| /* | 
 |  * Performance events core code: | 
 |  * | 
 |  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra | 
 |  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
 |  * | 
 |  * For licensing details see kernel-base/COPYING | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/file.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/dcache.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/device.h> | 
 | #include <linux/export.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/trace_events.h> | 
 | #include <linux/hw_breakpoint.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/bpf.h> | 
 | #include <linux/filter.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/parser.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/proc_ns.h> | 
 | #include <linux/mount.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #include <asm/irq_regs.h> | 
 |  | 
 | typedef int (*remote_function_f)(void *); | 
 |  | 
 | struct remote_function_call { | 
 | 	struct task_struct	*p; | 
 | 	remote_function_f	func; | 
 | 	void			*info; | 
 | 	int			ret; | 
 | }; | 
 |  | 
 | static void remote_function(void *data) | 
 | { | 
 | 	struct remote_function_call *tfc = data; | 
 | 	struct task_struct *p = tfc->p; | 
 |  | 
 | 	if (p) { | 
 | 		/* -EAGAIN */ | 
 | 		if (task_cpu(p) != smp_processor_id()) | 
 | 			return; | 
 |  | 
 | 		/* | 
 | 		 * Now that we're on right CPU with IRQs disabled, we can test | 
 | 		 * if we hit the right task without races. | 
 | 		 */ | 
 |  | 
 | 		tfc->ret = -ESRCH; /* No such (running) process */ | 
 | 		if (p != current) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	tfc->ret = tfc->func(tfc->info); | 
 | } | 
 |  | 
 | /** | 
 |  * task_function_call - call a function on the cpu on which a task runs | 
 |  * @p:		the task to evaluate | 
 |  * @func:	the function to be called | 
 |  * @info:	the function call argument | 
 |  * | 
 |  * Calls the function @func when the task is currently running. This might | 
 |  * be on the current CPU, which just calls the function directly | 
 |  * | 
 |  * returns: @func return value, or | 
 |  *	    -ESRCH  - when the process isn't running | 
 |  *	    -EAGAIN - when the process moved away | 
 |  */ | 
 | static int | 
 | task_function_call(struct task_struct *p, remote_function_f func, void *info) | 
 | { | 
 | 	struct remote_function_call data = { | 
 | 		.p	= p, | 
 | 		.func	= func, | 
 | 		.info	= info, | 
 | 		.ret	= -EAGAIN, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); | 
 | 		if (!ret) | 
 | 			ret = data.ret; | 
 | 	} while (ret == -EAGAIN); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * cpu_function_call - call a function on the cpu | 
 |  * @func:	the function to be called | 
 |  * @info:	the function call argument | 
 |  * | 
 |  * Calls the function @func on the remote cpu. | 
 |  * | 
 |  * returns: @func return value or -ENXIO when the cpu is offline | 
 |  */ | 
 | static int cpu_function_call(int cpu, remote_function_f func, void *info) | 
 | { | 
 | 	struct remote_function_call data = { | 
 | 		.p	= NULL, | 
 | 		.func	= func, | 
 | 		.info	= info, | 
 | 		.ret	= -ENXIO, /* No such CPU */ | 
 | 	}; | 
 |  | 
 | 	smp_call_function_single(cpu, remote_function, &data, 1); | 
 |  | 
 | 	return data.ret; | 
 | } | 
 |  | 
 | static inline struct perf_cpu_context * | 
 | __get_cpu_context(struct perf_event_context *ctx) | 
 | { | 
 | 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context); | 
 | } | 
 |  | 
 | static void perf_ctx_lock(struct perf_cpu_context *cpuctx, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | 	raw_spin_lock(&cpuctx->ctx.lock); | 
 | 	if (ctx) | 
 | 		raw_spin_lock(&ctx->lock); | 
 | } | 
 |  | 
 | static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, | 
 | 			    struct perf_event_context *ctx) | 
 | { | 
 | 	if (ctx) | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	raw_spin_unlock(&cpuctx->ctx.lock); | 
 | } | 
 |  | 
 | #define TASK_TOMBSTONE ((void *)-1L) | 
 |  | 
 | static bool is_kernel_event(struct perf_event *event) | 
 | { | 
 | 	return READ_ONCE(event->owner) == TASK_TOMBSTONE; | 
 | } | 
 |  | 
 | /* | 
 |  * On task ctx scheduling... | 
 |  * | 
 |  * When !ctx->nr_events a task context will not be scheduled. This means | 
 |  * we can disable the scheduler hooks (for performance) without leaving | 
 |  * pending task ctx state. | 
 |  * | 
 |  * This however results in two special cases: | 
 |  * | 
 |  *  - removing the last event from a task ctx; this is relatively straight | 
 |  *    forward and is done in __perf_remove_from_context. | 
 |  * | 
 |  *  - adding the first event to a task ctx; this is tricky because we cannot | 
 |  *    rely on ctx->is_active and therefore cannot use event_function_call(). | 
 |  *    See perf_install_in_context(). | 
 |  * | 
 |  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. | 
 |  */ | 
 |  | 
 | typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, | 
 | 			struct perf_event_context *, void *); | 
 |  | 
 | struct event_function_struct { | 
 | 	struct perf_event *event; | 
 | 	event_f func; | 
 | 	void *data; | 
 | }; | 
 |  | 
 | static int event_function(void *info) | 
 | { | 
 | 	struct event_function_struct *efs = info; | 
 | 	struct perf_event *event = efs->event; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct perf_event_context *task_ctx = cpuctx->task_ctx; | 
 | 	int ret = 0; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	perf_ctx_lock(cpuctx, task_ctx); | 
 | 	/* | 
 | 	 * Since we do the IPI call without holding ctx->lock things can have | 
 | 	 * changed, double check we hit the task we set out to hit. | 
 | 	 */ | 
 | 	if (ctx->task) { | 
 | 		if (ctx->task != current) { | 
 | 			ret = -ESRCH; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We only use event_function_call() on established contexts, | 
 | 		 * and event_function() is only ever called when active (or | 
 | 		 * rather, we'll have bailed in task_function_call() or the | 
 | 		 * above ctx->task != current test), therefore we must have | 
 | 		 * ctx->is_active here. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(!ctx->is_active); | 
 | 		/* | 
 | 		 * And since we have ctx->is_active, cpuctx->task_ctx must | 
 | 		 * match. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(task_ctx != ctx); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(&cpuctx->ctx != ctx); | 
 | 	} | 
 |  | 
 | 	efs->func(event, cpuctx, ctx, efs->data); | 
 | unlock: | 
 | 	perf_ctx_unlock(cpuctx, task_ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void event_function_call(struct perf_event *event, event_f func, void *data) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ | 
 | 	struct event_function_struct efs = { | 
 | 		.event = event, | 
 | 		.func = func, | 
 | 		.data = data, | 
 | 	}; | 
 |  | 
 | 	if (!event->parent) { | 
 | 		/* | 
 | 		 * If this is a !child event, we must hold ctx::mutex to | 
 | 		 * stabilize the the event->ctx relation. See | 
 | 		 * perf_event_ctx_lock(). | 
 | 		 */ | 
 | 		lockdep_assert_held(&ctx->mutex); | 
 | 	} | 
 |  | 
 | 	if (!task) { | 
 | 		cpu_function_call(event->cpu, event_function, &efs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (task == TASK_TOMBSTONE) | 
 | 		return; | 
 |  | 
 | again: | 
 | 	if (!task_function_call(task, event_function, &efs)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * Reload the task pointer, it might have been changed by | 
 | 	 * a concurrent perf_event_context_sched_out(). | 
 | 	 */ | 
 | 	task = ctx->task; | 
 | 	if (task == TASK_TOMBSTONE) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		return; | 
 | 	} | 
 | 	if (ctx->is_active) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		goto again; | 
 | 	} | 
 | 	func(event, NULL, ctx, data); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to event_function_call() + event_function(), but hard assumes IRQs | 
 |  * are already disabled and we're on the right CPU. | 
 |  */ | 
 | static void event_function_local(struct perf_event *event, event_f func, void *data) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct task_struct *task = READ_ONCE(ctx->task); | 
 | 	struct perf_event_context *task_ctx = NULL; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	if (task) { | 
 | 		if (task == TASK_TOMBSTONE) | 
 | 			return; | 
 |  | 
 | 		task_ctx = ctx; | 
 | 	} | 
 |  | 
 | 	perf_ctx_lock(cpuctx, task_ctx); | 
 |  | 
 | 	task = ctx->task; | 
 | 	if (task == TASK_TOMBSTONE) | 
 | 		goto unlock; | 
 |  | 
 | 	if (task) { | 
 | 		/* | 
 | 		 * We must be either inactive or active and the right task, | 
 | 		 * otherwise we're screwed, since we cannot IPI to somewhere | 
 | 		 * else. | 
 | 		 */ | 
 | 		if (ctx->is_active) { | 
 | 			if (WARN_ON_ONCE(task != current)) | 
 | 				goto unlock; | 
 |  | 
 | 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) | 
 | 				goto unlock; | 
 | 		} | 
 | 	} else { | 
 | 		WARN_ON_ONCE(&cpuctx->ctx != ctx); | 
 | 	} | 
 |  | 
 | 	func(event, cpuctx, ctx, data); | 
 | unlock: | 
 | 	perf_ctx_unlock(cpuctx, task_ctx); | 
 | } | 
 |  | 
 | #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ | 
 | 		       PERF_FLAG_FD_OUTPUT  |\ | 
 | 		       PERF_FLAG_PID_CGROUP |\ | 
 | 		       PERF_FLAG_FD_CLOEXEC) | 
 |  | 
 | /* | 
 |  * branch priv levels that need permission checks | 
 |  */ | 
 | #define PERF_SAMPLE_BRANCH_PERM_PLM \ | 
 | 	(PERF_SAMPLE_BRANCH_KERNEL |\ | 
 | 	 PERF_SAMPLE_BRANCH_HV) | 
 |  | 
 | enum event_type_t { | 
 | 	EVENT_FLEXIBLE = 0x1, | 
 | 	EVENT_PINNED = 0x2, | 
 | 	EVENT_TIME = 0x4, | 
 | 	/* see ctx_resched() for details */ | 
 | 	EVENT_CPU = 0x8, | 
 | 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, | 
 | }; | 
 |  | 
 | /* | 
 |  * perf_sched_events : >0 events exist | 
 |  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu | 
 |  */ | 
 |  | 
 | static void perf_sched_delayed(struct work_struct *work); | 
 | DEFINE_STATIC_KEY_FALSE(perf_sched_events); | 
 | static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); | 
 | static DEFINE_MUTEX(perf_sched_mutex); | 
 | static atomic_t perf_sched_count; | 
 |  | 
 | static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); | 
 | static DEFINE_PER_CPU(int, perf_sched_cb_usages); | 
 | static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); | 
 |  | 
 | static atomic_t nr_mmap_events __read_mostly; | 
 | static atomic_t nr_comm_events __read_mostly; | 
 | static atomic_t nr_namespaces_events __read_mostly; | 
 | static atomic_t nr_task_events __read_mostly; | 
 | static atomic_t nr_freq_events __read_mostly; | 
 | static atomic_t nr_switch_events __read_mostly; | 
 |  | 
 | static LIST_HEAD(pmus); | 
 | static DEFINE_MUTEX(pmus_lock); | 
 | static struct srcu_struct pmus_srcu; | 
 | static cpumask_var_t perf_online_mask; | 
 |  | 
 | /* | 
 |  * perf event paranoia level: | 
 |  *  -1 - not paranoid at all | 
 |  *   0 - disallow raw tracepoint access for unpriv | 
 |  *   1 - disallow cpu events for unpriv | 
 |  *   2 - disallow kernel profiling for unpriv | 
 |  */ | 
 | int sysctl_perf_event_paranoid __read_mostly = 2; | 
 |  | 
 | /* Minimum for 512 kiB + 1 user control page */ | 
 | int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ | 
 |  | 
 | /* | 
 |  * max perf event sample rate | 
 |  */ | 
 | #define DEFAULT_MAX_SAMPLE_RATE		100000 | 
 | #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) | 
 | #define DEFAULT_CPU_TIME_MAX_PERCENT	25 | 
 |  | 
 | int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE; | 
 |  | 
 | static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); | 
 | static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS; | 
 |  | 
 | static int perf_sample_allowed_ns __read_mostly = | 
 | 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; | 
 |  | 
 | static void update_perf_cpu_limits(void) | 
 | { | 
 | 	u64 tmp = perf_sample_period_ns; | 
 |  | 
 | 	tmp *= sysctl_perf_cpu_time_max_percent; | 
 | 	tmp = div_u64(tmp, 100); | 
 | 	if (!tmp) | 
 | 		tmp = 1; | 
 |  | 
 | 	WRITE_ONCE(perf_sample_allowed_ns, tmp); | 
 | } | 
 |  | 
 | static bool perf_rotate_context(struct perf_cpu_context *cpuctx); | 
 |  | 
 | int perf_proc_update_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If throttling is disabled don't allow the write: | 
 | 	 */ | 
 | 	if (sysctl_perf_cpu_time_max_percent == 100 || | 
 | 	    sysctl_perf_cpu_time_max_percent == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); | 
 | 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; | 
 | 	update_perf_cpu_limits(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; | 
 |  | 
 | int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, | 
 | 				void __user *buffer, size_t *lenp, | 
 | 				loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	if (sysctl_perf_cpu_time_max_percent == 100 || | 
 | 	    sysctl_perf_cpu_time_max_percent == 0) { | 
 | 		printk(KERN_WARNING | 
 | 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); | 
 | 		WRITE_ONCE(perf_sample_allowed_ns, 0); | 
 | 	} else { | 
 | 		update_perf_cpu_limits(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * perf samples are done in some very critical code paths (NMIs). | 
 |  * If they take too much CPU time, the system can lock up and not | 
 |  * get any real work done.  This will drop the sample rate when | 
 |  * we detect that events are taking too long. | 
 |  */ | 
 | #define NR_ACCUMULATED_SAMPLES 128 | 
 | static DEFINE_PER_CPU(u64, running_sample_length); | 
 |  | 
 | static u64 __report_avg; | 
 | static u64 __report_allowed; | 
 |  | 
 | static void perf_duration_warn(struct irq_work *w) | 
 | { | 
 | 	printk_ratelimited(KERN_INFO | 
 | 		"perf: interrupt took too long (%lld > %lld), lowering " | 
 | 		"kernel.perf_event_max_sample_rate to %d\n", | 
 | 		__report_avg, __report_allowed, | 
 | 		sysctl_perf_event_sample_rate); | 
 | } | 
 |  | 
 | static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); | 
 |  | 
 | void perf_sample_event_took(u64 sample_len_ns) | 
 | { | 
 | 	u64 max_len = READ_ONCE(perf_sample_allowed_ns); | 
 | 	u64 running_len; | 
 | 	u64 avg_len; | 
 | 	u32 max; | 
 |  | 
 | 	if (max_len == 0) | 
 | 		return; | 
 |  | 
 | 	/* Decay the counter by 1 average sample. */ | 
 | 	running_len = __this_cpu_read(running_sample_length); | 
 | 	running_len -= running_len/NR_ACCUMULATED_SAMPLES; | 
 | 	running_len += sample_len_ns; | 
 | 	__this_cpu_write(running_sample_length, running_len); | 
 |  | 
 | 	/* | 
 | 	 * Note: this will be biased artifically low until we have | 
 | 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us | 
 | 	 * from having to maintain a count. | 
 | 	 */ | 
 | 	avg_len = running_len/NR_ACCUMULATED_SAMPLES; | 
 | 	if (avg_len <= max_len) | 
 | 		return; | 
 |  | 
 | 	__report_avg = avg_len; | 
 | 	__report_allowed = max_len; | 
 |  | 
 | 	/* | 
 | 	 * Compute a throttle threshold 25% below the current duration. | 
 | 	 */ | 
 | 	avg_len += avg_len / 4; | 
 | 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; | 
 | 	if (avg_len < max) | 
 | 		max /= (u32)avg_len; | 
 | 	else | 
 | 		max = 1; | 
 |  | 
 | 	WRITE_ONCE(perf_sample_allowed_ns, avg_len); | 
 | 	WRITE_ONCE(max_samples_per_tick, max); | 
 |  | 
 | 	sysctl_perf_event_sample_rate = max * HZ; | 
 | 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; | 
 |  | 
 | 	if (!irq_work_queue(&perf_duration_work)) { | 
 | 		early_printk("perf: interrupt took too long (%lld > %lld), lowering " | 
 | 			     "kernel.perf_event_max_sample_rate to %d\n", | 
 | 			     __report_avg, __report_allowed, | 
 | 			     sysctl_perf_event_sample_rate); | 
 | 	} | 
 | } | 
 |  | 
 | static atomic64_t perf_event_id; | 
 |  | 
 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
 | 			      enum event_type_t event_type); | 
 |  | 
 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
 | 			     enum event_type_t event_type, | 
 | 			     struct task_struct *task); | 
 |  | 
 | static void update_context_time(struct perf_event_context *ctx); | 
 | static u64 perf_event_time(struct perf_event *event); | 
 |  | 
 | void __weak perf_event_print_debug(void)	{ } | 
 |  | 
 | extern __weak const char *perf_pmu_name(void) | 
 | { | 
 | 	return "pmu"; | 
 | } | 
 |  | 
 | static inline u64 perf_clock(void) | 
 | { | 
 | 	return local_clock(); | 
 | } | 
 |  | 
 | static inline u64 perf_event_clock(struct perf_event *event) | 
 | { | 
 | 	return event->clock(); | 
 | } | 
 |  | 
 | /* | 
 |  * State based event timekeeping... | 
 |  * | 
 |  * The basic idea is to use event->state to determine which (if any) time | 
 |  * fields to increment with the current delta. This means we only need to | 
 |  * update timestamps when we change state or when they are explicitly requested | 
 |  * (read). | 
 |  * | 
 |  * Event groups make things a little more complicated, but not terribly so. The | 
 |  * rules for a group are that if the group leader is OFF the entire group is | 
 |  * OFF, irrespecive of what the group member states are. This results in | 
 |  * __perf_effective_state(). | 
 |  * | 
 |  * A futher ramification is that when a group leader flips between OFF and | 
 |  * !OFF, we need to update all group member times. | 
 |  * | 
 |  * | 
 |  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we | 
 |  * need to make sure the relevant context time is updated before we try and | 
 |  * update our timestamps. | 
 |  */ | 
 |  | 
 | static __always_inline enum perf_event_state | 
 | __perf_effective_state(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader; | 
 |  | 
 | 	if (leader->state <= PERF_EVENT_STATE_OFF) | 
 | 		return leader->state; | 
 |  | 
 | 	return event->state; | 
 | } | 
 |  | 
 | static __always_inline void | 
 | __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) | 
 | { | 
 | 	enum perf_event_state state = __perf_effective_state(event); | 
 | 	u64 delta = now - event->tstamp; | 
 |  | 
 | 	*enabled = event->total_time_enabled; | 
 | 	if (state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		*enabled += delta; | 
 |  | 
 | 	*running = event->total_time_running; | 
 | 	if (state >= PERF_EVENT_STATE_ACTIVE) | 
 | 		*running += delta; | 
 | } | 
 |  | 
 | static void perf_event_update_time(struct perf_event *event) | 
 | { | 
 | 	u64 now = perf_event_time(event); | 
 |  | 
 | 	__perf_update_times(event, now, &event->total_time_enabled, | 
 | 					&event->total_time_running); | 
 | 	event->tstamp = now; | 
 | } | 
 |  | 
 | static void perf_event_update_sibling_time(struct perf_event *leader) | 
 | { | 
 | 	struct perf_event *sibling; | 
 |  | 
 | 	for_each_sibling_event(sibling, leader) | 
 | 		perf_event_update_time(sibling); | 
 | } | 
