|  | #include <linux/export.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/random.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/pci-direct.h> | 
|  | #include <asm/delay.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | # include <asm/mmconfig.h> | 
|  | # include <asm/set_memory.h> | 
|  | #endif | 
|  |  | 
|  | #include "cpu.h" | 
|  |  | 
|  | static const int amd_erratum_383[]; | 
|  | static const int amd_erratum_400[]; | 
|  | static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum); | 
|  |  | 
|  | /* | 
|  | * nodes_per_socket: Stores the number of nodes per socket. | 
|  | * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX | 
|  | * Node Identifiers[10:8] | 
|  | */ | 
|  | static u32 nodes_per_socket = 1; | 
|  |  | 
|  | static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) | 
|  | { | 
|  | u32 gprs[8] = { 0 }; | 
|  | int err; | 
|  |  | 
|  | WARN_ONCE((boot_cpu_data.x86 != 0xf), | 
|  | "%s should only be used on K8!\n", __func__); | 
|  |  | 
|  | gprs[1] = msr; | 
|  | gprs[7] = 0x9c5a203a; | 
|  |  | 
|  | err = rdmsr_safe_regs(gprs); | 
|  |  | 
|  | *p = gprs[0] | ((u64)gprs[2] << 32); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) | 
|  | { | 
|  | u32 gprs[8] = { 0 }; | 
|  |  | 
|  | WARN_ONCE((boot_cpu_data.x86 != 0xf), | 
|  | "%s should only be used on K8!\n", __func__); | 
|  |  | 
|  | gprs[0] = (u32)val; | 
|  | gprs[1] = msr; | 
|  | gprs[2] = val >> 32; | 
|  | gprs[7] = 0x9c5a203a; | 
|  |  | 
|  | return wrmsr_safe_regs(gprs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	B step AMD K6 before B 9730xxxx have hardware bugs that can cause | 
|  | *	misexecution of code under Linux. Owners of such processors should | 
|  | *	contact AMD for precise details and a CPU swap. | 
|  | * | 
|  | *	See	http://www.multimania.com/poulot/k6bug.html | 
|  | *	and	section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" | 
|  | *		(Publication # 21266  Issue Date: August 1998) | 
|  | * | 
|  | *	The following test is erm.. interesting. AMD neglected to up | 
|  | *	the chip setting when fixing the bug but they also tweaked some | 
|  | *	performance at the same time.. | 
|  | */ | 
|  |  | 
|  | extern __visible void vide(void); | 
|  | __asm__(".globl vide\n" | 
|  | ".type vide, @function\n" | 
|  | ".align 4\n" | 
|  | "vide: ret\n"); | 
|  |  | 
|  | static void init_amd_k5(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * General Systems BIOSen alias the cpu frequency registers | 
|  | * of the Elan at 0x000df000. Unfortunately, one of the Linux | 
|  | * drivers subsequently pokes it, and changes the CPU speed. | 
|  | * Workaround : Remove the unneeded alias. | 
|  | */ | 
|  | #define CBAR		(0xfffc) /* Configuration Base Address  (32-bit) */ | 
|  | #define CBAR_ENB	(0x80000000) | 
|  | #define CBAR_KEY	(0X000000CB) | 
|  | if (c->x86_model == 9 || c->x86_model == 10) { | 
|  | if (inl(CBAR) & CBAR_ENB) | 
|  | outl(0 | CBAR_KEY, CBAR); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_k6(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | u32 l, h; | 
|  | int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); | 
|  |  | 
|  | if (c->x86_model < 6) { | 
|  | /* Based on AMD doc 20734R - June 2000 */ | 
|  | if (c->x86_model == 0) { | 
|  | clear_cpu_cap(c, X86_FEATURE_APIC); | 
|  | set_cpu_cap(c, X86_FEATURE_PGE); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (c->x86_model == 6 && c->x86_stepping == 1) { | 
|  | const int K6_BUG_LOOP = 1000000; | 
|  | int n; | 
|  | void (*f_vide)(void); | 
|  | u64 d, d2; | 
|  |  | 
|  | pr_info("AMD K6 stepping B detected - "); | 
|  |  | 
|  | /* | 
|  | * It looks like AMD fixed the 2.6.2 bug and improved indirect | 
|  | * calls at the same time. | 
|  | */ | 
|  |  | 
|  | n = K6_BUG_LOOP; | 
|  | f_vide = vide; | 
|  | OPTIMIZER_HIDE_VAR(f_vide); | 
|  | d = rdtsc(); | 
|  | while (n--) | 
|  | f_vide(); | 
|  | d2 = rdtsc(); | 
|  | d = d2-d; | 
|  |  | 
|  | if (d > 20*K6_BUG_LOOP) | 
|  | pr_cont("system stability may be impaired when more than 32 MB are used.\n"); | 
|  | else | 
|  | pr_cont("probably OK (after B9730xxxx).\n"); | 
