| /* | 
 |  *	SGI UltraViolet TLB flush routines. | 
 |  * | 
 |  *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI. | 
 |  * | 
 |  *	This code is released under the GNU General Public License version 2 or | 
 |  *	later. | 
 |  */ | 
 | #include <linux/seq_file.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/kernel.h> | 
 |  | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/uv/uv.h> | 
 | #include <asm/uv/uv_mmrs.h> | 
 | #include <asm/uv/uv_hub.h> | 
 | #include <asm/uv/uv_bau.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/tsc.h> | 
 | #include <asm/irq_vectors.h> | 
 |  | 
 | static struct bau_control	**uv_bau_table_bases __read_mostly; | 
 | static int			uv_bau_retry_limit __read_mostly; | 
 |  | 
 | /* position of pnode (which is nasid>>1): */ | 
 | static int			uv_nshift __read_mostly; | 
 |  | 
 | static unsigned long		uv_mmask __read_mostly; | 
 |  | 
 | static DEFINE_PER_CPU(struct ptc_stats, ptcstats); | 
 | static DEFINE_PER_CPU(struct bau_control, bau_control); | 
 |  | 
 | /* | 
 |  * Free a software acknowledge hardware resource by clearing its Pending | 
 |  * bit. This will return a reply to the sender. | 
 |  * If the message has timed out, a reply has already been sent by the | 
 |  * hardware but the resource has not been released. In that case our | 
 |  * clear of the Timeout bit (as well) will free the resource. No reply will | 
 |  * be sent (the hardware will only do one reply per message). | 
 |  */ | 
 | static void uv_reply_to_message(int resource, | 
 | 				struct bau_payload_queue_entry *msg, | 
 | 				struct bau_msg_status *msp) | 
 | { | 
 | 	unsigned long dw; | 
 |  | 
 | 	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); | 
 | 	msg->replied_to = 1; | 
 | 	msg->sw_ack_vector = 0; | 
 | 	if (msp) | 
 | 		msp->seen_by.bits = 0; | 
 | 	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); | 
 | } | 
 |  | 
 | /* | 
 |  * Do all the things a cpu should do for a TLB shootdown message. | 
 |  * Other cpu's may come here at the same time for this message. | 
 |  */ | 
 | static void uv_bau_process_message(struct bau_payload_queue_entry *msg, | 
 | 				   int msg_slot, int sw_ack_slot) | 
 | { | 
 | 	unsigned long this_cpu_mask; | 
 | 	struct bau_msg_status *msp; | 
 | 	int cpu; | 
 |  | 
 | 	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; | 
 | 	cpu = uv_blade_processor_id(); | 
 | 	msg->number_of_cpus = | 
 | 	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); | 
 | 	this_cpu_mask = 1UL << cpu; | 
 | 	if (msp->seen_by.bits & this_cpu_mask) | 
 | 		return; | 
 | 	atomic_or_long(&msp->seen_by.bits, this_cpu_mask); | 
 |  | 
 | 	if (msg->replied_to == 1) | 
 | 		return; | 
 |  | 
 | 	if (msg->address == TLB_FLUSH_ALL) { | 
 | 		local_flush_tlb(); | 
 | 		__get_cpu_var(ptcstats).alltlb++; | 
 | 	} else { | 
 | 		__flush_tlb_one(msg->address); | 
 | 		__get_cpu_var(ptcstats).onetlb++; | 
 | 	} | 
 |  | 
 | 	__get_cpu_var(ptcstats).requestee++; | 
 |  | 
 | 	atomic_inc_short(&msg->acknowledge_count); | 
 | 	if (msg->number_of_cpus == msg->acknowledge_count) | 
 | 		uv_reply_to_message(sw_ack_slot, msg, msp); | 
 | } | 
 |  | 
 | /* | 
 |  * Examine the payload queue on one distribution node to see | 
 |  * which messages have not been seen, and which cpu(s) have not seen them. | 
 |  * | 
 |  * Returns the number of cpu's that have not responded. | 
 |  */ | 
 | static int uv_examine_destination(struct bau_control *bau_tablesp, int sender) | 
 | { | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct bau_msg_status *msp; | 
 | 	int count = 0; | 
 | 	int i; | 
 | 	int j; | 
 |  | 
 | 	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE; | 