 |  | 
 | static void | 
 | perf_event_set_state(struct perf_event *event, enum perf_event_state state) | 
 | { | 
 | 	if (event->state == state) | 
 | 		return; | 
 |  | 
 | 	perf_event_update_time(event); | 
 | 	/* | 
 | 	 * If a group leader gets enabled/disabled all its siblings | 
 | 	 * are affected too. | 
 | 	 */ | 
 | 	if ((event->state < 0) ^ (state < 0)) | 
 | 		perf_event_update_sibling_time(event); | 
 |  | 
 | 	WRITE_ONCE(event->state, state); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 |  | 
 | static inline bool | 
 | perf_cgroup_match(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	/* @event doesn't care about cgroup */ | 
 | 	if (!event->cgrp) | 
 | 		return true; | 
 |  | 
 | 	/* wants specific cgroup scope but @cpuctx isn't associated with any */ | 
 | 	if (!cpuctx->cgrp) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is | 
 | 	 * also enabled for all its descendant cgroups.  If @cpuctx's | 
 | 	 * cgroup is a descendant of @event's (the test covers identity | 
 | 	 * case), it's a match. | 
 | 	 */ | 
 | 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, | 
 | 				    event->cgrp->css.cgroup); | 
 | } | 
 |  | 
 | static inline void perf_detach_cgroup(struct perf_event *event) | 
 | { | 
 | 	css_put(&event->cgrp->css); | 
 | 	event->cgrp = NULL; | 
 | } | 
 |  | 
 | static inline int is_cgroup_event(struct perf_event *event) | 
 | { | 
 | 	return event->cgrp != NULL; | 
 | } | 
 |  | 
 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
 | { | 
 | 	struct perf_cgroup_info *t; | 
 |  | 
 | 	t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
 | 	return t->time; | 
 | } | 
 |  | 
 | static inline void __update_cgrp_time(struct perf_cgroup *cgrp) | 
 | { | 
 | 	struct perf_cgroup_info *info; | 
 | 	u64 now; | 
 |  | 
 | 	now = perf_clock(); | 
 |  | 
 | 	info = this_cpu_ptr(cgrp->info); | 
 |  | 
 | 	info->time += now - info->timestamp; | 
 | 	info->timestamp = now; | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_cgroup *cgrp = cpuctx->cgrp; | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	if (cgrp) { | 
 | 		for (css = &cgrp->css; css; css = css->parent) { | 
 | 			cgrp = container_of(css, struct perf_cgroup, css); | 
 | 			__update_cgrp_time(cgrp); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 |  | 
 | 	/* | 
 | 	 * ensure we access cgroup data only when needed and | 
 | 	 * when we know the cgroup is pinned (css_get) | 
 | 	 */ | 
 | 	if (!is_cgroup_event(event)) | 
 | 		return; | 
 |  | 
 | 	cgrp = perf_cgroup_from_task(current, event->ctx); | 
 | 	/* | 
 | 	 * Do not update time when cgroup is not active | 
 | 	 */ | 
 |        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) | 
 | 		__update_cgrp_time(event->cgrp); | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_timestamp(struct task_struct *task, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 | 	struct perf_cgroup_info *info; | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	/* | 
 | 	 * ctx->lock held by caller | 
 | 	 * ensure we do not access cgroup data | 
 | 	 * unless we have the cgroup pinned (css_get) | 
 | 	 */ | 
 | 	if (!task || !ctx->nr_cgroups) | 
 | 		return; | 
 |  | 
 | 	cgrp = perf_cgroup_from_task(task, ctx); | 
 |  | 
 | 	for (css = &cgrp->css; css; css = css->parent) { | 
 | 		cgrp = container_of(css, struct perf_cgroup, css); | 
 | 		info = this_cpu_ptr(cgrp->info); | 
 | 		info->timestamp = ctx->timestamp; | 
 | 	} | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); | 
 |  | 
 | #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */ | 
 | #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */ | 
 |  | 
 | /* | 
 |  * reschedule events based on the cgroup constraint of task. | 
 |  * | 
 |  * mode SWOUT : schedule out everything | 
 |  * mode SWIN : schedule in based on cgroup for next | 
 |  */ | 
 | static void perf_cgroup_switch(struct task_struct *task, int mode) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct list_head *list; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Disable interrupts and preemption to avoid this CPU's | 
 | 	 * cgrp_cpuctx_entry to change under us. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	list = this_cpu_ptr(&cgrp_cpuctx_list); | 
 | 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { | 
 | 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); | 
 |  | 
 | 		perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 | 		perf_pmu_disable(cpuctx->ctx.pmu); | 
 |  | 
 | 		if (mode & PERF_CGROUP_SWOUT) { | 
 | 			cpu_ctx_sched_out(cpuctx, EVENT_ALL); | 
 | 			/* | 
 | 			 * must not be done before ctxswout due | 
 | 			 * to event_filter_match() in event_sched_out() | 
 | 			 */ | 
 | 			cpuctx->cgrp = NULL; | 
 | 		} | 
 |  | 
 | 		if (mode & PERF_CGROUP_SWIN) { | 
 | 			WARN_ON_ONCE(cpuctx->cgrp); | 
 | 			/* | 
 | 			 * set cgrp before ctxsw in to allow | 
 | 			 * event_filter_match() to not have to pass | 
 | 			 * task around | 
 | 			 * we pass the cpuctx->ctx to perf_cgroup_from_task() | 
 | 			 * because cgorup events are only per-cpu | 
 | 			 */ | 
 | 			cpuctx->cgrp = perf_cgroup_from_task(task, | 
 | 							     &cpuctx->ctx); | 
 | 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); | 
 | 		} | 
 | 		perf_pmu_enable(cpuctx->ctx.pmu); | 
 | 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_out(struct task_struct *task, | 
 | 					 struct task_struct *next) | 
 | { | 
 | 	struct perf_cgroup *cgrp1; | 
 | 	struct perf_cgroup *cgrp2 = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * we come here when we know perf_cgroup_events > 0 | 
 | 	 * we do not need to pass the ctx here because we know | 
 | 	 * we are holding the rcu lock | 
 | 	 */ | 
 | 	cgrp1 = perf_cgroup_from_task(task, NULL); | 
 | 	cgrp2 = perf_cgroup_from_task(next, NULL); | 
 |  | 
 | 	/* | 
 | 	 * only schedule out current cgroup events if we know | 
 | 	 * that we are switching to a different cgroup. Otherwise, | 
 | 	 * do no touch the cgroup events. | 
 | 	 */ | 
 | 	if (cgrp1 != cgrp2) | 
 | 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_in(struct task_struct *prev, | 
 | 					struct task_struct *task) | 
 | { | 
 | 	struct perf_cgroup *cgrp1; | 
 | 	struct perf_cgroup *cgrp2 = NULL; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * we come here when we know perf_cgroup_events > 0 | 
 | 	 * we do not need to pass the ctx here because we know | 
 | 	 * we are holding the rcu lock | 
 | 	 */ | 
 | 	cgrp1 = perf_cgroup_from_task(task, NULL); | 
 | 	cgrp2 = perf_cgroup_from_task(prev, NULL); | 
 |  | 
 | 	/* | 
 | 	 * only need to schedule in cgroup events if we are changing | 
 | 	 * cgroup during ctxsw. Cgroup events were not scheduled | 
 | 	 * out of ctxsw out if that was not the case. | 
 | 	 */ | 
 | 	if (cgrp1 != cgrp2) | 
 | 		perf_cgroup_switch(task, PERF_CGROUP_SWIN); | 
 |  | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static inline int perf_cgroup_connect(int fd, struct perf_event *event, | 
 | 				      struct perf_event_attr *attr, | 
 | 				      struct perf_event *group_leader) | 
 | { | 
 | 	struct perf_cgroup *cgrp; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct fd f = fdget(fd); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	css = css_tryget_online_from_dir(f.file->f_path.dentry, | 
 | 					 &perf_event_cgrp_subsys); | 
 | 	if (IS_ERR(css)) { | 
 | 		ret = PTR_ERR(css); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	cgrp = container_of(css, struct perf_cgroup, css); | 
 | 	event->cgrp = cgrp; | 
 |  | 
 | 	/* | 
 | 	 * all events in a group must monitor | 
 | 	 * the same cgroup because a task belongs | 
 | 	 * to only one perf cgroup at a time | 
 | 	 */ | 
 | 	if (group_leader && group_leader->cgrp != cgrp) { | 
 | 		perf_detach_cgroup(event); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
 | { | 
 | 	struct perf_cgroup_info *t; | 
 | 	t = per_cpu_ptr(event->cgrp->info, event->cpu); | 
 | 	event->shadow_ctx_time = now - t->timestamp; | 
 | } | 
 |  | 
 | /* | 
 |  * Update cpuctx->cgrp so that it is set when first cgroup event is added and | 
 |  * cleared when last cgroup event is removed. | 
 |  */ | 
 | static inline void | 
 | list_update_cgroup_event(struct perf_event *event, | 
 | 			 struct perf_event_context *ctx, bool add) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct list_head *cpuctx_entry; | 
 |  | 
 | 	if (!is_cgroup_event(event)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Because cgroup events are always per-cpu events, | 
 | 	 * this will always be called from the right CPU. | 
 | 	 */ | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 |  | 
 | 	/* | 
 | 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp | 
 | 	 * matching the event's cgroup, we must do this for every new event, | 
 | 	 * because if the first would mismatch, the second would not try again | 
 | 	 * and we would leave cpuctx->cgrp unset. | 
 | 	 */ | 
 | 	if (add && !cpuctx->cgrp) { | 
 | 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); | 
 |  | 
 | 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) | 
 | 			cpuctx->cgrp = cgrp; | 
 | 	} | 
 |  | 
 | 	if (add && ctx->nr_cgroups++) | 
 | 		return; | 
 | 	else if (!add && --ctx->nr_cgroups) | 
 | 		return; | 
 |  | 
 | 	/* no cgroup running */ | 
 | 	if (!add) | 
 | 		cpuctx->cgrp = NULL; | 
 |  | 
 | 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; | 
 | 	if (add) | 
 | 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); | 
 | 	else | 
 | 		list_del(cpuctx_entry); | 
 | } | 
 |  | 
 | #else /* !CONFIG_CGROUP_PERF */ | 
 |  | 
 | static inline bool | 
 | perf_cgroup_match(struct perf_event *event) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void perf_detach_cgroup(struct perf_event *event) | 
 | {} | 
 |  | 
 | static inline int is_cgroup_event(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_event(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) | 
 | { | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_out(struct task_struct *task, | 
 | 					 struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void perf_cgroup_sched_in(struct task_struct *prev, | 
 | 					struct task_struct *task) | 
 | { | 
 | } | 
 |  | 
 | static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, | 
 | 				      struct perf_event_attr *attr, | 
 | 				      struct perf_event *group_leader) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_timestamp(struct task_struct *task, | 
 | 			  struct perf_event_context *ctx) | 
 | { | 
 | } | 
 |  | 
 | void | 
 | perf_cgroup_switch(struct task_struct *task, struct task_struct *next) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) | 
 | { | 
 | } | 
 |  | 
 | static inline u64 perf_cgroup_event_time(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void | 
 | list_update_cgroup_event(struct perf_event *event, | 
 | 			 struct perf_event_context *ctx, bool add) | 
 | { | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * set default to be dependent on timer tick just | 
 |  * like original code | 
 |  */ | 
 | #define PERF_CPU_HRTIMER (1000 / HZ) | 
 | /* | 
 |  * function must be called with interrupts disabled | 
 |  */ | 
 | static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	bool rotations; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); | 
 | 	rotations = perf_rotate_context(cpuctx); | 
 |  | 
 | 	raw_spin_lock(&cpuctx->hrtimer_lock); | 
 | 	if (rotations) | 
 | 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval); | 
 | 	else | 
 | 		cpuctx->hrtimer_active = 0; | 
 | 	raw_spin_unlock(&cpuctx->hrtimer_lock); | 
 |  | 
 | 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) | 
 | { | 
 | 	struct hrtimer *timer = &cpuctx->hrtimer; | 
 | 	struct pmu *pmu = cpuctx->ctx.pmu; | 
 | 	u64 interval; | 
 |  | 
 | 	/* no multiplexing needed for SW PMU */ | 
 | 	if (pmu->task_ctx_nr == perf_sw_context) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * check default is sane, if not set then force to | 
 | 	 * default interval (1/tick) | 
 | 	 */ | 
 | 	interval = pmu->hrtimer_interval_ms; | 
 | 	if (interval < 1) | 
 | 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; | 
 |  | 
 | 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); | 
 |  | 
 | 	raw_spin_lock_init(&cpuctx->hrtimer_lock); | 
 | 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); | 
 | 	timer->function = perf_mux_hrtimer_handler; | 
 | } | 
 |  | 
 | static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct hrtimer *timer = &cpuctx->hrtimer; | 
 | 	struct pmu *pmu = cpuctx->ctx.pmu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* not for SW PMU */ | 
 | 	if (pmu->task_ctx_nr == perf_sw_context) | 
 | 		return 0; | 
 |  | 
 | 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); | 
 | 	if (!cpuctx->hrtimer_active) { | 
 | 		cpuctx->hrtimer_active = 1; | 
 | 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval); | 
 | 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void perf_pmu_disable(struct pmu *pmu) | 
 | { | 
 | 	int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
 | 	if (!(*count)++) | 
 | 		pmu->pmu_disable(pmu); | 
 | } | 
 |  | 
 | void perf_pmu_enable(struct pmu *pmu) | 
 | { | 
 | 	int *count = this_cpu_ptr(pmu->pmu_disable_count); | 
 | 	if (!--(*count)) | 
 | 		pmu->pmu_enable(pmu); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct list_head, active_ctx_list); | 
 |  | 
 | /* | 
 |  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and | 
 |  * perf_event_task_tick() are fully serialized because they're strictly cpu | 
 |  * affine and perf_event_ctx{activate,deactivate} are called with IRQs | 
 |  * disabled, while perf_event_task_tick is called from IRQ context. | 
 |  */ | 
 | static void perf_event_ctx_activate(struct perf_event_context *ctx) | 
 | { | 
 | 	struct list_head *head = this_cpu_ptr(&active_ctx_list); | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	WARN_ON(!list_empty(&ctx->active_ctx_list)); | 
 |  | 
 | 	list_add(&ctx->active_ctx_list, head); | 
 | } | 
 |  | 
 | static void perf_event_ctx_deactivate(struct perf_event_context *ctx) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	WARN_ON(list_empty(&ctx->active_ctx_list)); | 
 |  | 
 | 	list_del_init(&ctx->active_ctx_list); | 
 | } | 
 |  | 
 | static void get_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | 
 | } | 
 |  | 
 | static void free_ctx(struct rcu_head *head) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = container_of(head, struct perf_event_context, rcu_head); | 
 | 	kfree(ctx->task_ctx_data); | 
 | 	kfree(ctx); | 
 | } | 
 |  | 
 | static void put_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	if (atomic_dec_and_test(&ctx->refcount)) { | 
 | 		if (ctx->parent_ctx) | 
 | 			put_ctx(ctx->parent_ctx); | 
 | 		if (ctx->task && ctx->task != TASK_TOMBSTONE) | 
 | 			put_task_struct(ctx->task); | 
 | 		call_rcu(&ctx->rcu_head, free_ctx); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and | 
 |  * perf_pmu_migrate_context() we need some magic. | 
 |  * | 
 |  * Those places that change perf_event::ctx will hold both | 
 |  * perf_event_ctx::mutex of the 'old' and 'new' ctx value. | 
 |  * | 
 |  * Lock ordering is by mutex address. There are two other sites where | 
 |  * perf_event_context::mutex nests and those are: | 
 |  * | 
 |  *  - perf_event_exit_task_context()	[ child , 0 ] | 
 |  *      perf_event_exit_event() | 
 |  *        put_event()			[ parent, 1 ] | 
 |  * | 
 |  *  - perf_event_init_context()		[ parent, 0 ] | 
 |  *      inherit_task_group() | 
 |  *        inherit_group() | 
 |  *          inherit_event() | 
 |  *            perf_event_alloc() | 
 |  *              perf_init_event() | 
 |  *                perf_try_init_event()	[ child , 1 ] | 
 |  * | 
 |  * While it appears there is an obvious deadlock here -- the parent and child | 
 |  * nesting levels are inverted between the two. This is in fact safe because | 
 |  * life-time rules separate them. That is an exiting task cannot fork, and a | 
 |  * spawning task cannot (yet) exit. | 
 |  * | 
 |  * But remember that that these are parent<->child context relations, and | 
 |  * migration does not affect children, therefore these two orderings should not | 
 |  * interact. | 
 |  * | 
 |  * The change in perf_event::ctx does not affect children (as claimed above) | 
 |  * because the sys_perf_event_open() case will install a new event and break | 
 |  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only | 
 |  * concerned with cpuctx and that doesn't have children. | 
 |  * | 
 |  * The places that change perf_event::ctx will issue: | 
 |  * | 
 |  *   perf_remove_from_context(); | 
 |  *   synchronize_rcu(); | 
 |  *   perf_install_in_context(); | 
 |  * | 
 |  * to affect the change. The remove_from_context() + synchronize_rcu() should | 
 |  * quiesce the event, after which we can install it in the new location. This | 
 |  * means that only external vectors (perf_fops, prctl) can perturb the event | 
 |  * while in transit. Therefore all such accessors should also acquire | 
 |  * perf_event_context::mutex to serialize against this. | 
 |  * | 
 |  * However; because event->ctx can change while we're waiting to acquire | 
 |  * ctx->mutex we must be careful and use the below perf_event_ctx_lock() | 
 |  * function. | 
 |  * | 
 |  * Lock order: | 
 |  *    cred_guard_mutex | 
 |  *	task_struct::perf_event_mutex | 
 |  *	  perf_event_context::mutex | 
 |  *	    perf_event::child_mutex; | 
 |  *	      perf_event_context::lock | 
 |  *	    perf_event::mmap_mutex | 
 |  *	    mmap_sem | 
 |  * | 
 |  *    cpu_hotplug_lock | 
 |  *      pmus_lock | 
 |  *	  cpuctx->mutex / perf_event_context::mutex | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_event_ctx_lock_nested(struct perf_event *event, int nesting) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | again: | 
 | 	rcu_read_lock(); | 
 | 	ctx = READ_ONCE(event->ctx); | 
 | 	if (!atomic_inc_not_zero(&ctx->refcount)) { | 
 | 		rcu_read_unlock(); | 
 | 		goto again; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	mutex_lock_nested(&ctx->mutex, nesting); | 
 | 	if (event->ctx != ctx) { | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 		put_ctx(ctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static inline struct perf_event_context * | 
 | perf_event_ctx_lock(struct perf_event *event) | 
 | { | 
 | 	return perf_event_ctx_lock_nested(event, 0); | 
 | } | 
 |  | 
 | static void perf_event_ctx_unlock(struct perf_event *event, | 
 | 				  struct perf_event_context *ctx) | 
 | { | 
 | 	mutex_unlock(&ctx->mutex); | 
 | 	put_ctx(ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * This must be done under the ctx->lock, such as to serialize against | 
