blob: 36ed61b595ca3287b8a28db2e1a15fb459877d1a [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: bssdb.c
*
* Purpose: Handles the Basic Service Set & Node Database functions
*
* Functions:
* BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
* BSSvClearBSSList - Clear BSS List
* BSSbInsertToBSSList - Insert a BSS set into known BSS list
* BSSbUpdateToBSSList - Update BSS set in known BSS list
* BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
* BSSvCreateOneNode - Allocate an Node for Node DB
* BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
* BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
* BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
*
* Revision History:
*
* Author: Lyndon Chen
*
* Date: July 17, 2002
*
*/
#include "ttype.h"
#include "tmacro.h"
#include "tether.h"
#include "device.h"
#include "80211hdr.h"
#include "bssdb.h"
#include "wmgr.h"
#include "datarate.h"
#include "desc.h"
#include "wcmd.h"
#include "wpa.h"
#include "baseband.h"
#include "rf.h"
#include "card.h"
#include "mac.h"
#include "wpa2.h"
#include "control.h"
#include "rndis.h"
#include "iowpa.h"
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Classes ----------------------------*/
/*--------------------- Static Variables --------------------------*/
static int msglevel =MSG_LEVEL_INFO;
//static int msglevel =MSG_LEVEL_DEBUG;
const WORD awHWRetry0[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
{RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
{RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
{RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
{RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
};
const WORD awHWRetry1[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
{RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
{RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
{RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
{RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
};
/*--------------------- Static Functions --------------------------*/
void s_vCheckSensitivity(void *hDeviceContext);
void s_vCheckPreEDThreshold(void *hDeviceContext);
#ifdef Calcu_LinkQual
void s_uCalculateLinkQual(void *hDeviceContext);
#endif
/*--------------------- Export Variables --------------------------*/
/*--------------------- Export Functions --------------------------*/
/*+
*
* Routine Description:
* Search known BSS list for Desire SSID or BSSID.
*
* Return Value:
* PTR to KnownBSS or NULL
*
-*/
PKnownBSS BSSpSearchBSSList(void *hDeviceContext,
PBYTE pbyDesireBSSID,
PBYTE pbyDesireSSID,
CARD_PHY_TYPE ePhyType)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
PBYTE pbyBSSID = NULL;
PWLAN_IE_SSID pSSID = NULL;
PKnownBSS pCurrBSS = NULL;
PKnownBSS pSelect = NULL;
BYTE ZeroBSSID[WLAN_BSSID_LEN]={0x00,0x00,0x00,0x00,0x00,0x00};
unsigned int ii = 0;
unsigned int jj = 0;
if (pbyDesireBSSID != NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSpSearchBSSList BSSID[%02X %02X %02X-%02X %02X %02X]\n",
*pbyDesireBSSID,*(pbyDesireBSSID+1),*(pbyDesireBSSID+2),
*(pbyDesireBSSID+3),*(pbyDesireBSSID+4),*(pbyDesireBSSID+5));
if ((!IS_BROADCAST_ADDRESS(pbyDesireBSSID)) &&
(memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
pbyBSSID = pbyDesireBSSID;
}
}
if (pbyDesireSSID != NULL) {
if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
}
}
if ((pbyBSSID != NULL)&&(pDevice->bRoaming == FALSE)) {
// match BSSID first
for (ii = 0; ii <MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
//2008-0718-01<Add>by MikeLiu
pCurrBSS->bSelected = FALSE;
if ((pCurrBSS->bActive) &&
(pCurrBSS->bSelected == FALSE)) {
if (IS_ETH_ADDRESS_EQUAL(pCurrBSS->abyBSSID, pbyBSSID)) {
if (pSSID != NULL) {
// compare ssid
if ( !memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len)) {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) {
pCurrBSS->bSelected = TRUE;
return(pCurrBSS);
}
}
} else {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) {
pCurrBSS->bSelected = TRUE;
return(pCurrBSS);
}
}
}
}
}
} else {
// ignore BSSID
for (ii = 0; ii <MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
//2007-0721-01<Mark>by MikeLiu
// if ((pCurrBSS->bActive) &&
// (pCurrBSS->bSelected == FALSE)) {
//2007-0721-01<Add>by MikeLiu
pCurrBSS->bSelected = FALSE;
if (pCurrBSS->bActive) {
if (pSSID != NULL) {
// matched SSID
if (memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len) ||
(pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
// SSID not match skip this BSS
continue;
}
}
if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
){
// Type not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
continue;
}
if (ePhyType != PHY_TYPE_AUTO) {
if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
// PhyType not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
continue;
}
}
/*
if (pMgmt->eAuthenMode < WMAC_AUTH_WPA) {
if (pCurrBSS->bWPAValid == TRUE) {
// WPA AP will reject connection of station without WPA enable.