 | 	     msg++, i++) { | 
 | 		if ((msg->sending_cpu == sender) && (!msg->replied_to)) { | 
 | 			msp = bau_tablesp->msg_statuses + i; | 
 | 			printk(KERN_DEBUG | 
 | 			       "blade %d: address:%#lx %d of %d, not cpu(s): ", | 
 | 			       i, msg->address, msg->acknowledge_count, | 
 | 			       msg->number_of_cpus); | 
 | 			for (j = 0; j < msg->number_of_cpus; j++) { | 
 | 				if (!((1L << j) & msp->seen_by.bits)) { | 
 | 					count++; | 
 | 					printk("%d ", j); | 
 | 				} | 
 | 			} | 
 | 			printk("\n"); | 
 | 		} | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Examine the payload queue on all the distribution nodes to see | 
 |  * which messages have not been seen, and which cpu(s) have not seen them. | 
 |  * | 
 |  * Returns the number of cpu's that have not responded. | 
 |  */ | 
 | static int uv_examine_destinations(struct bau_target_nodemask *distribution) | 
 | { | 
 | 	int sender; | 
 | 	int i; | 
 | 	int count = 0; | 
 |  | 
 | 	sender = smp_processor_id(); | 
 | 	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) { | 
 | 		if (!bau_node_isset(i, distribution)) | 
 | 			continue; | 
 | 		count += uv_examine_destination(uv_bau_table_bases[i], sender); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * wait for completion of a broadcast message | 
 |  * | 
 |  * return COMPLETE, RETRY or GIVEUP | 
 |  */ | 
 | static int uv_wait_completion(struct bau_desc *bau_desc, | 
 | 			      unsigned long mmr_offset, int right_shift) | 
 | { | 
 | 	int exams = 0; | 
 | 	long destination_timeouts = 0; | 
 | 	long source_timeouts = 0; | 
 | 	unsigned long descriptor_status; | 
 |  | 
 | 	while ((descriptor_status = (((unsigned long) | 
 | 		uv_read_local_mmr(mmr_offset) >> | 
 | 			right_shift) & UV_ACT_STATUS_MASK)) != | 
 | 			DESC_STATUS_IDLE) { | 
 | 		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { | 
 | 			source_timeouts++; | 
 | 			if (source_timeouts > SOURCE_TIMEOUT_LIMIT) | 
 | 				source_timeouts = 0; | 
 | 			__get_cpu_var(ptcstats).s_retry++; | 
 | 			return FLUSH_RETRY; | 
 | 		} | 
 | 		/* | 
 | 		 * spin here looking for progress at the destinations | 
 | 		 */ | 
 | 		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { | 
 | 			destination_timeouts++; | 
 | 			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { | 
 | 				/* | 
 | 				 * returns number of cpus not responding | 
 | 				 */ | 
 | 				if (uv_examine_destinations | 
 | 				    (&bau_desc->distribution) == 0) { | 
 | 					__get_cpu_var(ptcstats).d_retry++; | 
 | 					return FLUSH_RETRY; | 
 | 				} | 
 | 				exams++; | 
 | 				if (exams >= uv_bau_retry_limit) { | 
 | 					printk(KERN_DEBUG | 
 | 					       "uv_flush_tlb_others"); | 
 | 					printk("giving up on cpu %d\n", | 
 | 					       smp_processor_id()); | 
 | 					return FLUSH_GIVEUP; | 
 | 				} | 
 | 				/* | 
 | 				 * delays can hang the simulator | 
 | 				   udelay(1000); | 
 | 				 */ | 
 | 				destination_timeouts = 0; | 
 | 			} | 
 | 		} | 
 | 		cpu_relax(); | 
 | 	} | 
 | 	return FLUSH_COMPLETE; | 
 | } | 
 |  | 
 | /** | 
 |  * uv_flush_send_and_wait | 
 |  * | 
 |  * Send a broadcast and wait for a broadcast message to complete. | 
 |  * | 
 |  * The flush_mask contains the cpus the broadcast was sent to. | 
 |  * | 
 |  * Returns NULL if all remote flushing was done. The mask is zeroed. | 
 |  * Returns @flush_mask if some remote flushing remains to be done. The | 
 |  * mask will have some bits still set. | 
 |  */ | 
 | const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade, | 
 | 					     struct bau_desc *bau_desc, | 
 | 					     struct cpumask *flush_mask) | 
 | { | 
 | 	int completion_status = 0; | 
 | 	int right_shift; | 