|  | } | 
|  |  | 
|  | /* K6 with old style WHCR */ | 
|  | if (c->x86_model < 8 || | 
|  | (c->x86_model == 8 && c->x86_stepping < 8)) { | 
|  | /* We can only write allocate on the low 508Mb */ | 
|  | if (mbytes > 508) | 
|  | mbytes = 508; | 
|  |  | 
|  | rdmsr(MSR_K6_WHCR, l, h); | 
|  | if ((l&0x0000FFFF) == 0) { | 
|  | unsigned long flags; | 
|  | l = (1<<0)|((mbytes/4)<<1); | 
|  | local_irq_save(flags); | 
|  | wbinvd(); | 
|  | wrmsr(MSR_K6_WHCR, l, h); | 
|  | local_irq_restore(flags); | 
|  | pr_info("Enabling old style K6 write allocation for %d Mb\n", | 
|  | mbytes); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((c->x86_model == 8 && c->x86_stepping > 7) || | 
|  | c->x86_model == 9 || c->x86_model == 13) { | 
|  | /* The more serious chips .. */ | 
|  |  | 
|  | if (mbytes > 4092) | 
|  | mbytes = 4092; | 
|  |  | 
|  | rdmsr(MSR_K6_WHCR, l, h); | 
|  | if ((l&0xFFFF0000) == 0) { | 
|  | unsigned long flags; | 
|  | l = ((mbytes>>2)<<22)|(1<<16); | 
|  | local_irq_save(flags); | 
|  | wbinvd(); | 
|  | wrmsr(MSR_K6_WHCR, l, h); | 
|  | local_irq_restore(flags); | 
|  | pr_info("Enabling new style K6 write allocation for %d Mb\n", | 
|  | mbytes); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (c->x86_model == 10) { | 
|  | /* AMD Geode LX is model 10 */ | 
|  | /* placeholder for any needed mods */ | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void init_amd_k7(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | u32 l, h; | 
|  |  | 
|  | /* | 
|  | * Bit 15 of Athlon specific MSR 15, needs to be 0 | 
|  | * to enable SSE on Palomino/Morgan/Barton CPU's. | 
|  | * If the BIOS didn't enable it already, enable it here. | 
|  | */ | 
|  | if (c->x86_model >= 6 && c->x86_model <= 10) { | 
|  | if (!cpu_has(c, X86_FEATURE_XMM)) { | 
|  | pr_info("Enabling disabled K7/SSE Support.\n"); | 
|  | msr_clear_bit(MSR_K7_HWCR, 15); | 
|  | set_cpu_cap(c, X86_FEATURE_XMM); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's been determined by AMD that Athlons since model 8 stepping 1 | 
|  | * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx | 
|  | * As per AMD technical note 27212 0.2 | 
|  | */ | 
|  | if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { | 
|  | rdmsr(MSR_K7_CLK_CTL, l, h); | 
|  | if ((l & 0xfff00000) != 0x20000000) { | 
|  | pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", | 
|  | l, ((l & 0x000fffff)|0x20000000)); | 
|  | wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | set_cpu_cap(c, X86_FEATURE_K7); | 
|  |  | 
|  | /* calling is from identify_secondary_cpu() ? */ | 
|  | if (!c->cpu_index) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Certain Athlons might work (for various values of 'work') in SMP | 
|  | * but they are not certified as MP capable. | 
|  | */ | 
|  | /* Athlon 660/661 is valid. */ | 
|  | if ((c->x86_model == 6) && ((c->x86_stepping == 0) || | 
|  | (c->x86_stepping == 1))) | 
|  | return; | 
|  |  | 
|  | /* Duron 670 is valid */ | 
|  | if ((c->x86_model == 7) && (c->x86_stepping == 0)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Athlon 662, Duron 671, and Athlon >model 7 have capability | 
|  | * bit. It's worth noting that the A5 stepping (662) of some | 
|  | * Athlon XP's have the MP bit set. | 
|  | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for | 
|  | * more. | 
|  | */ | 
|  | if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || | 
|  | ((c->x86_model == 7) && (c->x86_stepping >= 1)) || | 
|  | (c->x86_model > 7)) | 
|  | if (cpu_has(c, X86_FEATURE_MP)) | 
|  | return; | 
|  |  | 
|  | /* If we get here, not a certified SMP capable AMD system. */ | 
|  |  | 
|  | /* | 
|  | * Don't taint if we are running SMP kernel on a single non-MP | 
|  | * approved Athlon | 
|  | */ | 
|  | WARN_ONCE(1, "WARNING: This combination of AMD" | 
|  | " processors is not suitable for SMP.\n"); | 
|  | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * To workaround broken NUMA config.  Read the comment in | 
|  | * srat_detect_node(). | 
|  | */ | 
|  | static int nearby_node(int apicid) | 
|  | { | 
|  | int i, node; | 
|  |  | 
|  | for (i = apicid - 1; i >= 0; i--) { | 