continue;
}
} else if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK)) {
if (pCurrBSS->bWPAValid == FALSE) {
// station with WPA enable can't join NonWPA AP.
continue;
}
} else if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if (pCurrBSS->bWPA2Valid == FALSE) {
// station with WPA2 enable can't join NonWPA2 AP.
continue;
}
}
*/
//DavidWang
pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSpSearchBSSList pSelect1[%02X %02X %02X-%02X %02X %02X]\n",*pCurrBSS->abyBSSID,*(pCurrBSS->abyBSSID+1),*(pCurrBSS->abyBSSID+2),*(pCurrBSS->abyBSSID+3),*(pCurrBSS->abyBSSID+4),*(pCurrBSS->abyBSSID+5));
jj++;
//DavidWang
if (pSelect == NULL) {
pSelect = pCurrBSS;
} else {
// compare RSSI, select signal strong one
if (pCurrBSS->uRSSI < pSelect->uRSSI) {
pSelect = pCurrBSS;
}
}
}
}
//DavidWang
pDevice->bSameBSSMaxNum = jj;
//DavidWang
if (pSelect != NULL) {
pSelect->bSelected = TRUE;
if (pDevice->bRoaming == FALSE) {
// Einsn Add @20070907
memset(pbyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
}
return(pSelect);
}
}
return(NULL);
}
/*+
*
* Routine Description:
* Clear BSS List
*
* Return Value:
* None.
*
-*/
void BSSvClearBSSList(void *hDeviceContext, BOOL bKeepCurrBSSID)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (bKeepCurrBSSID) {
if (pMgmt->sBSSList[ii].bActive &&
IS_ETH_ADDRESS_EQUAL(pMgmt->sBSSList[ii].abyBSSID, pMgmt->abyCurrBSSID)) {
//mike mark: there are two same BSSID in list if that AP is in hidden ssid mode,one 's SSID is null,
// but other's is obvious, so if it acssociate with your STA exactly,you must keep two
// of them!!!!!!!!!
// bKeepCurrBSSID = FALSE;
continue;
}
}
/*
if ((pMgmt->sBSSList[ii].bActive) && (pMgmt->sBSSList[ii].uClearCount < BSS_CLEAR_COUNT)) {
pMgmt->sBSSList[ii].uClearCount ++;
continue;
}
*/
pMgmt->sBSSList[ii].bActive = FALSE;
memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
}
BSSvClearAnyBSSJoinRecord(pDevice);
return;
}
/*+
*
* Routine Description:
* search BSS list by BSSID & SSID if matched
*
* Return Value:
* TRUE if found.
*
-*/
PKnownBSS BSSpAddrIsInBSSList(void *hDeviceContext,
PBYTE abyBSSID,
PWLAN_IE_SSID pSSID)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
PKnownBSS pBSSList = NULL;
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = &(pMgmt->sBSSList[ii]);
if (pBSSList->bActive) {
if (IS_ETH_ADDRESS_EQUAL(pBSSList->abyBSSID, abyBSSID)) {
if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
if (memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
pSSID->len) == 0)
return pBSSList;
}
}
}
}
return NULL;
};
/*+
*
* Routine Description:
* Insert a BSS set into known BSS list
*
* Return Value:
* TRUE if success.