 | 	int tries = 0; | 
 | 	int blade; | 
 | 	int bit; | 
 | 	unsigned long mmr_offset; | 
 | 	unsigned long index; | 
 | 	cycles_t time1; | 
 | 	cycles_t time2; | 
 |  | 
 | 	if (cpu < UV_CPUS_PER_ACT_STATUS) { | 
 | 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; | 
 | 		right_shift = cpu * UV_ACT_STATUS_SIZE; | 
 | 	} else { | 
 | 		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1; | 
 | 		right_shift = | 
 | 		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE); | 
 | 	} | 
 | 	time1 = get_cycles(); | 
 | 	do { | 
 | 		tries++; | 
 | 		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | | 
 | 			cpu; | 
 | 		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); | 
 | 		completion_status = uv_wait_completion(bau_desc, mmr_offset, | 
 | 					right_shift); | 
 | 	} while (completion_status == FLUSH_RETRY); | 
 | 	time2 = get_cycles(); | 
 | 	__get_cpu_var(ptcstats).sflush += (time2 - time1); | 
 | 	if (tries > 1) | 
 | 		__get_cpu_var(ptcstats).retriesok++; | 
 |  | 
 | 	if (completion_status == FLUSH_GIVEUP) { | 
 | 		/* | 
 | 		 * Cause the caller to do an IPI-style TLB shootdown on | 
 | 		 * the cpu's, all of which are still in the mask. | 
 | 		 */ | 
 | 		__get_cpu_var(ptcstats).ptc_i++; | 
 | 		return flush_mask; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Success, so clear the remote cpu's from the mask so we don't | 
 | 	 * use the IPI method of shootdown on them. | 
 | 	 */ | 
 | 	for_each_cpu(bit, flush_mask) { | 
 | 		blade = uv_cpu_to_blade_id(bit); | 
 | 		if (blade == this_blade) | 
 | 			continue; | 
 | 		cpumask_clear_cpu(bit, flush_mask); | 
 | 	} | 
 | 	if (!cpumask_empty(flush_mask)) | 
 | 		return flush_mask; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); | 
 |  | 
 | /** | 
 |  * uv_flush_tlb_others - globally purge translation cache of a virtual | 
 |  * address or all TLB's | 
 |  * @cpumask: mask of all cpu's in which the address is to be removed | 
 |  * @mm: mm_struct containing virtual address range | 
 |  * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu) | 
 |  * @cpu: the current cpu | 
 |  * | 
 |  * This is the entry point for initiating any UV global TLB shootdown. | 
 |  * | 
 |  * Purges the translation caches of all specified processors of the given | 
 |  * virtual address, or purges all TLB's on specified processors. | 
 |  * | 
 |  * The caller has derived the cpumask from the mm_struct.  This function | 
 |  * is called only if there are bits set in the mask. (e.g. flush_tlb_page()) | 
 |  * | 
 |  * The cpumask is converted into a nodemask of the nodes containing | 
 |  * the cpus. | 
 |  * | 
 |  * Note that this function should be called with preemption disabled. | 
 |  * | 
 |  * Returns NULL if all remote flushing was done. | 
 |  * Returns pointer to cpumask if some remote flushing remains to be | 
 |  * done.  The returned pointer is valid till preemption is re-enabled. | 
 |  */ | 
 | const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, | 
 | 					  struct mm_struct *mm, | 
 | 					  unsigned long va, unsigned int cpu) | 
 | { | 
 | 	struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask); | 
 | 	int i; | 
 | 	int bit; | 
 | 	int blade; | 
 | 	int uv_cpu; | 
 | 	int this_blade; | 
 | 	int locals = 0; | 
 | 	struct bau_desc *bau_desc; | 
 |  | 
 | 	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); | 
 |  | 
 | 	uv_cpu = uv_blade_processor_id(); | 
 | 	this_blade = uv_numa_blade_id(); | 
 | 	bau_desc = __get_cpu_var(bau_control).descriptor_base; | 
 | 	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu; | 
 |  | 
 | 	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); | 
 |  | 
 | 	i = 0; | 
