
/* Update the immediate field. */
insn &= ~(mask << shift);
insn |= (imm & mask) << shift;
return insn;
}
u32 aarch64_insn_decode_register(enum aarch64_insn_register_type type,
u32 insn)
{
int shift;
switch (type) {
case AARCH64_INSN_REGTYPE_RT:
case AARCH64_INSN_REGTYPE_RD:
shift = 0;
break;
case AARCH64_INSN_REGTYPE_RN:
shift = 5;
break;
case AARCH64_INSN_REGTYPE_RT2:
case AARCH64_INSN_REGTYPE_RA:
shift = 10;
break;
case AARCH64_INSN_REGTYPE_RM:
shift = 16;
break;
default:
pr_err("%s: unknown register type encoding %d\n", __func__,
type);
return 0;
}
return (insn >> shift) & GENMASK(4, 0);
}
static u32 aarch64_insn_encode_register(enum aarch64_insn_register_type type,
u32 insn,
enum aarch64_insn_register reg)
{
int shift;
if (insn == AARCH64_BREAK_FAULT)
return AARCH64_BREAK_FAULT;
if (reg < AARCH64_INSN_REG_0 || reg > AARCH64_INSN_REG_SP) {
pr_err("%s: unknown register encoding %d\n", __func__, reg);
return AARCH64_BREAK_FAULT;
}
switch (type) {
case AARCH64_INSN_REGTYPE_RT:
case AARCH64_INSN_REGTYPE_RD:
shift = 0;
break;
case AARCH64_INSN_REGTYPE_RN:
shift = 5;
break;
case AARCH64_INSN_REGTYPE_RT2:
case AARCH64_INSN_REGTYPE_RA:
shift = 10;
break;
case AARCH64_INSN_REGTYPE_RM:
case AARCH64_INSN_REGTYPE_RS:
shift = 16;
break;
default:
pr_err("%s: unknown register type encoding %d\n", __func__,
type);
return AARCH64_BREAK_FAULT;
}
insn &= ~(GENMASK(4, 0) << shift);
insn |= reg << shift;
return insn;
}
static u32 aarch64_insn_encode_ldst_size(enum aarch64_insn_size_type type,
u32 insn)
{
u32 size;
switch (type) {
case AARCH64_INSN_SIZE_8:
size = 0;
break;
case AARCH64_INSN_SIZE_16:
size = 1;
break;
case AARCH64_INSN_SIZE_32:
size = 2;
break;
case AARCH64_INSN_SIZE_64:
size = 3;
break;
default:
pr_err("%s: unknown size encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
insn &= ~GENMASK(31, 30);
insn |= size << 30;
return insn;
}
static inline long branch_imm_common(unsigned long pc, unsigned long addr,
long range)
{
long offset;
if ((pc & 0x3) || (addr & 0x3)) {
pr_err("%s: A64 instructions must be word aligned\n", __func__);
return range;
}
offset = ((long)addr - (long)pc);
if (offset < -range || offset >= range) {
pr_err("%s: offset out of range\n", __func__);
return range;
}
return offset;
}
u32 __kprobes aarch64_insn_gen_branch_imm(unsigned long pc, unsigned long addr,
enum aarch64_insn_branch_type type)
{
u32 insn;
long offset;
/*
* B/BL support [-128M, 128M) offset
* ARM64 virtual address arrangement guarantees all kernel and module
* texts are within +/-128M.
