| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2015 Linaro Ltd. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/qcom_scm.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "qcom_scm.h" |
| |
| #define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00 |
| #define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01 |
| #define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08 |
| #define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20 |
| |
| #define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04 |
| #define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02 |
| #define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10 |
| #define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40 |
| |
| struct qcom_scm_entry { |
| int flag; |
| void *entry; |
| }; |
| |
| static struct qcom_scm_entry qcom_scm_wb[] = { |
| { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 }, |
| { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 }, |
| { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 }, |
| { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 }, |
| }; |
| |
| static DEFINE_MUTEX(qcom_scm_lock); |
| |
| /** |
| * struct qcom_scm_command - one SCM command buffer |
| * @len: total available memory for command and response |
| * @buf_offset: start of command buffer |
| * @resp_hdr_offset: start of response buffer |
| * @id: command to be executed |
| * @buf: buffer returned from qcom_scm_get_command_buffer() |
| * |
| * An SCM command is laid out in memory as follows: |
| * |
| * ------------------- <--- struct qcom_scm_command |
| * | command header | |
| * ------------------- <--- qcom_scm_get_command_buffer() |
| * | command buffer | |
| * ------------------- <--- struct qcom_scm_response and |
| * | response header | qcom_scm_command_to_response() |
| * ------------------- <--- qcom_scm_get_response_buffer() |
| * | response buffer | |
| * ------------------- |
| * |
| * There can be arbitrary padding between the headers and buffers so |
| * you should always use the appropriate qcom_scm_get_*_buffer() routines |
| * to access the buffers in a safe manner. |
| */ |
| struct qcom_scm_command { |
| __le32 len; |
| __le32 buf_offset; |
| __le32 resp_hdr_offset; |
| __le32 id; |
| __le32 buf[0]; |
| }; |
| |
| /** |
| * struct qcom_scm_response - one SCM response buffer |
| * @len: total available memory for response |
| * @buf_offset: start of response data relative to start of qcom_scm_response |
| * @is_complete: indicates if the command has finished processing |
| */ |
| struct qcom_scm_response { |
| __le32 len; |
| __le32 buf_offset; |
| __le32 is_complete; |
| }; |
| |
| /** |
| * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response |
| * @cmd: command |
| * |
| * Returns a pointer to a response for a command. |
| */ |
| static inline struct qcom_scm_response *qcom_scm_command_to_response( |
| const struct qcom_scm_command *cmd) |
| { |
| return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset); |
| } |
| |
| /** |
| * qcom_scm_get_command_buffer() - Get a pointer to a command buffer |
| * @cmd: command |
| * |
| * Returns a pointer to the command buffer of a command. |
| */ |
| static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd) |
| { |
| return (void *)cmd->buf; |
| } |
| |
| /** |
| * qcom_scm_get_response_buffer() - Get a pointer to a response buffer |
| * @rsp: response |
| * |
| * Returns a pointer to a response buffer of a response. |
| */ |
| static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp) |
| { |
| return (void *)rsp + le32_to_cpu(rsp->buf_offset); |
| } |
| |
| static u32 smc(u32 cmd_addr) |
| { |
| int context_id; |
| register u32 r0 asm("r0") = 1; |
| register u32 r1 asm("r1") = (u32)&context_id; |
| register u32 r2 asm("r2") = cmd_addr; |
| do { |
| asm volatile( |
| __asmeq("%0", "r0") |
| __asmeq("%1", "r0") |
| __asmeq("%2", "r1") |
| __asmeq("%3", "r2") |
| #ifdef REQUIRES_SEC |
| ".arch_extension sec\n" |
| #endif |
| "smc #0 @ switch to secure world\n" |
| : "=r" (r0) |
| : "r" (r0), "r" (r1), "r" (r2) |
| : "r3", "r12"); |