 | 	for_each_cpu(bit, flush_mask) { | 
 | 		blade = uv_cpu_to_blade_id(bit); | 
 | 		BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1)); | 
 | 		if (blade == this_blade) { | 
 | 			locals++; | 
 | 			continue; | 
 | 		} | 
 | 		bau_node_set(blade, &bau_desc->distribution); | 
 | 		i++; | 
 | 	} | 
 | 	if (i == 0) { | 
 | 		/* | 
 | 		 * no off_node flushing; return status for local node | 
 | 		 */ | 
 | 		if (locals) | 
 | 			return flush_mask; | 
 | 		else | 
 | 			return NULL; | 
 | 	} | 
 | 	__get_cpu_var(ptcstats).requestor++; | 
 | 	__get_cpu_var(ptcstats).ntargeted += i; | 
 |  | 
 | 	bau_desc->payload.address = va; | 
 | 	bau_desc->payload.sending_cpu = cpu; | 
 |  | 
 | 	return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask); | 
 | } | 
 |  | 
 | /* | 
 |  * The BAU message interrupt comes here. (registered by set_intr_gate) | 
 |  * See entry_64.S | 
 |  * | 
 |  * We received a broadcast assist message. | 
 |  * | 
 |  * Interrupts may have been disabled; this interrupt could represent | 
 |  * the receipt of several messages. | 
 |  * | 
 |  * All cores/threads on this node get this interrupt. | 
 |  * The last one to see it does the s/w ack. | 
 |  * (the resource will not be freed until noninterruptable cpus see this | 
 |  *  interrupt; hardware will timeout the s/w ack and reply ERROR) | 
 |  */ | 
 | void uv_bau_message_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	struct bau_payload_queue_entry *va_queue_first; | 
 | 	struct bau_payload_queue_entry *va_queue_last; | 
 | 	struct bau_payload_queue_entry *msg; | 
 | 	struct pt_regs *old_regs = set_irq_regs(regs); | 
 | 	cycles_t time1; | 
 | 	cycles_t time2; | 
 | 	int msg_slot; | 
 | 	int sw_ack_slot; | 
 | 	int fw; | 
 | 	int count = 0; | 
 | 	unsigned long local_pnode; | 
 |  | 
 | 	ack_APIC_irq(); | 
 | 	exit_idle(); | 
 | 	irq_enter(); | 
 |  | 
 | 	time1 = get_cycles(); | 
 |  | 
 | 	local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); | 
 |  | 
 | 	va_queue_first = __get_cpu_var(bau_control).va_queue_first; | 
 | 	va_queue_last = __get_cpu_var(bau_control).va_queue_last; | 
 |  | 
 | 	msg = __get_cpu_var(bau_control).bau_msg_head; | 
 | 	while (msg->sw_ack_vector) { | 
 | 		count++; | 
 | 		fw = msg->sw_ack_vector; | 
 | 		msg_slot = msg - va_queue_first; | 
 | 		sw_ack_slot = ffs(fw) - 1; | 
 |  | 
 | 		uv_bau_process_message(msg, msg_slot, sw_ack_slot); | 
 |  | 
 | 		msg++; | 
 | 		if (msg > va_queue_last) | 
 | 			msg = va_queue_first; | 
 | 		__get_cpu_var(bau_control).bau_msg_head = msg; | 
 | 	} | 
 | 	if (!count) | 
 | 		__get_cpu_var(ptcstats).nomsg++; | 
 | 	else if (count > 1) | 
 | 		__get_cpu_var(ptcstats).multmsg++; | 
 |  | 
 | 	time2 = get_cycles(); | 
 | 	__get_cpu_var(ptcstats).dflush += (time2 - time1); | 
 |  | 
 | 	irq_exit(); | 
 | 	set_irq_regs(old_regs); | 
 | } | 
 |  | 
 | static void uv_enable_timeouts(void) | 
 | { | 
 | 	int i; | 
 | 	int blade; | 
 | 	int last_blade; | 
 | 	int pnode; | 
 | 	int cur_cpu = 0; | 
 | 	unsigned long apicid; | 
 |  | 
 | 	last_blade = -1; | 
 | 	for_each_online_node(i) { | 
 | 		blade = uv_node_to_blade_id(i); | 
 | 		if (blade == last_blade) | 
 | 			continue; | 
 | 		last_blade = blade; | 
 | 		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); | 
 | 		pnode = uv_blade_to_pnode(blade); | 
 | 		cur_cpu += uv_blade_nr_possible_cpus(i); | 
 | 	} | 
 | } | 
 |  | 
 | static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset) | 
 | { | 
 | 	if (*offset < num_possible_cpus()) | 
 | 		return offset; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset) | 
 | { | 
 | 	(*offset)++; | 
 | 	if (*offset < num_possible_cpus()) | 