|  | node = __apicid_to_node[i]; | 
|  | if (node != NUMA_NO_NODE && node_online(node)) | 
|  | return node; | 
|  | } | 
|  | for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { | 
|  | node = __apicid_to_node[i]; | 
|  | if (node != NUMA_NO_NODE && node_online(node)) | 
|  | return node; | 
|  | } | 
|  | return first_node(node_online_map); /* Shouldn't happen */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Fix up cpu_core_id for pre-F17h systems to be in the | 
|  | * [0 .. cores_per_node - 1] range. Not really needed but | 
|  | * kept so as not to break existing setups. | 
|  | */ | 
|  | static void legacy_fixup_core_id(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 cus_per_node; | 
|  |  | 
|  | if (c->x86 >= 0x17) | 
|  | return; | 
|  |  | 
|  | cus_per_node = c->x86_max_cores / nodes_per_socket; | 
|  | c->cpu_core_id %= cus_per_node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fixup core topology information for | 
|  | * (1) AMD multi-node processors | 
|  | *     Assumption: Number of cores in each internal node is the same. | 
|  | * (2) AMD processors supporting compute units | 
|  | */ | 
|  | static void amd_get_topology(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u8 node_id; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* get information required for multi-node processors */ | 
|  | if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { | 
|  | u32 eax, ebx, ecx, edx; | 
|  |  | 
|  | cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | node_id  = ecx & 0xff; | 
|  | smp_num_siblings = ((ebx >> 8) & 0xff) + 1; | 
|  |  | 
|  | if (c->x86 == 0x15) | 
|  | c->cu_id = ebx & 0xff; | 
|  |  | 
|  | if (c->x86 >= 0x17) { | 
|  | c->cpu_core_id = ebx & 0xff; | 
|  |  | 
|  | if (smp_num_siblings > 1) | 
|  | c->x86_max_cores /= smp_num_siblings; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may have multiple LLCs if L3 caches exist, so check if we | 
|  | * have an L3 cache by looking at the L3 cache CPUID leaf. | 
|  | */ | 
|  | if (cpuid_edx(0x80000006)) { | 
|  | if (c->x86 == 0x17) { | 
|  | /* | 
|  | * LLC is at the core complex level. | 
|  | * Core complex id is ApicId[3]. | 
|  | */ | 
|  | per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; | 
|  | } else { | 
|  | /* LLC is at the node level. */ | 
|  | per_cpu(cpu_llc_id, cpu) = node_id; | 
|  | } | 
|  | } | 
|  | } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_FAM10H_NODE_ID, value); | 
|  | node_id = value & 7; | 
|  |  | 
|  | per_cpu(cpu_llc_id, cpu) = node_id; | 
|  | } else | 
|  | return; | 
|  |  | 
|  | if (nodes_per_socket > 1) { | 
|  | set_cpu_cap(c, X86_FEATURE_AMD_DCM); | 
|  | legacy_fixup_core_id(c); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. | 
|  | * Assumes number of cores is a power of two. | 
|  | */ | 
|  | static void amd_detect_cmp(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned bits; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | bits = c->x86_coreid_bits; | 
|  | /* Low order bits define the core id (index of core in socket) */ | 
|  | c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); | 
|  | /* Convert the initial APIC ID into the socket ID */ | 
|  | c->phys_proc_id = c->initial_apicid >> bits; | 
|  | /* use socket ID also for last level cache */ | 
|  | per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; | 
|  | amd_get_topology(c); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | u16 amd_get_nb_id(int cpu) | 
|  | { | 
|  | u16 id = 0; | 
|  | #ifdef CONFIG_SMP | 
|  | id = per_cpu(cpu_llc_id, cpu); | 
|  | #endif | 
|  | return id; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amd_get_nb_id); | 
|  |  | 
|  | u32 amd_get_nodes_per_socket(void) | 
|  | { | 
|  | return nodes_per_socket; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); | 
|  |  | 
|  | static void srat_detect_node(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | int cpu = smp_processor_id(); | 
|  | int node; | 
|  | unsigned apicid = c->apicid; | 
|  |  | 
|  | node = numa_cpu_node(cpu); | 
|  | if (node == NUMA_NO_NODE) | 
|  | node = per_cpu(cpu_llc_id, cpu); | 