*/
offset = branch_imm_common(pc, addr, SZ_128M);
if (offset >= SZ_128M)
return AARCH64_BREAK_FAULT;
switch (type) {
case AARCH64_INSN_BRANCH_LINK:
insn = aarch64_insn_get_bl_value();
break;
case AARCH64_INSN_BRANCH_NOLINK:
insn = aarch64_insn_get_b_value();
break;
default:
pr_err("%s: unknown branch encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn,
offset >> 2);
}
u32 aarch64_insn_gen_comp_branch_imm(unsigned long pc, unsigned long addr,
enum aarch64_insn_register reg,
enum aarch64_insn_variant variant,
enum aarch64_insn_branch_type type)
{
u32 insn;
long offset;
offset = branch_imm_common(pc, addr, SZ_1M);
if (offset >= SZ_1M)
return AARCH64_BREAK_FAULT;
switch (type) {
case AARCH64_INSN_BRANCH_COMP_ZERO:
insn = aarch64_insn_get_cbz_value();
break;
case AARCH64_INSN_BRANCH_COMP_NONZERO:
insn = aarch64_insn_get_cbnz_value();
break;
default:
pr_err("%s: unknown branch encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
offset >> 2);
}
u32 aarch64_insn_gen_cond_branch_imm(unsigned long pc, unsigned long addr,
enum aarch64_insn_condition cond)
{
u32 insn;
long offset;
offset = branch_imm_common(pc, addr, SZ_1M);
insn = aarch64_insn_get_bcond_value();
if (cond < AARCH64_INSN_COND_EQ || cond > AARCH64_INSN_COND_AL) {
pr_err("%s: unknown condition encoding %d\n", __func__, cond);
return AARCH64_BREAK_FAULT;
}
insn |= cond;
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
offset >> 2);
}
u32 __kprobes aarch64_insn_gen_hint(enum aarch64_insn_hint_op op)
{
return aarch64_insn_get_hint_value() | op;
}
u32 __kprobes aarch64_insn_gen_nop(void)
{
return aarch64_insn_gen_hint(AARCH64_INSN_HINT_NOP);
}
u32 aarch64_insn_gen_branch_reg(enum aarch64_insn_register reg,
enum aarch64_insn_branch_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_BRANCH_NOLINK:
insn = aarch64_insn_get_br_value();
break;
case AARCH64_INSN_BRANCH_LINK:
insn = aarch64_insn_get_blr_value();
break;
case AARCH64_INSN_BRANCH_RETURN:
insn = aarch64_insn_get_ret_value();
break;
default:
pr_err("%s: unknown branch encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg);
}
u32 aarch64_insn_gen_load_store_reg(enum aarch64_insn_register reg,
enum aarch64_insn_register base,
enum aarch64_insn_register offset,
enum aarch64_insn_size_type size,
enum aarch64_insn_ldst_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_LDST_LOAD_REG_OFFSET:
insn = aarch64_insn_get_ldr_reg_value();
break;
case AARCH64_INSN_LDST_STORE_REG_OFFSET:
insn = aarch64_insn_get_str_reg_value();
break;
default:
pr_err("%s: unknown load/store encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_ldst_size(size, insn);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
base);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn,
offset);
}
u32 aarch64_insn_gen_load_store_pair(enum aarch64_insn_register reg1,
enum aarch64_insn_register reg2,
enum aarch64_insn_register base,
int offset,
enum aarch64_insn_variant variant,
enum aarch64_insn_ldst_type type)
{
u32 insn;
int shift;
switch (type) {
case AARCH64_INSN_LDST_LOAD_PAIR_PRE_INDEX:
insn = aarch64_insn_get_ldp_pre_value();
break;
case AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX:
insn = aarch64_insn_get_stp_pre_value();
break;
case AARCH64_INSN_LDST_LOAD_PAIR_POST_INDEX:
insn = aarch64_insn_get_ldp_post_value();
break;
case AARCH64_INSN_LDST_STORE_PAIR_POST_INDEX:
insn = aarch64_insn_get_stp_post_value();
break;
default:
pr_err("%s: unknown load/store encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if ((offset & 0x3) || (offset < -256) || (offset > 252)) {
pr_err("%s: offset must be multiples of 4 in the range of [-256, 252] %d\n",
__func__, offset);
return AARCH64_BREAK_FAULT;
}
shift = 2;
break;
case AARCH64_INSN_VARIANT_64BIT:
if ((offset & 0x7) || (offset < -512) || (offset > 504)) {
pr_err("%s: offset must be multiples of 8 in the range of [-512, 504] %d\n",
__func__, offset);
return AARCH64_BREAK_FAULT;
}
shift = 3;
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn,