*
-*/
BOOL BSSbInsertToBSSList(void *hDeviceContext,
PBYTE abyBSSIDAddr,
QWORD qwTimestamp,
WORD wBeaconInterval,
WORD wCapInfo,
BYTE byCurrChannel,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
unsigned int uIELength,
PBYTE pbyIEs,
void *pRxPacketContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
PKnownBSS pBSSList = NULL;
unsigned int ii;
BOOL bParsingQuiet = FALSE;
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
if (!pBSSList->bActive)
break;
}
if (ii == MAX_BSS_NUM){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
return FALSE;
}
// save the BSS info
pBSSList->bActive = TRUE;
memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
pBSSList->uChannel = byCurrChannel;
if (pSuppRates->len > WLAN_RATES_MAXLEN)
pSuppRates->len = WLAN_RATES_MAXLEN;
memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) {
if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
pExtSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
} else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == TRUE) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = TRUE;
}
}
WPA_ClearRSN(pBSSList);
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList);
if (pRSN != NULL) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength -
(unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == TRUE)) {
PSKeyItem pTransmitKey = NULL;
BOOL bIs802_1x = FALSE;
for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
bIs802_1x = TRUE;
break;
}
}
if ((bIs802_1x == TRUE) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
bAdd_PMKID_Candidate((void *) pDevice,
pBSSList->abyBSSID,
&pBSSList->sRSNCapObj);
if ((pDevice->bLinkPass == TRUE) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == TRUE) ||
(KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == TRUE)) {
pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
pDevice->gsPMKIDCandidate.Version = 1;
}
}
}
}
if (pDevice->bUpdateBBVGA) {
// Moniter if RSSI is too strong.
pBSSList->byRSSIStatCnt = 0;
RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
pBSSList->ldBmAverage[ii] = 0;
}
/*
if ((pIE_Country != NULL) &&
(pMgmt->b11hEnable == TRUE)) {
CARDvSetCountryInfo(pMgmt->pAdapter,
pBSSList->eNetworkTypeInUse,
pIE_Country);
}
if ((bParsingQuiet == TRUE) && (pIE_Quiet != NULL)) {
if ((((PWLAN_IE_QUIET)pIE_Quiet)->len == 8) &&
(((PWLAN_IE_QUIET)pIE_Quiet)->byQuietCount != 0)) {
// valid EID
if (pQuiet == NULL) {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet( pMgmt->pAdapter,
TRUE,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((PWORD)pQuiet->abyQuietDuration),
*((PWORD)pQuiet->abyQuietOffset)
);
} else {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet( pMgmt->pAdapter,
FALSE,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((PWORD)pQuiet->abyQuietDuration),
*((PWORD)pQuiet->abyQuietOffset)
);
}
}
}
if ((bParsingQuiet == TRUE) &&
(pQuiet != NULL)) {
CARDbStartQuiet(pMgmt->pAdapter);
}
*/
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return TRUE;
}
/*+
*
* Routine Description:
* Update BSS set in known BSS list
*
* Return Value:
* TRUE if success.
*
-*/
// TODO: input structure modify
BOOL BSSbUpdateToBSSList(void *hDeviceContext,
QWORD qwTimestamp,
WORD wBeaconInterval,
WORD wCapInfo,
BYTE byCurrChannel,
BOOL bChannelHit,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
PKnownBSS pBSSList,
unsigned int uIELength,
PBYTE pbyIEs,
void *pRxPacketContext)
{
int ii, jj;
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
signed long ldBm, ldBmSum;
BOOL bParsingQuiet = FALSE;
// BYTE abyTmpSSID[WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1];
if (pBSSList == NULL)
return FALSE;
HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
pBSSList->uChannel = byCurrChannel;
// DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbUpdateToBSSList: pBSSList->uChannel: %d\n", pBSSList->uChannel);
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) {
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
} else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == TRUE) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
if(bChannelHit)
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = TRUE;
}
}
WPA_ClearRSN(pBSSList); //mike update
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength -
(unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList); //mike update
if (pRSN != NULL) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength -
(unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if (pRxPacket->uRSSI != 0) {
RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &ldBm);
// Moniter if RSSI is too strong.
pBSSList->byRSSIStatCnt++;
pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
ldBmSum = 0;
for(ii=0, jj=0;ii<RSSI_STAT_COUNT;ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
pBSSList->ldBmMAX = max(pBSSList->ldBmAverage[ii], ldBm);
ldBmSum += pBSSList->ldBmAverage[ii];
jj++;
}
}
pBSSList->ldBmAverRange = ldBmSum /jj;
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
//mike add: if the AP in this pBSSList is hidden ssid and we can find two of them,
// you need upgrade the other related pBSSList of which ssid is obvious,
// for these two AP is the same one!!!!
