|  | /* | 
|  | * Architecture specific (i386/x86_64) functions for kexec based crash dumps. | 
|  | * | 
|  | * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) | 
|  | * | 
|  | * Copyright (C) IBM Corporation, 2004. All rights reserved. | 
|  | * Copyright (C) Red Hat Inc., 2014. All rights reserved. | 
|  | * Authors: | 
|  | *      Vivek Goyal <vgoyal@redhat.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt)	"kexec: " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/hardirq.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/hpet.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/reboot.h> | 
|  | #include <asm/virtext.h> | 
|  |  | 
|  | /* Alignment required for elf header segment */ | 
|  | #define ELF_CORE_HEADER_ALIGN   4096 | 
|  |  | 
|  | /* This primarily represents number of split ranges due to exclusion */ | 
|  | #define CRASH_MAX_RANGES	16 | 
|  |  | 
|  | struct crash_mem_range { | 
|  | u64 start, end; | 
|  | }; | 
|  |  | 
|  | struct crash_mem { | 
|  | unsigned int nr_ranges; | 
|  | struct crash_mem_range ranges[CRASH_MAX_RANGES]; | 
|  | }; | 
|  |  | 
|  | /* Misc data about ram ranges needed to prepare elf headers */ | 
|  | struct crash_elf_data { | 
|  | struct kimage *image; | 
|  | /* | 
|  | * Total number of ram ranges we have after various adjustments for | 
|  | * GART, crash reserved region etc. | 
|  | */ | 
|  | unsigned int max_nr_ranges; | 
|  | unsigned long gart_start, gart_end; | 
|  |  | 
|  | /* Pointer to elf header */ | 
|  | void *ehdr; | 
|  | /* Pointer to next phdr */ | 
|  | void *bufp; | 
|  | struct crash_mem mem; | 
|  | }; | 
|  |  | 
|  | /* Used while preparing memory map entries for second kernel */ | 
|  | struct crash_memmap_data { | 
|  | struct boot_params *params; | 
|  | /* Type of memory */ | 
|  | unsigned int type; | 
|  | }; | 
|  |  | 
|  | int in_crash_kexec; | 
|  |  | 
|  | /* | 
|  | * This is used to VMCLEAR all VMCSs loaded on the | 
|  | * processor. And when loading kvm_intel module, the | 
|  | * callback function pointer will be assigned. | 
|  | * | 
|  | * protected by rcu. | 
|  | */ | 
|  | crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; | 
|  | EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); | 
|  | unsigned long crash_zero_bytes; | 
|  |  | 
|  | static inline void cpu_crash_vmclear_loaded_vmcss(void) | 
|  | { | 
|  | crash_vmclear_fn *do_vmclear_operation = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); | 
|  | if (do_vmclear_operation) | 
|  | do_vmclear_operation(); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) | 
|  |  | 
|  | static void kdump_nmi_callback(int cpu, struct pt_regs *regs) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | struct pt_regs fixed_regs; | 
|  |  | 
|  | if (!user_mode_vm(regs)) { | 
|  | crash_fixup_ss_esp(&fixed_regs, regs); | 
|  | regs = &fixed_regs; | 
|  | } | 
|  | #endif | 
|  | crash_save_cpu(regs, cpu); | 
|  |  | 
|  | /* | 
|  | * VMCLEAR VMCSs loaded on all cpus if needed. | 
|  | */ | 
|  | cpu_crash_vmclear_loaded_vmcss(); | 
|  |  | 
|  | /* Disable VMX or SVM if needed. | 
|  | * | 
|  | * We need to disable virtualization on all CPUs. | 
|  | * Having VMX or SVM enabled on any CPU may break rebooting | 
|  | * after the kdump kernel has finished its task. | 
|  | */ | 
|  | cpu_emergency_vmxoff(); | 
|  | cpu_emergency_svm_disable(); | 
|  |  | 
|  | disable_local_APIC(); | 
|  | } | 
|  |  | 
|  | static void kdump_nmi_shootdown_cpus(void) | 