reg1);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn,
reg2);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
base);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_7, insn,
offset >> shift);
}
u32 aarch64_insn_gen_load_store_ex(enum aarch64_insn_register reg,
enum aarch64_insn_register base,
enum aarch64_insn_register state,
enum aarch64_insn_size_type size,
enum aarch64_insn_ldst_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_LDST_LOAD_EX:
insn = aarch64_insn_get_load_ex_value();
break;
case AARCH64_INSN_LDST_STORE_EX:
insn = aarch64_insn_get_store_ex_value();
break;
default:
pr_err("%s: unknown load/store exclusive encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_ldst_size(size, insn);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn,
reg);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
base);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn,
AARCH64_INSN_REG_ZR);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn,
state);
}
u32 aarch64_insn_gen_ldadd(enum aarch64_insn_register result,
enum aarch64_insn_register address,
enum aarch64_insn_register value,
enum aarch64_insn_size_type size)
{
u32 insn = aarch64_insn_get_ldadd_value();
switch (size) {
case AARCH64_INSN_SIZE_32:
case AARCH64_INSN_SIZE_64:
break;
default:
pr_err("%s: unimplemented size encoding %d\n", __func__, size);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_ldst_size(size, insn);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn,
result);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
address);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RS, insn,
value);
}
u32 aarch64_insn_gen_stadd(enum aarch64_insn_register address,
enum aarch64_insn_register value,
enum aarch64_insn_size_type size)
{
/*
* STADD is simply encoded as an alias for LDADD with XZR as
* the destination register.
*/
return aarch64_insn_gen_ldadd(AARCH64_INSN_REG_ZR, address,
value, size);
}
static u32 aarch64_insn_encode_prfm_imm(enum aarch64_insn_prfm_type type,
enum aarch64_insn_prfm_target target,
enum aarch64_insn_prfm_policy policy,
u32 insn)
{
u32 imm_type = 0, imm_target = 0, imm_policy = 0;
switch (type) {
case AARCH64_INSN_PRFM_TYPE_PLD:
break;
case AARCH64_INSN_PRFM_TYPE_PLI:
imm_type = BIT(0);
break;
case AARCH64_INSN_PRFM_TYPE_PST:
imm_type = BIT(1);
break;
default:
pr_err("%s: unknown prfm type encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (target) {
case AARCH64_INSN_PRFM_TARGET_L1:
break;
case AARCH64_INSN_PRFM_TARGET_L2:
imm_target = BIT(0);
break;
case AARCH64_INSN_PRFM_TARGET_L3:
imm_target = BIT(1);
break;
default:
pr_err("%s: unknown prfm target encoding %d\n", __func__, target);
return AARCH64_BREAK_FAULT;
}
switch (policy) {
case AARCH64_INSN_PRFM_POLICY_KEEP:
break;
case AARCH64_INSN_PRFM_POLICY_STRM:
imm_policy = BIT(0);
break;
default:
pr_err("%s: unknown prfm policy encoding %d\n", __func__, policy);
return AARCH64_BREAK_FAULT;
}
/* In this case, imm5 is encoded into Rt field. */
insn &= ~GENMASK(4, 0);
insn |= imm_policy | (imm_target << 1) | (imm_type << 3);
return insn;
}
u32 aarch64_insn_gen_prefetch(enum aarch64_insn_register base,
enum aarch64_insn_prfm_type type,
enum aarch64_insn_prfm_target target,
enum aarch64_insn_prfm_policy policy)
{
u32 insn = aarch64_insn_get_prfm_value();
insn = aarch64_insn_encode_ldst_size(AARCH64_INSN_SIZE_64, insn);
insn = aarch64_insn_encode_prfm_imm(type, target, policy, insn);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
base);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, 0);
}
u32 aarch64_insn_gen_add_sub_imm(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
int imm, enum aarch64_insn_variant variant,
enum aarch64_insn_adsb_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_ADSB_ADD:
insn = aarch64_insn_get_add_imm_value();
break;
case AARCH64_INSN_ADSB_SUB:
insn = aarch64_insn_get_sub_imm_value();
break;
case AARCH64_INSN_ADSB_ADD_SETFLAGS:
insn = aarch64_insn_get_adds_imm_value();