|  |  | 
|  | /* | 
|  | * On multi-fabric platform (e.g. Numascale NumaChip) a | 
|  | * platform-specific handler needs to be called to fixup some | 
|  | * IDs of the CPU. | 
|  | */ | 
|  | if (x86_cpuinit.fixup_cpu_id) | 
|  | x86_cpuinit.fixup_cpu_id(c, node); | 
|  |  | 
|  | if (!node_online(node)) { | 
|  | /* | 
|  | * Two possibilities here: | 
|  | * | 
|  | * - The CPU is missing memory and no node was created.  In | 
|  | *   that case try picking one from a nearby CPU. | 
|  | * | 
|  | * - The APIC IDs differ from the HyperTransport node IDs | 
|  | *   which the K8 northbridge parsing fills in.  Assume | 
|  | *   they are all increased by a constant offset, but in | 
|  | *   the same order as the HT nodeids.  If that doesn't | 
|  | *   result in a usable node fall back to the path for the | 
|  | *   previous case. | 
|  | * | 
|  | * This workaround operates directly on the mapping between | 
|  | * APIC ID and NUMA node, assuming certain relationship | 
|  | * between APIC ID, HT node ID and NUMA topology.  As going | 
|  | * through CPU mapping may alter the outcome, directly | 
|  | * access __apicid_to_node[]. | 
|  | */ | 
|  | int ht_nodeid = c->initial_apicid; | 
|  |  | 
|  | if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) | 
|  | node = __apicid_to_node[ht_nodeid]; | 
|  | /* Pick a nearby node */ | 
|  | if (!node_online(node)) | 
|  | node = nearby_node(apicid); | 
|  | } | 
|  | numa_set_node(cpu, node); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void early_init_amd_mc(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned bits, ecx; | 
|  |  | 
|  | /* Multi core CPU? */ | 
|  | if (c->extended_cpuid_level < 0x80000008) | 
|  | return; | 
|  |  | 
|  | ecx = cpuid_ecx(0x80000008); | 
|  |  | 
|  | c->x86_max_cores = (ecx & 0xff) + 1; | 
|  |  | 
|  | /* CPU telling us the core id bits shift? */ | 
|  | bits = (ecx >> 12) & 0xF; | 
|  |  | 
|  | /* Otherwise recompute */ | 
|  | if (bits == 0) { | 
|  | while ((1 << bits) < c->x86_max_cores) | 
|  | bits++; | 
|  | } | 
|  |  | 
|  | c->x86_coreid_bits = bits; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bsp_init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (c->x86 >= 0xf) { | 
|  | unsigned long long tseg; | 
|  |  | 
|  | /* | 
|  | * Split up direct mapping around the TSEG SMM area. | 
|  | * Don't do it for gbpages because there seems very little | 
|  | * benefit in doing so. | 
|  | */ | 
|  | if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) { | 
|  | unsigned long pfn = tseg >> PAGE_SHIFT; | 
|  |  | 
|  | pr_debug("tseg: %010llx\n", tseg); | 
|  | if (pfn_range_is_mapped(pfn, pfn + 1)) | 
|  | set_memory_4k((unsigned long)__va(tseg), 1); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { | 
|  |  | 
|  | if (c->x86 > 0x10 || | 
|  | (c->x86 == 0x10 && c->x86_model >= 0x2)) { | 
|  | u64 val; | 
|  |  | 
|  | rdmsrl(MSR_K7_HWCR, val); | 
|  | if (!(val & BIT(24))) | 
|  | pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c->x86 == 0x15) { | 
|  | unsigned long upperbit; | 
|  | u32 cpuid, assoc; | 
|  |  | 
|  | cpuid	 = cpuid_edx(0x80000005); | 
|  | assoc	 = cpuid >> 16 & 0xff; | 
|  | upperbit = ((cpuid >> 24) << 10) / assoc; | 
|  |  | 
|  | va_align.mask	  = (upperbit - 1) & PAGE_MASK; | 
|  | va_align.flags    = ALIGN_VA_32 | ALIGN_VA_64; | 
|  |  | 
|  | /* A random value per boot for bit slice [12:upper_bit) */ | 
|  | va_align.bits = get_random_int() & va_align.mask; | 
|  | } | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_MWAITX)) | 
|  | use_mwaitx_delay(); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { | 
|  | u32 ecx; | 
|  |  | 
|  | ecx = cpuid_ecx(0x8000001e); | 
|  | nodes_per_socket = ((ecx >> 8) & 7) + 1; | 
|  | } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_FAM10H_NODE_ID, value); | 
|  | nodes_per_socket = ((value >> 3) & 7) + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | /* | 
|  | * BIOS support is required for SME and SEV. | 
|  | *   For SME: If BIOS has enabled SME then adjust x86_phys_bits by | 
|  | *	      the SME physical address space reduction value. | 