|  | { | 
|  | in_crash_kexec = 1; | 
|  | nmi_shootdown_cpus(kdump_nmi_callback); | 
|  |  | 
|  | disable_local_APIC(); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static void kdump_nmi_shootdown_cpus(void) | 
|  | { | 
|  | /* There are no cpus to shootdown */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void native_machine_crash_shutdown(struct pt_regs *regs) | 
|  | { | 
|  | /* This function is only called after the system | 
|  | * has panicked or is otherwise in a critical state. | 
|  | * The minimum amount of code to allow a kexec'd kernel | 
|  | * to run successfully needs to happen here. | 
|  | * | 
|  | * In practice this means shooting down the other cpus in | 
|  | * an SMP system. | 
|  | */ | 
|  | /* The kernel is broken so disable interrupts */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | kdump_nmi_shootdown_cpus(); | 
|  |  | 
|  | /* | 
|  | * VMCLEAR VMCSs loaded on this cpu if needed. | 
|  | */ | 
|  | cpu_crash_vmclear_loaded_vmcss(); | 
|  |  | 
|  | /* Booting kdump kernel with VMX or SVM enabled won't work, | 
|  | * because (among other limitations) we can't disable paging | 
|  | * with the virt flags. | 
|  | */ | 
|  | cpu_emergency_vmxoff(); | 
|  | cpu_emergency_svm_disable(); | 
|  |  | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ | 
|  | ioapic_zap_locks(); | 
|  | disable_IO_APIC(); | 
|  | #endif | 
|  | lapic_shutdown(); | 
|  | #ifdef CONFIG_HPET_TIMER | 
|  | hpet_disable(); | 
|  | #endif | 
|  | crash_save_cpu(regs, safe_smp_processor_id()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_FILE | 
|  | static int get_nr_ram_ranges_callback(unsigned long start_pfn, | 
|  | unsigned long nr_pfn, void *arg) | 
|  | { | 
|  | int *nr_ranges = arg; | 
|  |  | 
|  | (*nr_ranges)++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_gart_ranges_callback(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct crash_elf_data *ced = arg; | 
|  |  | 
|  | ced->gart_start = start; | 
|  | ced->gart_end = end; | 
|  |  | 
|  | /* Not expecting more than 1 gart aperture */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Gather all the required information to prepare elf headers for ram regions */ | 
|  | static void fill_up_crash_elf_data(struct crash_elf_data *ced, | 
|  | struct kimage *image) | 
|  | { | 
|  | unsigned int nr_ranges = 0; | 
|  |  | 
|  | ced->image = image; | 
|  |  | 
|  | walk_system_ram_range(0, -1, &nr_ranges, | 
|  | get_nr_ram_ranges_callback); | 
|  |  | 
|  | ced->max_nr_ranges = nr_ranges; | 
|  |  | 
|  | /* | 
|  | * We don't create ELF headers for GART aperture as an attempt | 
|  | * to dump this memory in second kernel leads to hang/crash. | 
|  | * If gart aperture is present, one needs to exclude that region | 
|  | * and that could lead to need of extra phdr. | 
|  | */ | 
|  | walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, | 
|  | ced, get_gart_ranges_callback); | 
|  |  | 
|  | /* | 
|  | * If we have gart region, excluding that could potentially split | 
|  | * a memory range, resulting in extra header. Account for  that. | 
|  | */ | 
|  | if (ced->gart_end) | 
|  | ced->max_nr_ranges++; | 
|  |  | 
|  | /* Exclusion of crash region could split memory ranges */ | 
|  | ced->max_nr_ranges++; | 
|  |  | 
|  | /* If crashk_low_res is not 0, another range split possible */ | 
|  | if (crashk_low_res.end) | 
|  | ced->max_nr_ranges++; | 
|  | } | 
|  |  | 
|  | static int exclude_mem_range(struct crash_mem *mem, | 