break;
case AARCH64_INSN_ADSB_SUB_SETFLAGS:
insn = aarch64_insn_get_subs_imm_value();
break;
default:
pr_err("%s: unknown add/sub encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
/* We can't encode more than a 24bit value (12bit + 12bit shift) */
if (imm & ~(BIT(24) - 1))
goto out;
/* If we have something in the top 12 bits... */
if (imm & ~(SZ_4K - 1)) {
/* ... and in the low 12 bits -> error */
if (imm & (SZ_4K - 1))
goto out;
imm >>= 12;
insn |= AARCH64_INSN_LSL_12;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, imm);
out:
pr_err("%s: invalid immediate encoding %d\n", __func__, imm);
return AARCH64_BREAK_FAULT;
}
u32 aarch64_insn_gen_bitfield(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
int immr, int imms,
enum aarch64_insn_variant variant,
enum aarch64_insn_bitfield_type type)
{
u32 insn;
u32 mask;
switch (type) {
case AARCH64_INSN_BITFIELD_MOVE:
insn = aarch64_insn_get_bfm_value();
break;
case AARCH64_INSN_BITFIELD_MOVE_UNSIGNED:
insn = aarch64_insn_get_ubfm_value();
break;
case AARCH64_INSN_BITFIELD_MOVE_SIGNED:
insn = aarch64_insn_get_sbfm_value();
break;
default:
pr_err("%s: unknown bitfield encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
mask = GENMASK(4, 0);
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT | AARCH64_INSN_N_BIT;
mask = GENMASK(5, 0);
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
if (immr & ~mask) {
pr_err("%s: invalid immr encoding %d\n", __func__, immr);
return AARCH64_BREAK_FAULT;
}
if (imms & ~mask) {
pr_err("%s: invalid imms encoding %d\n", __func__, imms);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms);
}
u32 aarch64_insn_gen_movewide(enum aarch64_insn_register dst,
int imm, int shift,
enum aarch64_insn_variant variant,
enum aarch64_insn_movewide_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_MOVEWIDE_ZERO:
insn = aarch64_insn_get_movz_value();
break;
case AARCH64_INSN_MOVEWIDE_KEEP:
insn = aarch64_insn_get_movk_value();
break;
case AARCH64_INSN_MOVEWIDE_INVERSE:
insn = aarch64_insn_get_movn_value();
break;
default:
pr_err("%s: unknown movewide encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
if (imm & ~(SZ_64K - 1)) {
pr_err("%s: invalid immediate encoding %d\n", __func__, imm);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if (shift != 0 && shift != 16) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
if (shift != 0 && shift != 16 && shift != 32 && shift != 48) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn |= (shift >> 4) << 21;
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
}
u32 aarch64_insn_gen_add_sub_shifted_reg(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_register reg,
int shift,
enum aarch64_insn_variant variant,
enum aarch64_insn_adsb_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_ADSB_ADD:
insn = aarch64_insn_get_add_value();
break;
case AARCH64_INSN_ADSB_SUB:
insn = aarch64_insn_get_sub_value();
break;
case AARCH64_INSN_ADSB_ADD_SETFLAGS:
insn = aarch64_insn_get_adds_value();
break;
case AARCH64_INSN_ADSB_SUB_SETFLAGS:
insn = aarch64_insn_get_subs_value();
break;
default:
pr_err("%s: unknown add/sub encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if (shift & ~(SZ_32 - 1)) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
if (shift & ~(SZ_64 - 1)) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift);
}
u32 aarch64_insn_gen_data1(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_variant variant,
enum aarch64_insn_data1_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_DATA1_REVERSE_16:
insn = aarch64_insn_get_rev16_value();
break;
case AARCH64_INSN_DATA1_REVERSE_32:
insn = aarch64_insn_get_rev32_value();
break;
case AARCH64_INSN_DATA1_REVERSE_64:
if (variant != AARCH64_INSN_VARIANT_64BIT) {
pr_err("%s: invalid variant for reverse64 %d\n",
__func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_get_rev64_value();
break;
default:
pr_err("%s: unknown data1 encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
}