| } while (r0 == QCOM_SCM_INTERRUPTED); |
| |
| return r0; |
| } |
| |
| /** |
| * qcom_scm_call() - Send an SCM command |
| * @dev: struct device |
| * @svc_id: service identifier |
| * @cmd_id: command identifier |
| * @cmd_buf: command buffer |
| * @cmd_len: length of the command buffer |
| * @resp_buf: response buffer |
| * @resp_len: length of the response buffer |
| * |
| * Sends a command to the SCM and waits for the command to finish processing. |
| * |
| * A note on cache maintenance: |
| * Note that any buffers that are expected to be accessed by the secure world |
| * must be flushed before invoking qcom_scm_call and invalidated in the cache |
| * immediately after qcom_scm_call returns. Cache maintenance on the command |
| * and response buffers is taken care of by qcom_scm_call; however, callers are |
| * responsible for any other cached buffers passed over to the secure world. |
| */ |
| static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, |
| const void *cmd_buf, size_t cmd_len, void *resp_buf, |
| size_t resp_len) |
| { |
| int ret; |
| struct qcom_scm_command *cmd; |
| struct qcom_scm_response *rsp; |
| size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len; |
| dma_addr_t cmd_phys; |
| |
| cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); |
| if (!cmd) |
| return -ENOMEM; |
| |
| cmd->len = cpu_to_le32(alloc_len); |
| cmd->buf_offset = cpu_to_le32(sizeof(*cmd)); |
| cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len); |
| |
| cmd->id = cpu_to_le32((svc_id << 10) | cmd_id); |
| if (cmd_buf) |
| memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len); |
| |
| rsp = qcom_scm_command_to_response(cmd); |
| |
| cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, cmd_phys)) { |
| kfree(cmd); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&qcom_scm_lock); |
| ret = smc(cmd_phys); |
| if (ret < 0) |
| ret = qcom_scm_remap_error(ret); |
| mutex_unlock(&qcom_scm_lock); |
| if (ret) |
| goto out; |
| |
| do { |
| dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len, |
| sizeof(*rsp), DMA_FROM_DEVICE); |
| } while (!rsp->is_complete); |
| |
| if (resp_buf) { |
| dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len + |
| le32_to_cpu(rsp->buf_offset), |
| resp_len, DMA_FROM_DEVICE); |
| memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), |
| resp_len); |
| } |
| out: |
| dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE); |
| kfree(cmd); |
| return ret; |
| } |
| |
| #define SCM_CLASS_REGISTER (0x2 << 8) |
| #define SCM_MASK_IRQS BIT(5) |
| #define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \ |
| SCM_CLASS_REGISTER | \ |
| SCM_MASK_IRQS | \ |
| (n & 0xf)) |
| |
| /** |
| * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument |
| * @svc_id: service identifier |
| * @cmd_id: command identifier |
| * @arg1: first argument |
| * |
| * This shall only be used with commands that are guaranteed to be |
| * uninterruptable, atomic and SMP safe. |
| */ |
| static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1) |
| { |
| int context_id; |
| |
| register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1); |
| register u32 r1 asm("r1") = (u32)&context_id; |
| register u32 r2 asm("r2") = arg1; |
| |
| asm volatile( |
| __asmeq("%0", "r0") |
| __asmeq("%1", "r0") |
| __asmeq("%2", "r1") |
| __asmeq("%3", "r2") |
| #ifdef REQUIRES_SEC |
| ".arch_extension sec\n" |
| #endif |
| "smc #0 @ switch to secure world\n" |
| : "=r" (r0) |
| : "r" (r0), "r" (r1), "r" (r2) |
| : "r3", "r12"); |
| return r0; |
| } |
| |
| /** |
| * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments |
| * @svc_id: service identifier |
| * @cmd_id: command identifier |
| * @arg1: first argument |
| * @arg2: second argument |
| * |
| * This shall only be used with commands that are guaranteed to be |
| * uninterruptable, atomic and SMP safe. |
| */ |
| static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2) |
| { |
| int context_id; |
| |
| register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2); |
| register u32 r1 asm("r1") = (u32)&context_id; |
| register u32 r2 asm("r2") = arg1; |