|  | unsigned long long mstart, unsigned long long mend) | 
|  | { | 
|  | int i, j; | 
|  | unsigned long long start, end; | 
|  | struct crash_mem_range temp_range = {0, 0}; | 
|  |  | 
|  | for (i = 0; i < mem->nr_ranges; i++) { | 
|  | start = mem->ranges[i].start; | 
|  | end = mem->ranges[i].end; | 
|  |  | 
|  | if (mstart > end || mend < start) | 
|  | continue; | 
|  |  | 
|  | /* Truncate any area outside of range */ | 
|  | if (mstart < start) | 
|  | mstart = start; | 
|  | if (mend > end) | 
|  | mend = end; | 
|  |  | 
|  | /* Found completely overlapping range */ | 
|  | if (mstart == start && mend == end) { | 
|  | mem->ranges[i].start = 0; | 
|  | mem->ranges[i].end = 0; | 
|  | if (i < mem->nr_ranges - 1) { | 
|  | /* Shift rest of the ranges to left */ | 
|  | for (j = i; j < mem->nr_ranges - 1; j++) { | 
|  | mem->ranges[j].start = | 
|  | mem->ranges[j+1].start; | 
|  | mem->ranges[j].end = | 
|  | mem->ranges[j+1].end; | 
|  | } | 
|  | } | 
|  | mem->nr_ranges--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mstart > start && mend < end) { | 
|  | /* Split original range */ | 
|  | mem->ranges[i].end = mstart - 1; | 
|  | temp_range.start = mend + 1; | 
|  | temp_range.end = end; | 
|  | } else if (mstart != start) | 
|  | mem->ranges[i].end = mstart - 1; | 
|  | else | 
|  | mem->ranges[i].start = mend + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If a split happend, add the split to array */ | 
|  | if (!temp_range.end) | 
|  | return 0; | 
|  |  | 
|  | /* Split happened */ | 
|  | if (i == CRASH_MAX_RANGES - 1) { | 
|  | pr_err("Too many crash ranges after split\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Location where new range should go */ | 
|  | j = i + 1; | 
|  | if (j < mem->nr_ranges) { | 
|  | /* Move over all ranges one slot towards the end */ | 
|  | for (i = mem->nr_ranges - 1; i >= j; i--) | 
|  | mem->ranges[i + 1] = mem->ranges[i]; | 
|  | } | 
|  |  | 
|  | mem->ranges[j].start = temp_range.start; | 
|  | mem->ranges[j].end = temp_range.end; | 
|  | mem->nr_ranges++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for any unwanted ranges between mstart, mend and remove them. This | 
|  | * might lead to split and split ranges are put in ced->mem.ranges[] array | 
|  | */ | 
|  | static int elf_header_exclude_ranges(struct crash_elf_data *ced, | 
|  | unsigned long long mstart, unsigned long long mend) | 
|  | { | 
|  | struct crash_mem *cmem = &ced->mem; | 
|  | int ret = 0; | 
|  |  | 
|  | memset(cmem->ranges, 0, sizeof(cmem->ranges)); | 
|  |  | 
|  | cmem->ranges[0].start = mstart; | 
|  | cmem->ranges[0].end = mend; | 
|  | cmem->nr_ranges = 1; | 
|  |  | 
|  | /* Exclude crashkernel region */ | 
|  | ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (crashk_low_res.end) { | 
|  | ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Exclude GART region */ | 
|  | if (ced->gart_end) { | 
|  | ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct crash_elf_data *ced = arg; | 
|  | Elf64_Ehdr *ehdr; | 
|  | Elf64_Phdr *phdr; | 
|  | unsigned long mstart, mend; | 
|  | struct kimage *image = ced->image; | 
|  | struct crash_mem *cmem; | 
|  | int ret, i; | 
|  |  | 
|  | ehdr = ced->ehdr; | 
|  |  | 
|  | /* Exclude unwanted mem ranges */ | 
|  | ret = elf_header_exclude_ranges(ced, start, end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ | 
|  | cmem = &ced->mem; | 
|  |  | 
|  | for (i = 0; i < cmem->nr_ranges; i++) { | 
|  | mstart = cmem->ranges[i].start; | 