 |  * context_equiv(), therefore we cannot call put_ctx() since that might end up | 
 |  * calling scheduler related locks and ctx->lock nests inside those. | 
 |  */ | 
 | static __must_check struct perf_event_context * | 
 | unclone_ctx(struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event_context *parent_ctx = ctx->parent_ctx; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	if (parent_ctx) | 
 | 		ctx->parent_ctx = NULL; | 
 | 	ctx->generation++; | 
 |  | 
 | 	return parent_ctx; | 
 | } | 
 |  | 
 | static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, | 
 | 				enum pid_type type) | 
 | { | 
 | 	u32 nr; | 
 | 	/* | 
 | 	 * only top level events have the pid namespace they were created in | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	nr = __task_pid_nr_ns(p, type, event->ns); | 
 | 	/* avoid -1 if it is idle thread or runs in another ns */ | 
 | 	if (!nr && !pid_alive(p)) | 
 | 		nr = -1; | 
 | 	return nr; | 
 | } | 
 |  | 
 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	return perf_event_pid_type(event, p, __PIDTYPE_TGID); | 
 | } | 
 |  | 
 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | 
 | { | 
 | 	return perf_event_pid_type(event, p, PIDTYPE_PID); | 
 | } | 
 |  | 
 | /* | 
 |  * If we inherit events we want to return the parent event id | 
 |  * to userspace. | 
 |  */ | 
 | static u64 primary_event_id(struct perf_event *event) | 
 | { | 
 | 	u64 id = event->id; | 
 |  | 
 | 	if (event->parent) | 
 | 		id = event->parent->id; | 
 |  | 
 | 	return id; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the perf_event_context for a task and lock it. | 
 |  * | 
 |  * This has to cope with with the fact that until it is locked, | 
 |  * the context could get moved to another task. | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | retry: | 
 | 	/* | 
 | 	 * One of the few rules of preemptible RCU is that one cannot do | 
 | 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when | 
 | 	 * part of the read side critical section was irqs-enabled -- see | 
 | 	 * rcu_read_unlock_special(). | 
 | 	 * | 
 | 	 * Since ctx->lock nests under rq->lock we must ensure the entire read | 
 | 	 * side critical section has interrupts disabled. | 
 | 	 */ | 
 | 	local_irq_save(*flags); | 
 | 	rcu_read_lock(); | 
 | 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); | 
 | 	if (ctx) { | 
 | 		/* | 
 | 		 * If this context is a clone of another, it might | 
 | 		 * get swapped for another underneath us by | 
 | 		 * perf_event_task_sched_out, though the | 
 | 		 * rcu_read_lock() protects us from any context | 
 | 		 * getting freed.  Lock the context and check if it | 
 | 		 * got swapped before we could get the lock, and retry | 
 | 		 * if so.  If we locked the right context, then it | 
 | 		 * can't get swapped on us any more. | 
 | 		 */ | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { | 
 | 			raw_spin_unlock(&ctx->lock); | 
 | 			rcu_read_unlock(); | 
 | 			local_irq_restore(*flags); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		if (ctx->task == TASK_TOMBSTONE || | 
 | 		    !atomic_inc_not_zero(&ctx->refcount)) { | 
 | 			raw_spin_unlock(&ctx->lock); | 
 | 			ctx = NULL; | 
 | 		} else { | 
 | 			WARN_ON_ONCE(ctx->task != task); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	if (!ctx) | 
 | 		local_irq_restore(*flags); | 
 | 	return ctx; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the context for a task and increment its pin_count so it | 
 |  * can't get swapped to another task.  This also increments its | 
 |  * reference count so that the context can't get freed. | 
 |  */ | 
 | static struct perf_event_context * | 
 | perf_pin_task_context(struct task_struct *task, int ctxn) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ctx = perf_lock_task_context(task, ctxn, &flags); | 
 | 	if (ctx) { | 
 | 		++ctx->pin_count; | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static void perf_unpin_context(struct perf_event_context *ctx) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ctx->lock, flags); | 
 | 	--ctx->pin_count; | 
 | 	raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the record of the current time in a context. | 
 |  */ | 
 | static void update_context_time(struct perf_event_context *ctx) | 
 | { | 
 | 	u64 now = perf_clock(); | 
 |  | 
 | 	ctx->time += now - ctx->timestamp; | 
 | 	ctx->timestamp = now; | 
 | } | 
 |  | 
 | static u64 perf_event_time(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		return perf_cgroup_event_time(event); | 
 |  | 
 | 	return ctx ? ctx->time : 0; | 
 | } | 
 |  | 
 | static enum event_type_t get_event_type(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	enum event_type_t event_type; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * It's 'group type', really, because if our group leader is | 
 | 	 * pinned, so are we. | 
 | 	 */ | 
 | 	if (event->group_leader != event) | 
 | 		event = event->group_leader; | 
 |  | 
 | 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; | 
 | 	if (!ctx->task) | 
 | 		event_type |= EVENT_CPU; | 
 |  | 
 | 	return event_type; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to initialize event group nodes. | 
 |  */ | 
 | static void init_event_group(struct perf_event *event) | 
 | { | 
 | 	RB_CLEAR_NODE(&event->group_node); | 
 | 	event->group_index = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract pinned or flexible groups from the context | 
 |  * based on event attrs bits. | 
 |  */ | 
 | static struct perf_event_groups * | 
 | get_event_groups(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	if (event->attr.pinned) | 
 | 		return &ctx->pinned_groups; | 
 | 	else | 
 | 		return &ctx->flexible_groups; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to initializes perf_event_group trees. | 
 |  */ | 
 | static void perf_event_groups_init(struct perf_event_groups *groups) | 
 | { | 
 | 	groups->tree = RB_ROOT; | 
 | 	groups->index = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Compare function for event groups; | 
 |  * | 
 |  * Implements complex key that first sorts by CPU and then by virtual index | 
 |  * which provides ordering when rotating groups for the same CPU. | 
 |  */ | 
 | static bool | 
 | perf_event_groups_less(struct perf_event *left, struct perf_event *right) | 
 | { | 
 | 	if (left->cpu < right->cpu) | 
 | 		return true; | 
 | 	if (left->cpu > right->cpu) | 
 | 		return false; | 
 |  | 
 | 	if (left->group_index < right->group_index) | 
 | 		return true; | 
 | 	if (left->group_index > right->group_index) | 
 | 		return false; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for | 
 |  * key (see perf_event_groups_less). This places it last inside the CPU | 
 |  * subtree. | 
 |  */ | 
 | static void | 
 | perf_event_groups_insert(struct perf_event_groups *groups, | 
 | 			 struct perf_event *event) | 
 | { | 
 | 	struct perf_event *node_event; | 
 | 	struct rb_node *parent; | 
 | 	struct rb_node **node; | 
 |  | 
 | 	event->group_index = ++groups->index; | 
 |  | 
 | 	node = &groups->tree.rb_node; | 
 | 	parent = *node; | 
 |  | 
 | 	while (*node) { | 
 | 		parent = *node; | 
 | 		node_event = container_of(*node, struct perf_event, group_node); | 
 |  | 
 | 		if (perf_event_groups_less(event, node_event)) | 
 | 			node = &parent->rb_left; | 
 | 		else | 
 | 			node = &parent->rb_right; | 
 | 	} | 
 |  | 
 | 	rb_link_node(&event->group_node, parent, node); | 
 | 	rb_insert_color(&event->group_node, &groups->tree); | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to insert event into the pinned or flexible groups. | 
 |  */ | 
 | static void | 
 | add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event_groups *groups; | 
 |  | 
 | 	groups = get_event_groups(event, ctx); | 
 | 	perf_event_groups_insert(groups, event); | 
 | } | 
 |  | 
 | /* | 
 |  * Delete a group from a tree. | 
 |  */ | 
 | static void | 
 | perf_event_groups_delete(struct perf_event_groups *groups, | 
 | 			 struct perf_event *event) | 
 | { | 
 | 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || | 
 | 		     RB_EMPTY_ROOT(&groups->tree)); | 
 |  | 
 | 	rb_erase(&event->group_node, &groups->tree); | 
 | 	init_event_group(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to delete event from its groups. | 
 |  */ | 
 | static void | 
 | del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event_groups *groups; | 
 |  | 
 | 	groups = get_event_groups(event, ctx); | 
 | 	perf_event_groups_delete(groups, event); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the leftmost event in the @cpu subtree. | 
 |  */ | 
 | static struct perf_event * | 
 | perf_event_groups_first(struct perf_event_groups *groups, int cpu) | 
 | { | 
 | 	struct perf_event *node_event = NULL, *match = NULL; | 
 | 	struct rb_node *node = groups->tree.rb_node; | 
 |  | 
 | 	while (node) { | 
 | 		node_event = container_of(node, struct perf_event, group_node); | 
 |  | 
 | 		if (cpu < node_event->cpu) { | 
 | 			node = node->rb_left; | 
 | 		} else if (cpu > node_event->cpu) { | 
 | 			node = node->rb_right; | 
 | 		} else { | 
 | 			match = node_event; | 
 | 			node = node->rb_left; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return match; | 
 | } | 
 |  | 
 | /* | 
 |  * Like rb_entry_next_safe() for the @cpu subtree. | 
 |  */ | 
 | static struct perf_event * | 
 | perf_event_groups_next(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *next; | 
 |  | 
 | 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); | 
 | 	if (next && next->cpu == event->cpu) | 
 | 		return next; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate through the whole groups tree. | 
 |  */ | 
 | #define perf_event_groups_for_each(event, groups)			\ | 
 | 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\ | 
 | 				typeof(*event), group_node); event;	\ | 
 | 		event = rb_entry_safe(rb_next(&event->group_node),	\ | 
 | 				typeof(*event), group_node)) | 
 |  | 
 | /* | 
 |  * Add a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); | 
 | 	event->attach_state |= PERF_ATTACH_CONTEXT; | 
 |  | 
 | 	event->tstamp = perf_event_time(event); | 
 |  | 
 | 	/* | 
 | 	 * If we're a stand alone event or group leader, we go to the context | 
 | 	 * list, group events are kept attached to the group so that | 
 | 	 * perf_group_detach can, at all times, locate all siblings. | 
 | 	 */ | 
 | 	if (event->group_leader == event) { | 
 | 		event->group_caps = event->event_caps; | 
 | 		add_event_to_groups(event, ctx); | 
 | 	} | 
 |  | 
 | 	list_update_cgroup_event(event, ctx, true); | 
 |  | 
 | 	list_add_rcu(&event->event_entry, &ctx->event_list); | 
 | 	ctx->nr_events++; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat++; | 
 |  | 
 | 	ctx->generation++; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize event state based on the perf_event_attr::disabled. | 
 |  */ | 
 | static inline void perf_event__state_init(struct perf_event *event) | 
 | { | 
 | 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : | 
 | 					      PERF_EVENT_STATE_INACTIVE; | 
 | } | 
 |  | 
 | static void __perf_event_read_size(struct perf_event *event, int nr_siblings) | 
 | { | 
 | 	int entry = sizeof(u64); /* value */ | 
 | 	int size = 0; | 
 | 	int nr = 1; | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		size += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_ID) | 
 | 		entry += sizeof(u64); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) { | 
 | 		nr += nr_siblings; | 
 | 		size += sizeof(u64); | 
 | 	} | 
 |  | 
 | 	size += entry * nr; | 
 | 	event->read_size = size; | 
 | } | 
 |  | 
 | static void __perf_event_header_size(struct perf_event *event, u64 sample_type) | 
 | { | 
 | 	struct perf_sample_data *data; | 
 | 	u16 size = 0; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		size += sizeof(data->ip); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		size += sizeof(data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		size += sizeof(data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_WEIGHT) | 
 | 		size += sizeof(data->weight); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		size += event->read_size; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_DATA_SRC) | 
 | 		size += sizeof(data->data_src.val); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TRANSACTION) | 
 | 		size += sizeof(data->txn); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PHYS_ADDR) | 
 | 		size += sizeof(data->phys_addr); | 
 |  | 
 | 	event->header_size = size; | 
 | } | 
 |  | 
 | /* | 
 |  * Called at perf_event creation and when events are attached/detached from a | 
 |  * group. | 
 |  */ | 
 | static void perf_event__header_size(struct perf_event *event) | 
 | { | 
 | 	__perf_event_read_size(event, | 
 | 			       event->group_leader->nr_siblings); | 
 | 	__perf_event_header_size(event, event->attr.sample_type); | 
 | } | 
 |  | 
 | static void perf_event__id_header_size(struct perf_event *event) | 
 | { | 
 | 	struct perf_sample_data *data; | 
 | 	u64 sample_type = event->attr.sample_type; | 
 | 	u16 size = 0; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		size += sizeof(data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		size += sizeof(data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IDENTIFIER) | 
 | 		size += sizeof(data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		size += sizeof(data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		size += sizeof(data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		size += sizeof(data->cpu_entry); | 
 |  | 
 | 	event->id_header_size = size; | 
 | } | 
 |  | 
 | static bool perf_event_validate_size(struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * The values computed here will be over-written when we actually | 
 | 	 * attach the event. | 
 | 	 */ | 
 | 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1); | 
 | 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); | 
 | 	perf_event__id_header_size(event); | 
 |  | 
 | 	/* | 
 | 	 * Sum the lot; should not exceed the 64k limit we have on records. | 
 | 	 * Conservative limit to allow for callchains and other variable fields. | 
 | 	 */ | 
 | 	if (event->read_size + event->header_size + | 
 | 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void perf_group_attach(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *group_leader = event->group_leader, *pos; | 
 |  | 
 | 	lockdep_assert_held(&event->ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * We can have double attach due to group movement in perf_event_open. | 
 | 	 */ | 
 | 	if (event->attach_state & PERF_ATTACH_GROUP) | 
 | 		return; | 
 |  | 
 | 	event->attach_state |= PERF_ATTACH_GROUP; | 
 |  | 
 | 	if (group_leader == event) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(group_leader->ctx != event->ctx); | 
 |  | 
 | 	group_leader->group_caps &= event->event_caps; | 
 |  | 
 | 	list_add_tail(&event->sibling_list, &group_leader->sibling_list); | 
 | 	group_leader->nr_siblings++; | 
 |  | 
 | 	perf_event__header_size(group_leader); | 
 |  | 
 | 	for_each_sibling_event(pos, group_leader) | 
 | 		perf_event__header_size(pos); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a event from the lists for its context. | 
 |  * Must be called with ctx->mutex and ctx->lock held. | 
 |  */ | 
 | static void | 
 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | 
 | { | 
 | 	WARN_ON_ONCE(event->ctx != ctx); | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * We can have double detach due to exit/hot-unplug + close. | 
 | 	 */ | 
 | 	if (!(event->attach_state & PERF_ATTACH_CONTEXT)) | 
 | 		return; | 
 |  | 
 | 	event->attach_state &= ~PERF_ATTACH_CONTEXT; | 
 |  | 
 | 	list_update_cgroup_event(event, ctx, false); | 
 |  | 
 | 	ctx->nr_events--; | 
 | 	if (event->attr.inherit_stat) | 
 | 		ctx->nr_stat--; | 
 |  | 
 | 	list_del_rcu(&event->event_entry); | 
 |  | 
 | 	if (event->group_leader == event) | 
 | 		del_event_from_groups(event, ctx); | 
 |  | 
 | 	/* | 
 | 	 * If event was in error state, then keep it | 
 | 	 * that way, otherwise bogus counts will be | 
 | 	 * returned on read(). The only way to get out | 
 | 	 * of error state is by explicit re-enabling | 
 | 	 * of the event | 
 | 	 */ | 
 | 	if (event->state > PERF_EVENT_STATE_OFF) | 
 | 		perf_event_set_state(event, PERF_EVENT_STATE_OFF); | 
 |  | 
 | 	ctx->generation++; | 
 | } | 
 |  | 
 | static void perf_group_detach(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *sibling, *tmp; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * We can have double detach due to exit/hot-unplug + close. | 
 | 	 */ | 
 | 	if (!(event->attach_state & PERF_ATTACH_GROUP)) | 
 | 		return; | 
 |  | 
 | 	event->attach_state &= ~PERF_ATTACH_GROUP; | 
 |  | 
 | 	/* | 
 | 	 * If this is a sibling, remove it from its group. | 
 | 	 */ | 
 | 	if (event->group_leader != event) { | 
 | 		list_del_init(&event->sibling_list); | 
 | 		event->group_leader->nr_siblings--; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this was a group event with sibling events then | 
 | 	 * upgrade the siblings to singleton events by adding them | 
 | 	 * to whatever list we are on. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { | 
 |  | 
 | 		sibling->group_leader = sibling; | 
 | 		list_del_init(&sibling->sibling_list); | 
 |  | 
 | 		/* Inherit group flags from the previous leader */ | 
 | 		sibling->group_caps = event->group_caps; | 
 |  | 
 | 		if (!RB_EMPTY_NODE(&event->group_node)) { | 
 | 			add_event_to_groups(sibling, event->ctx); | 
 |  | 
 | 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 				struct list_head *list = sibling->attr.pinned ? | 
 | 					&ctx->pinned_active : &ctx->flexible_active; | 
 |  | 
 | 				list_add_tail(&sibling->active_list, list); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		WARN_ON_ONCE(sibling->ctx != event->ctx); | 
 | 	} | 
 |  | 
 | out: | 
 | 	perf_event__header_size(event->group_leader); | 
 |  | 
 | 	for_each_sibling_event(tmp, event->group_leader) | 
 | 		perf_event__header_size(tmp); | 
 | } | 
 |  | 
 | static bool is_orphaned_event(struct perf_event *event) | 
 | { | 
 | 	return event->state == PERF_EVENT_STATE_DEAD; | 
 | } | 
 |  | 
 | static inline int __pmu_filter_match(struct perf_event *event) | 
 | { | 
 | 	struct pmu *pmu = event->pmu; | 
 | 	return pmu->filter_match ? pmu->filter_match(event) : 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether we should attempt to schedule an event group based on | 
 |  * PMU-specific filtering. An event group can consist of HW and SW events, | 
 |  * potentially with a SW leader, so we must check all the filters, to | 
 |  * determine whether a group is schedulable: | 