| register u32 r3 asm("r3") = arg2; |
| |
| asm volatile( |
| __asmeq("%0", "r0") |
| __asmeq("%1", "r0") |
| __asmeq("%2", "r1") |
| __asmeq("%3", "r2") |
| __asmeq("%4", "r3") |
| #ifdef REQUIRES_SEC |
| ".arch_extension sec\n" |
| #endif |
| "smc #0 @ switch to secure world\n" |
| : "=r" (r0) |
| : "r" (r0), "r" (r1), "r" (r2), "r" (r3) |
| : "r12"); |
| return r0; |
| } |
| |
| u32 qcom_scm_get_version(void) |
| { |
| int context_id; |
| static u32 version = -1; |
| register u32 r0 asm("r0"); |
| register u32 r1 asm("r1"); |
| |
| if (version != -1) |
| return version; |
| |
| mutex_lock(&qcom_scm_lock); |
| |
| r0 = 0x1 << 8; |
| r1 = (u32)&context_id; |
| do { |
| asm volatile( |
| __asmeq("%0", "r0") |
| __asmeq("%1", "r1") |
| __asmeq("%2", "r0") |
| __asmeq("%3", "r1") |
| #ifdef REQUIRES_SEC |
| ".arch_extension sec\n" |
| #endif |
| "smc #0 @ switch to secure world\n" |
| : "=r" (r0), "=r" (r1) |
| : "r" (r0), "r" (r1) |
| : "r2", "r3", "r12"); |
| } while (r0 == QCOM_SCM_INTERRUPTED); |
| |
| version = r1; |
| mutex_unlock(&qcom_scm_lock); |
| |
| return version; |
| } |
| EXPORT_SYMBOL(qcom_scm_get_version); |
| |
| /** |
| * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus |
| * @entry: Entry point function for the cpus |
| * @cpus: The cpumask of cpus that will use the entry point |
| * |
| * Set the cold boot address of the cpus. Any cpu outside the supported |
| * range would be removed from the cpu present mask. |
| */ |
| int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) |
| { |
| int flags = 0; |
| int cpu; |
| int scm_cb_flags[] = { |
| QCOM_SCM_FLAG_COLDBOOT_CPU0, |
| QCOM_SCM_FLAG_COLDBOOT_CPU1, |
| QCOM_SCM_FLAG_COLDBOOT_CPU2, |
| QCOM_SCM_FLAG_COLDBOOT_CPU3, |
| }; |
| |
| if (!cpus || (cpus && cpumask_empty(cpus))) |
| return -EINVAL; |
| |
| for_each_cpu(cpu, cpus) { |
| if (cpu < ARRAY_SIZE(scm_cb_flags)) |
| flags |= scm_cb_flags[cpu]; |
| else |
| set_cpu_present(cpu, false); |
| } |
| |
| return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, |
| flags, virt_to_phys(entry)); |
| } |
| |
| /** |
| * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus |
| * @entry: Entry point function for the cpus |
| * @cpus: The cpumask of cpus that will use the entry point |
| * |
| * Set the Linux entry point for the SCM to transfer control to when coming |
| * out of a power down. CPU power down may be executed on cpuidle or hotplug. |
| */ |
| int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, |
| const cpumask_t *cpus) |
| { |
| int ret; |
| int flags = 0; |
| int cpu; |
| struct { |
| __le32 flags; |
| __le32 addr; |
| } cmd; |
| |
| /* |
| * Reassign only if we are switching from hotplug entry point |
| * to cpuidle entry point or vice versa. |
| */ |
| for_each_cpu(cpu, cpus) { |
| if (entry == qcom_scm_wb[cpu].entry) |
| continue; |
| flags |= qcom_scm_wb[cpu].flag; |
| } |
| |
| /* No change in entry function */ |
| if (!flags) |
| return 0; |
| |
| cmd.addr = cpu_to_le32(virt_to_phys(entry)); |
| cmd.flags = cpu_to_le32(flags); |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, |
| &cmd, sizeof(cmd), NULL, 0); |
| if (!ret) { |
| for_each_cpu(cpu, cpus) |
| qcom_scm_wb[cpu].entry = entry; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * qcom_scm_cpu_power_down() - Power down the cpu |
| * @flags - Flags to flush cache |
| * |
| * This is an end point to power down cpu. If there was a pending interrupt, |
| * the control would return from this function, otherwise, the cpu jumps to the |
| * warm boot entry point set for this cpu upon reset. |
| */ |
| void __qcom_scm_cpu_power_down(u32 flags) |
| { |
| qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC, |
| flags & QCOM_SCM_FLUSH_FLAG_MASK); |
| } |
| |
| int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) |
| { |
| int ret; |
| __le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id); |
| __le32 ret_val = 0; |
| |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, |
| &svc_cmd, sizeof(svc_cmd), &ret_val, |
| sizeof(ret_val)); |
| if (ret) |
| return ret; |
| |
| return le32_to_cpu(ret_val); |
| } |
| |