|  | mend = cmem->ranges[i].end; | 
|  |  | 
|  | phdr = ced->bufp; | 
|  | ced->bufp += sizeof(Elf64_Phdr); | 
|  |  | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_offset  = mstart; | 
|  |  | 
|  | /* | 
|  | * If a range matches backup region, adjust offset to backup | 
|  | * segment. | 
|  | */ | 
|  | if (mstart == image->arch.backup_src_start && | 
|  | (mend - mstart + 1) == image->arch.backup_src_sz) | 
|  | phdr->p_offset = image->arch.backup_load_addr; | 
|  |  | 
|  | phdr->p_paddr = mstart; | 
|  | phdr->p_vaddr = (unsigned long long) __va(mstart); | 
|  | phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; | 
|  | phdr->p_align = 0; | 
|  | ehdr->e_phnum++; | 
|  | pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", | 
|  | phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, | 
|  | ehdr->e_phnum, phdr->p_offset); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int prepare_elf64_headers(struct crash_elf_data *ced, | 
|  | void **addr, unsigned long *sz) | 
|  | { | 
|  | Elf64_Ehdr *ehdr; | 
|  | Elf64_Phdr *phdr; | 
|  | unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; | 
|  | unsigned char *buf, *bufp; | 
|  | unsigned int cpu; | 
|  | unsigned long long notes_addr; | 
|  | int ret; | 
|  |  | 
|  | /* extra phdr for vmcoreinfo elf note */ | 
|  | nr_phdr = nr_cpus + 1; | 
|  | nr_phdr += ced->max_nr_ranges; | 
|  |  | 
|  | /* | 
|  | * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping | 
|  | * area on x86_64 (ffffffff80000000 - ffffffffa0000000). | 
|  | * I think this is required by tools like gdb. So same physical | 
|  | * memory will be mapped in two elf headers. One will contain kernel | 
|  | * text virtual addresses and other will have __va(physical) addresses. | 
|  | */ | 
|  |  | 
|  | nr_phdr++; | 
|  | elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); | 
|  | elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); | 
|  |  | 
|  | buf = vzalloc(elf_sz); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bufp = buf; | 
|  | ehdr = (Elf64_Ehdr *)bufp; | 
|  | bufp += sizeof(Elf64_Ehdr); | 
|  | memcpy(ehdr->e_ident, ELFMAG, SELFMAG); | 
|  | ehdr->e_ident[EI_CLASS] = ELFCLASS64; | 
|  | ehdr->e_ident[EI_DATA] = ELFDATA2LSB; | 
|  | ehdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | ehdr->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); | 
|  | ehdr->e_type = ET_CORE; | 
|  | ehdr->e_machine = ELF_ARCH; | 
|  | ehdr->e_version = EV_CURRENT; | 
|  | ehdr->e_phoff = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_ehsize = sizeof(Elf64_Ehdr); | 
|  | ehdr->e_phentsize = sizeof(Elf64_Phdr); | 
|  |  | 
|  | /* Prepare one phdr of type PT_NOTE for each present cpu */ | 
|  | for_each_present_cpu(cpu) { | 
|  | phdr = (Elf64_Phdr *)bufp; | 
|  | bufp += sizeof(Elf64_Phdr); | 
|  | phdr->p_type = PT_NOTE; | 
|  | notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); | 
|  | phdr->p_offset = phdr->p_paddr = notes_addr; | 
|  | phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); | 
|  | (ehdr->e_phnum)++; | 
|  | } | 
|  |  | 
|  | /* Prepare one PT_NOTE header for vmcoreinfo */ | 
|  | phdr = (Elf64_Phdr *)bufp; | 
|  | bufp += sizeof(Elf64_Phdr); | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); | 
|  | phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); | 
|  | (ehdr->e_phnum)++; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Prepare PT_LOAD type program header for kernel text region */ | 