 | 		return offset; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void uv_ptc_seq_stop(struct seq_file *file, void *data) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Display the statistics thru /proc | 
 |  * data points to the cpu number | 
 |  */ | 
 | static int uv_ptc_seq_show(struct seq_file *file, void *data) | 
 | { | 
 | 	struct ptc_stats *stat; | 
 | 	int cpu; | 
 |  | 
 | 	cpu = *(loff_t *)data; | 
 |  | 
 | 	if (!cpu) { | 
 | 		seq_printf(file, | 
 | 		"# cpu requestor requestee one all sretry dretry ptc_i "); | 
 | 		seq_printf(file, | 
 | 		"sw_ack sflush dflush sok dnomsg dmult starget\n"); | 
 | 	} | 
 | 	if (cpu < num_possible_cpus() && cpu_online(cpu)) { | 
 | 		stat = &per_cpu(ptcstats, cpu); | 
 | 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", | 
 | 			   cpu, stat->requestor, | 
 | 			   stat->requestee, stat->onetlb, stat->alltlb, | 
 | 			   stat->s_retry, stat->d_retry, stat->ptc_i); | 
 | 		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", | 
 | 			   uv_read_global_mmr64(uv_blade_to_pnode | 
 | 					(uv_cpu_to_blade_id(cpu)), | 
 | 					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), | 
 | 			   stat->sflush, stat->dflush, | 
 | 			   stat->retriesok, stat->nomsg, | 
 | 			   stat->multmsg, stat->ntargeted); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *  0: display meaning of the statistics | 
 |  * >0: retry limit | 
 |  */ | 
 | static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user, | 
 | 				 size_t count, loff_t *data) | 
 | { | 
 | 	long newmode; | 
 | 	char optstr[64]; | 
 |  | 
 | 	if (count == 0 || count > sizeof(optstr)) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(optstr, user, count)) | 
 | 		return -EFAULT; | 
 | 	optstr[count - 1] = '\0'; | 
 | 	if (strict_strtoul(optstr, 10, &newmode) < 0) { | 
 | 		printk(KERN_DEBUG "%s is invalid\n", optstr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (newmode == 0) { | 
 | 		printk(KERN_DEBUG "# cpu:      cpu number\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"requestor:  times this cpu was the flush requestor\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"requestee:  times this cpu was requested to flush its TLBs\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"one:        times requested to flush a single address\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"all:        times requested to flush all TLB's\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sretry:     number of retries of source-side timeouts\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"dretry:     number of retries of destination-side timeouts\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"ptc_i:      times UV fell through to IPI-style flushes\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"sflush_us:  cycles spent in uv_flush_tlb_others()\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"dflush_us:  cycles spent in handling flush requests\n"); | 
 | 		printk(KERN_DEBUG "sok:        successes on retry\n"); | 
 | 		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n"); | 
 | 		printk(KERN_DEBUG | 
 | 		"dmult:      interrupts with multiple messages\n"); | 
 | 		printk(KERN_DEBUG "starget:    nodes targeted\n"); | 
 | 	} else { | 
 | 		uv_bau_retry_limit = newmode; | 
 | 		printk(KERN_DEBUG "timeout retry limit:%d\n", | 
 | 		       uv_bau_retry_limit); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static const struct seq_operations uv_ptc_seq_ops = { | 
 | 	.start		= uv_ptc_seq_start, | 
 | 	.next		= uv_ptc_seq_next, | 
 | 	.stop		= uv_ptc_seq_stop, | 
 | 	.show		= uv_ptc_seq_show | 
 | }; | 
 |  | 