|  | *	      If BIOS has not enabled SME then don't advertise the | 
|  | *	      SME feature (set in scattered.c). | 
|  | *   For SEV: If BIOS has not enabled SEV then don't advertise the | 
|  | *            SEV feature (set in scattered.c). | 
|  | * | 
|  | *   In all cases, since support for SME and SEV requires long mode, | 
|  | *   don't advertise the feature under CONFIG_X86_32. | 
|  | */ | 
|  | if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { | 
|  | /* Check if memory encryption is enabled */ | 
|  | rdmsrl(MSR_K8_SYSCFG, msr); | 
|  | if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) | 
|  | goto clear_all; | 
|  |  | 
|  | /* | 
|  | * Always adjust physical address bits. Even though this | 
|  | * will be a value above 32-bits this is still done for | 
|  | * CONFIG_X86_32 so that accurate values are reported. | 
|  | */ | 
|  | c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_X86_32)) | 
|  | goto clear_all; | 
|  |  | 
|  | rdmsrl(MSR_K7_HWCR, msr); | 
|  | if (!(msr & MSR_K7_HWCR_SMMLOCK)) | 
|  | goto clear_sev; | 
|  |  | 
|  | return; | 
|  |  | 
|  | clear_all: | 
|  | clear_cpu_cap(c, X86_FEATURE_SME); | 
|  | clear_sev: | 
|  | clear_cpu_cap(c, X86_FEATURE_SEV); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void early_init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 dummy; | 
|  |  | 
|  | early_init_amd_mc(c); | 
|  |  | 
|  | rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); | 
|  |  | 
|  | /* | 
|  | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate | 
|  | * with P/T states and does not stop in deep C-states | 
|  | */ | 
|  | if (c->x86_power & (1 << 8)) { | 
|  | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 
|  | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 
|  | } | 
|  |  | 
|  | /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ | 
|  | if (c->x86_power & BIT(12)) | 
|  | set_cpu_cap(c, X86_FEATURE_ACC_POWER); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | set_cpu_cap(c, X86_FEATURE_SYSCALL32); | 
|  | #else | 
|  | /*  Set MTRR capability flag if appropriate */ | 
|  | if (c->x86 == 5) | 
|  | if (c->x86_model == 13 || c->x86_model == 9 || | 
|  | (c->x86_model == 8 && c->x86_stepping >= 8)) | 
|  | set_cpu_cap(c, X86_FEATURE_K6_MTRR); | 
|  | #endif | 
|  | #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) | 
|  | /* | 
|  | * ApicID can always be treated as an 8-bit value for AMD APIC versions | 
|  | * >= 0x10, but even old K8s came out of reset with version 0x10. So, we | 
|  | * can safely set X86_FEATURE_EXTD_APICID unconditionally for families | 
|  | * after 16h. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_APIC)) { | 
|  | if (c->x86 > 0x16) | 
|  | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); | 
|  | else if (c->x86 >= 0xf) { | 
|  | /* check CPU config space for extended APIC ID */ | 
|  | unsigned int val; | 
|  |  | 
|  | val = read_pci_config(0, 24, 0, 0x68); | 
|  | if ((val >> 17 & 0x3) == 0x3) | 
|  | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is only needed to tell the kernel whether to use VMCALL | 
|  | * and VMMCALL.  VMMCALL is never executed except under virt, so | 
|  | * we can set it unconditionally. | 
|  | */ | 
|  | set_cpu_cap(c, X86_FEATURE_VMMCALL); | 
|  |  | 
|  | /* F16h erratum 793, CVE-2013-6885 */ | 
|  | if (c->x86 == 0x16 && c->x86_model <= 0xf) | 
|  | msr_set_bit(MSR_AMD64_LS_CFG, 15); | 
|  |  | 
|  | /* | 
|  | * Check whether the machine is affected by erratum 400. This is | 
|  | * used to select the proper idle routine and to enable the check | 
|  | * whether the machine is affected in arch_post_acpi_init(), which | 
|  | * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. | 
|  | */ | 
|  | if (cpu_has_amd_erratum(c, amd_erratum_400)) | 
|  | set_cpu_bug(c, X86_BUG_AMD_E400); | 
|  |  | 
|  | early_detect_mem_encrypt(c); | 
|  | } | 
|  |  | 
|  | static void init_amd_k8(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 level; | 
|  | u64 value; | 
|  |  | 
|  | /* On C+ stepping K8 rep microcode works well for copy/memset */ | 
|  | level = cpuid_eax(1); | 
|  | if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) | 