|  | phdr = (Elf64_Phdr *)bufp; | 
|  | bufp += sizeof(Elf64_Phdr); | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_flags = PF_R|PF_W|PF_X; | 
|  | phdr->p_vaddr = (Elf64_Addr)_text; | 
|  | phdr->p_filesz = phdr->p_memsz = _end - _text; | 
|  | phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); | 
|  | (ehdr->e_phnum)++; | 
|  | #endif | 
|  |  | 
|  | /* Prepare PT_LOAD headers for system ram chunks. */ | 
|  | ced->ehdr = ehdr; | 
|  | ced->bufp = bufp; | 
|  | ret = walk_system_ram_res(0, -1, ced, | 
|  | prepare_elf64_ram_headers_callback); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | *addr = buf; | 
|  | *sz = elf_sz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Prepare elf headers. Return addr and size */ | 
|  | static int prepare_elf_headers(struct kimage *image, void **addr, | 
|  | unsigned long *sz) | 
|  | { | 
|  | struct crash_elf_data *ced; | 
|  | int ret; | 
|  |  | 
|  | ced = kzalloc(sizeof(*ced), GFP_KERNEL); | 
|  | if (!ced) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fill_up_crash_elf_data(ced, image); | 
|  |  | 
|  | /* By default prepare 64bit headers */ | 
|  | ret =  prepare_elf64_headers(ced, addr, sz); | 
|  | kfree(ced); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int add_e820_entry(struct boot_params *params, struct e820entry *entry) | 
|  | { | 
|  | unsigned int nr_e820_entries; | 
|  |  | 
|  | nr_e820_entries = params->e820_entries; | 
|  | if (nr_e820_entries >= E820MAX) | 
|  | return 1; | 
|  |  | 
|  | memcpy(¶ms->e820_map[nr_e820_entries], entry, | 
|  | sizeof(struct e820entry)); | 
|  | params->e820_entries++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memmap_entry_callback(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct crash_memmap_data *cmd = arg; | 
|  | struct boot_params *params = cmd->params; | 
|  | struct e820entry ei; | 
|  |  | 
|  | ei.addr = start; | 
|  | ei.size = end - start + 1; | 
|  | ei.type = cmd->type; | 
|  | add_e820_entry(params, &ei); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, | 
|  | unsigned long long mstart, | 
|  | unsigned long long mend) | 
|  | { | 
|  | unsigned long start, end; | 
|  | int ret = 0; | 
|  |  | 
|  | cmem->ranges[0].start = mstart; | 
|  | cmem->ranges[0].end = mend; | 
|  | cmem->nr_ranges = 1; | 
|  |  | 
|  | /* Exclude Backup region */ | 
|  | start = image->arch.backup_load_addr; | 
|  | end = start + image->arch.backup_src_sz - 1; | 
|  | ret = exclude_mem_range(cmem, start, end); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Exclude elf header region */ | 
|  | start = image->arch.elf_load_addr; | 
|  | end = start + image->arch.elf_headers_sz - 1; | 
|  | return exclude_mem_range(cmem, start, end); | 
|  | } | 
|  |  | 
|  | /* Prepare memory map for crash dump kernel */ | 
|  | int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) | 
|  | { | 
|  | int i, ret = 0; | 
|  | unsigned long flags; | 
|  | struct e820entry ei; | 
|  | struct crash_memmap_data cmd; | 
|  | struct crash_mem *cmem; | 
|  |  | 
|  | cmem = vzalloc(sizeof(struct crash_mem)); | 
|  | if (!cmem) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(&cmd, 0, sizeof(struct crash_memmap_data)); | 
|  | cmd.params = params; | 
|  |  | 
|  | /* Add first 640K segment */ | 
|  | ei.addr = image->arch.backup_src_start; | 
|  | ei.size = image->arch.backup_src_sz; | 
|  | ei.type = E820_RAM; | 
|  | add_e820_entry(params, &ei); | 
|  |  | 
|  | /* Add ACPI tables */ | 
|  | cmd.type = E820_ACPI; | 