 | static int uv_ptc_proc_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return seq_open(file, &uv_ptc_seq_ops); | 
 | } | 
 |  | 
 | static const struct file_operations proc_uv_ptc_operations = { | 
 | 	.open		= uv_ptc_proc_open, | 
 | 	.read		= seq_read, | 
 | 	.write		= uv_ptc_proc_write, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | }; | 
 |  | 
 | static int __init uv_ptc_init(void) | 
 | { | 
 | 	struct proc_dir_entry *proc_uv_ptc; | 
 |  | 
 | 	if (!is_uv_system()) | 
 | 		return 0; | 
 |  | 
 | 	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL); | 
 | 	if (!proc_uv_ptc) { | 
 | 		printk(KERN_ERR "unable to create %s proc entry\n", | 
 | 		       UV_PTC_BASENAME); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * begin the initialization of the per-blade control structures | 
 |  */ | 
 | static struct bau_control * __init uv_table_bases_init(int blade, int node) | 
 | { | 
 | 	int i; | 
 | 	struct bau_msg_status *msp; | 
 | 	struct bau_control *bau_tabp; | 
 |  | 
 | 	bau_tabp = | 
 | 	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); | 
 | 	BUG_ON(!bau_tabp); | 
 |  | 
 | 	bau_tabp->msg_statuses = | 
 | 	    kmalloc_node(sizeof(struct bau_msg_status) * | 
 | 			 DEST_Q_SIZE, GFP_KERNEL, node); | 
 | 	BUG_ON(!bau_tabp->msg_statuses); | 
 |  | 
 | 	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++) | 
 | 		bau_cpubits_clear(&msp->seen_by, (int) | 
 | 				  uv_blade_nr_possible_cpus(blade)); | 
 |  | 
 | 	uv_bau_table_bases[blade] = bau_tabp; | 
 |  | 
 | 	return bau_tabp; | 
 | } | 
 |  | 
 | /* | 
 |  * finish the initialization of the per-blade control structures | 
 |  */ | 
 | static void __init | 
 | uv_table_bases_finish(int blade, int node, int cur_cpu, | 
 | 		      struct bau_control *bau_tablesp, | 
 | 		      struct bau_desc *adp) | 
 | { | 
 | 	struct bau_control *bcp; | 
 | 	int i; | 
 |  | 
 | 	for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) { | 
 | 		bcp = (struct bau_control *)&per_cpu(bau_control, i); | 
 |  | 
 | 		bcp->bau_msg_head	= bau_tablesp->va_queue_first; | 
 | 		bcp->va_queue_first	= bau_tablesp->va_queue_first; | 
 | 		bcp->va_queue_last	= bau_tablesp->va_queue_last; | 
 | 		bcp->msg_statuses	= bau_tablesp->msg_statuses; | 
 | 		bcp->descriptor_base	= adp; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the sending side's sending buffers | 
 |  */ | 
 | static struct bau_desc * __init | 
 | uv_activation_descriptor_init(int node, int pnode) | 
 | { | 
 | 	int i; | 
 | 	unsigned long pa; | 
 | 	unsigned long m; | 
 | 	unsigned long n; | 
 | 	unsigned long mmr_image; | 
 | 	struct bau_desc *adp; | 
 | 	struct bau_desc *ad2; | 
 |  | 
 | 	adp = (struct bau_desc *) | 
 | 	    kmalloc_node(16384, GFP_KERNEL, node); | 
 | 	BUG_ON(!adp); | 
 |  | 
 | 	pa = __pa((unsigned long)adp); | 
 | 	n = pa >> uv_nshift; | 
 | 	m = pa & uv_mmask; | 
 |  | 
 | 	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE); | 
 | 	if (mmr_image) { | 
 | 		uv_write_global_mmr64(pnode, (unsigned long) | 
 | 				      UVH_LB_BAU_SB_DESCRIPTOR_BASE, | 
 | 				      (n << UV_DESC_BASE_PNODE_SHIFT | m)); | 
 | 	} | 
 |  | 
 | 	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) { | 
 | 		memset(ad2, 0, sizeof(struct bau_desc)); | 
 | 		ad2->header.sw_ack_flag = 1; | 
 | 		ad2->header.base_dest_nodeid = | 
 | 		    uv_blade_to_pnode(uv_cpu_to_blade_id(0)); | 
 | 		ad2->header.command = UV_NET_ENDPOINT_INTD; | 
 | 		ad2->header.int_both = 1; | 
 | 		/* | 
 | 		 * all others need to be set to zero: | 
 | 		 *   fairness chaining multilevel count replied_to | 
 | 		 */ | 
 | 	} | 
 | 	return adp; | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the destination side's receiving buffers | 
 |  */ | 