|  | set_cpu_cap(c, X86_FEATURE_REP_GOOD); | 
|  |  | 
|  | /* | 
|  | * Some BIOSes incorrectly force this feature, but only K8 revision D | 
|  | * (model = 0x14) and later actually support it. | 
|  | * (AMD Erratum #110, docId: 25759). | 
|  | */ | 
|  | if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { | 
|  | clear_cpu_cap(c, X86_FEATURE_LAHF_LM); | 
|  | if (!rdmsrl_amd_safe(0xc001100d, &value)) { | 
|  | value &= ~BIT_64(32); | 
|  | wrmsrl_amd_safe(0xc001100d, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!c->x86_model_id[0]) | 
|  | strcpy(c->x86_model_id, "Hammer"); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Disable TLB flush filter by setting HWCR.FFDIS on K8 | 
|  | * bit 6 of msr C001_0015 | 
|  | * | 
|  | * Errata 63 for SH-B3 steppings | 
|  | * Errata 122 for all steppings (F+ have it disabled by default) | 
|  | */ | 
|  | msr_set_bit(MSR_K7_HWCR, 6); | 
|  | #endif | 
|  | set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); | 
|  | } | 
|  |  | 
|  | static void init_amd_gh(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* do this for boot cpu */ | 
|  | if (c == &boot_cpu_data) | 
|  | check_enable_amd_mmconf_dmi(); | 
|  |  | 
|  | fam10h_check_enable_mmcfg(); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Disable GART TLB Walk Errors on Fam10h. We do this here because this | 
|  | * is always needed when GART is enabled, even in a kernel which has no | 
|  | * MCE support built in. BIOS should disable GartTlbWlk Errors already. | 
|  | * If it doesn't, we do it here as suggested by the BKDG. | 
|  | * | 
|  | * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 | 
|  | */ | 
|  | msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); | 
|  |  | 
|  | /* | 
|  | * On family 10h BIOS may not have properly enabled WC+ support, causing | 
|  | * it to be converted to CD memtype. This may result in performance | 
|  | * degradation for certain nested-paging guests. Prevent this conversion | 
|  | * by clearing bit 24 in MSR_AMD64_BU_CFG2. | 
|  | * | 
|  | * NOTE: we want to use the _safe accessors so as not to #GP kvm | 
|  | * guests on older kvm hosts. | 
|  | */ | 
|  | msr_clear_bit(MSR_AMD64_BU_CFG2, 24); | 
|  |  | 
|  | if (cpu_has_amd_erratum(c, amd_erratum_383)) | 
|  | set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); | 
|  | } | 
|  |  | 
|  | #define MSR_AMD64_DE_CFG	0xC0011029 | 
|  |  | 
|  | static void init_amd_ln(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Apply erratum 665 fix unconditionally so machines without a BIOS | 
|  | * fix work. | 
|  | */ | 
|  | msr_set_bit(MSR_AMD64_DE_CFG, 31); | 
|  | } | 
|  |  | 
|  | static void init_amd_bd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | /* re-enable TopologyExtensions if switched off by BIOS */ | 
|  | if ((c->x86_model >= 0x10) && (c->x86_model <= 0x6f) && | 
|  | !cpu_has(c, X86_FEATURE_TOPOEXT)) { | 
|  |  | 
|  | if (msr_set_bit(0xc0011005, 54) > 0) { | 
|  | rdmsrl(0xc0011005, value); | 
|  | if (value & BIT_64(54)) { | 
|  | set_cpu_cap(c, X86_FEATURE_TOPOEXT); | 
|  | pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The way access filter has a performance penalty on some workloads. | 
|  | * Disable it on the affected CPUs. | 
|  | */ | 
|  | if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { | 
|  | if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { | 
|  | value |= 0x1E; | 
|  | wrmsrl_safe(MSR_F15H_IC_CFG, value); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_amd_zn(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects | 
|  | * all up to and including B1. | 
|  | */ | 
|  | if (c->x86_model <= 1 && c->x86_stepping <= 1) | 
|  | set_cpu_cap(c, X86_FEATURE_CPB); | 
|  | } | 
|  |  | 
|  | static void init_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | early_init_amd(c); | 
|  |  | 
|  | /* | 
|  | * Bit 31 in normal CPUID used for nonstandard 3DNow ID; | 
|  | * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway | 
|  | */ | 
|  | clear_cpu_cap(c, 0*32+31); | 
|  |  | 
|  | if (c->x86 >= 0x10) | 
|  | set_cpu_cap(c, X86_FEATURE_REP_GOOD); | 
|  |  | 