/********judge by:BSSID is the same,but ssid is different!*****************/
#if 0
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (IS_ETH_ADDRESS_EQUAL(pMgmt->sBSSList[ii].abyBSSID, pBSSList->abyBSSID)) { //BSSID is the same!
if (memcmp(((PWLAN_IE_SSID)pMgmt->sBSSList[ii].abySSID)->abySSID, //ssid is different??
((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
((PWLAN_IE_SSID)pBSSList->abySSID)->len) != 0) {
//reserve temp
memset(abyTmpSSID,0,sizeof(abyTmpSSID));
memcpy(abyTmpSSID,pMgmt->sBSSList[ii].abySSID,sizeof(abyTmpSSID));
//upgrade the other one pBSSList
memcpy(&(pMgmt->sBSSList[ii]),pBSSList,sizeof(KnownBSS));
//recover ssid info
memcpy(pMgmt->sBSSList[ii].abySSID,abyTmpSSID,sizeof(abyTmpSSID));
}
}
}
#endif
return TRUE;
}
/*+
*
* Routine Description:
* Search Node DB table to find the index of matched DstAddr
*
* Return Value:
* None
*
-*/
BOOL BSSbIsSTAInNodeDB(void *hDeviceContext,
PBYTE abyDstAddr,
PUINT puNodeIndex)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int ii;
// Index = 0 reserved for AP Node
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
if (IS_ETH_ADDRESS_EQUAL(abyDstAddr, pMgmt->sNodeDBTable[ii].abyMACAddr)) {
*puNodeIndex = ii;
return TRUE;
}
}
}
return FALSE;
};
/*+
*
* Routine Description:
* Find an empty node and allocated; if no empty found,
* instand used of most inactive one.
*
* Return Value:
* None
*
-*/
void BSSvCreateOneNode(void *hDeviceContext, PUINT puNodeIndex)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int ii;
unsigned int BigestCount = 0;
unsigned int SelectIndex;
struct sk_buff *skb;
// Index = 0 reserved for AP Node (In STA mode)
// Index = 0 reserved for Broadcast/MultiCast (In AP mode)
SelectIndex = 1;
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
SelectIndex = ii;
}
}
else {
break;
}
}
// if not found replace uInActiveCount is largest one.
if ( ii == (MAX_NODE_NUM + 1)) {
*puNodeIndex = SelectIndex;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
// clear ps buffer
if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb);
}
}
else {
*puNodeIndex = ii;
}
memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[*puNodeIndex].bActive = TRUE;
pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
// for AP mode PS queue
skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
return;
};
/*+
*
* Routine Description:
* Remove Node by NodeIndex
*
*
* Return Value:
* None
*
-*/
void BSSvRemoveOneNode(void *hDeviceContext, unsigned int uNodeIndex)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
BYTE byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
struct sk_buff *skb;
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb);
// clear context
memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
// clear tx bit map
pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
return;
};
/*+
*
* Routine Description:
* Update AP Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*
-*/
void BSSvUpdateAPNode(void *hDeviceContext,
PWORD pwCapInfo,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int uRateLen = WLAN_RATES_MAXLEN;
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[0].bActive = TRUE;
if (pDevice->byBBType == BB_TYPE_11B) {
uRateLen = WLAN_RATES_MAXLEN_11B;
}
pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
uRateLen);
pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
uRateLen);
RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
TRUE,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
);
memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
// Auto rate fallback function initiation.
// RATEbInit(pDevice);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
};
/*+
*
* Routine Description:
* Add Multicast Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*
-*/
void BSSvAddMulticastNode(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
if (!pDevice->bEnableHostWEP)
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].bActive = TRUE;
pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
RATEvParseMaxRate((void *) pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
TRUE,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
);
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
};
/*+
*
* Routine Description:
*
*
* Second call back function to update Node DB info & AP link status
*
*
* Return Value:
* none.