 | static struct bau_payload_queue_entry * __init | 
 | uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) | 
 | { | 
 | 	struct bau_payload_queue_entry *pqp; | 
 | 	char *cp; | 
 |  | 
 | 	pqp = (struct bau_payload_queue_entry *) kmalloc_node( | 
 | 		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry), | 
 | 		GFP_KERNEL, node); | 
 | 	BUG_ON(!pqp); | 
 |  | 
 | 	cp = (char *)pqp + 31; | 
 | 	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); | 
 | 	bau_tablesp->va_queue_first = pqp; | 
 | 	uv_write_global_mmr64(pnode, | 
 | 			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, | 
 | 			      ((unsigned long)pnode << | 
 | 			       UV_PAYLOADQ_PNODE_SHIFT) | | 
 | 			      uv_physnodeaddr(pqp)); | 
 | 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, | 
 | 			      uv_physnodeaddr(pqp)); | 
 | 	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1); | 
 | 	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, | 
 | 			      (unsigned long) | 
 | 			      uv_physnodeaddr(bau_tablesp->va_queue_last)); | 
 | 	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); | 
 |  | 
 | 	return pqp; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialization of each UV blade's structures | 
 |  */ | 
 | static int __init uv_init_blade(int blade, int node, int cur_cpu) | 
 | { | 
 | 	int pnode; | 
 | 	unsigned long pa; | 
 | 	unsigned long apicid; | 
 | 	struct bau_desc *adp; | 
 | 	struct bau_payload_queue_entry *pqp; | 
 | 	struct bau_control *bau_tablesp; | 
 |  | 
 | 	bau_tablesp = uv_table_bases_init(blade, node); | 
 | 	pnode = uv_blade_to_pnode(blade); | 
 | 	adp = uv_activation_descriptor_init(node, pnode); | 
 | 	pqp = uv_payload_queue_init(node, pnode, bau_tablesp); | 
 | 	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp); | 
 | 	/* | 
 | 	 * the below initialization can't be in firmware because the | 
 | 	 * messaging IRQ will be determined by the OS | 
 | 	 */ | 
 | 	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu); | 
 | 	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); | 
 | 	if ((pa & 0xff) != UV_BAU_MESSAGE) { | 
 | 		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, | 
 | 				      ((apicid << 32) | UV_BAU_MESSAGE)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialization of BAU-related structures | 
 |  */ | 
 | static int __init uv_bau_init(void) | 
 | { | 
 | 	int blade; | 
 | 	int node; | 
 | 	int nblades; | 
 | 	int last_blade; | 
 | 	int cur_cpu; | 
 |  | 
 | 	if (!is_uv_system()) | 
 | 		return 0; | 
 |  | 
 | 	for_each_possible_cpu(cur_cpu) | 
 | 		alloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu), | 
 | 				       GFP_KERNEL, cpu_to_node(cur_cpu)); | 
 |  | 
 | 	uv_bau_retry_limit = 1; | 
 | 	uv_nshift = uv_hub_info->n_val; | 
 | 	uv_mmask = (1UL << uv_hub_info->n_val) - 1; | 
 | 	nblades = 0; | 
 | 	last_blade = -1; | 
 | 	cur_cpu = 0; | 
 | 	for_each_online_node(node) { | 
 | 		blade = uv_node_to_blade_id(node); | 
 | 		if (blade == last_blade) | 
 | 			continue; | 
 | 		last_blade = blade; | 
 | 		nblades++; | 
 | 	} | 
 | 	uv_bau_table_bases = (struct bau_control **) | 
 | 	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); | 
 | 	BUG_ON(!uv_bau_table_bases); | 
 |  | 
 | 	last_blade = -1; | 
 | 	for_each_online_node(node) { | 
 | 		blade = uv_node_to_blade_id(node); | 
 | 		if (blade == last_blade) | 
 | 			continue; | 
 | 		last_blade = blade; | 
 | 		uv_init_blade(blade, node, cur_cpu); | 
 | 		cur_cpu += uv_blade_nr_possible_cpus(blade); | 
 | 	} | 
 | 	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1); | 
 | 	uv_enable_timeouts(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(uv_bau_init); | 
 | __initcall(uv_ptc_init); |