|  | /* get apicid instead of initial apic id from cpuid */ | 
|  | c->apicid = hard_smp_processor_id(); | 
|  |  | 
|  | /* K6s reports MCEs but don't actually have all the MSRs */ | 
|  | if (c->x86 < 6) | 
|  | clear_cpu_cap(c, X86_FEATURE_MCE); | 
|  |  | 
|  | switch (c->x86) { | 
|  | case 4:    init_amd_k5(c); break; | 
|  | case 5:    init_amd_k6(c); break; | 
|  | case 6:	   init_amd_k7(c); break; | 
|  | case 0xf:  init_amd_k8(c); break; | 
|  | case 0x10: init_amd_gh(c); break; | 
|  | case 0x12: init_amd_ln(c); break; | 
|  | case 0x15: init_amd_bd(c); break; | 
|  | case 0x17: init_amd_zn(c); break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable workaround for FXSAVE leak on CPUs | 
|  | * without a XSaveErPtr feature | 
|  | */ | 
|  | if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) | 
|  | set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); | 
|  |  | 
|  | cpu_detect_cache_sizes(c); | 
|  |  | 
|  | /* Multi core CPU? */ | 
|  | if (c->extended_cpuid_level >= 0x80000008) { | 
|  | amd_detect_cmp(c); | 
|  | srat_detect_node(c); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | detect_ht(c); | 
|  | #endif | 
|  |  | 
|  | init_amd_cacheinfo(c); | 
|  |  | 
|  | if (c->x86 >= 0xf) | 
|  | set_cpu_cap(c, X86_FEATURE_K8); | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_XMM2)) { | 
|  | unsigned long long val; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * A serializing LFENCE has less overhead than MFENCE, so | 
|  | * use it for execution serialization.  On families which | 
|  | * don't have that MSR, LFENCE is already serializing. | 
|  | * msr_set_bit() uses the safe accessors, too, even if the MSR | 
|  | * is not present. | 
|  | */ | 
|  | msr_set_bit(MSR_F10H_DECFG, | 
|  | MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT); | 
|  |  | 
|  | /* | 
|  | * Verify that the MSR write was successful (could be running | 
|  | * under a hypervisor) and only then assume that LFENCE is | 
|  | * serializing. | 
|  | */ | 
|  | ret = rdmsrl_safe(MSR_F10H_DECFG, &val); | 
|  | if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) { | 
|  | /* A serializing LFENCE stops RDTSC speculation */ | 
|  | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); | 
|  | } else { | 
|  | /* MFENCE stops RDTSC speculation */ | 
|  | set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Family 0x12 and above processors have APIC timer | 
|  | * running in deep C states. | 
|  | */ | 
|  | if (c->x86 > 0x11) | 
|  | set_cpu_cap(c, X86_FEATURE_ARAT); | 
|  |  | 
|  | /* 3DNow or LM implies PREFETCHW */ | 
|  | if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) | 
|  | if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) | 
|  | set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); | 
|  |  | 
|  | /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ | 
|  | if (!cpu_has(c, X86_FEATURE_XENPV)) | 
|  | set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) | 
|  | { | 
|  | /* AMD errata T13 (order #21922) */ | 
|  | if ((c->x86 == 6)) { | 
|  | /* Duron Rev A0 */ | 
|  | if (c->x86_model == 3 && c->x86_stepping == 0) | 
|  | size = 64; | 
|  | /* Tbird rev A1/A2 */ | 
|  | if (c->x86_model == 4 && | 
|  | (c->x86_stepping == 0 || c->x86_stepping == 1)) | 
|  | size = 256; | 
|  | } | 
|  | return size; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u32 ebx, eax, ecx, edx; | 
|  | u16 mask = 0xfff; | 
|  |  | 
|  | if (c->x86 < 0xf) | 
|  | return; | 
|  |  | 
|  | if (c->extended_cpuid_level < 0x80000006) | 
|  | return; | 
|  |  | 
|  | cpuid(0x80000006, &eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; | 
|  | tlb_lli_4k[ENTRIES] = ebx & mask; | 
|  |  | 
|  | /* | 
|  | * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB | 
|  | * characteristics from the CPUID function 0x80000005 instead. | 
|  | */ | 
|  | if (c->x86 == 0xf) { | 
|  | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); | 
|  | mask = 0xff; | 
|  | } | 
|  |  | 
|  | /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ | 
|  | if (!((eax >> 16) & mask)) | 
|  | tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; | 
|  | else | 