| int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, |
| u32 req_cnt, u32 *resp) |
| { |
| if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) |
| return -ERANGE; |
| |
| return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, |
| req, req_cnt * sizeof(*req), resp, sizeof(*resp)); |
| } |
| |
| void __qcom_scm_init(void) |
| { |
| } |
| |
| bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) |
| { |
| __le32 out; |
| __le32 in; |
| int ret; |
| |
| in = cpu_to_le32(peripheral); |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PAS_IS_SUPPORTED_CMD, |
| &in, sizeof(in), |
| &out, sizeof(out)); |
| |
| return ret ? false : !!out; |
| } |
| |
| int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, |
| dma_addr_t metadata_phys) |
| { |
| __le32 scm_ret; |
| int ret; |
| struct { |
| __le32 proc; |
| __le32 image_addr; |
| } request; |
| |
| request.proc = cpu_to_le32(peripheral); |
| request.image_addr = cpu_to_le32(metadata_phys); |
| |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PAS_INIT_IMAGE_CMD, |
| &request, sizeof(request), |
| &scm_ret, sizeof(scm_ret)); |
| |
| return ret ? : le32_to_cpu(scm_ret); |
| } |
| |
| int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, |
| phys_addr_t addr, phys_addr_t size) |
| { |
| __le32 scm_ret; |
| int ret; |
| struct { |
| __le32 proc; |
| __le32 addr; |
| __le32 len; |
| } request; |
| |
| request.proc = cpu_to_le32(peripheral); |
| request.addr = cpu_to_le32(addr); |
| request.len = cpu_to_le32(size); |
| |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PAS_MEM_SETUP_CMD, |
| &request, sizeof(request), |
| &scm_ret, sizeof(scm_ret)); |
| |
| return ret ? : le32_to_cpu(scm_ret); |
| } |
| |
| int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral) |
| { |
| __le32 out; |
| __le32 in; |
| int ret; |
| |
| in = cpu_to_le32(peripheral); |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PAS_AUTH_AND_RESET_CMD, |
| &in, sizeof(in), |
| &out, sizeof(out)); |
| |
| return ret ? : le32_to_cpu(out); |
| } |
| |
| int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) |
| { |
| __le32 out; |
| __le32 in; |
| int ret; |
| |
| in = cpu_to_le32(peripheral); |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PAS_SHUTDOWN_CMD, |
| &in, sizeof(in), |
| &out, sizeof(out)); |
| |
| return ret ? : le32_to_cpu(out); |
| } |
| |
| int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) |
| { |
| __le32 out; |
| __le32 in = cpu_to_le32(reset); |
| int ret; |
| |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, |
| &in, sizeof(in), |
| &out, sizeof(out)); |
| |
| return ret ? : le32_to_cpu(out); |
| } |
| |
| int __qcom_scm_set_dload_mode(struct device *dev, bool enable) |
| { |
| return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE, |
| enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0); |
| } |
| |
| int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id) |
| { |
| struct { |
| __le32 state; |
| __le32 id; |
| } req; |
| __le32 scm_ret = 0; |
| int ret; |
| |
| req.state = cpu_to_le32(state); |
| req.id = cpu_to_le32(id); |
| |
| ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE, |
| &req, sizeof(req), &scm_ret, sizeof(scm_ret)); |
| |
| return ret ? : le32_to_cpu(scm_ret); |
| } |
| |
| int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, |
| size_t mem_sz, phys_addr_t src, size_t src_sz, |
| phys_addr_t dest, size_t dest_sz) |
| { |
| return -ENODEV; |
| } |
| |
| int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id, |
| u32 spare) |
| { |
| return -ENODEV; |
| } |
| |
| int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare, |
| size_t *size) |
| { |
| return -ENODEV; |
| } |
| |
| int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size, |
| u32 spare) |
| { |
| return -ENODEV; |
| } |
| |
| int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr, |
| unsigned int *val) |
| { |
| int ret; |
| |
| ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr); |
| if (ret >= 0) |
| *val = ret; |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val) |
| { |
| return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE, |
| addr, val); |
| } |