*
-*/
void BSSvSecondCallBack(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int ii;
PWLAN_IE_SSID pItemSSID, pCurrSSID;
unsigned int uSleepySTACnt = 0;
unsigned int uNonShortSlotSTACnt = 0;
unsigned int uLongPreambleSTACnt = 0;
viawget_wpa_header *wpahdr; //DavidWang
spin_lock_irq(&pDevice->lock);
pDevice->uAssocCount = 0;
//Power Saving Mode Tx Burst
if ( pDevice->bEnablePSMode == TRUE ) {
pDevice->ulPSModeWaitTx++;
if ( pDevice->ulPSModeWaitTx >= 2 ) {
pDevice->ulPSModeWaitTx = 0;
pDevice->bPSModeTxBurst = FALSE;
}
}
pDevice->byERPFlag &=
~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
if (pDevice->wUseProtectCntDown > 0) {
pDevice->wUseProtectCntDown --;
}
else {
// disable protect mode
pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
}
if(pDevice->byReAssocCount > 0) {
pDevice->byReAssocCount++;
if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != TRUE)) { //10 sec timeout
printk("Re-association timeout!!!\n");
pDevice->byReAssocCount = 0;
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
// if(pDevice->bWPASuppWextEnabled == TRUE)
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
#endif
}
else if(pDevice->bLinkPass == TRUE)
pDevice->byReAssocCount = 0;
}
#ifdef SndEvt_ToAPI
if((pMgmt->eCurrState!=WMAC_STATE_ASSOC) &&
(pMgmt->eLastState==WMAC_STATE_ASSOC))
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.flags = RT_DISCONNECTED_EVENT_FLAG;
wireless_send_event(pDevice->dev, IWEVCUSTOM, &wrqu, NULL);
}
pMgmt->eLastState = pMgmt->eCurrState ;
#endif
#ifdef Calcu_LinkQual
s_uCalculateLinkQual((void *)pDevice);
#endif
for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
// Increase in-activity counter
pMgmt->sNodeDBTable[ii].uInActiveCount++;
if (ii > 0) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
continue;
}
if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
pDevice->uAssocCount++;
// check if Non ERP exist
if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
uLongPreambleSTACnt ++;
}
if (!pMgmt->sNodeDBTable[ii].bERPExist) {
pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
}
if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
uNonShortSlotSTACnt++;
}
}
// check if any STA in PS mode
if (pMgmt->sNodeDBTable[ii].bPSEnable)
uSleepySTACnt++;
}
// Rate fallback check
if (!pDevice->bFixRate) {
/*
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (ii == 0))
RATEvTxRateFallBack(pDevice, &(pMgmt->sNodeDBTable[ii]));
*/
if (ii > 0) {
// ii = 0 for multicast node (AP & Adhoc)
RATEvTxRateFallBack((void *)pDevice,
&(pMgmt->sNodeDBTable[ii]));
}
else {
// ii = 0 reserved for unicast AP node (Infra STA)
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
RATEvTxRateFallBack((void *)pDevice,
&(pMgmt->sNodeDBTable[ii]));
}
}
// check if pending PS queue
if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
continue;
}
}
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
// on/off protect mode
if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
if (!pDevice->bProtectMode) {
MACvEnableProtectMD(pDevice);
pDevice->bProtectMode = TRUE;
}
}
else {
if (pDevice->bProtectMode) {
MACvDisableProtectMD(pDevice);
pDevice->bProtectMode = FALSE;
}
}
// on/off short slot time
if (uNonShortSlotSTACnt > 0) {
if (pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = FALSE;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
else {
if (!pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = TRUE;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
// on/off barker long preamble mode
if (uLongPreambleSTACnt > 0) {
if (!pDevice->bBarkerPreambleMd) {
MACvEnableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = TRUE;
}
}
else {
if (pDevice->bBarkerPreambleMd) {
MACvDisableBarkerPreambleMd(pDevice);
pDevice->bBarkerPreambleMd = FALSE;
}
}
}
// Check if any STA in PS mode, enable DTIM multicast deliver
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (uSleepySTACnt > 0)
pMgmt->sNodeDBTable[0].bPSEnable = TRUE;
else
pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
}
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
// DBG_PRT(MSG_LEVEL_INFO, KERN_INFO "Callback inactive Count = [%d]\n", pMgmt->sNodeDBTable[0].uInActiveCount);