u32 aarch64_insn_gen_data2(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_register reg,
enum aarch64_insn_variant variant,
enum aarch64_insn_data2_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_DATA2_UDIV:
insn = aarch64_insn_get_udiv_value();
break;
case AARCH64_INSN_DATA2_SDIV:
insn = aarch64_insn_get_sdiv_value();
break;
case AARCH64_INSN_DATA2_LSLV:
insn = aarch64_insn_get_lslv_value();
break;
case AARCH64_INSN_DATA2_LSRV:
insn = aarch64_insn_get_lsrv_value();
break;
case AARCH64_INSN_DATA2_ASRV:
insn = aarch64_insn_get_asrv_value();
break;
case AARCH64_INSN_DATA2_RORV:
insn = aarch64_insn_get_rorv_value();
break;
default:
pr_err("%s: unknown data2 encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
}
u32 aarch64_insn_gen_data3(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_register reg1,
enum aarch64_insn_register reg2,
enum aarch64_insn_variant variant,
enum aarch64_insn_data3_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_DATA3_MADD:
insn = aarch64_insn_get_madd_value();
break;
case AARCH64_INSN_DATA3_MSUB:
insn = aarch64_insn_get_msub_value();
break;
default:
pr_err("%s: unknown data3 encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RA, insn, src);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn,
reg1);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn,
reg2);
}
u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_register reg,
int shift,
enum aarch64_insn_variant variant,
enum aarch64_insn_logic_type type)
{
u32 insn;
switch (type) {
case AARCH64_INSN_LOGIC_AND:
insn = aarch64_insn_get_and_value();
break;
case AARCH64_INSN_LOGIC_BIC:
insn = aarch64_insn_get_bic_value();
break;
case AARCH64_INSN_LOGIC_ORR:
insn = aarch64_insn_get_orr_value();
break;
case AARCH64_INSN_LOGIC_ORN:
insn = aarch64_insn_get_orn_value();
break;
case AARCH64_INSN_LOGIC_EOR:
insn = aarch64_insn_get_eor_value();
break;
case AARCH64_INSN_LOGIC_EON:
insn = aarch64_insn_get_eon_value();
break;
case AARCH64_INSN_LOGIC_AND_SETFLAGS:
insn = aarch64_insn_get_ands_value();
break;
case AARCH64_INSN_LOGIC_BIC_SETFLAGS:
insn = aarch64_insn_get_bics_value();
break;
default:
pr_err("%s: unknown logical encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if (shift & ~(SZ_32 - 1)) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
if (shift & ~(SZ_64 - 1)) {
pr_err("%s: invalid shift encoding %d\n", __func__,
shift);
return AARCH64_BREAK_FAULT;
}
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift);
}
u32 aarch64_insn_gen_adr(unsigned long pc, unsigned long addr,
enum aarch64_insn_register reg,
enum aarch64_insn_adr_type type)
{
u32 insn;
s32 offset;
switch (type) {
case AARCH64_INSN_ADR_TYPE_ADR:
insn = aarch64_insn_get_adr_value();
offset = addr - pc;
break;
case AARCH64_INSN_ADR_TYPE_ADRP:
insn = aarch64_insn_get_adrp_value();
offset = (addr - ALIGN_DOWN(pc, SZ_4K)) >> 12;
break;
default:
pr_err("%s: unknown adr encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
if (offset < -SZ_1M || offset >= SZ_1M)
return AARCH64_BREAK_FAULT;
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, reg);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_ADR, insn, offset);
}
/*
* Decode the imm field of a branch, and return the byte offset as a
* signed value (so it can be used when computing a new branch
* target).
*/
s32 aarch64_get_branch_offset(u32 insn)
{
s32 imm;
if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) {
imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_26, insn);
return (imm << 6) >> 4;
}
if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
aarch64_insn_is_bcond(insn)) {
imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_19, insn);
return (imm << 13) >> 11;
}
if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) {
imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_14, insn);
return (imm << 18) >> 16;
}
/* Unhandled instruction */
BUG();
}
/*
* Encode the displacement of a branch in the imm field and return the
* updated instruction.