 |  */ | 
 | static inline int pmu_filter_match(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *sibling; | 
 |  | 
 | 	if (!__pmu_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_sibling_event(sibling, event) { | 
 | 		if (!__pmu_filter_match(sibling)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline int | 
 | event_filter_match(struct perf_event *event) | 
 | { | 
 | 	return (event->cpu == -1 || event->cpu == smp_processor_id()) && | 
 | 	       perf_cgroup_match(event) && pmu_filter_match(event); | 
 | } | 
 |  | 
 | static void | 
 | event_sched_out(struct perf_event *event, | 
 | 		  struct perf_cpu_context *cpuctx, | 
 | 		  struct perf_event_context *ctx) | 
 | { | 
 | 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx != ctx); | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but | 
 | 	 * we can schedule events _OUT_ individually through things like | 
 | 	 * __perf_remove_from_context(). | 
 | 	 */ | 
 | 	list_del_init(&event->active_list); | 
 |  | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	event->pmu->del(event, 0); | 
 | 	event->oncpu = -1; | 
 |  | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		state = PERF_EVENT_STATE_OFF; | 
 | 	} | 
 | 	perf_event_set_state(event, state); | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu--; | 
 | 	if (!--ctx->nr_active) | 
 | 		perf_event_ctx_deactivate(ctx); | 
 | 	if (event->attr.freq && event->attr.sample_freq) | 
 | 		ctx->nr_freq--; | 
 | 	if (event->attr.exclusive || !cpuctx->active_oncpu) | 
 | 		cpuctx->exclusive = 0; | 
 |  | 
 | 	perf_pmu_enable(event->pmu); | 
 | } | 
 |  | 
 | static void | 
 | group_sched_out(struct perf_event *group_event, | 
 | 		struct perf_cpu_context *cpuctx, | 
 | 		struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	if (group_event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(ctx->pmu); | 
 |  | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	/* | 
 | 	 * Schedule out siblings (if any): | 
 | 	 */ | 
 | 	for_each_sibling_event(event, group_event) | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	perf_pmu_enable(ctx->pmu); | 
 |  | 
 | 	if (group_event->attr.exclusive) | 
 | 		cpuctx->exclusive = 0; | 
 | } | 
 |  | 
 | #define DETACH_GROUP	0x01UL | 
 |  | 
 | /* | 
 |  * Cross CPU call to remove a performance event | 
 |  * | 
 |  * We disable the event on the hardware level first. After that we | 
 |  * remove it from the context list. | 
 |  */ | 
 | static void | 
 | __perf_remove_from_context(struct perf_event *event, | 
 | 			   struct perf_cpu_context *cpuctx, | 
 | 			   struct perf_event_context *ctx, | 
 | 			   void *info) | 
 | { | 
 | 	unsigned long flags = (unsigned long)info; | 
 |  | 
 | 	if (ctx->is_active & EVENT_TIME) { | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_cpuctx(cpuctx); | 
 | 	} | 
 |  | 
 | 	event_sched_out(event, cpuctx, ctx); | 
 | 	if (flags & DETACH_GROUP) | 
 | 		perf_group_detach(event); | 
 | 	list_del_event(event, ctx); | 
 |  | 
 | 	if (!ctx->nr_events && ctx->is_active) { | 
 | 		ctx->is_active = 0; | 
 | 		if (ctx->task) { | 
 | 			WARN_ON_ONCE(cpuctx->task_ctx != ctx); | 
 | 			cpuctx->task_ctx = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the event from a task's (or a CPU's) list of events. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This is OK when called from perf_release since | 
 |  * that only calls us on the top-level context, which can't be a clone. | 
 |  * When called from perf_event_exit_task, it's OK because the | 
 |  * context has been detached from its task. | 
 |  */ | 
 | static void perf_remove_from_context(struct perf_event *event, unsigned long flags) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	event_function_call(event, __perf_remove_from_context, (void *)flags); | 
 |  | 
 | 	/* | 
 | 	 * The above event_function_call() can NO-OP when it hits | 
 | 	 * TASK_TOMBSTONE. In that case we must already have been detached | 
 | 	 * from the context (by perf_event_exit_event()) but the grouping | 
 | 	 * might still be in-tact. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); | 
 | 	if ((flags & DETACH_GROUP) && | 
 | 	    (event->attach_state & PERF_ATTACH_GROUP)) { | 
 | 		/* | 
 | 		 * Since in that case we cannot possibly be scheduled, simply | 
 | 		 * detach now. | 
 | 		 */ | 
 | 		raw_spin_lock_irq(&ctx->lock); | 
 | 		perf_group_detach(event); | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to disable a performance event | 
 |  */ | 
 | static void __perf_event_disable(struct perf_event *event, | 
 | 				 struct perf_cpu_context *cpuctx, | 
 | 				 struct perf_event_context *ctx, | 
 | 				 void *info) | 
 | { | 
 | 	if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 		return; | 
 |  | 
 | 	if (ctx->is_active & EVENT_TIME) { | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_event(event); | 
 | 	} | 
 |  | 
 | 	if (event == event->group_leader) | 
 | 		group_sched_out(event, cpuctx, ctx); | 
 | 	else | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 |  | 
 | 	perf_event_set_state(event, PERF_EVENT_STATE_OFF); | 
 | } | 
 |  | 
 | /* | 
 |  * Disable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisifed when called through | 
 |  * perf_event_for_each_child or perf_event_for_each because they | 
 |  * hold the top-level event's child_mutex, so any descendant that | 
 |  * goes to exit will block in perf_event_exit_event(). | 
 |  * | 
 |  * When called from perf_pending_event it's OK because event->ctx | 
 |  * is the current context on this CPU and preemption is disabled, | 
 |  * hence we can't get into perf_event_task_sched_out for this context. | 
 |  */ | 
 | static void _perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		return; | 
 | 	} | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	event_function_call(event, __perf_event_disable, NULL); | 
 | } | 
 |  | 
 | void perf_event_disable_local(struct perf_event *event) | 
 | { | 
 | 	event_function_local(event, __perf_event_disable, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Strictly speaking kernel users cannot create groups and therefore this | 
 |  * interface does not need the perf_event_ctx_lock() magic. | 
 |  */ | 
 | void perf_event_disable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	_perf_event_disable(event); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_disable); | 
 |  | 
 | void perf_event_disable_inatomic(struct perf_event *event) | 
 | { | 
 | 	event->pending_disable = 1; | 
 | 	irq_work_queue(&event->pending); | 
 | } | 
 |  | 
 | static void perf_set_shadow_time(struct perf_event *event, | 
 | 				 struct perf_event_context *ctx) | 
 | { | 
 | 	/* | 
 | 	 * use the correct time source for the time snapshot | 
 | 	 * | 
 | 	 * We could get by without this by leveraging the | 
 | 	 * fact that to get to this function, the caller | 
 | 	 * has most likely already called update_context_time() | 
 | 	 * and update_cgrp_time_xx() and thus both timestamp | 
 | 	 * are identical (or very close). Given that tstamp is, | 
 | 	 * already adjusted for cgroup, we could say that: | 
 | 	 *    tstamp - ctx->timestamp | 
 | 	 * is equivalent to | 
 | 	 *    tstamp - cgrp->timestamp. | 
 | 	 * | 
 | 	 * Then, in perf_output_read(), the calculation would | 
 | 	 * work with no changes because: | 
 | 	 * - event is guaranteed scheduled in | 
 | 	 * - no scheduled out in between | 
 | 	 * - thus the timestamp would be the same | 
 | 	 * | 
 | 	 * But this is a bit hairy. | 
 | 	 * | 
 | 	 * So instead, we have an explicit cgroup call to remain | 
 | 	 * within the time time source all along. We believe it | 
 | 	 * is cleaner and simpler to understand. | 
 | 	 */ | 
 | 	if (is_cgroup_event(event)) | 
 | 		perf_cgroup_set_shadow_time(event, event->tstamp); | 
 | 	else | 
 | 		event->shadow_ctx_time = event->tstamp - ctx->timestamp; | 
 | } | 
 |  | 
 | #define MAX_INTERRUPTS (~0ULL) | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable); | 
 | static void perf_log_itrace_start(struct perf_event *event); | 
 |  | 
 | static int | 
 | event_sched_in(struct perf_event *event, | 
 | 		 struct perf_cpu_context *cpuctx, | 
 | 		 struct perf_event_context *ctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	WRITE_ONCE(event->oncpu, smp_processor_id()); | 
 | 	/* | 
 | 	 * Order event::oncpu write to happen before the ACTIVE state is | 
 | 	 * visible. This allows perf_event_{stop,read}() to observe the correct | 
 | 	 * ->oncpu if it sees ACTIVE. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); | 
 |  | 
 | 	/* | 
 | 	 * Unthrottle events, since we scheduled we might have missed several | 
 | 	 * ticks already, also for a heavily scheduling task there is little | 
 | 	 * guarantee it'll get a tick in a timely manner. | 
 | 	 */ | 
 | 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { | 
 | 		perf_log_throttle(event, 1); | 
 | 		event->hw.interrupts = 0; | 
 | 	} | 
 |  | 
 | 	perf_pmu_disable(event->pmu); | 
 |  | 
 | 	perf_set_shadow_time(event, ctx); | 
 |  | 
 | 	perf_log_itrace_start(event); | 
 |  | 
 | 	if (event->pmu->add(event, PERF_EF_START)) { | 
 | 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); | 
 | 		event->oncpu = -1; | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!is_software_event(event)) | 
 | 		cpuctx->active_oncpu++; | 
 | 	if (!ctx->nr_active++) | 
 | 		perf_event_ctx_activate(ctx); | 
 | 	if (event->attr.freq && event->attr.sample_freq) | 
 | 		ctx->nr_freq++; | 
 |  | 
 | 	if (event->attr.exclusive) | 
 | 		cpuctx->exclusive = 1; | 
 |  | 
 | out: | 
 | 	perf_pmu_enable(event->pmu); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | group_sched_in(struct perf_event *group_event, | 
 | 	       struct perf_cpu_context *cpuctx, | 
 | 	       struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *event, *partial_group = NULL; | 
 | 	struct pmu *pmu = ctx->pmu; | 
 |  | 
 | 	if (group_event->state == PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD); | 
 |  | 
 | 	if (event_sched_in(group_event, cpuctx, ctx)) { | 
 | 		pmu->cancel_txn(pmu); | 
 | 		perf_mux_hrtimer_restart(cpuctx); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Schedule in siblings as one group (if any): | 
 | 	 */ | 
 | 	for_each_sibling_event(event, group_event) { | 
 | 		if (event_sched_in(event, cpuctx, ctx)) { | 
 | 			partial_group = event; | 
 | 			goto group_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pmu->commit_txn(pmu)) | 
 | 		return 0; | 
 |  | 
 | group_error: | 
 | 	/* | 
 | 	 * Groups can be scheduled in as one unit only, so undo any | 
 | 	 * partial group before returning: | 
 | 	 * The events up to the failed event are scheduled out normally. | 
 | 	 */ | 
 | 	for_each_sibling_event(event, group_event) { | 
 | 		if (event == partial_group) | 
 | 			break; | 
 |  | 
 | 		event_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 | 	event_sched_out(group_event, cpuctx, ctx); | 
 |  | 
 | 	pmu->cancel_txn(pmu); | 
 |  | 
 | 	perf_mux_hrtimer_restart(cpuctx); | 
 |  | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | /* | 
 |  * Work out whether we can put this event group on the CPU now. | 
 |  */ | 
 | static int group_can_go_on(struct perf_event *event, | 
 | 			   struct perf_cpu_context *cpuctx, | 
 | 			   int can_add_hw) | 
 | { | 
 | 	/* | 
 | 	 * Groups consisting entirely of software events can always go on. | 
 | 	 */ | 
 | 	if (event->group_caps & PERF_EV_CAP_SOFTWARE) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * If an exclusive group is already on, no other hardware | 
 | 	 * events can go on. | 
 | 	 */ | 
 | 	if (cpuctx->exclusive) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If this group is exclusive and there are already | 
 | 	 * events on the CPU, it can't go on. | 
 | 	 */ | 
 | 	if (event->attr.exclusive && cpuctx->active_oncpu) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Otherwise, try to add it if all previous groups were able | 
 | 	 * to go on. | 
 | 	 */ | 
 | 	return can_add_hw; | 
 | } | 
 |  | 
 | static void add_event_to_ctx(struct perf_event *event, | 
 | 			       struct perf_event_context *ctx) | 
 | { | 
 | 	list_add_event(event, ctx); | 
 | 	perf_group_attach(event); | 
 | } | 
 |  | 
 | static void ctx_sched_out(struct perf_event_context *ctx, | 
 | 			  struct perf_cpu_context *cpuctx, | 
 | 			  enum event_type_t event_type); | 
 | static void | 
 | ctx_sched_in(struct perf_event_context *ctx, | 
 | 	     struct perf_cpu_context *cpuctx, | 
 | 	     enum event_type_t event_type, | 
 | 	     struct task_struct *task); | 
 |  | 
 | static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
 | 			       struct perf_event_context *ctx, | 
 | 			       enum event_type_t event_type) | 
 | { | 
 | 	if (!cpuctx->task_ctx) | 
 | 		return; | 
 |  | 
 | 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | 
 | 		return; | 
 |  | 
 | 	ctx_sched_out(ctx, cpuctx, event_type); | 
 | } | 
 |  | 
 | static void perf_event_sched_in(struct perf_cpu_context *cpuctx, | 
 | 				struct perf_event_context *ctx, | 
 | 				struct task_struct *task) | 
 | { | 
 | 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); | 
 | 	if (ctx) | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); | 
 | 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); | 
 | 	if (ctx) | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); | 
 | } | 
 |  | 
 | /* | 
 |  * We want to maintain the following priority of scheduling: | 
 |  *  - CPU pinned (EVENT_CPU | EVENT_PINNED) | 
 |  *  - task pinned (EVENT_PINNED) | 
 |  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) | 
 |  *  - task flexible (EVENT_FLEXIBLE). | 
 |  * | 
 |  * In order to avoid unscheduling and scheduling back in everything every | 
 |  * time an event is added, only do it for the groups of equal priority and | 
 |  * below. | 
 |  * | 
 |  * This can be called after a batch operation on task events, in which case | 
 |  * event_type is a bit mask of the types of events involved. For CPU events, | 
 |  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. | 
 |  */ | 
 | static void ctx_resched(struct perf_cpu_context *cpuctx, | 
 | 			struct perf_event_context *task_ctx, | 
 | 			enum event_type_t event_type) | 
 | { | 
 | 	enum event_type_t ctx_event_type; | 
 | 	bool cpu_event = !!(event_type & EVENT_CPU); | 
 |  | 
 | 	/* | 
 | 	 * If pinned groups are involved, flexible groups also need to be | 
 | 	 * scheduled out. | 
 | 	 */ | 
 | 	if (event_type & EVENT_PINNED) | 
 | 		event_type |= EVENT_FLEXIBLE; | 
 |  | 
 | 	ctx_event_type = event_type & EVENT_ALL; | 
 |  | 
 | 	perf_pmu_disable(cpuctx->ctx.pmu); | 
 | 	if (task_ctx) | 
 | 		task_ctx_sched_out(cpuctx, task_ctx, event_type); | 
 |  | 
 | 	/* | 
 | 	 * Decide which cpu ctx groups to schedule out based on the types | 
 | 	 * of events that caused rescheduling: | 
 | 	 *  - EVENT_CPU: schedule out corresponding groups; | 
 | 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; | 
 | 	 *  - otherwise, do nothing more. | 
 | 	 */ | 
 | 	if (cpu_event) | 
 | 		cpu_ctx_sched_out(cpuctx, ctx_event_type); | 
 | 	else if (ctx_event_type & EVENT_PINNED) | 
 | 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
 |  | 
 | 	perf_event_sched_in(cpuctx, task_ctx, current); | 
 | 	perf_pmu_enable(cpuctx->ctx.pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to install and enable a performance event | 
 |  * | 
 |  * Very similar to remote_function() + event_function() but cannot assume that | 
 |  * things like ctx->is_active and cpuctx->task_ctx are set. | 
 |  */ | 
 | static int  __perf_install_in_context(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct perf_event_context *task_ctx = cpuctx->task_ctx; | 
 | 	bool reprogram = true; | 
 | 	int ret = 0; | 
 |  | 
 | 	raw_spin_lock(&cpuctx->ctx.lock); | 
 | 	if (ctx->task) { | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		task_ctx = ctx; | 
 |  | 
 | 		reprogram = (ctx->task == current); | 
 |  | 
 | 		/* | 
 | 		 * If the task is running, it must be running on this CPU, | 
 | 		 * otherwise we cannot reprogram things. | 
 | 		 * | 
 | 		 * If its not running, we don't care, ctx->lock will | 
 | 		 * serialize against it becoming runnable. | 
 | 		 */ | 
 | 		if (task_curr(ctx->task) && !reprogram) { | 
 | 			ret = -ESRCH; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); | 
 | 	} else if (task_ctx) { | 
 | 		raw_spin_lock(&task_ctx->lock); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 | 	if (is_cgroup_event(event)) { | 
 | 		/* | 
 | 		 * If the current cgroup doesn't match the event's | 
 | 		 * cgroup, we should not try to schedule it. | 
 | 		 */ | 
 | 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); | 
 | 		reprogram = cgroup_is_descendant(cgrp->css.cgroup, | 
 | 					event->cgrp->css.cgroup); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (reprogram) { | 
 | 		ctx_sched_out(ctx, cpuctx, EVENT_TIME); | 
 | 		add_event_to_ctx(event, ctx); | 
 | 		ctx_resched(cpuctx, task_ctx, get_event_type(event)); | 
 | 	} else { | 
 | 		add_event_to_ctx(event, ctx); | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	perf_ctx_unlock(cpuctx, task_ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach a performance event to a context. | 
 |  * | 
 |  * Very similar to event_function_call, see comment there. | 
 |  */ | 
 | static void | 
 | perf_install_in_context(struct perf_event_context *ctx, | 
 | 			struct perf_event *event, | 
 | 			int cpu) | 
 | { | 
 | 	struct task_struct *task = READ_ONCE(ctx->task); | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	if (event->cpu != -1) | 
 | 		event->cpu = cpu; | 
 |  | 
 | 	/* | 
 | 	 * Ensures that if we can observe event->ctx, both the event and ctx | 
 | 	 * will be 'complete'. See perf_iterate_sb_cpu(). | 
 | 	 */ | 
 | 	smp_store_release(&event->ctx, ctx); | 
 |  | 
 | 	if (!task) { | 
 | 		cpu_function_call(cpu, __perf_install_in_context, event); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Should not happen, we validate the ctx is still alive before calling. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Installing events is tricky because we cannot rely on ctx->is_active | 
 | 	 * to be set in case this is the nr_events 0 -> 1 transition. | 
 | 	 * | 
 | 	 * Instead we use task_curr(), which tells us if the task is running. | 
 | 	 * However, since we use task_curr() outside of rq::lock, we can race | 
 | 	 * against the actual state. This means the result can be wrong. | 
 | 	 * | 
 | 	 * If we get a false positive, we retry, this is harmless. | 
 | 	 * | 
 | 	 * If we get a false negative, things are complicated. If we are after | 
 | 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the | 