if (pDevice->bUpdateBBVGA) {
/* s_vCheckSensitivity((void *) pDevice); */
s_vCheckPreEDThreshold((void *) pDevice);
}
if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
(pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
pDevice->byBBVGANew = pDevice->abyBBVGA[0];
bScheduleCommand((void *) pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
pMgmt->sNodeDBTable[0].bActive = FALSE;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = FALSE;
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
pDevice->bRoaming = TRUE;
pDevice->bIsRoaming = FALSE;
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
//let wpa supplicant know AP may disconnect.//20080717-01,<Add> by James Li
if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
wpahdr = (viawget_wpa_header *)pDevice->skb->data;
wpahdr->type = VIAWGET_DISASSOC_MSG;
wpahdr->resp_ie_len = 0;
wpahdr->req_ie_len = 0;
skb_put(pDevice->skb, sizeof(viawget_wpa_header));
pDevice->skb->dev = pDevice->wpadev;
skb_reset_mac_header(pDevice->skb);
pDevice->skb->pkt_type = PACKET_HOST;
pDevice->skb->protocol = htons(ETH_P_802_2);
memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
netif_rx(pDevice->skb);
pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
};
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
// if(pDevice->bWPASuppWextEnabled == TRUE)
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof (wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
#endif
}
}
else if (pItemSSID->len != 0) {
//Davidwang
if ((pDevice->bEnableRoaming == TRUE)&&(!(pMgmt->Cisco_cckm))) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
if ((pDevice->bRoaming == TRUE)&&(pDevice->bIsRoaming == TRUE)){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
pDevice->uIsroamingTime = 0;
pDevice->bRoaming = FALSE;
// if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
wpahdr = (viawget_wpa_header *)pDevice->skb->data;
wpahdr->type = VIAWGET_CCKM_ROAM_MSG;
wpahdr->resp_ie_len = 0;
wpahdr->req_ie_len = 0;
skb_put(pDevice->skb, sizeof(viawget_wpa_header));
pDevice->skb->dev = pDevice->wpadev;
skb_reset_mac_header(pDevice->skb);
pDevice->skb->pkt_type = PACKET_HOST;
pDevice->skb->protocol = htons(ETH_P_802_2);
memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
netif_rx(pDevice->skb);
pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
// }
}
else if ((pDevice->bRoaming == FALSE)&&(pDevice->bIsRoaming == TRUE)) {
pDevice->uIsroamingTime++;
if (pDevice->uIsroamingTime >= 20)
pDevice->bIsRoaming = FALSE;
}
}
else {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
//network manager support need not do Roaming scan???
if(pDevice->bWPASuppWextEnabled ==TRUE)
pDevice->uAutoReConnectTime = 0;
#endif
}
else {
//mike use old encryption status for wpa reauthen
if(pDevice->bWPADEVUp)
pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice,
WLAN_CMD_BSSID_SCAN,
pMgmt->abyDesireSSID);
bScheduleCommand((void *) pDevice,
WLAN_CMD_SSID,
pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
}
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
// if adhoc started which essid is NULL string, rescaning.
if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
}
else {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scaning ...\n");
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
pDevice->uAutoReConnectTime = 0;
};
}
if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
if (pDevice->bUpdateBBVGA) {
/* s_vCheckSensitivity((void *) pDevice); */
s_vCheckPreEDThreshold((void *) pDevice);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
pMgmt->eCurrState = WMAC_STATE_STARTED;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = FALSE;
ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
}
}
}
if (pDevice->bLinkPass == TRUE) {
if (netif_queue_stopped(pDevice->dev))
netif_wake_queue(pDevice->dev);
}
spin_unlock_irq(&pDevice->lock);
pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ);
add_timer(&pMgmt->sTimerSecondCallback);
return;
}
/*+
*
* Routine Description:
*
*
* Update Tx attemps, Tx failure counter in Node DB
*
*
* Return Value:
* none.
*
-*/
void BSSvUpdateNodeTxCounter(void *hDeviceContext,
PSStatCounter pStatistic,
BYTE byTSR,
BYTE byPktNO)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int uNodeIndex = 0;
BYTE byTxRetry;
WORD wRate;
WORD wFallBackRate = RATE_1M;
BYTE byFallBack;
unsigned int ii;
PBYTE pbyDestAddr;
BYTE byPktNum;
WORD wFIFOCtl;
byPktNum = (byPktNO & 0x0F) >> 4;
byTxRetry = (byTSR & 0xF0) >> 4;
wRate = (WORD) (byPktNO & 0xF0) >> 4;
wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl;
pbyDestAddr = (PBYTE) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]);
if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
byFallBack = AUTO_FB_0;
} else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
byFallBack = AUTO_FB_1;
} else {
byFallBack = AUTO_FB_NONE;
}
// Only Unicast using support rates
if (wFIFOCtl & FIFOCTL_NEEDACK) {
//DBG_PRN_GRP21(("Device %08X, wRate %04X, byTSR %02X\n", hDeviceContext, wRate, byTSR));
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
pMgmt->sNodeDBTable[0].uTxAttempts += 1;
if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[0].uTxFailures ++;
}
pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for(ii=0;ii<byTxRetry;ii++) {
if (ii < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for(ii=0;ii<byTxRetry;ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
}
}
};
if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
if (BSSbIsSTAInNodeDB((void *) pDevice,
pbyDestAddr,
&uNodeIndex)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
}
pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
if ( (byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M) ) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for(ii=0;ii<byTxRetry;ii++) {
if (ii < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for(ii=0;ii<byTxRetry;ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
}
}
};
}
};
return;
}
/*+
*
* Routine Description:
* Clear Nodes & skb in DB Table
*
*
* Parameters:
* In:
* hDeviceContext - The adapter context.
* uStartIndex - starting index
* Out:
* none
*
* Return Value:
* None.
*
-*/
void BSSvClearNodeDBTable(void *hDeviceContext,
unsigned int uStartIndex)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
struct sk_buff *skb;
unsigned int ii;
for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
// check if sTxPSQueue has been initial
if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
dev_kfree_skb(skb);
}
}
memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
}
}
return;
};
void s_vCheckSensitivity(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PKnownBSS pBSSList = NULL;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
int ii;
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) {
/* Update BB register if RSSI is too strong */
signed long LocalldBmAverage = 0;
signed long uNumofdBm = 0;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
uNumofdBm ++;
LocalldBmAverage += pBSSList->ldBmAverage[ii];
}
}
if (uNumofdBm > 0) {
LocalldBmAverage = LocalldBmAverage/uNumofdBm;
for (ii=0;ii<BB_VGA_LEVEL;ii++) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
break;
}
}
if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
pDevice->uBBVGADiffCount++;
if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
bScheduleCommand((void *) pDevice,
WLAN_CMD_CHANGE_BBSENSITIVITY,
NULL);
} else {
pDevice->uBBVGADiffCount = 0;
}
}
}
}
}
#ifdef Calcu_LinkQual
void s_uCalculateLinkQual(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
unsigned long TxOkRatio, TxCnt;
unsigned long RxOkRatio, RxCnt;
unsigned long RssiRatio;
long ldBm;
TxCnt = pDevice->scStatistic.TxNoRetryOkCount +
pDevice->scStatistic.TxRetryOkCount +
pDevice->scStatistic.TxFailCount;
RxCnt = pDevice->scStatistic.RxFcsErrCnt +
pDevice->scStatistic.RxOkCnt;
TxOkRatio = (TxCnt < 6) ? 4000:((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt);
RxOkRatio = (RxCnt < 6) ? 2000:((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt);
//decide link quality
if(pDevice->bLinkPass !=TRUE)
{
// printk("s_uCalculateLinkQual-->Link disconnect and Poor quality**\n");
pDevice->scStatistic.LinkQuality = 0;
pDevice->scStatistic.SignalStren = 0;
}
else
{
RFvRSSITodBm(pDevice, (BYTE)(pDevice->uCurrRSSI), &ldBm);
if(-ldBm < 50) {
RssiRatio = 4000;
}
else if(-ldBm > 90) {
RssiRatio = 0;
}
else {
RssiRatio = (40-(-ldBm-50))*4000/40;
}
pDevice->scStatistic.SignalStren = RssiRatio/40;
pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100;
}
pDevice->scStatistic.RxFcsErrCnt = 0;
pDevice->scStatistic.RxOkCnt = 0;
pDevice->scStatistic.TxFailCount = 0;
pDevice->scStatistic.TxNoRetryOkCount = 0;
pDevice->scStatistic.TxRetryOkCount = 0;
return;
}
#endif
void BSSvClearAnyBSSJoinRecord(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pMgmt->sBSSList[ii].bSelected = FALSE;
}
return;
}
void s_vCheckPreEDThreshold(void *hDeviceContext)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PKnownBSS pBSSList = NULL;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) {
pDevice->byBBPreEDRSSI = (BYTE) (~(pBSSList->ldBmAverRange) + 1);
BBvUpdatePreEDThreshold(pDevice, FALSE);
}
}
return;
}