*/
u32 aarch64_set_branch_offset(u32 insn, s32 offset)
{
if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn))
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn,
offset >> 2);
if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) ||
aarch64_insn_is_bcond(insn))
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn,
offset >> 2);
if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn))
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_14, insn,
offset >> 2);
/* Unhandled instruction */
BUG();
}
s32 aarch64_insn_adrp_get_offset(u32 insn)
{
BUG_ON(!aarch64_insn_is_adrp(insn));
return aarch64_insn_decode_immediate(AARCH64_INSN_IMM_ADR, insn) << 12;
}
u32 aarch64_insn_adrp_set_offset(u32 insn, s32 offset)
{
BUG_ON(!aarch64_insn_is_adrp(insn));
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_ADR, insn,
offset >> 12);
}
/*
* Extract the Op/CR data from a msr/mrs instruction.
*/
u32 aarch64_insn_extract_system_reg(u32 insn)
{
return (insn & 0x1FFFE0) >> 5;
}
bool aarch32_insn_is_wide(u32 insn)
{
return insn >= 0xe800;
}
/*
* Macros/defines for extracting register numbers from instruction.
*/
u32 aarch32_insn_extract_reg_num(u32 insn, int offset)
{
return (insn & (0xf << offset)) >> offset;
}
#define OPC2_MASK 0x7
#define OPC2_OFFSET 5
u32 aarch32_insn_mcr_extract_opc2(u32 insn)
{
return (insn & (OPC2_MASK << OPC2_OFFSET)) >> OPC2_OFFSET;
}
#define CRM_MASK 0xf
u32 aarch32_insn_mcr_extract_crm(u32 insn)
{
return insn & CRM_MASK;
}
static bool __kprobes __check_eq(unsigned long pstate)
{
return (pstate & PSR_Z_BIT) != 0;
}
static bool __kprobes __check_ne(unsigned long pstate)
{
return (pstate & PSR_Z_BIT) == 0;
}
static bool __kprobes __check_cs(unsigned long pstate)
{
return (pstate & PSR_C_BIT) != 0;
}
static bool __kprobes __check_cc(unsigned long pstate)
{
return (pstate & PSR_C_BIT) == 0;
}
static bool __kprobes __check_mi(unsigned long pstate)
{
return (pstate & PSR_N_BIT) != 0;
}
static bool __kprobes __check_pl(unsigned long pstate)
{
return (pstate & PSR_N_BIT) == 0;
}
static bool __kprobes __check_vs(unsigned long pstate)
{
return (pstate & PSR_V_BIT) != 0;
}
static bool __kprobes __check_vc(unsigned long pstate)
{
return (pstate & PSR_V_BIT) == 0;
}
static bool __kprobes __check_hi(unsigned long pstate)
{
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
return (pstate & PSR_C_BIT) != 0;
}
static bool __kprobes __check_ls(unsigned long pstate)
{
pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
return (pstate & PSR_C_BIT) == 0;
}
static bool __kprobes __check_ge(unsigned long pstate)
{
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
return (pstate & PSR_N_BIT) == 0;
}
static bool __kprobes __check_lt(unsigned long pstate)
{
pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */
return (pstate & PSR_N_BIT) != 0;
}
static bool __kprobes __check_gt(unsigned long pstate)
{
/*PSR_N_BIT ^= PSR_V_BIT */
unsigned long temp = pstate ^ (pstate << 3);
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
return (temp & PSR_N_BIT) == 0;
}
static bool __kprobes __check_le(unsigned long pstate)
{
/*PSR_N_BIT ^= PSR_V_BIT */
unsigned long temp = pstate ^ (pstate << 3);
temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */
return (temp & PSR_N_BIT) != 0;
}
static bool __kprobes __check_al(unsigned long pstate)
{
return true;
}
/*
* Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
* it behaves identically to 0b1110 ("al").