 | 	 * value must be correct. If we're before, it doesn't matter since | 
 | 	 * perf_event_context_sched_in() will program the counter. | 
 | 	 * | 
 | 	 * However, this hinges on the remote context switch having observed | 
 | 	 * our task->perf_event_ctxp[] store, such that it will in fact take | 
 | 	 * ctx::lock in perf_event_context_sched_in(). | 
 | 	 * | 
 | 	 * We do this by task_function_call(), if the IPI fails to hit the task | 
 | 	 * we know any future context switch of task must see the | 
 | 	 * perf_event_ctpx[] store. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the | 
 | 	 * task_cpu() load, such that if the IPI then does not find the task | 
 | 	 * running, a future context switch of that task must observe the | 
 | 	 * store. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | again: | 
 | 	if (!task_function_call(task, __perf_install_in_context, event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	task = ctx->task; | 
 | 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { | 
 | 		/* | 
 | 		 * Cannot happen because we already checked above (which also | 
 | 		 * cannot happen), and we hold ctx->mutex, which serializes us | 
 | 		 * against perf_event_exit_task_context(). | 
 | 		 */ | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * If the task is not running, ctx->lock will avoid it becoming so, | 
 | 	 * thus we can safely install the event. | 
 | 	 */ | 
 | 	if (task_curr(task)) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		goto again; | 
 | 	} | 
 | 	add_event_to_ctx(event, ctx); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to enable a performance event | 
 |  */ | 
 | static void __perf_event_enable(struct perf_event *event, | 
 | 				struct perf_cpu_context *cpuctx, | 
 | 				struct perf_event_context *ctx, | 
 | 				void *info) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader; | 
 | 	struct perf_event_context *task_ctx; | 
 |  | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE || | 
 | 	    event->state <= PERF_EVENT_STATE_ERROR) | 
 | 		return; | 
 |  | 
 | 	if (ctx->is_active) | 
 | 		ctx_sched_out(ctx, cpuctx, EVENT_TIME); | 
 |  | 
 | 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); | 
 |  | 
 | 	if (!ctx->is_active) | 
 | 		return; | 
 |  | 
 | 	if (!event_filter_match(event)) { | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the event is in a group and isn't the group leader, | 
 | 	 * then don't put it on unless the group is on. | 
 | 	 */ | 
 | 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	task_ctx = cpuctx->task_ctx; | 
 | 	if (ctx->task) | 
 | 		WARN_ON_ONCE(task_ctx != ctx); | 
 |  | 
 | 	ctx_resched(cpuctx, task_ctx, get_event_type(event)); | 
 | } | 
 |  | 
 | /* | 
 |  * Enable a event. | 
 |  * | 
 |  * If event->ctx is a cloned context, callers must make sure that | 
 |  * every task struct that event->ctx->task could possibly point to | 
 |  * remains valid.  This condition is satisfied when called through | 
 |  * perf_event_for_each_child or perf_event_for_each as described | 
 |  * for perf_event_disable. | 
 |  */ | 
 | static void _perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE || | 
 | 	    event->state <  PERF_EVENT_STATE_ERROR) { | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the event is in error state, clear that first. | 
 | 	 * | 
 | 	 * That way, if we see the event in error state below, we know that it | 
 | 	 * has gone back into error state, as distinct from the task having | 
 | 	 * been scheduled away before the cross-call arrived. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		event->state = PERF_EVENT_STATE_OFF; | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	event_function_call(event, __perf_event_enable, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * See perf_event_disable(); | 
 |  */ | 
 | void perf_event_enable(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	_perf_event_enable(event); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_enable); | 
 |  | 
 | struct stop_event_data { | 
 | 	struct perf_event	*event; | 
 | 	unsigned int		restart; | 
 | }; | 
 |  | 
 | static int __perf_event_stop(void *info) | 
 | { | 
 | 	struct stop_event_data *sd = info; | 
 | 	struct perf_event *event = sd->event; | 
 |  | 
 | 	/* if it's already INACTIVE, do nothing */ | 
 | 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	/* matches smp_wmb() in event_sched_in() */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	/* | 
 | 	 * There is a window with interrupts enabled before we get here, | 
 | 	 * so we need to check again lest we try to stop another CPU's event. | 
 | 	 */ | 
 | 	if (READ_ONCE(event->oncpu) != smp_processor_id()) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	event->pmu->stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 	/* | 
 | 	 * May race with the actual stop (through perf_pmu_output_stop()), | 
 | 	 * but it is only used for events with AUX ring buffer, and such | 
 | 	 * events will refuse to restart because of rb::aux_mmap_count==0, | 
 | 	 * see comments in perf_aux_output_begin(). | 
 | 	 * | 
 | 	 * Since this is happening on a event-local CPU, no trace is lost | 
 | 	 * while restarting. | 
 | 	 */ | 
 | 	if (sd->restart) | 
 | 		event->pmu->start(event, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_stop(struct perf_event *event, int restart) | 
 | { | 
 | 	struct stop_event_data sd = { | 
 | 		.event		= event, | 
 | 		.restart	= restart, | 
 | 	}; | 
 | 	int ret = 0; | 
 |  | 
 | 	do { | 
 | 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) | 
 | 			return 0; | 
 |  | 
 | 		/* matches smp_wmb() in event_sched_in() */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		/* | 
 | 		 * We only want to restart ACTIVE events, so if the event goes | 
 | 		 * inactive here (event->oncpu==-1), there's nothing more to do; | 
 | 		 * fall through with ret==-ENXIO. | 
 | 		 */ | 
 | 		ret = cpu_function_call(READ_ONCE(event->oncpu), | 
 | 					__perf_event_stop, &sd); | 
 | 	} while (ret == -EAGAIN); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * In order to contain the amount of racy and tricky in the address filter | 
 |  * configuration management, it is a two part process: | 
 |  * | 
 |  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, | 
 |  *      we update the addresses of corresponding vmas in | 
 |  *	event::addr_filters_offs array and bump the event::addr_filters_gen; | 
 |  * (p2) when an event is scheduled in (pmu::add), it calls | 
 |  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() | 
 |  *      if the generation has changed since the previous call. | 
 |  * | 
 |  * If (p1) happens while the event is active, we restart it to force (p2). | 
 |  * | 
 |  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on | 
 |  *     pre-existing mappings, called once when new filters arrive via SET_FILTER | 
 |  *     ioctl; | 
 |  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly | 
 |  *     registered mapping, called for every new mmap(), with mm::mmap_sem down | 
 |  *     for reading; | 
 |  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process | 
 |  *     of exec. | 
 |  */ | 
 | void perf_event_addr_filters_sync(struct perf_event *event) | 
 | { | 
 | 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); | 
 |  | 
 | 	if (!has_addr_filter(event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&ifh->lock); | 
 | 	if (event->addr_filters_gen != event->hw.addr_filters_gen) { | 
 | 		event->pmu->addr_filters_sync(event); | 
 | 		event->hw.addr_filters_gen = event->addr_filters_gen; | 
 | 	} | 
 | 	raw_spin_unlock(&ifh->lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); | 
 |  | 
 | static int _perf_event_refresh(struct perf_event *event, int refresh) | 
 | { | 
 | 	/* | 
 | 	 * not supported on inherited events | 
 | 	 */ | 
 | 	if (event->attr.inherit || !is_sampling_event(event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	atomic_add(refresh, &event->event_limit); | 
 | 	_perf_event_enable(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * See perf_event_disable() | 
 |  */ | 
 | int perf_event_refresh(struct perf_event *event, int refresh) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ret; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	ret = _perf_event_refresh(event, refresh); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_refresh); | 
 |  | 
 | static int perf_event_modify_breakpoint(struct perf_event *bp, | 
 | 					 struct perf_event_attr *attr) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	_perf_event_disable(bp); | 
 |  | 
 | 	err = modify_user_hw_breakpoint_check(bp, attr, true); | 
 | 	if (err) { | 
 | 		if (!bp->attr.disabled) | 
 | 			_perf_event_enable(bp); | 
 |  | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (!attr->disabled) | 
 | 		_perf_event_enable(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_modify_attr(struct perf_event *event, | 
 | 				  struct perf_event_attr *attr) | 
 | { | 
 | 	if (event->attr.type != attr->type) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (event->attr.type) { | 
 | 	case PERF_TYPE_BREAKPOINT: | 
 | 		return perf_event_modify_breakpoint(event, attr); | 
 | 	default: | 
 | 		/* Place holder for future additions. */ | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | } | 
 |  | 
 | static void ctx_sched_out(struct perf_event_context *ctx, | 
 | 			  struct perf_cpu_context *cpuctx, | 
 | 			  enum event_type_t event_type) | 
 | { | 
 | 	struct perf_event *event, *tmp; | 
 | 	int is_active = ctx->is_active; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	if (likely(!ctx->nr_events)) { | 
 | 		/* | 
 | 		 * See __perf_remove_from_context(). | 
 | 		 */ | 
 | 		WARN_ON_ONCE(ctx->is_active); | 
 | 		if (ctx->task) | 
 | 			WARN_ON_ONCE(cpuctx->task_ctx); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ctx->is_active &= ~event_type; | 
 | 	if (!(ctx->is_active & EVENT_ALL)) | 
 | 		ctx->is_active = 0; | 
 |  | 
 | 	if (ctx->task) { | 
 | 		WARN_ON_ONCE(cpuctx->task_ctx != ctx); | 
 | 		if (!ctx->is_active) | 
 | 			cpuctx->task_ctx = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Always update time if it was set; not only when it changes. | 
 | 	 * Otherwise we can 'forget' to update time for any but the last | 
 | 	 * context we sched out. For example: | 
 | 	 * | 
 | 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE) | 
 | 	 *   ctx_sched_out(.event_type = EVENT_PINNED) | 
 | 	 * | 
 | 	 * would only update time for the pinned events. | 
 | 	 */ | 
 | 	if (is_active & EVENT_TIME) { | 
 | 		/* update (and stop) ctx time */ | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_cpuctx(cpuctx); | 
 | 	} | 
 |  | 
 | 	is_active ^= ctx->is_active; /* changed bits */ | 
 |  | 
 | 	if (!ctx->nr_active || !(is_active & EVENT_ALL)) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(ctx->pmu); | 
 | 	if (is_active & EVENT_PINNED) { | 
 | 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 |  | 
 | 	if (is_active & EVENT_FLEXIBLE) { | 
 | 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) | 
 | 			group_sched_out(event, cpuctx, ctx); | 
 | 	} | 
 | 	perf_pmu_enable(ctx->pmu); | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether two contexts are equivalent, i.e. whether they have both been | 
 |  * cloned from the same version of the same context. | 
 |  * | 
 |  * Equivalence is measured using a generation number in the context that is | 
 |  * incremented on each modification to it; see unclone_ctx(), list_add_event() | 
 |  * and list_del_event(). | 
 |  */ | 
 | static int context_equiv(struct perf_event_context *ctx1, | 
 | 			 struct perf_event_context *ctx2) | 
 | { | 
 | 	lockdep_assert_held(&ctx1->lock); | 
 | 	lockdep_assert_held(&ctx2->lock); | 
 |  | 
 | 	/* Pinning disables the swap optimization */ | 
 | 	if (ctx1->pin_count || ctx2->pin_count) | 
 | 		return 0; | 
 |  | 
 | 	/* If ctx1 is the parent of ctx2 */ | 
 | 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) | 
 | 		return 1; | 
 |  | 
 | 	/* If ctx2 is the parent of ctx1 */ | 
 | 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * If ctx1 and ctx2 have the same parent; we flatten the parent | 
 | 	 * hierarchy, see perf_event_init_context(). | 
 | 	 */ | 
 | 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && | 
 | 			ctx1->parent_gen == ctx2->parent_gen) | 
 | 		return 1; | 
 |  | 
 | 	/* Unmatched */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __perf_event_sync_stat(struct perf_event *event, | 
 | 				     struct perf_event *next_event) | 
 | { | 
 | 	u64 value; | 
 |  | 
 | 	if (!event->attr.inherit_stat) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Update the event value, we cannot use perf_event_read() | 
 | 	 * because we're in the middle of a context switch and have IRQs | 
 | 	 * disabled, which upsets smp_call_function_single(), however | 
 | 	 * we know the event must be on the current CPU, therefore we | 
 | 	 * don't need to use it. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ACTIVE) | 
 | 		event->pmu->read(event); | 
 |  | 
 | 	perf_event_update_time(event); | 
 |  | 
 | 	/* | 
 | 	 * In order to keep per-task stats reliable we need to flip the event | 
 | 	 * values when we flip the contexts. | 
 | 	 */ | 
 | 	value = local64_read(&next_event->count); | 
 | 	value = local64_xchg(&event->count, value); | 
 | 	local64_set(&next_event->count, value); | 
 |  | 
 | 	swap(event->total_time_enabled, next_event->total_time_enabled); | 
 | 	swap(event->total_time_running, next_event->total_time_running); | 
 |  | 
 | 	/* | 
 | 	 * Since we swizzled the values, update the user visible data too. | 
 | 	 */ | 
 | 	perf_event_update_userpage(event); | 
 | 	perf_event_update_userpage(next_event); | 
 | } | 
 |  | 
 | static void perf_event_sync_stat(struct perf_event_context *ctx, | 
 | 				   struct perf_event_context *next_ctx) | 
 | { | 
 | 	struct perf_event *event, *next_event; | 
 |  | 
 | 	if (!ctx->nr_stat) | 
 | 		return; | 
 |  | 
 | 	update_context_time(ctx); | 
 |  | 
 | 	event = list_first_entry(&ctx->event_list, | 
 | 				   struct perf_event, event_entry); | 
 |  | 
 | 	next_event = list_first_entry(&next_ctx->event_list, | 
 | 					struct perf_event, event_entry); | 
 |  | 
 | 	while (&event->event_entry != &ctx->event_list && | 
 | 	       &next_event->event_entry != &next_ctx->event_list) { | 
 |  | 
 | 		__perf_event_sync_stat(event, next_event); | 
 |  | 
 | 		event = list_next_entry(event, event_entry); | 
 | 		next_event = list_next_entry(next_event, event_entry); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_context_sched_out(struct task_struct *task, int ctxn, | 
 | 					 struct task_struct *next) | 
 | { | 
 | 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; | 
 | 	struct perf_event_context *next_ctx; | 
 | 	struct perf_event_context *parent, *next_parent; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	int do_switch = 1; | 
 |  | 
 | 	if (likely(!ctx)) | 
 | 		return; | 
 |  | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 | 	if (!cpuctx->task_ctx) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	next_ctx = next->perf_event_ctxp[ctxn]; | 
 | 	if (!next_ctx) | 
 | 		goto unlock; | 
 |  | 
 | 	parent = rcu_dereference(ctx->parent_ctx); | 
 | 	next_parent = rcu_dereference(next_ctx->parent_ctx); | 
 |  | 
 | 	/* If neither context have a parent context; they cannot be clones. */ | 
 | 	if (!parent && !next_parent) | 
 | 		goto unlock; | 
 |  | 
 | 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) { | 
 | 		/* | 
 | 		 * Looks like the two contexts are clones, so we might be | 
 | 		 * able to optimize the context switch.  We lock both | 
 | 		 * contexts and check that they are clones under the | 
 | 		 * lock (including re-checking that neither has been | 
 | 		 * uncloned in the meantime).  It doesn't matter which | 
 | 		 * order we take the locks because no other cpu could | 
 | 		 * be trying to lock both of these tasks. | 
 | 		 */ | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | 
 | 		if (context_equiv(ctx, next_ctx)) { | 
 | 			WRITE_ONCE(ctx->task, next); | 
 | 			WRITE_ONCE(next_ctx->task, task); | 
 |  | 
 | 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data); | 
 |  | 
 | 			/* | 
 | 			 * RCU_INIT_POINTER here is safe because we've not | 
 | 			 * modified the ctx and the above modification of | 
 | 			 * ctx->task and ctx->task_ctx_data are immaterial | 
 | 			 * since those values are always verified under | 
 | 			 * ctx->lock which we're now holding. | 
 | 			 */ | 
 | 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); | 
 | 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); | 
 |  | 
 | 			do_switch = 0; | 
 |  | 
 | 			perf_event_sync_stat(ctx, next_ctx); | 
 | 		} | 
 | 		raw_spin_unlock(&next_ctx->lock); | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	} | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (do_switch) { | 
 | 		raw_spin_lock(&ctx->lock); | 
 | 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); | 
 | 		raw_spin_unlock(&ctx->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct list_head, sched_cb_list); | 
 |  | 
 | void perf_sched_cb_dec(struct pmu *pmu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 |  | 
 | 	this_cpu_dec(perf_sched_cb_usages); | 
 |  | 
 | 	if (!--cpuctx->sched_cb_usage) | 
 | 		list_del(&cpuctx->sched_cb_entry); | 
 | } | 
 |  | 
 |  | 
 | void perf_sched_cb_inc(struct pmu *pmu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 |  | 
 | 	if (!cpuctx->sched_cb_usage++) | 
 | 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); | 
 |  | 
 | 	this_cpu_inc(perf_sched_cb_usages); | 
 | } | 
 |  | 
 | /* | 
 |  * This function provides the context switch callback to the lower code | 
 |  * layer. It is invoked ONLY when the context switch callback is enabled. | 
 |  * | 
 |  * This callback is relevant even to per-cpu events; for example multi event | 
 |  * PEBS requires this to provide PID/TID information. This requires we flush | 
 |  * all queued PEBS records before we context switch to a new task. | 
 |  */ | 
 | static void perf_pmu_sched_task(struct task_struct *prev, | 
 | 				struct task_struct *next, | 
 | 				bool sched_in) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct pmu *pmu; | 
 |  | 
 | 	if (prev == next) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { | 
 | 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ | 
 |  | 
 | 		if (WARN_ON_ONCE(!pmu->sched_task)) | 
 | 			continue; | 
 |  | 
 | 		perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 | 		perf_pmu_disable(pmu); | 
 |  | 
 | 		pmu->sched_task(cpuctx->task_ctx, sched_in); | 
 |  | 
 | 		perf_pmu_enable(pmu); | 
 | 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_event_switch(struct task_struct *task, | 
 | 			      struct task_struct *next_prev, bool sched_in); | 
 |  | 
 | #define for_each_task_context_nr(ctxn)					\ | 
 | 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) | 
 |  | 
 | /* | 
 |  * Called from scheduler to remove the events of the current task, | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We stop each event and update the event value in event->count. | 
 |  * | 
 |  * This does not protect us against NMI, but disable() | 
 |  * sets the disabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * not restart the event. | 
 |  */ | 
 | void __perf_event_task_sched_out(struct task_struct *task, | 
 | 				 struct task_struct *next) | 
 | { | 
 | 	int ctxn; | 
 |  | 
 | 	if (__this_cpu_read(perf_sched_cb_usages)) | 
 | 		perf_pmu_sched_task(task, next, false); | 
 |  | 
 | 	if (atomic_read(&nr_switch_events)) | 
 | 		perf_event_switch(task, next, false); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		perf_event_context_sched_out(task, ctxn, next); | 
 |  | 
 | 	/* | 
 | 	 * if cgroup events exist on this CPU, then we need | 
 | 	 * to check if we have to switch out PMU state. | 
 | 	 * cgroup event are system-wide mode only | 
 | 	 */ | 
 | 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) | 
 | 		perf_cgroup_sched_out(task, next); | 
 | } | 
 |  | 
 | /* | 
 |  * Called with IRQs disabled | 
 |  */ | 
 | static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, | 
 | 			      enum event_type_t event_type) | 
 | { | 
 | 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); | 
 | } | 
 |  | 
 | static int visit_groups_merge(struct perf_event_groups *groups, int cpu, | 
 | 			      int (*func)(struct perf_event *, void *), void *data) | 
 | { | 
 | 	struct perf_event **evt, *evt1, *evt2; | 
 | 	int ret; | 
 |  | 
 | 	evt1 = perf_event_groups_first(groups, -1); | 
 | 	evt2 = perf_event_groups_first(groups, cpu); | 
 |  | 
 | 	while (evt1 || evt2) { | 
 | 		if (evt1 && evt2) { | 
 | 			if (evt1->group_index < evt2->group_index) | 
 | 				evt = &evt1; | 
 | 			else | 
 | 				evt = &evt2; | 
 | 		} else if (evt1) { | 
 | 			evt = &evt1; | 
 | 		} else { | 
 | 			evt = &evt2; | 
 | 		} | 
 |  | 
 | 		ret = func(*evt, data); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		*evt = perf_event_groups_next(*evt); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct sched_in_data { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	int can_add_hw; | 
 | }; | 
 |  | 
 | static int pinned_sched_in(struct perf_event *event, void *data) | 
 | { | 
 | 	struct sched_in_data *sid = data; | 
 |  | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	if (!event_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { | 
 | 		if (!group_sched_in(event, sid->cpuctx, sid->ctx)) | 
 | 			list_add_tail(&event->active_list, &sid->ctx->pinned_active); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this pinned group hasn't been scheduled, | 
 | 	 * put it in error state. | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_INACTIVE) | 
 | 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int flexible_sched_in(struct perf_event *event, void *data) | 
 | { | 
 | 	struct sched_in_data *sid = data; | 
 |  | 
 | 	if (event->state <= PERF_EVENT_STATE_OFF) | 
 | 		return 0; | 
 |  | 
 | 	if (!event_filter_match(event)) | 
 | 		return 0; | 
 |  | 
 | 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { | 
 | 		if (!group_sched_in(event, sid->cpuctx, sid->ctx)) | 
 | 			list_add_tail(&event->active_list, &sid->ctx->flexible_active); | 
 | 		else | 
 | 			sid->can_add_hw = 0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | ctx_pinned_sched_in(struct perf_event_context *ctx, | 
 | 		    struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct sched_in_data sid = { | 
 | 		.ctx = ctx, | 
 | 		.cpuctx = cpuctx, | 
 | 		.can_add_hw = 1, | 
 | 	}; | 
 |  | 
 | 	visit_groups_merge(&ctx->pinned_groups, | 
 | 			   smp_processor_id(), | 
 | 			   pinned_sched_in, &sid); | 
 | } | 
 |  | 
 | static void | 
 | ctx_flexible_sched_in(struct perf_event_context *ctx, | 
 | 		      struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct sched_in_data sid = { | 
 | 		.ctx = ctx, | 
 | 		.cpuctx = cpuctx, | 
 | 		.can_add_hw = 1, | 
 | 	}; | 
 |  | 
 | 	visit_groups_merge(&ctx->flexible_groups, | 
 | 			   smp_processor_id(), | 
 | 			   flexible_sched_in, &sid); | 
 | } | 
 |  | 
 | static void | 
 | ctx_sched_in(struct perf_event_context *ctx, | 
 | 	     struct perf_cpu_context *cpuctx, | 
 | 	     enum event_type_t event_type, | 
 | 	     struct task_struct *task) | 
 | { | 
 | 	int is_active = ctx->is_active; | 
 | 	u64 now; | 
 |  | 
 | 	lockdep_assert_held(&ctx->lock); | 
 |  | 
 | 	if (likely(!ctx->nr_events)) | 
 | 		return; | 
 |  | 
 | 	ctx->is_active |= (event_type | EVENT_TIME); | 
 | 	if (ctx->task) { | 
 | 		if (!is_active) | 
 | 			cpuctx->task_ctx = ctx; | 
 | 		else | 
 | 			WARN_ON_ONCE(cpuctx->task_ctx != ctx); | 
 | 	} | 
 |  | 
 | 	is_active ^= ctx->is_active; /* changed bits */ | 
 |  | 
 | 	if (is_active & EVENT_TIME) { | 
 | 		/* start ctx time */ | 
 | 		now = perf_clock(); | 
 | 		ctx->timestamp = now; | 
 | 		perf_cgroup_set_timestamp(task, ctx); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First go through the list and put on any pinned groups | 
 | 	 * in order to give them the best chance of going on. | 
 | 	 */ | 
 | 	if (is_active & EVENT_PINNED) | 
 | 		ctx_pinned_sched_in(ctx, cpuctx); | 
 |  | 
 | 	/* Then walk through the lower prio flexible groups */ | 
 | 	if (is_active & EVENT_FLEXIBLE) | 
 | 		ctx_flexible_sched_in(ctx, cpuctx); | 
 | } | 
 |  | 
 | static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, | 
 | 			     enum event_type_t event_type, | 
 | 			     struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx = &cpuctx->ctx; | 
 |  | 
 | 	ctx_sched_in(ctx, cpuctx, event_type, task); | 
 | } | 
 |  | 
 | static void perf_event_context_sched_in(struct perf_event_context *ctx, | 
 | 					struct task_struct *task) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 |  | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 | 	if (cpuctx->task_ctx == ctx) | 
 | 		return; | 
 |  | 
 | 	perf_ctx_lock(cpuctx, ctx); | 
 | 	/* | 
 | 	 * We must check ctx->nr_events while holding ctx->lock, such | 
 | 	 * that we serialize against perf_install_in_context(). | 
 | 	 */ | 
 | 	if (!ctx->nr_events) | 
 | 		goto unlock; | 
 |  | 
 | 	perf_pmu_disable(ctx->pmu); | 
 | 	/* | 
 | 	 * We want to keep the following priority order: | 
 | 	 * cpu pinned (that don't need to move), task pinned, | 
 | 	 * cpu flexible, task flexible. | 
 | 	 * | 
 | 	 * However, if task's ctx is not carrying any pinned | 
 | 	 * events, no need to flip the cpuctx's events around. | 
 | 	 */ | 
 | 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) | 
 | 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
 | 	perf_event_sched_in(cpuctx, ctx, task); | 
 | 	perf_pmu_enable(ctx->pmu); | 
 |  | 
 | unlock: | 
 | 	perf_ctx_unlock(cpuctx, ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from scheduler to add the events of the current task | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * We restore the event value and then enable it. | 
 |  * | 
 |  * This does not protect us against NMI, but enable() | 
 |  * sets the enabled bit in the control field of event _before_ | 
 |  * accessing the event control register. If a NMI hits, then it will | 
 |  * keep the event running. | 
 |  */ | 
 | void __perf_event_task_sched_in(struct task_struct *prev, | 
 | 				struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	/* | 
 | 	 * If cgroup events exist on this CPU, then we need to check if we have | 
 | 	 * to switch in PMU state; cgroup event are system-wide mode only. | 
 | 	 * | 
 | 	 * Since cgroup events are CPU events, we must schedule these in before | 
 | 	 * we schedule in the task events. | 
 | 	 */ | 
 | 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) | 
 | 		perf_cgroup_sched_in(prev, task); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = task->perf_event_ctxp[ctxn]; | 
 | 		if (likely(!ctx)) | 
 | 			continue; | 
 |  | 
 | 		perf_event_context_sched_in(ctx, task); | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&nr_switch_events)) | 
 | 		perf_event_switch(task, prev, true); | 
 |  | 
 | 	if (__this_cpu_read(perf_sched_cb_usages)) | 
 | 		perf_pmu_sched_task(prev, task, true); | 
 | } | 
 |  | 
 | static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) | 
 | { | 
 | 	u64 frequency = event->attr.sample_freq; | 
 | 	u64 sec = NSEC_PER_SEC; | 
 | 	u64 divisor, dividend; | 
 |  | 
 | 	int count_fls, nsec_fls, frequency_fls, sec_fls; | 
 |  | 
 | 	count_fls = fls64(count); | 
 | 	nsec_fls = fls64(nsec); | 
 | 	frequency_fls = fls64(frequency); | 
 | 	sec_fls = 30; | 
 |  | 
 | 	/* | 
 | 	 * We got @count in @nsec, with a target of sample_freq HZ | 
 | 	 * the target period becomes: | 
 | 	 * | 
 | 	 *             @count * 10^9 | 
 | 	 * period = ------------------- | 
 | 	 *          @nsec * sample_freq | 
 | 	 * | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Reduce accuracy by one bit such that @a and @b converge | 
 | 	 * to a similar magnitude. | 
 | 	 */ | 
 | #define REDUCE_FLS(a, b)		\ | 
 | do {					\ | 
 | 	if (a##_fls > b##_fls) {	\ | 
 | 		a >>= 1;		\ | 
 | 		a##_fls--;		\ | 
 | 	} else {			\ | 
 | 		b >>= 1;		\ | 
 | 		b##_fls--;		\ | 
 | 	}				\ | 
 | } while (0) | 
 |  | 
 | 	/* | 
 | 	 * Reduce accuracy until either term fits in a u64, then proceed with | 
 | 	 * the other, so that finally we can do a u64/u64 division. | 
 | 	 */ | 
 | 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { | 
 | 		REDUCE_FLS(nsec, frequency); | 
 | 		REDUCE_FLS(sec, count); | 
 | 	} | 
 |  | 
 | 	if (count_fls + sec_fls > 64) { | 
 | 		divisor = nsec * frequency; | 
 |  | 
 | 		while (count_fls + sec_fls > 64) { | 
 | 			REDUCE_FLS(count, sec); | 
 | 			divisor >>= 1; | 
 | 		} | 
 |  | 
 | 		dividend = count * sec; | 
 | 	} else { | 
 | 		dividend = count * sec; | 
 |  | 
 | 		while (nsec_fls + frequency_fls > 64) { | 
 | 			REDUCE_FLS(nsec, frequency); | 
 | 			dividend >>= 1; | 
 | 		} | 
 |  | 
 | 		divisor = nsec * frequency; | 
 | 	} | 
 |  | 
 | 	if (!divisor) | 
 | 		return dividend; | 
 |  | 
 | 	return div64_u64(dividend, divisor); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(int, perf_throttled_count); | 
 | static DEFINE_PER_CPU(u64, perf_throttled_seq); | 
 |  | 
 | static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	s64 period, sample_period; | 
 | 	s64 delta; | 
 |  | 
 | 	period = perf_calculate_period(event, nsec, count); | 
 |  | 
 | 	delta = (s64)(period - hwc->sample_period); | 
 | 	delta = (delta + 7) / 8; /* low pass filter */ | 
 |  | 
 | 	sample_period = hwc->sample_period + delta; | 
 |  | 
 | 	if (!sample_period) | 
 | 		sample_period = 1; | 
 |  | 
 | 	hwc->sample_period = sample_period; | 
 |  | 
 | 	if (local64_read(&hwc->period_left) > 8*sample_period) { | 
 | 		if (disable) | 
 | 			event->pmu->stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 		local64_set(&hwc->period_left, 0); | 
 |  | 
 | 		if (disable) | 
 | 			event->pmu->start(event, PERF_EF_RELOAD); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * combine freq adjustment with unthrottling to avoid two passes over the | 
 |  * events. At the same time, make sure, having freq events does not change | 
 |  * the rate of unthrottling as that would introduce bias. | 
 |  */ | 
 | static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, | 
 | 					   int needs_unthr) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	u64 now, period = TICK_NSEC; | 
 | 	s64 delta; | 
 |  | 
 | 	/* | 
 | 	 * only need to iterate over all events iff: | 
 | 	 * - context have events in frequency mode (needs freq adjust) | 
 | 	 * - there are events to unthrottle on this cpu | 
 | 	 */ | 
 | 	if (!(ctx->nr_freq || needs_unthr)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	perf_pmu_disable(ctx->pmu); | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 			continue; | 
 |  | 
 | 		if (!event_filter_match(event)) | 
 | 			continue; | 
 |  | 
 | 		perf_pmu_disable(event->pmu); | 
 |  | 
 | 		hwc = &event->hw; | 
 |  | 
 | 		if (hwc->interrupts == MAX_INTERRUPTS) { | 
 | 			hwc->interrupts = 0; | 
 | 			perf_log_throttle(event, 1); | 
 | 			event->pmu->start(event, 0); | 
 | 		} | 
 |  | 
 | 		if (!event->attr.freq || !event->attr.sample_freq) | 
 | 			goto next; | 
 |  | 
 | 		/* | 
 | 		 * stop the event and update event->count | 
 | 		 */ | 
 | 		event->pmu->stop(event, PERF_EF_UPDATE); | 
 |  | 
 | 		now = local64_read(&event->count); | 
 | 		delta = now - hwc->freq_count_stamp; | 
 | 		hwc->freq_count_stamp = now; | 
 |  | 
 | 		/* | 
 | 		 * restart the event | 
 | 		 * reload only if value has changed | 
 | 		 * we have stopped the event so tell that | 
 | 		 * to perf_adjust_period() to avoid stopping it | 
 | 		 * twice. | 
 | 		 */ | 
 | 		if (delta > 0) | 
 | 			perf_adjust_period(event, period, delta, false); | 
 |  | 
 | 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); | 
 | 	next: | 
 | 		perf_pmu_enable(event->pmu); | 
 | 	} | 
 |  | 
 | 	perf_pmu_enable(ctx->pmu); | 
 | 	raw_spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Move @event to the tail of the @ctx's elegible events. | 
 |  */ | 
 | static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) | 
 | { | 
 | 	/* | 
 | 	 * Rotate the first entry last of non-pinned groups. Rotation might be | 
 | 	 * disabled by the inheritance code. | 
 | 	 */ | 
 | 	if (ctx->rotate_disable) | 
 | 		return; | 
 |  | 
 | 	perf_event_groups_delete(&ctx->flexible_groups, event); | 
 | 	perf_event_groups_insert(&ctx->flexible_groups, event); | 
 | } | 
 |  | 
 | static inline struct perf_event * | 
 | ctx_first_active(struct perf_event_context *ctx) | 
 | { | 
 | 	return list_first_entry_or_null(&ctx->flexible_active, | 
 | 					struct perf_event, active_list); | 
 | } | 
 |  | 
 | static bool perf_rotate_context(struct perf_cpu_context *cpuctx) | 
 | { | 
 | 	struct perf_event *cpu_event = NULL, *task_event = NULL; | 
 | 	bool cpu_rotate = false, task_rotate = false; | 
 | 	struct perf_event_context *ctx = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Since we run this from IRQ context, nobody can install new | 
 | 	 * events, thus the event count values are stable. | 
 | 	 */ | 
 |  | 
 | 	if (cpuctx->ctx.nr_events) { | 
 | 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) | 
 | 			cpu_rotate = true; | 
 | 	} | 
 |  | 
 | 	ctx = cpuctx->task_ctx; | 
 | 	if (ctx && ctx->nr_events) { | 
 | 		if (ctx->nr_events != ctx->nr_active) | 
 | 			task_rotate = true; | 
 | 	} | 
 |  | 
 | 	if (!(cpu_rotate || task_rotate)) | 
 | 		return false; | 
 |  | 
 | 	perf_ctx_lock(cpuctx, cpuctx->task_ctx); | 
 | 	perf_pmu_disable(cpuctx->ctx.pmu); | 
 |  | 
 | 	if (task_rotate) | 
 | 		task_event = ctx_first_active(ctx); | 
 | 	if (cpu_rotate) | 
 | 		cpu_event = ctx_first_active(&cpuctx->ctx); | 
 |  | 
 | 	/* | 
 | 	 * As per the order given at ctx_resched() first 'pop' task flexible | 
 | 	 * and then, if needed CPU flexible. | 
 | 	 */ | 
 | 	if (task_event || (ctx && cpu_event)) | 
 | 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); | 
 | 	if (cpu_event) | 
 | 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); | 
 |  | 
 | 	if (task_event) | 
 | 		rotate_ctx(ctx, task_event); | 
 | 	if (cpu_event) | 
 | 		rotate_ctx(&cpuctx->ctx, cpu_event); | 
 |  | 
 | 	perf_event_sched_in(cpuctx, ctx, current); | 
 |  | 
 | 	perf_pmu_enable(cpuctx->ctx.pmu); | 
 | 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void perf_event_task_tick(void) | 
 | { | 
 | 	struct list_head *head = this_cpu_ptr(&active_ctx_list); | 
 | 	struct perf_event_context *ctx, *tmp; | 
 | 	int throttled; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	__this_cpu_inc(perf_throttled_seq); | 
 | 	throttled = __this_cpu_xchg(perf_throttled_count, 0); | 
 | 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); | 
 |  | 
 | 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) | 
 | 		perf_adjust_freq_unthr_context(ctx, throttled); | 
 | } | 
 |  | 
 | static int event_enable_on_exec(struct perf_event *event, | 
 | 				struct perf_event_context *ctx) | 
 | { | 
 | 	if (!event->attr.enable_on_exec) | 
 | 		return 0; | 
 |  | 
 | 	event->attr.enable_on_exec = 0; | 
 | 	if (event->state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Enable all of a task's events that have been marked enable-on-exec. | 
 |  * This expects task == current. | 
 |  */ | 
 | static void perf_event_enable_on_exec(int ctxn) | 
 | { | 
 | 	struct perf_event_context *ctx, *clone_ctx = NULL; | 
 | 	enum event_type_t event_type = 0; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event *event; | 
 | 	unsigned long flags; | 
 | 	int enabled = 0; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	ctx = current->perf_event_ctxp[ctxn]; | 
 | 	if (!ctx || !ctx->nr_events) | 
 | 		goto out; | 
 |  | 
 | 	cpuctx = __get_cpu_context(ctx); | 
 | 	perf_ctx_lock(cpuctx, ctx); | 
 | 	ctx_sched_out(ctx, cpuctx, EVENT_TIME); | 
 | 	list_for_each_entry(event, &ctx->event_list, event_entry) { | 
 | 		enabled |= event_enable_on_exec(event, ctx); | 
 | 		event_type |= get_event_type(event); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unclone and reschedule this context if we enabled any event. | 
 | 	 */ | 
 | 	if (enabled) { | 
 | 		clone_ctx = unclone_ctx(ctx); | 
 | 		ctx_resched(cpuctx, ctx, event_type); | 
 | 	} else { | 
 | 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); | 
 | 	} | 
 | 	perf_ctx_unlock(cpuctx, ctx); | 
 |  | 
 | out: | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	if (clone_ctx) | 
 | 		put_ctx(clone_ctx); | 
 | } | 
 |  | 
 | struct perf_read_data { | 
 | 	struct perf_event *event; | 
 | 	bool group; | 
 | 	int ret; | 
 | }; | 
 |  | 
 | static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) | 
 | { | 
 | 	u16 local_pkg, event_pkg; | 
 |  | 
 | 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { | 
 | 		int local_cpu = smp_processor_id(); | 
 |  | 
 | 		event_pkg = topology_physical_package_id(event_cpu); | 
 | 		local_pkg = topology_physical_package_id(local_cpu); | 
 |  | 
 | 		if (event_pkg == local_pkg) | 
 | 			return local_cpu; | 
 | 	} | 
 |  | 
 | 	return event_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * Cross CPU call to read the hardware event | 
 |  */ | 
 | static void __perf_event_read(void *info) | 
 | { | 
 | 	struct perf_read_data *data = info; | 
 | 	struct perf_event *sub, *event = data->event; | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct pmu *pmu = event->pmu; | 
 |  | 
 | 	/* | 
 | 	 * If this is a task context, we need to check whether it is | 
 | 	 * the current task context of this cpu.  If not it has been | 
 | 	 * scheduled out before the smp call arrived.  In that case | 
 | 	 * event->count would have been updated to a recent sample | 
 | 	 * when the event was scheduled out. | 
 | 	 */ | 
 | 	if (ctx->task && cpuctx->task_ctx != ctx) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	if (ctx->is_active & EVENT_TIME) { | 
 | 		update_context_time(ctx); | 
 | 		update_cgrp_time_from_event(event); | 
 | 	} | 
 |  | 
 | 	perf_event_update_time(event); | 
 | 	if (data->group) | 
 | 		perf_event_update_sibling_time(event); | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!data->group) { | 
 | 		pmu->read(event); | 
 | 		data->ret = 0; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	pmu->start_txn(pmu, PERF_PMU_TXN_READ); | 
 |  | 
 | 	pmu->read(event); | 
 |  | 
 | 	for_each_sibling_event(sub, event) { | 
 | 		if (sub->state == PERF_EVENT_STATE_ACTIVE) { | 
 | 			/* | 
 | 			 * Use sibling's PMU rather than @event's since | 
 | 			 * sibling could be on different (eg: software) PMU. | 
 | 			 */ | 
 | 			sub->pmu->read(sub); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	data->ret = pmu->commit_txn(pmu); | 
 |  | 
 | unlock: | 
 | 	raw_spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | static inline u64 perf_event_count(struct perf_event *event) | 
 | { | 
 | 	return local64_read(&event->count) + atomic64_read(&event->child_count); | 
 | } | 
 |  | 
 | /* | 
 |  * NMI-safe method to read a local event, that is an event that | 
 |  * is: | 
 |  *   - either for the current task, or for this CPU | 
 |  *   - does not have inherit set, for inherited task events | 
 |  *     will not be local and we cannot read them atomically | 
 |  *   - must not have a pmu::count method | 
 |  */ | 
 | int perf_event_read_local(struct perf_event *event, u64 *value, | 
 | 			  u64 *enabled, u64 *running) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Disabling interrupts avoids all counter scheduling (context | 
 | 	 * switches, timer based rotation and IPIs). | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* | 
 | 	 * It must not be an event with inherit set, we cannot read | 
 | 	 * all child counters from atomic context. | 
 | 	 */ | 
 | 	if (event->attr.inherit) { | 
 | 		ret = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If this is a per-task event, it must be for current */ | 
 | 	if ((event->attach_state & PERF_ATTACH_TASK) && | 
 | 	    event->hw.target != current) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* If this is a per-CPU event, it must be for this CPU */ | 
 | 	if (!(event->attach_state & PERF_ATTACH_TASK) && | 
 | 	    event->cpu != smp_processor_id()) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the event is currently on this CPU, its either a per-task event, | 
 | 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise | 
 | 	 * oncpu == -1). | 
 | 	 */ | 
 | 	if (event->oncpu == smp_processor_id()) | 
 | 		event->pmu->read(event); | 
 |  | 
 | 	*value = local64_read(&event->count); | 
 | 	if (enabled || running) { | 
 | 		u64 now = event->shadow_ctx_time + perf_clock(); | 
 | 		u64 __enabled, __running; | 
 |  | 
 | 		__perf_update_times(event, now, &__enabled, &__running); | 
 | 		if (enabled) | 
 | 			*enabled = __enabled; | 
 | 		if (running) | 
 | 			*running = __running; | 
 | 	} | 
 | out: | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_event_read(struct perf_event *event, bool group) | 
 | { | 
 | 	enum perf_event_state state = READ_ONCE(event->state); | 
 | 	int event_cpu, ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If event is enabled and currently active on a CPU, update the | 
 | 	 * value in the event structure: | 
 | 	 */ | 
 | again: | 
 | 	if (state == PERF_EVENT_STATE_ACTIVE) { | 
 | 		struct perf_read_data data; | 
 |  | 
 | 		/* | 
 | 		 * Orders the ->state and ->oncpu loads such that if we see | 
 | 		 * ACTIVE we must also see the right ->oncpu. | 
 | 		 * | 
 | 		 * Matches the smp_wmb() from event_sched_in(). | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		event_cpu = READ_ONCE(event->oncpu); | 
 | 		if ((unsigned)event_cpu >= nr_cpu_ids) | 
 | 			return 0; | 
 |  | 
 | 		data = (struct perf_read_data){ | 
 | 			.event = event, | 
 | 			.group = group, | 
 | 			.ret = 0, | 
 | 		}; | 
 |  | 
 | 		preempt_disable(); | 
 | 		event_cpu = __perf_event_read_cpu(event, event_cpu); | 
 |  | 
 | 		/* | 
 | 		 * Purposely ignore the smp_call_function_single() return | 
 | 		 * value. | 
 | 		 * | 
 | 		 * If event_cpu isn't a valid CPU it means the event got | 
 | 		 * scheduled out and that will have updated the event count. | 
 | 		 * | 
 | 		 * Therefore, either way, we'll have an up-to-date event count | 
 | 		 * after this. | 
 | 		 */ | 
 | 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); | 
 | 		preempt_enable(); | 
 | 		ret = data.ret; | 
 |  | 
 | 	} else if (state == PERF_EVENT_STATE_INACTIVE) { | 
 | 		struct perf_event_context *ctx = event->ctx; | 
 | 		unsigned long flags; | 
 |  | 
 | 		raw_spin_lock_irqsave(&ctx->lock, flags); | 
 | 		state = event->state; | 
 | 		if (state != PERF_EVENT_STATE_INACTIVE) { | 
 | 			raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * May read while context is not active (e.g., thread is | 
 | 		 * blocked), in that case we cannot update context time | 
 | 		 */ | 
 | 		if (ctx->is_active & EVENT_TIME) { | 
 | 			update_context_time(ctx); | 
 | 			update_cgrp_time_from_event(event); | 
 | 		} | 
 |  | 
 | 		perf_event_update_time(event); | 
 | 		if (group) | 
 | 			perf_event_update_sibling_time(event); | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in a task_struct: | 
 |  */ | 
 | static void __perf_event_init_context(struct perf_event_context *ctx) | 
 | { | 
 | 	raw_spin_lock_init(&ctx->lock); | 
 | 	mutex_init(&ctx->mutex); | 
 | 	INIT_LIST_HEAD(&ctx->active_ctx_list); | 
 | 	perf_event_groups_init(&ctx->pinned_groups); | 
 | 	perf_event_groups_init(&ctx->flexible_groups); | 
 | 	INIT_LIST_HEAD(&ctx->event_list); | 
 | 	INIT_LIST_HEAD(&ctx->pinned_active); | 
 | 	INIT_LIST_HEAD(&ctx->flexible_active); | 
 | 	atomic_set(&ctx->refcount, 1); | 
 | } | 
 |  | 
 | static struct perf_event_context * | 
 | alloc_perf_context(struct pmu *pmu, struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 |  | 
 | 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); | 
 | 	if (!ctx) | 
 | 		return NULL; | 
 |  | 
 | 	__perf_event_init_context(ctx); | 
 | 	if (task) { | 
 | 		ctx->task = task; | 
 | 		get_task_struct(task); | 
 | 	} | 
 | 	ctx->pmu = pmu; | 
 |  | 
 | 	return ctx; | 
 | } | 
 |  | 
 | static struct task_struct * | 
 | find_lively_task_by_vpid(pid_t vpid) | 
 | { | 
 | 	struct task_struct *task; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!vpid) | 
 | 		task = current; | 
 | 	else | 
 | 		task = find_task_by_vpid(vpid); | 
 | 	if (task) | 
 | 		get_task_struct(task); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!task) | 
 | 		return ERR_PTR(-ESRCH); | 
 |  | 
 | 	return task; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns a matching context with refcount and pincount. | 
 |  */ | 
 | static struct perf_event_context * | 
 | find_get_context(struct pmu *pmu, struct task_struct *task, | 
 | 		struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx, *clone_ctx = NULL; | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	void *task_ctx_data = NULL; | 
 | 	unsigned long flags; | 
 | 	int ctxn, err; | 
 | 	int cpu = event->cpu; | 
 |  | 
 | 	if (!task) { | 
 | 		/* Must be root to operate on a CPU event: */ | 
 | 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | 
 | 			return ERR_PTR(-EACCES); | 
 |  | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		ctx = &cpuctx->ctx; | 
 | 		get_ctx(ctx); | 
 | 		++ctx->pin_count; | 
 |  | 
 | 		return ctx; | 
 | 	} | 
 |  | 
 | 	err = -EINVAL; | 
 | 	ctxn = pmu->task_ctx_nr; | 
 | 	if (ctxn < 0) | 
 | 		goto errout; | 
 |  | 
 | 	if (event->attach_state & PERF_ATTACH_TASK_DATA) { | 
 | 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); | 
 | 		if (!task_ctx_data) { | 
 | 			err = -ENOMEM; | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | retry: | 
 | 	ctx = perf_lock_task_context(task, ctxn, &flags); | 
 | 	if (ctx) { | 
 | 		clone_ctx = unclone_ctx(ctx); | 
 | 		++ctx->pin_count; | 
 |  | 
 | 		if (task_ctx_data && !ctx->task_ctx_data) { | 
 | 			ctx->task_ctx_data = task_ctx_data; | 
 | 			task_ctx_data = NULL; | 
 | 		} | 
 | 		raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 |  | 
 | 		if (clone_ctx) | 
 | 			put_ctx(clone_ctx); | 
 | 	} else { | 
 | 		ctx = alloc_perf_context(pmu, task); | 
 | 		err = -ENOMEM; | 
 | 		if (!ctx) | 
 | 			goto errout; | 
 |  | 
 | 		if (task_ctx_data) { | 
 | 			ctx->task_ctx_data = task_ctx_data; | 
 | 			task_ctx_data = NULL; | 
 | 		} | 
 |  | 
 | 		err = 0; | 
 | 		mutex_lock(&task->perf_event_mutex); | 
 | 		/* | 
 | 		 * If it has already passed perf_event_exit_task(). | 
 | 		 * we must see PF_EXITING, it takes this mutex too. | 
 | 		 */ | 
 | 		if (task->flags & PF_EXITING) | 
 | 			err = -ESRCH; | 
 | 		else if (task->perf_event_ctxp[ctxn]) | 
 | 			err = -EAGAIN; | 
 | 		else { | 
 | 			get_ctx(ctx); | 
 | 			++ctx->pin_count; | 
 | 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); | 
 | 		} | 
 | 		mutex_unlock(&task->perf_event_mutex); | 
 |  | 
 | 		if (unlikely(err)) { | 
 | 			put_ctx(ctx); | 
 |  | 
 | 			if (err == -EAGAIN) | 
 | 				goto retry; | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(task_ctx_data); | 
 | 	return ctx; | 
 |  | 
 | errout: | 
 | 	kfree(task_ctx_data); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event); | 
 | static void perf_event_free_bpf_prog(struct perf_event *event); | 
 |  | 
 | static void free_event_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	event = container_of(head, struct perf_event, rcu_head); | 
 | 	if (event->ns) | 
 | 		put_pid_ns(event->ns); | 
 | 	perf_event_free_filter(event); | 
 | 	kfree(event); | 
 | } | 
 |  | 
 | static void ring_buffer_attach(struct perf_event *event, | 
 | 			       struct ring_buffer *rb); | 
 |  | 
 | static void detach_sb_event(struct perf_event *event) | 
 | { | 
 | 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); | 
 |  | 
 | 	raw_spin_lock(&pel->lock); | 
 | 	list_del_rcu(&event->sb_list); | 
 | 	raw_spin_unlock(&pel->lock); | 
 | } | 
 |  | 
 | static bool is_sb_event(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_attr *attr = &event->attr; | 
 |  | 
 | 	if (event->parent) | 
 | 		return false; | 
 |  | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) | 
 | 		return false; | 
 |  | 
 | 	if (attr->mmap || attr->mmap_data || attr->mmap2 || | 
 | 	    attr->comm || attr->comm_exec || | 
 | 	    attr->task || | 
 | 	    attr->context_switch) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static void unaccount_pmu_sb_event(struct perf_event *event) | 
 | { | 
 | 	if (is_sb_event(event)) | 
 | 		detach_sb_event(event); | 
 | } | 
 |  | 
 | static void unaccount_event_cpu(struct perf_event *event, int cpu) | 
 | { | 
 | 	if (event->parent) | 
 | 		return; | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		atomic_dec(&per_cpu(perf_cgroup_events, cpu)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | static DEFINE_SPINLOCK(nr_freq_lock); | 
 | #endif | 
 |  | 
 | static void unaccount_freq_event_nohz(void) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	spin_lock(&nr_freq_lock); | 
 | 	if (atomic_dec_and_test(&nr_freq_events)) | 
 | 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); | 
 | 	spin_unlock(&nr_freq_lock); | 
 | #endif | 
 | } | 
 |  | 
 | static void unaccount_freq_event(void) | 
 | { | 
 | 	if (tick_nohz_full_enabled()) | 
 | 		unaccount_freq_event_nohz(); | 
 | 	else | 
 | 		atomic_dec(&nr_freq_events); | 
 | } | 
 |  | 
 | static void unaccount_event(struct perf_event *event) | 
 | { | 
 | 	bool dec = false; | 
 |  | 
 | 	if (event->parent) | 
 | 		return; | 
 |  | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) | 
 | 		dec = true; | 
 | 	if (event->attr.mmap || event->attr.mmap_data) | 
 | 		atomic_dec(&nr_mmap_events); | 
 | 	if (event->attr.comm) | 
 | 		atomic_dec(&nr_comm_events); | 
 | 	if (event->attr.namespaces) | 
 | 		atomic_dec(&nr_namespaces_events); | 
 | 	if (event->attr.task) | 
 | 		atomic_dec(&nr_task_events); | 
 | 	if (event->attr.freq) | 
 | 		unaccount_freq_event(); | 
 | 	if (event->attr.context_switch) { | 
 | 		dec = true; | 
 | 		atomic_dec(&nr_switch_events); | 
 | 	} | 
 | 	if (is_cgroup_event(event)) | 
 | 		dec = true; | 
 | 	if (has_branch_stack(event)) | 
 | 		dec = true; | 
 |  | 
 | 	if (dec) { | 
 | 		if (!atomic_add_unless(&perf_sched_count, -1, 1)) | 
 | 			schedule_delayed_work(&perf_sched_work, HZ); | 
 | 	} | 
 |  | 
 | 	unaccount_event_cpu(event, event->cpu); | 
 |  | 
 | 	unaccount_pmu_sb_event(event); | 
 | } | 
 |  | 
 | static void perf_sched_delayed(struct work_struct *work) | 
 | { | 
 | 	mutex_lock(&perf_sched_mutex); | 
 | 	if (atomic_dec_and_test(&perf_sched_count)) | 
 | 		static_branch_disable(&perf_sched_events); | 
 | 	mutex_unlock(&perf_sched_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * The following implement mutual exclusion of events on "exclusive" pmus | 
 |  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled | 
 |  * at a time, so we disallow creating events that might conflict, namely: | 
 |  * | 
 |  *  1) cpu-wide events in the presence of per-task events, | 
 |  *  2) per-task events in the presence of cpu-wide events, | 
 |  *  3) two matching events on the same context. | 
 |  * | 
 |  * The former two cases are handled in the allocation path (perf_event_alloc(), | 
 |  * _free_event()), the latter -- before the first perf_install_in_context(). | 
 |  */ | 
 | static int exclusive_event_init(struct perf_event *event) | 
 | { | 
 | 	struct pmu *pmu = event->pmu; | 
 |  | 
 | 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Prevent co-existence of per-task and cpu-wide events on the | 
 | 	 * same exclusive pmu. | 
 | 	 * | 
 | 	 * Negative pmu::exclusive_cnt means there are cpu-wide | 
 | 	 * events on this "exclusive" pmu, positive means there are | 
 | 	 * per-task events. | 
 | 	 * | 
 | 	 * Since this is called in perf_event_alloc() path, event::ctx | 
 | 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK | 
 | 	 * to mean "per-task event", because unlike other attach states it | 
 | 	 * never gets cleared. | 
 | 	 */ | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) { | 
 | 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) | 
 | 			return -EBUSY; | 
 | 	} else { | 
 | 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void exclusive_event_destroy(struct perf_event *event) | 
 | { | 
 | 	struct pmu *pmu = event->pmu; | 
 |  | 
 | 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) | 
 | 		return; | 
 |  | 
 | 	/* see comment in exclusive_event_init() */ | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) | 
 | 		atomic_dec(&pmu->exclusive_cnt); | 
 | 	else | 
 | 		atomic_inc(&pmu->exclusive_cnt); | 
 | } | 
 |  | 
 | static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) | 
 | { | 
 | 	if ((e1->pmu == e2->pmu) && | 
 | 	    (e1->cpu == e2->cpu || | 
 | 	     e1->cpu == -1 || | 
 | 	     e2->cpu == -1)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Called under the same ctx::mutex as perf_install_in_context() */ | 
 | static bool exclusive_event_installable(struct perf_event *event, | 
 | 					struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *iter_event; | 
 | 	struct pmu *pmu = event->pmu; | 
 |  | 
 | 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) | 
 | 		return true; | 
 |  | 
 | 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) { | 
 | 		if (exclusive_event_match(iter_event, event)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void perf_addr_filters_splice(struct perf_event *event, | 
 | 				       struct list_head *head); | 
 |  | 
 | static void _free_event(struct perf_event *event) | 
 | { | 
 | 	irq_work_sync(&event->pending); | 
 |  | 
 | 	unaccount_event(event); | 
 |  | 
 | 	if (event->rb) { | 
 | 		/* | 
 | 		 * Can happen when we close an event with re-directed output. | 
 | 		 * | 
 | 		 * Since we have a 0 refcount, perf_mmap_close() will skip | 
 | 		 * over us; possibly making our ring_buffer_put() the last. | 
 | 		 */ | 
 | 		mutex_lock(&event->mmap_mutex); | 
 | 		ring_buffer_attach(event, NULL); | 
 | 		mutex_unlock(&event->mmap_mutex); | 
 | 	} | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		perf_detach_cgroup(event); | 
 |  | 
 | 	if (!event->parent) { | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) | 
 | 			put_callchain_buffers(); | 
 | 	} | 
 |  | 
 | 	perf_event_free_bpf_prog(event); | 
 | 	perf_addr_filters_splice(event, NULL); | 
 | 	kfree(event->addr_filters_offs); | 
 |  | 
 | 	if (event->destroy) | 
 | 		event->destroy(event); | 
 |  | 
 | 	if (event->ctx) | 
 | 		put_ctx(event->ctx); | 
 |  | 
 | 	if (event->hw.target) | 
 | 		put_task_struct(event->hw.target); | 
 |  | 
 | 	exclusive_event_destroy(event); | 
 | 	module_put(event->pmu->module); | 
 |  | 
 | 	call_rcu(&event->rcu_head, free_event_rcu); | 
 | } | 
 |  | 
 | /* | 
 |  * Used to free events which have a known refcount of 1, such as in error paths | 
 |  * where the event isn't exposed yet and inherited events. | 
 |  */ | 
 | static void free_event(struct perf_event *event) | 
 | { | 
 | 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, | 
 | 				"unexpected event refcount: %ld; ptr=%p\n", | 
 | 				atomic_long_read(&event->refcount), event)) { | 
 | 		/* leak to avoid use-after-free */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	_free_event(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove user event from the owner task. | 
 |  */ | 
 | static void perf_remove_from_owner(struct perf_event *event) | 
 | { | 
 | 	struct task_struct *owner; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * Matches the smp_store_release() in perf_event_exit_task(). If we | 
 | 	 * observe !owner it means the list deletion is complete and we can | 
 | 	 * indeed free this event, otherwise we need to serialize on | 
 | 	 * owner->perf_event_mutex. | 
 | 	 */ | 
 | 	owner = READ_ONCE(event->owner); | 
 | 	if (owner) { | 
 | 		/* | 
 | 		 * Since delayed_put_task_struct() also drops the last | 
 | 		 * task reference we can safely take a new reference | 