|  | flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
|  | walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, | 
|  | memmap_entry_callback); | 
|  |  | 
|  | /* Add ACPI Non-volatile Storage */ | 
|  | cmd.type = E820_NVS; | 
|  | walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, | 
|  | memmap_entry_callback); | 
|  |  | 
|  | /* Add crashk_low_res region */ | 
|  | if (crashk_low_res.end) { | 
|  | ei.addr = crashk_low_res.start; | 
|  | ei.size = crashk_low_res.end - crashk_low_res.start + 1; | 
|  | ei.type = E820_RAM; | 
|  | add_e820_entry(params, &ei); | 
|  | } | 
|  |  | 
|  | /* Exclude some ranges from crashk_res and add rest to memmap */ | 
|  | ret = memmap_exclude_ranges(image, cmem, crashk_res.start, | 
|  | crashk_res.end); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < cmem->nr_ranges; i++) { | 
|  | ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; | 
|  |  | 
|  | /* If entry is less than a page, skip it */ | 
|  | if (ei.size < PAGE_SIZE) | 
|  | continue; | 
|  | ei.addr = cmem->ranges[i].start; | 
|  | ei.type = E820_RAM; | 
|  | add_e820_entry(params, &ei); | 
|  | } | 
|  |  | 
|  | out: | 
|  | vfree(cmem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int determine_backup_region(u64 start, u64 end, void *arg) | 
|  | { | 
|  | struct kimage *image = arg; | 
|  |  | 
|  | image->arch.backup_src_start = start; | 
|  | image->arch.backup_src_sz = end - start + 1; | 
|  |  | 
|  | /* Expecting only one range for backup region */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int crash_load_segments(struct kimage *image) | 
|  | { | 
|  | unsigned long src_start, src_sz, elf_sz; | 
|  | void *elf_addr; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Determine and load a segment for backup area. First 640K RAM | 
|  | * region is backup source | 
|  | */ | 
|  |  | 
|  | ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, | 
|  | image, determine_backup_region); | 
|  |  | 
|  | /* Zero or postive return values are ok */ | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | src_start = image->arch.backup_src_start; | 
|  | src_sz = image->arch.backup_src_sz; | 
|  |  | 
|  | /* Add backup segment. */ | 
|  | if (src_sz) { | 
|  | /* | 
|  | * Ideally there is no source for backup segment. This is | 
|  | * copied in purgatory after crash. Just add a zero filled | 
|  | * segment for now to make sure checksum logic works fine. | 
|  | */ | 
|  | ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, | 
|  | sizeof(crash_zero_bytes), src_sz, | 
|  | PAGE_SIZE, 0, -1, 0, | 
|  | &image->arch.backup_load_addr); | 
|  | if (ret) | 
|  | return ret; | 
|  | pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", | 
|  | image->arch.backup_load_addr, src_start, src_sz); | 
|  | } | 
|  |  | 
|  | /* Prepare elf headers and add a segment */ | 
|  | ret = prepare_elf_headers(image, &elf_addr, &elf_sz); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | image->arch.elf_headers = elf_addr; | 
|  | image->arch.elf_headers_sz = elf_sz; | 
|  |  | 
|  | ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, | 
|  | ELF_CORE_HEADER_ALIGN, 0, -1, 0, | 
|  | &image->arch.elf_load_addr); | 
|  | if (ret) { | 
|  | vfree((void *)image->arch.elf_headers); | 
|  | return ret; | 
|  | } | 
|  | pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", | 
|  | image->arch.elf_load_addr, elf_sz, elf_sz); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif /* CONFIG_KEXEC_FILE */ |