|  | tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; | 
|  |  | 
|  | /* a 4M entry uses two 2M entries */ | 
|  | tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; | 
|  |  | 
|  | /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ | 
|  | if (!(eax & mask)) { | 
|  | /* Erratum 658 */ | 
|  | if (c->x86 == 0x15 && c->x86_model <= 0x1f) { | 
|  | tlb_lli_2m[ENTRIES] = 1024; | 
|  | } else { | 
|  | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); | 
|  | tlb_lli_2m[ENTRIES] = eax & 0xff; | 
|  | } | 
|  | } else | 
|  | tlb_lli_2m[ENTRIES] = eax & mask; | 
|  |  | 
|  | tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; | 
|  | } | 
|  |  | 
|  | static const struct cpu_dev amd_cpu_dev = { | 
|  | .c_vendor	= "AMD", | 
|  | .c_ident	= { "AuthenticAMD" }, | 
|  | #ifdef CONFIG_X86_32 | 
|  | .legacy_models = { | 
|  | { .family = 4, .model_names = | 
|  | { | 
|  | [3] = "486 DX/2", | 
|  | [7] = "486 DX/2-WB", | 
|  | [8] = "486 DX/4", | 
|  | [9] = "486 DX/4-WB", | 
|  | [14] = "Am5x86-WT", | 
|  | [15] = "Am5x86-WB" | 
|  | } | 
|  | }, | 
|  | }, | 
|  | .legacy_cache_size = amd_size_cache, | 
|  | #endif | 
|  | .c_early_init   = early_init_amd, | 
|  | .c_detect_tlb	= cpu_detect_tlb_amd, | 
|  | .c_bsp_init	= bsp_init_amd, | 
|  | .c_init		= init_amd, | 
|  | .c_x86_vendor	= X86_VENDOR_AMD, | 
|  | }; | 
|  |  | 
|  | cpu_dev_register(amd_cpu_dev); | 
|  |  | 
|  | /* | 
|  | * AMD errata checking | 
|  | * | 
|  | * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or | 
|  | * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that | 
|  | * have an OSVW id assigned, which it takes as first argument. Both take a | 
|  | * variable number of family-specific model-stepping ranges created by | 
|  | * AMD_MODEL_RANGE(). | 
|  | * | 
|  | * Example: | 
|  | * | 
|  | * const int amd_erratum_319[] = | 
|  | *	AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), | 
|  | *			   AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), | 
|  | *			   AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); | 
|  | */ | 
|  |  | 
|  | #define AMD_LEGACY_ERRATUM(...)		{ -1, __VA_ARGS__, 0 } | 
|  | #define AMD_OSVW_ERRATUM(osvw_id, ...)	{ osvw_id, __VA_ARGS__, 0 } | 
|  | #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ | 
|  | ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) | 
|  | #define AMD_MODEL_RANGE_FAMILY(range)	(((range) >> 24) & 0xff) | 
|  | #define AMD_MODEL_RANGE_START(range)	(((range) >> 12) & 0xfff) | 
|  | #define AMD_MODEL_RANGE_END(range)	((range) & 0xfff) | 
|  |  | 
|  | static const int amd_erratum_400[] = | 
|  | AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), | 
|  | AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); | 
|  |  | 
|  | static const int amd_erratum_383[] = | 
|  | AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); | 
|  |  | 
|  |  | 
|  | static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) | 
|  | { | 
|  | int osvw_id = *erratum++; | 
|  | u32 range; | 
|  | u32 ms; | 
|  |  | 
|  | if (osvw_id >= 0 && osvw_id < 65536 && | 
|  | cpu_has(cpu, X86_FEATURE_OSVW)) { | 
|  | u64 osvw_len; | 
|  |  | 
|  | rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); | 
|  | if (osvw_id < osvw_len) { | 
|  | u64 osvw_bits; | 
|  |  | 
|  | rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), | 
|  | osvw_bits); | 
|  | return osvw_bits & (1ULL << (osvw_id & 0x3f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OSVW unavailable or ID unknown, match family-model-stepping range */ | 
|  | ms = (cpu->x86_model << 4) | cpu->x86_stepping; | 
|  | while ((range = *erratum++)) | 
|  | if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && | 
|  | (ms >= AMD_MODEL_RANGE_START(range)) && | 
|  | (ms <= AMD_MODEL_RANGE_END(range))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void set_dr_addr_mask(unsigned long mask, int dr) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_BPEXT)) | 
|  | return; | 
|  |  | 
|  | switch (dr) { | 
|  | case 0: | 
|  | wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0); | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } |