| /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $ |
| * irq.c: UltraSparc IRQ handling/init/registry. |
| * |
| * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/signal.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/processor.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/sbus.h> |
| #include <asm/iommu.h> |
| #include <asm/upa.h> |
| #include <asm/oplib.h> |
| #include <asm/timer.h> |
| #include <asm/smp.h> |
| #include <asm/starfire.h> |
| #include <asm/uaccess.h> |
| #include <asm/cache.h> |
| #include <asm/cpudata.h> |
| #include <asm/auxio.h> |
| |
| #ifdef CONFIG_SMP |
| static void distribute_irqs(void); |
| #endif |
| |
| /* UPA nodes send interrupt packet to UltraSparc with first data reg |
| * value low 5 (7 on Starfire) bits holding the IRQ identifier being |
| * delivered. We must translate this into a non-vector IRQ so we can |
| * set the softint on this cpu. |
| * |
| * To make processing these packets efficient and race free we use |
| * an array of irq buckets below. The interrupt vector handler in |
| * entry.S feeds incoming packets into per-cpu pil-indexed lists. |
| * The IVEC handler does not need to act atomically, the PIL dispatch |
| * code uses CAS to get an atomic snapshot of the list and clear it |
| * at the same time. |
| */ |
| |
| struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES))); |
| |
| /* This has to be in the main kernel image, it cannot be |
| * turned into per-cpu data. The reason is that the main |
| * kernel image is locked into the TLB and this structure |
| * is accessed from the vectored interrupt trap handler. If |
| * access to this structure takes a TLB miss it could cause |
| * the 5-level sparc v9 trap stack to overflow. |
| */ |
| struct irq_work_struct { |
| unsigned int irq_worklists[16]; |
| }; |
| struct irq_work_struct __irq_work[NR_CPUS]; |
| #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)]) |
| |
| static struct irqaction *irq_action[NR_IRQS+1]; |
| |
| /* This only synchronizes entities which modify IRQ handler |
| * state and some selected user-level spots that want to |
| * read things in the table. IRQ handler processing orders |
| * its' accesses such that no locking is needed. |
| */ |
| static DEFINE_SPINLOCK(irq_action_lock); |
| |
| static void register_irq_proc (unsigned int irq); |
| |
| /* |
| * Upper 2b of irqaction->flags holds the ino. |
| * irqaction->mask holds the smp affinity information. |
| */ |
| #define put_ino_in_irqaction(action, irq) \ |
| action->flags &= 0xffffffffffffUL; \ |
| if (__bucket(irq) == &pil0_dummy_bucket) \ |
| action->flags |= 0xdeadUL << 48; \ |
| else \ |
| action->flags |= __irq_ino(irq) << 48; |
| #define get_ino_in_irqaction(action) (action->flags >> 48) |
| |
| #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff) |
| #define get_smpaff_in_irqaction(action) ((action)->mask) |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| unsigned long flags; |
| int i = *(loff_t *) v; |
| struct irqaction *action; |
| #ifdef CONFIG_SMP |
| int j; |
| #endif |
| |
| spin_lock_irqsave(&irq_action_lock, flags); |
| if (i <= NR_IRQS) { |
| if (!(action = *(i + irq_action))) |
| goto out_unlock; |
| seq_printf(p, "%3d: ", i); |
| #ifndef CONFIG_SMP |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #else |
| for (j = 0; j < NR_CPUS; j++) { |
| if (!cpu_online(j)) |
| continue; |
| seq_printf(p, "%10u ", |
| kstat_cpu(j).irqs[i]); |
| } |
| #endif |
| seq_printf(p, " %s:%lx", action->name, |
| get_ino_in_irqaction(action)); |
| for (action = action->next; action; action = action->next) { |
| seq_printf(p, ", %s:%lx", action->name, |
| get_ino_in_irqaction(action)); |
| } |
| seq_putc(p, '\n'); |
| } |
| out_unlock: |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| |
| return 0; |
| } |
| |
| /* Now these are always passed a true fully specified sun4u INO. */ |
| void enable_irq(unsigned int irq) |
| { |
| struct ino_bucket *bucket = __bucket(irq); |
| unsigned long imap; |
| unsigned long tid; |
| |
| imap = bucket->imap; |
| if (imap == 0UL) |
| return; |
| |
| preempt_disable(); |
| |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| unsigned long ver; |
| |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| if ((ver >> 32) == 0x003e0016) { |
| /* We set it to our JBUS ID. */ |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (tid) |
| : "i" (ASI_JBUS_CONFIG)); |
| tid = ((tid & (0x1fUL<<17)) << 9); |
| tid &= IMAP_TID_JBUS; |
| } else { |
| /* We set it to our Safari AID. */ |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (tid) |
| : "i" (ASI_SAFARI_CONFIG)); |
| tid = ((tid & (0x3ffUL<<17)) << 9); |
| tid &= IMAP_AID_SAFARI; |
| } |
| } else if (this_is_starfire == 0) { |
| /* We set it to our UPA MID. */ |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (tid) |
| : "i" (ASI_UPA_CONFIG)); |
| tid = ((tid & UPA_CONFIG_MID) << 9); |
| tid &= IMAP_TID_UPA; |
| } else { |
| tid = (starfire_translate(imap, smp_processor_id()) << 26); |
| tid &= IMAP_TID_UPA; |
| } |
| |
| /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product |
| * of this SYSIO's preconfigured IGN in the SYSIO Control |
| * Register, the hardware just mirrors that value here. |
| * However for Graphics and UPA Slave devices the full |
| * IMAP_INR field can be set by the programmer here. |
| * |
| * Things like FFB can now be handled via the new IRQ mechanism. |
| */ |
| upa_writel(tid | IMAP_VALID, imap); |
| |
| preempt_enable(); |
| } |
| |
| /* This now gets passed true ino's as well. */ |
| void disable_irq(unsigned int irq) |
| { |
| struct ino_bucket *bucket = __bucket(irq); |
| unsigned long imap; |
| |
| imap = bucket->imap; |
| if (imap != 0UL) { |
| u32 tmp; |
| |
| /* NOTE: We do not want to futz with the IRQ clear registers |
| * and move the state to IDLE, the SCSI code does call |
| * disable_irq() to assure atomicity in the queue cmd |
| * SCSI adapter driver code. Thus we'd lose interrupts. |
| */ |
| tmp = upa_readl(imap); |
| tmp &= ~IMAP_VALID; |
| upa_writel(tmp, imap); |
| } |
| } |
| |
| /* The timer is the one "weird" interrupt which is generated by |
| * the CPU %tick register and not by some normal vectored interrupt |
| * source. To handle this special case, we use this dummy INO bucket. |
| */ |
| static struct irq_desc pil0_dummy_desc; |
| static struct ino_bucket pil0_dummy_bucket = { |
| .irq_info = &pil0_dummy_desc, |
| }; |
| |
| static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup, |
| unsigned long iclr, unsigned long imap, |
| struct ino_bucket *bucket) |
| { |
| prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> " |
| "(%d:%d:%016lx:%016lx), halting...\n", |
| ino, bucket->pil, bucket->iclr, bucket->imap, |
| pil, inofixup, iclr, imap); |
| prom_halt(); |
| } |
| |
| unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap) |
| { |
| struct ino_bucket *bucket; |
| int ino; |
| |
| if (pil == 0) { |
| if (iclr != 0UL || imap != 0UL) { |
| prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n", |
| iclr, imap); |
| prom_halt(); |
| } |
| return __irq(&pil0_dummy_bucket); |
| } |
| |
| /* RULE: Both must be specified in all other cases. */ |
| if (iclr == 0UL || imap == 0UL) { |
| prom_printf("Invalid build_irq %d %d %016lx %016lx\n", |
| pil, inofixup, iclr, imap); |
| prom_halt(); |
| } |
| |
| ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; |
| if (ino > NUM_IVECS) { |
| prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n", |
| ino, pil, inofixup, iclr, imap); |
| prom_halt(); |
| } |
| |
| bucket = &ivector_table[ino]; |
| if (bucket->flags & IBF_ACTIVE) |
| build_irq_error("IRQ: Trying to build active INO bucket.\n", |
| ino, pil, inofixup, iclr, imap, bucket); |
| |
| if (bucket->irq_info) { |
| if (bucket->imap != imap || bucket->iclr != iclr) |
| build_irq_error("IRQ: Trying to reinit INO bucket.\n", |
| ino, pil, inofixup, iclr, imap, bucket); |
| |
| goto out; |
| } |
| |
| bucket->irq_info = kmalloc(sizeof(struct irq_desc), GFP_ATOMIC); |
| if (!bucket->irq_info) { |
| prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n"); |
| prom_halt(); |
| } |
| memset(bucket->irq_info, 0, sizeof(struct irq_desc)); |
| |
| /* Ok, looks good, set it up. Don't touch the irq_chain or |
| * the pending flag. |
| */ |
| bucket->imap = imap; |
| bucket->iclr = iclr; |
| bucket->pil = pil; |
| bucket->flags = 0; |
| |
| out: |
| return __irq(bucket); |
| } |
| |
| static void atomic_bucket_insert(struct ino_bucket *bucket) |
| { |
| unsigned long pstate; |
| unsigned int *ent; |
| |
| __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); |
| __asm__ __volatile__("wrpr %0, %1, %%pstate" |
| : : "r" (pstate), "i" (PSTATE_IE)); |
| ent = irq_work(smp_processor_id(), bucket->pil); |
| bucket->irq_chain = *ent; |
| *ent = __irq(bucket); |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); |
| } |
| |
| static int check_irq_sharing(int pil, unsigned long irqflags) |
| { |
| struct irqaction *action, *tmp; |
| |
| action = *(irq_action + pil); |
| if (action) { |
| if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) { |
| for (tmp = action; tmp->next; tmp = tmp->next) |
| ; |
| } else { |
| return -EBUSY; |
| } |
| } |
| return 0; |
| } |
| |
| static void append_irq_action(int pil, struct irqaction *action) |
| { |
| struct irqaction **pp = irq_action + pil; |
| |
| while (*pp) |
| pp = &((*pp)->next); |
| *pp = action; |
| } |
| |
| static struct irqaction *get_action_slot(struct ino_bucket *bucket) |
| { |
| struct irq_desc *desc = bucket->irq_info; |
| int max_irq, i; |
| |
| max_irq = 1; |
| if (bucket->flags & IBF_PCI) |
| max_irq = MAX_IRQ_DESC_ACTION; |
| for (i = 0; i < max_irq; i++) { |
| struct irqaction *p = &desc->action[i]; |
| u32 mask = (1 << i); |
| |
| if (desc->action_active_mask & mask) |
| continue; |
| |
| desc->action_active_mask |= mask; |
| return p; |
| } |
| return NULL; |
| } |
| |
| int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *), |
| unsigned long irqflags, const char *name, void *dev_id) |
| { |
| struct irqaction *action; |
| struct ino_bucket *bucket = __bucket(irq); |
| unsigned long flags; |
| int pending = 0; |
| |
| if (unlikely(!handler)) |
| return -EINVAL; |
| |
| if (unlikely(!bucket->irq_info)) |
| return -ENODEV; |
| |
| if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) { |
| /* |
| * This function might sleep, we want to call it first, |
| * outside of the atomic block. In SA_STATIC_ALLOC case, |
| * random driver's kmalloc will fail, but it is safe. |
| * If already initialized, random driver will not reinit. |
| * Yes, this might clear the entropy pool if the wrong |
| * driver is attempted to be loaded, without actually |
| * installing a new handler, but is this really a problem, |
| * only the sysadmin is able to do this. |
| */ |
| rand_initialize_irq(irq); |
| } |
| |
| spin_lock_irqsave(&irq_action_lock, flags); |
| |
| if (check_irq_sharing(bucket->pil, irqflags)) { |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| return -EBUSY; |
| } |
| |
| action = get_action_slot(bucket); |
| if (!action) { |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| return -ENOMEM; |
| } |
| |
| bucket->flags |= IBF_ACTIVE; |
| pending = 0; |
| if (bucket != &pil0_dummy_bucket) { |
| pending = bucket->pending; |
| if (pending) |
| bucket->pending = 0; |
| } |
| |
| action->handler = handler; |
| action->flags = irqflags; |
| action->name = name; |
| action->next = NULL; |
| action->dev_id = dev_id; |
| put_ino_in_irqaction(action, irq); |
| put_smpaff_in_irqaction(action, CPU_MASK_NONE); |
| |
| append_irq_action(bucket->pil, action); |
| |
| enable_irq(irq); |
| |
| /* We ate the IVEC already, this makes sure it does not get lost. */ |
| if (pending) { |
| atomic_bucket_insert(bucket); |
| set_softint(1 << bucket->pil); |
| } |
| |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| |
| if (bucket != &pil0_dummy_bucket) |
| register_irq_proc(__irq_ino(irq)); |
| |
| #ifdef CONFIG_SMP |
| distribute_irqs(); |
| #endif |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(request_irq); |
| |
| static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id) |
| { |
| struct ino_bucket *bucket = __bucket(irq); |
| struct irqaction *action, **pp; |
| |
| pp = irq_action + bucket->pil; |
| action = *pp; |
| if (unlikely(!action)) |
| return NULL; |
| |
| if (unlikely(!action->handler)) { |
| printk("Freeing free IRQ %d\n", bucket->pil); |
| return NULL; |
| } |
| |
| while (action && action->dev_id != dev_id) { |
| pp = &action->next; |
| action = *pp; |
| } |
| |
| if (likely(action)) |
| *pp = action->next; |
| |
| return action; |
| } |
| |
| void free_irq(unsigned int irq, void *dev_id) |
| { |
| struct irqaction *action; |
| struct ino_bucket *bucket; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_action_lock, flags); |
| |
| action = unlink_irq_action(irq, dev_id); |
| |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| |
| if (unlikely(!action)) |
| return; |
| |
| synchronize_irq(irq); |
| |
| spin_lock_irqsave(&irq_action_lock, flags); |
| |
| bucket = __bucket(irq); |
| if (bucket != &pil0_dummy_bucket) { |
| struct irq_desc *desc = bucket->irq_info; |
| unsigned long imap = bucket->imap; |
| int ent, i; |
| |
| for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) { |
| struct irqaction *p = &desc->action[i]; |
| |
| if (p == action) { |
| desc->action_active_mask &= ~(1 << i); |
| break; |
| } |
| } |
| |
| if (!desc->action_active_mask) { |
| /* This unique interrupt source is now inactive. */ |
| bucket->flags &= ~IBF_ACTIVE; |
| |
| /* See if any other buckets share this bucket's IMAP |
| * and are still active. |
| */ |
| for (ent = 0; ent < NUM_IVECS; ent++) { |
| struct ino_bucket *bp = &ivector_table[ent]; |
| if (bp != bucket && |
| bp->imap == imap && |
| (bp->flags & IBF_ACTIVE) != 0) |
| break; |
| } |
| |
| /* Only disable when no other sub-irq levels of |
| * the same IMAP are active. |
| */ |
| if (ent == NUM_IVECS) |
| disable_irq(irq); |
| } |
| } |
| |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| } |
| |
| EXPORT_SYMBOL(free_irq); |
| |
| #ifdef CONFIG_SMP |
| void synchronize_irq(unsigned int irq) |
| { |
| struct ino_bucket *bucket = __bucket(irq); |
| |
| #if 0 |
| /* The following is how I wish I could implement this. |
| * Unfortunately the ICLR registers are read-only, you can |
| * only write ICLR_foo values to them. To get the current |
| * IRQ status you would need to get at the IRQ diag registers |
| * in the PCI/SBUS controller and the layout of those vary |
| * from one controller to the next, sigh... -DaveM |
| */ |
| unsigned long iclr = bucket->iclr; |
| |
| while (1) { |
| u32 tmp = upa_readl(iclr); |
| |
| if (tmp == ICLR_TRANSMIT || |
| tmp == ICLR_PENDING) { |
| cpu_relax(); |
| continue; |
| } |
| break; |
| } |
| #else |
| /* So we have to do this with a INPROGRESS bit just like x86. */ |
| while (bucket->flags & IBF_INPROGRESS) |
| cpu_relax(); |
| #endif |
| } |
| #endif /* CONFIG_SMP */ |
| |
| static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs) |
| { |
| struct irq_desc *desc = bp->irq_info; |
| unsigned char flags = bp->flags; |
| u32 action_mask, i; |
| int random; |
| |
| bp->flags |= IBF_INPROGRESS; |
| |
| if (unlikely(!(flags & IBF_ACTIVE))) { |
| bp->pending = 1; |
| goto out; |
| } |
| |
| if (desc->pre_handler) |
| desc->pre_handler(bp, |
| desc->pre_handler_arg1, |
| desc->pre_handler_arg2); |
| |
| action_mask = desc->action_active_mask; |
| random = 0; |
| for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) { |
| struct irqaction *p = &desc->action[i]; |
| u32 mask = (1 << i); |
| |
| if (!(action_mask & mask)) |
| continue; |
| |
| action_mask &= ~mask; |
| |
| if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED) |
| random |= p->flags; |
| |
| if (!action_mask) |
| break; |
| } |
| if (bp->pil != 0) { |
| upa_writel(ICLR_IDLE, bp->iclr); |
| /* Test and add entropy */ |
| if (random & SA_SAMPLE_RANDOM) |
| add_interrupt_randomness(irq); |
| } |
| out: |
| bp->flags &= ~IBF_INPROGRESS; |
| } |
| |
| void handler_irq(int irq, struct pt_regs *regs) |
| { |
| struct ino_bucket *bp; |
| int cpu = smp_processor_id(); |
| |
| #ifndef CONFIG_SMP |
| /* |
| * Check for TICK_INT on level 14 softint. |
| */ |
| { |
| unsigned long clr_mask = 1 << irq; |
| unsigned long tick_mask = tick_ops->softint_mask; |
| |
| if ((irq == 14) && (get_softint() & tick_mask)) { |
| irq = 0; |
| clr_mask = tick_mask; |
| } |
| clear_softint(clr_mask); |
| } |
| #else |
| clear_softint(1 << irq); |
| #endif |
| |
| irq_enter(); |
| kstat_this_cpu.irqs[irq]++; |
| |
| /* Sliiiick... */ |
| #ifndef CONFIG_SMP |
| bp = ((irq != 0) ? |
| __bucket(xchg32(irq_work(cpu, irq), 0)) : |
| &pil0_dummy_bucket); |
| #else |
| bp = __bucket(xchg32(irq_work(cpu, irq), 0)); |
| #endif |
| while (bp) { |
| struct ino_bucket *nbp = __bucket(bp->irq_chain); |
| |
| bp->irq_chain = 0; |
| process_bucket(irq, bp, regs); |
| bp = nbp; |
| } |
| irq_exit(); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_FD |
| extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);; |
| |
| /* XXX No easy way to include asm/floppy.h XXX */ |
| extern unsigned char *pdma_vaddr; |
| extern unsigned long pdma_size; |
| extern volatile int doing_pdma; |
| extern unsigned long fdc_status; |
| |
| irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs) |
| { |
| if (likely(doing_pdma)) { |
| void __iomem *stat = (void __iomem *) fdc_status; |
| unsigned char *vaddr = pdma_vaddr; |
| unsigned long size = pdma_size; |
| u8 val; |
| |
| while (size) { |
| val = readb(stat); |
| if (unlikely(!(val & 0x80))) { |
| pdma_vaddr = vaddr; |
| pdma_size = size; |
| return IRQ_HANDLED; |
| } |
| if (unlikely(!(val & 0x20))) { |
| pdma_vaddr = vaddr; |
| pdma_size = size; |
| doing_pdma = 0; |
| goto main_interrupt; |
| } |
| if (val & 0x40) { |
| /* read */ |
| *vaddr++ = readb(stat + 1); |
| } else { |
| unsigned char data = *vaddr++; |
| |
| /* write */ |
| writeb(data, stat + 1); |
| } |
| size--; |
| } |
| |
| pdma_vaddr = vaddr; |
| pdma_size = size; |
| |
| /* Send Terminal Count pulse to floppy controller. */ |
| val = readb(auxio_register); |
| val |= AUXIO_AUX1_FTCNT; |
| writeb(val, auxio_register); |
| val &= ~AUXIO_AUX1_FTCNT; |
| writeb(val, auxio_register); |
| |
| doing_pdma = 0; |
| } |
| |
| main_interrupt: |
| return floppy_interrupt(irq, dev_cookie, regs); |
| } |
| EXPORT_SYMBOL(sparc_floppy_irq); |
| #endif |
| |
| /* We really don't need these at all on the Sparc. We only have |
| * stubs here because they are exported to modules. |
| */ |
| unsigned long probe_irq_on(void) |
| { |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(probe_irq_on); |
| |
| int probe_irq_off(unsigned long mask) |
| { |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(probe_irq_off); |
| |
| #ifdef CONFIG_SMP |
| static int retarget_one_irq(struct irqaction *p, int goal_cpu) |
| { |
| struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table; |
| unsigned long imap = bucket->imap; |
| unsigned int tid; |
| |
| while (!cpu_online(goal_cpu)) { |
| if (++goal_cpu >= NR_CPUS) |
| goal_cpu = 0; |
| } |
| |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| tid = goal_cpu << 26; |
| tid &= IMAP_AID_SAFARI; |
| } else if (this_is_starfire == 0) { |
| tid = goal_cpu << 26; |
| tid &= IMAP_TID_UPA; |
| } else { |
| tid = (starfire_translate(imap, goal_cpu) << 26); |
| tid &= IMAP_TID_UPA; |
| } |
| upa_writel(tid | IMAP_VALID, imap); |
| |
| do { |
| if (++goal_cpu >= NR_CPUS) |
| goal_cpu = 0; |
| } while (!cpu_online(goal_cpu)); |
| |
| return goal_cpu; |
| } |
| |
| /* Called from request_irq. */ |
| static void distribute_irqs(void) |
| { |
| unsigned long flags; |
| int cpu, level; |
| |
| spin_lock_irqsave(&irq_action_lock, flags); |
| cpu = 0; |
| |
| /* |
| * Skip the timer at [0], and very rare error/power intrs at [15]. |
| * Also level [12], it causes problems on Ex000 systems. |
| */ |
| for (level = 1; level < NR_IRQS; level++) { |
| struct irqaction *p = irq_action[level]; |
| |
| if (level == 12) |
| continue; |
| |
| while(p) { |
| cpu = retarget_one_irq(p, cpu); |
| p = p->next; |
| } |
| } |
| spin_unlock_irqrestore(&irq_action_lock, flags); |
| } |
| #endif |
| |
| struct sun5_timer { |
| u64 count0; |
| u64 limit0; |
| u64 count1; |
| u64 limit1; |
| }; |
| |
| static struct sun5_timer *prom_timers; |
| static u64 prom_limit0, prom_limit1; |
| |
| static void map_prom_timers(void) |
| { |
| unsigned int addr[3]; |
| int tnode, err; |
| |
| /* PROM timer node hangs out in the top level of device siblings... */ |
| tnode = prom_finddevice("/counter-timer"); |
| |
| /* Assume if node is not present, PROM uses different tick mechanism |
| * which we should not care about. |
| */ |
| if (tnode == 0 || tnode == -1) { |
| prom_timers = (struct sun5_timer *) 0; |
| return; |
| } |
| |
| /* If PROM is really using this, it must be mapped by him. */ |
| err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr)); |
| if (err == -1) { |
| prom_printf("PROM does not have timer mapped, trying to continue.\n"); |
| prom_timers = (struct sun5_timer *) 0; |
| return; |
| } |
| prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); |
| } |
| |
| static void kill_prom_timer(void) |
| { |
| if (!prom_timers) |
| return; |
| |
| /* Save them away for later. */ |
| prom_limit0 = prom_timers->limit0; |
| prom_limit1 = prom_timers->limit1; |
| |
| /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. |
| * We turn both off here just to be paranoid. |
| */ |
| prom_timers->limit0 = 0; |
| prom_timers->limit1 = 0; |
| |
| /* Wheee, eat the interrupt packet too... */ |
| __asm__ __volatile__( |
| " mov 0x40, %%g2\n" |
| " ldxa [%%g0] %0, %%g1\n" |
| " ldxa [%%g2] %1, %%g1\n" |
| " stxa %%g0, [%%g0] %0\n" |
| " membar #Sync\n" |
| : /* no outputs */ |
| : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) |
| : "g1", "g2"); |
| } |
| |
| void init_irqwork_curcpu(void) |
| { |
| int cpu = hard_smp_processor_id(); |
| |
| memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct)); |
| } |
| |
| /* Only invoked on boot processor. */ |
| void __init init_IRQ(void) |
| { |
| map_prom_timers(); |
| kill_prom_timer(); |
| memset(&ivector_table[0], 0, sizeof(ivector_table)); |
| |
| /* We need to clear any IRQ's pending in the soft interrupt |
| * registers, a spurious one could be left around from the |
| * PROM timer which we just disabled. |
| */ |
| clear_softint(get_softint()); |
| |
| /* Now that ivector table is initialized, it is safe |
| * to receive IRQ vector traps. We will normally take |
| * one or two right now, in case some device PROM used |
| * to boot us wants to speak to us. We just ignore them. |
| */ |
| __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" |
| "or %%g1, %0, %%g1\n\t" |
| "wrpr %%g1, 0x0, %%pstate" |
| : /* No outputs */ |
| : "i" (PSTATE_IE) |
| : "g1"); |
| } |
| |
| static struct proc_dir_entry * root_irq_dir; |
| static struct proc_dir_entry * irq_dir [NUM_IVECS]; |
| |
| #ifdef CONFIG_SMP |
| |
| static int irq_affinity_read_proc (char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| struct ino_bucket *bp = ivector_table + (long)data; |
| struct irq_desc *desc = bp->irq_info; |
| struct irqaction *ap = desc->action; |
| cpumask_t mask; |
| int len; |
| |
| mask = get_smpaff_in_irqaction(ap); |
| if (cpus_empty(mask)) |
| mask = cpu_online_map; |
| |
| len = cpumask_scnprintf(page, count, mask); |
| if (count - len < 2) |
| return -EINVAL; |
| len += sprintf(page + len, "\n"); |
| return len; |
| } |
| |
| static inline void set_intr_affinity(int irq, cpumask_t hw_aff) |
| { |
| struct ino_bucket *bp = ivector_table + irq; |
| struct irq_desc *desc = bp->irq_info; |
| struct irqaction *ap = desc->action; |
| |
| /* Users specify affinity in terms of hw cpu ids. |
| * As soon as we do this, handler_irq() might see and take action. |
| */ |
| put_smpaff_in_irqaction(ap, hw_aff); |
| |
| /* Migration is simply done by the next cpu to service this |
| * interrupt. |
| */ |
| } |
| |
| static int irq_affinity_write_proc (struct file *file, const char __user *buffer, |
| unsigned long count, void *data) |
| { |
| int irq = (long) data, full_count = count, err; |
| cpumask_t new_value; |
| |
| err = cpumask_parse(buffer, count, new_value); |
| |
| /* |
| * Do not allow disabling IRQs completely - it's a too easy |
| * way to make the system unusable accidentally :-) At least |
| * one online CPU still has to be targeted. |
| */ |
| cpus_and(new_value, new_value, cpu_online_map); |
| if (cpus_empty(new_value)) |
| return -EINVAL; |
| |
| set_intr_affinity(irq, new_value); |
| |
| return full_count; |
| } |
| |
| #endif |
| |
| #define MAX_NAMELEN 10 |
| |
| static void register_irq_proc (unsigned int irq) |
| { |
| char name [MAX_NAMELEN]; |
| |
| if (!root_irq_dir || irq_dir[irq]) |
| return; |
| |
| memset(name, 0, MAX_NAMELEN); |
| sprintf(name, "%x", irq); |
| |
| /* create /proc/irq/1234 */ |
| irq_dir[irq] = proc_mkdir(name, root_irq_dir); |
| |
| #ifdef CONFIG_SMP |
| /* XXX SMP affinity not supported on starfire yet. */ |
| if (this_is_starfire == 0) { |
| struct proc_dir_entry *entry; |
| |
| /* create /proc/irq/1234/smp_affinity */ |
| entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]); |
| |
| if (entry) { |
| entry->nlink = 1; |
| entry->data = (void *)(long)irq; |
| entry->read_proc = irq_affinity_read_proc; |
| entry->write_proc = irq_affinity_write_proc; |
| } |
| } |
| #endif |
| } |
| |
| void init_irq_proc (void) |
| { |
| /* create /proc/irq */ |
| root_irq_dir = proc_mkdir("irq", NULL); |
| } |
| |