*/
pstate_check_t * const aarch32_opcode_cond_checks[16] = {
__check_eq, __check_ne, __check_cs, __check_cc,
__check_mi, __check_pl, __check_vs, __check_vc,
__check_hi, __check_ls, __check_ge, __check_lt,
__check_gt, __check_le, __check_al, __check_al
};
static bool range_of_ones(u64 val)
{
/* Doesn't handle full ones or full zeroes */
u64 sval = val >> __ffs64(val);
/* One of Sean Eron Anderson's bithack tricks */
return ((sval + 1) & (sval)) == 0;
}
static u32 aarch64_encode_immediate(u64 imm,
enum aarch64_insn_variant variant,
u32 insn)
{
unsigned int immr, imms, n, ones, ror, esz, tmp;
u64 mask = ~0UL;
/* Can't encode full zeroes or full ones */
if (!imm || !~imm)
return AARCH64_BREAK_FAULT;
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if (upper_32_bits(imm))
return AARCH64_BREAK_FAULT;
esz = 32;
break;
case AARCH64_INSN_VARIANT_64BIT:
insn |= AARCH64_INSN_SF_BIT;
esz = 64;
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
/*
* Inverse of Replicate(). Try to spot a repeating pattern
* with a pow2 stride.
*/
for (tmp = esz / 2; tmp >= 2; tmp /= 2) {
u64 emask = BIT(tmp) - 1;
if ((imm & emask) != ((imm >> tmp) & emask))
break;
esz = tmp;
mask = emask;
}
/* N is only set if we're encoding a 64bit value */
n = esz == 64;
/* Trim imm to the element size */
imm &= mask;
/* That's how many ones we need to encode */
ones = hweight64(imm);
/*
* imms is set to (ones - 1), prefixed with a string of ones
* and a zero if they fit. Cap it to 6 bits.
*/
imms = ones - 1;
imms |= 0xf << ffs(esz);
imms &= BIT(6) - 1;
/* Compute the rotation */
if (range_of_ones(imm)) {
/*
* Pattern: 0..01..10..0
*
* Compute how many rotate we need to align it right
*/
ror = __ffs64(imm);
} else {
/*
* Pattern: 0..01..10..01..1
*
* Fill the unused top bits with ones, and check if
* the result is a valid immediate (all ones with a
* contiguous ranges of zeroes).
*/
imm |= ~mask;
if (!range_of_ones(~imm))
return AARCH64_BREAK_FAULT;
/*
* Compute the rotation to get a continuous set of
* ones, with the first bit set at position 0
*/
ror = fls(~imm);
}
/*
* immr is the number of bits we need to rotate back to the
* original set of ones. Note that this is relative to the
* element size...
*/
immr = (esz - ror) % esz;
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, n);
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr);
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms);
}
u32 aarch64_insn_gen_logical_immediate(enum aarch64_insn_logic_type type,
enum aarch64_insn_variant variant,
enum aarch64_insn_register Rn,
enum aarch64_insn_register Rd,
u64 imm)
{
u32 insn;
switch (type) {
case AARCH64_INSN_LOGIC_AND:
insn = aarch64_insn_get_and_imm_value();
break;
case AARCH64_INSN_LOGIC_ORR:
insn = aarch64_insn_get_orr_imm_value();
break;
case AARCH64_INSN_LOGIC_EOR:
insn = aarch64_insn_get_eor_imm_value();
break;
case AARCH64_INSN_LOGIC_AND_SETFLAGS:
insn = aarch64_insn_get_ands_imm_value();
break;
default:
pr_err("%s: unknown logical encoding %d\n", __func__, type);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn);
return aarch64_encode_immediate(imm, variant, insn);
}
u32 aarch64_insn_gen_extr(enum aarch64_insn_variant variant,
enum aarch64_insn_register Rm,
enum aarch64_insn_register Rn,
enum aarch64_insn_register Rd,
u8 lsb)
{
u32 insn;
insn = aarch64_insn_get_extr_value();
switch (variant) {
case AARCH64_INSN_VARIANT_32BIT:
if (lsb > 31)
return AARCH64_BREAK_FAULT;
break;
case AARCH64_INSN_VARIANT_64BIT:
if (lsb > 63)
return AARCH64_BREAK_FAULT;
insn |= AARCH64_INSN_SF_BIT;
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_N, insn, 1);
break;
default:
pr_err("%s: unknown variant encoding %d\n", __func__, variant);
return AARCH64_BREAK_FAULT;
}
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, lsb);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, Rd);
insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, Rn);
return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, Rm);
}