 | 		 * while holding the rcu_read_lock(). | 
 | 		 */ | 
 | 		get_task_struct(owner); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (owner) { | 
 | 		/* | 
 | 		 * If we're here through perf_event_exit_task() we're already | 
 | 		 * holding ctx->mutex which would be an inversion wrt. the | 
 | 		 * normal lock order. | 
 | 		 * | 
 | 		 * However we can safely take this lock because its the child | 
 | 		 * ctx->mutex. | 
 | 		 */ | 
 | 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 		/* | 
 | 		 * We have to re-check the event->owner field, if it is cleared | 
 | 		 * we raced with perf_event_exit_task(), acquiring the mutex | 
 | 		 * ensured they're done, and we can proceed with freeing the | 
 | 		 * event. | 
 | 		 */ | 
 | 		if (event->owner) { | 
 | 			list_del_init(&event->owner_entry); | 
 | 			smp_store_release(&event->owner, NULL); | 
 | 		} | 
 | 		mutex_unlock(&owner->perf_event_mutex); | 
 | 		put_task_struct(owner); | 
 | 	} | 
 | } | 
 |  | 
 | static void put_event(struct perf_event *event) | 
 | { | 
 | 	if (!atomic_long_dec_and_test(&event->refcount)) | 
 | 		return; | 
 |  | 
 | 	_free_event(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Kill an event dead; while event:refcount will preserve the event | 
 |  * object, it will not preserve its functionality. Once the last 'user' | 
 |  * gives up the object, we'll destroy the thing. | 
 |  */ | 
 | int perf_event_release_kernel(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *child, *tmp; | 
 | 	LIST_HEAD(free_list); | 
 |  | 
 | 	/* | 
 | 	 * If we got here through err_file: fput(event_file); we will not have | 
 | 	 * attached to a context yet. | 
 | 	 */ | 
 | 	if (!ctx) { | 
 | 		WARN_ON_ONCE(event->attach_state & | 
 | 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); | 
 | 		goto no_ctx; | 
 | 	} | 
 |  | 
 | 	if (!is_kernel_event(event)) | 
 | 		perf_remove_from_owner(event); | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	perf_remove_from_context(event, DETACH_GROUP); | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	/* | 
 | 	 * Mark this event as STATE_DEAD, there is no external reference to it | 
 | 	 * anymore. | 
 | 	 * | 
 | 	 * Anybody acquiring event->child_mutex after the below loop _must_ | 
 | 	 * also see this, most importantly inherit_event() which will avoid | 
 | 	 * placing more children on the list. | 
 | 	 * | 
 | 	 * Thus this guarantees that we will in fact observe and kill _ALL_ | 
 | 	 * child events. | 
 | 	 */ | 
 | 	event->state = PERF_EVENT_STATE_DEAD; | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 |  | 
 | again: | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	list_for_each_entry(child, &event->child_list, child_list) { | 
 |  | 
 | 		/* | 
 | 		 * Cannot change, child events are not migrated, see the | 
 | 		 * comment with perf_event_ctx_lock_nested(). | 
 | 		 */ | 
 | 		ctx = READ_ONCE(child->ctx); | 
 | 		/* | 
 | 		 * Since child_mutex nests inside ctx::mutex, we must jump | 
 | 		 * through hoops. We start by grabbing a reference on the ctx. | 
 | 		 * | 
 | 		 * Since the event cannot get freed while we hold the | 
 | 		 * child_mutex, the context must also exist and have a !0 | 
 | 		 * reference count. | 
 | 		 */ | 
 | 		get_ctx(ctx); | 
 |  | 
 | 		/* | 
 | 		 * Now that we have a ctx ref, we can drop child_mutex, and | 
 | 		 * acquire ctx::mutex without fear of it going away. Then we | 
 | 		 * can re-acquire child_mutex. | 
 | 		 */ | 
 | 		mutex_unlock(&event->child_mutex); | 
 | 		mutex_lock(&ctx->mutex); | 
 | 		mutex_lock(&event->child_mutex); | 
 |  | 
 | 		/* | 
 | 		 * Now that we hold ctx::mutex and child_mutex, revalidate our | 
 | 		 * state, if child is still the first entry, it didn't get freed | 
 | 		 * and we can continue doing so. | 
 | 		 */ | 
 | 		tmp = list_first_entry_or_null(&event->child_list, | 
 | 					       struct perf_event, child_list); | 
 | 		if (tmp == child) { | 
 | 			perf_remove_from_context(child, DETACH_GROUP); | 
 | 			list_move(&child->child_list, &free_list); | 
 | 			/* | 
 | 			 * This matches the refcount bump in inherit_event(); | 
 | 			 * this can't be the last reference. | 
 | 			 */ | 
 | 			put_event(event); | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&event->child_mutex); | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 		put_ctx(ctx); | 
 | 		goto again; | 
 | 	} | 
 | 	mutex_unlock(&event->child_mutex); | 
 |  | 
 | 	list_for_each_entry_safe(child, tmp, &free_list, child_list) { | 
 | 		list_del(&child->child_list); | 
 | 		free_event(child); | 
 | 	} | 
 |  | 
 | no_ctx: | 
 | 	put_event(event); /* Must be the 'last' reference */ | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); | 
 |  | 
 | /* | 
 |  * Called when the last reference to the file is gone. | 
 |  */ | 
 | static int perf_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	perf_event_release_kernel(file->private_data); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | 
 | { | 
 | 	struct perf_event *child; | 
 | 	u64 total = 0; | 
 |  | 
 | 	*enabled = 0; | 
 | 	*running = 0; | 
 |  | 
 | 	mutex_lock(&event->child_mutex); | 
 |  | 
 | 	(void)perf_event_read(event, false); | 
 | 	total += perf_event_count(event); | 
 |  | 
 | 	*enabled += event->total_time_enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	*running += event->total_time_running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 |  | 
 | 	list_for_each_entry(child, &event->child_list, child_list) { | 
 | 		(void)perf_event_read(child, false); | 
 | 		total += perf_event_count(child); | 
 | 		*enabled += child->total_time_enabled; | 
 | 		*running += child->total_time_running; | 
 | 	} | 
 | 	mutex_unlock(&event->child_mutex); | 
 |  | 
 | 	return total; | 
 | } | 
 |  | 
 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	u64 count; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	count = __perf_event_read_value(event, enabled, running); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 |  | 
 | 	return count; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_read_value); | 
 |  | 
 | static int __perf_read_group_add(struct perf_event *leader, | 
 | 					u64 read_format, u64 *values) | 
 | { | 
 | 	struct perf_event_context *ctx = leader->ctx; | 
 | 	struct perf_event *sub; | 
 | 	unsigned long flags; | 
 | 	int n = 1; /* skip @nr */ | 
 | 	int ret; | 
 |  | 
 | 	ret = perf_event_read(leader, true); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ctx->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Since we co-schedule groups, {enabled,running} times of siblings | 
 | 	 * will be identical to those of the leader, so we only publish one | 
 | 	 * set. | 
 | 	 */ | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] += leader->total_time_enabled + | 
 | 			atomic64_read(&leader->child_total_time_enabled); | 
 | 	} | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] += leader->total_time_running + | 
 | 			atomic64_read(&leader->child_total_time_running); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Write {count,id} tuples for every sibling. | 
 | 	 */ | 
 | 	values[n++] += perf_event_count(leader); | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(leader); | 
 |  | 
 | 	for_each_sibling_event(sub, leader) { | 
 | 		values[n++] += perf_event_count(sub); | 
 | 		if (read_format & PERF_FORMAT_ID) | 
 | 			values[n++] = primary_event_id(sub); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&ctx->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_read_group(struct perf_event *event, | 
 | 				   u64 read_format, char __user *buf) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *child; | 
 | 	struct perf_event_context *ctx = leader->ctx; | 
 | 	int ret; | 
 | 	u64 *values; | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	values = kzalloc(event->read_size, GFP_KERNEL); | 
 | 	if (!values) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	values[0] = 1 + leader->nr_siblings; | 
 |  | 
 | 	/* | 
 | 	 * By locking the child_mutex of the leader we effectively | 
 | 	 * lock the child list of all siblings.. XXX explain how. | 
 | 	 */ | 
 | 	mutex_lock(&leader->child_mutex); | 
 |  | 
 | 	ret = __perf_read_group_add(leader, read_format, values); | 
 | 	if (ret) | 
 | 		goto unlock; | 
 |  | 
 | 	list_for_each_entry(child, &leader->child_list, child_list) { | 
 | 		ret = __perf_read_group_add(child, read_format, values); | 
 | 		if (ret) | 
 | 			goto unlock; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&leader->child_mutex); | 
 |  | 
 | 	ret = event->read_size; | 
 | 	if (copy_to_user(buf, values, event->read_size)) | 
 | 		ret = -EFAULT; | 
 | 	goto out; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&leader->child_mutex); | 
 | out: | 
 | 	kfree(values); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_read_one(struct perf_event *event, | 
 | 				 u64 read_format, char __user *buf) | 
 | { | 
 | 	u64 enabled, running; | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = __perf_event_read_value(event, &enabled, &running); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = enabled; | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = running; | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	if (copy_to_user(buf, values, n * sizeof(u64))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return n * sizeof(u64); | 
 | } | 
 |  | 
 | static bool is_event_hup(struct perf_event *event) | 
 | { | 
 | 	bool no_children; | 
 |  | 
 | 	if (event->state > PERF_EVENT_STATE_EXIT) | 
 | 		return false; | 
 |  | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	no_children = list_empty(&event->child_list); | 
 | 	mutex_unlock(&event->child_mutex); | 
 | 	return no_children; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the performance event - simple non blocking version for now | 
 |  */ | 
 | static ssize_t | 
 | __perf_read(struct perf_event *event, char __user *buf, size_t count) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Return end-of-file for a read on a event that is in | 
 | 	 * error state (i.e. because it was pinned but it couldn't be | 
 | 	 * scheduled on to the CPU at some point). | 
 | 	 */ | 
 | 	if (event->state == PERF_EVENT_STATE_ERROR) | 
 | 		return 0; | 
 |  | 
 | 	if (count < event->read_size) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | 	if (read_format & PERF_FORMAT_GROUP) | 
 | 		ret = perf_read_group(event, read_format, buf); | 
 | 	else | 
 | 		ret = perf_read_one(event, read_format, buf); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t | 
 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct perf_event_context *ctx; | 
 | 	int ret; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	ret = __perf_read(event, buf, count); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static __poll_t perf_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct ring_buffer *rb; | 
 | 	__poll_t events = EPOLLHUP; | 
 |  | 
 | 	poll_wait(file, &event->waitq, wait); | 
 |  | 
 | 	if (is_event_hup(event)) | 
 | 		return events; | 
 |  | 
 | 	/* | 
 | 	 * Pin the event->rb by taking event->mmap_mutex; otherwise | 
 | 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups. | 
 | 	 */ | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	rb = event->rb; | 
 | 	if (rb) | 
 | 		events = atomic_xchg(&rb->poll, 0); | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 | 	return events; | 
 | } | 
 |  | 
 | static void _perf_event_reset(struct perf_event *event) | 
 | { | 
 | 	(void)perf_event_read(event, false); | 
 | 	local64_set(&event->count, 0); | 
 | 	perf_event_update_userpage(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Holding the top-level event's child_mutex means that any | 
 |  * descendant process that has inherited this event will block | 
 |  * in perf_event_exit_event() if it goes to exit, thus satisfying the | 
 |  * task existence requirements of perf_event_enable/disable. | 
 |  */ | 
 | static void perf_event_for_each_child(struct perf_event *event, | 
 | 					void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event *child; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 |  | 
 | 	mutex_lock(&event->child_mutex); | 
 | 	func(event); | 
 | 	list_for_each_entry(child, &event->child_list, child_list) | 
 | 		func(child); | 
 | 	mutex_unlock(&event->child_mutex); | 
 | } | 
 |  | 
 | static void perf_event_for_each(struct perf_event *event, | 
 | 				  void (*func)(struct perf_event *)) | 
 | { | 
 | 	struct perf_event_context *ctx = event->ctx; | 
 | 	struct perf_event *sibling; | 
 |  | 
 | 	lockdep_assert_held(&ctx->mutex); | 
 |  | 
 | 	event = event->group_leader; | 
 |  | 
 | 	perf_event_for_each_child(event, func); | 
 | 	for_each_sibling_event(sibling, event) | 
 | 		perf_event_for_each_child(sibling, func); | 
 | } | 
 |  | 
 | static void __perf_event_period(struct perf_event *event, | 
 | 				struct perf_cpu_context *cpuctx, | 
 | 				struct perf_event_context *ctx, | 
 | 				void *info) | 
 | { | 
 | 	u64 value = *((u64 *)info); | 
 | 	bool active; | 
 |  | 
 | 	if (event->attr.freq) { | 
 | 		event->attr.sample_freq = value; | 
 | 	} else { | 
 | 		event->attr.sample_period = value; | 
 | 		event->hw.sample_period = value; | 
 | 	} | 
 |  | 
 | 	active = (event->state == PERF_EVENT_STATE_ACTIVE); | 
 | 	if (active) { | 
 | 		perf_pmu_disable(ctx->pmu); | 
 | 		/* | 
 | 		 * We could be throttled; unthrottle now to avoid the tick | 
 | 		 * trying to unthrottle while we already re-started the event. | 
 | 		 */ | 
 | 		if (event->hw.interrupts == MAX_INTERRUPTS) { | 
 | 			event->hw.interrupts = 0; | 
 | 			perf_log_throttle(event, 1); | 
 | 		} | 
 | 		event->pmu->stop(event, PERF_EF_UPDATE); | 
 | 	} | 
 |  | 
 | 	local64_set(&event->hw.period_left, 0); | 
 |  | 
 | 	if (active) { | 
 | 		event->pmu->start(event, PERF_EF_RELOAD); | 
 | 		perf_pmu_enable(ctx->pmu); | 
 | 	} | 
 | } | 
 |  | 
 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | 
 | { | 
 | 	u64 value; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&value, arg, sizeof(value))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!value) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (event->attr.freq && value > sysctl_perf_event_sample_rate) | 
 | 		return -EINVAL; | 
 |  | 
 | 	event_function_call(event, __perf_event_period, &value); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations perf_fops; | 
 |  | 
 | static inline int perf_fget_light(int fd, struct fd *p) | 
 | { | 
 | 	struct fd f = fdget(fd); | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	if (f.file->f_op != &perf_fops) { | 
 | 		fdput(f); | 
 | 		return -EBADF; | 
 | 	} | 
 | 	*p = f; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_set_output(struct perf_event *event, | 
 | 				 struct perf_event *output_event); | 
 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); | 
 | static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); | 
 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | 
 | 			  struct perf_event_attr *attr); | 
 |  | 
 | static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	void (*func)(struct perf_event *); | 
 | 	u32 flags = arg; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case PERF_EVENT_IOC_ENABLE: | 
 | 		func = _perf_event_enable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_DISABLE: | 
 | 		func = _perf_event_disable; | 
 | 		break; | 
 | 	case PERF_EVENT_IOC_RESET: | 
 | 		func = _perf_event_reset; | 
 | 		break; | 
 |  | 
 | 	case PERF_EVENT_IOC_REFRESH: | 
 | 		return _perf_event_refresh(event, arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_PERIOD: | 
 | 		return perf_event_period(event, (u64 __user *)arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_ID: | 
 | 	{ | 
 | 		u64 id = primary_event_id(event); | 
 |  | 
 | 		if (copy_to_user((void __user *)arg, &id, sizeof(id))) | 
 | 			return -EFAULT; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_OUTPUT: | 
 | 	{ | 
 | 		int ret; | 
 | 		if (arg != -1) { | 
 | 			struct perf_event *output_event; | 
 | 			struct fd output; | 
 | 			ret = perf_fget_light(arg, &output); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			output_event = output.file->private_data; | 
 | 			ret = perf_event_set_output(event, output_event); | 
 | 			fdput(output); | 
 | 		} else { | 
 | 			ret = perf_event_set_output(event, NULL); | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_FILTER: | 
 | 		return perf_event_set_filter(event, (void __user *)arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_SET_BPF: | 
 | 		return perf_event_set_bpf_prog(event, arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_PAUSE_OUTPUT: { | 
 | 		struct ring_buffer *rb; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		rb = rcu_dereference(event->rb); | 
 | 		if (!rb || !rb->nr_pages) { | 
 | 			rcu_read_unlock(); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		rb_toggle_paused(rb, !!arg); | 
 | 		rcu_read_unlock(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	case PERF_EVENT_IOC_QUERY_BPF: | 
 | 		return perf_event_query_prog_array(event, (void __user *)arg); | 
 |  | 
 | 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { | 
 | 		struct perf_event_attr new_attr; | 
 | 		int err = perf_copy_attr((struct perf_event_attr __user *)arg, | 
 | 					 &new_attr); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		return perf_event_modify_attr(event,  &new_attr); | 
 | 	} | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 |  | 
 | 	if (flags & PERF_IOC_FLAG_GROUP) | 
 | 		perf_event_for_each(event, func); | 
 | 	else | 
 | 		perf_event_for_each_child(event, func); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	struct perf_event_context *ctx; | 
 | 	long ret; | 
 |  | 
 | 	ctx = perf_event_ctx_lock(event); | 
 | 	ret = _perf_ioctl(event, cmd, arg); | 
 | 	perf_event_ctx_unlock(event, ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static long perf_compat_ioctl(struct file *file, unsigned int cmd, | 
 | 				unsigned long arg) | 
 | { | 
 | 	switch (_IOC_NR(cmd)) { | 
 | 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): | 
 | 	case _IOC_NR(PERF_EVENT_IOC_ID): | 
 | 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ | 
 | 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { | 
 | 			cmd &= ~IOCSIZE_MASK; | 
 | 			cmd |= sizeof(void *) << IOCSIZE_SHIFT; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	return perf_ioctl(file, cmd, arg); | 
 | } | 
 | #else | 
 | # define perf_compat_ioctl NULL | 
 | #endif | 
 |  | 
 | int perf_event_task_enable(void) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { | 
 | 		ctx = perf_event_ctx_lock(event); | 
 | 		perf_event_for_each_child(event, _perf_event_enable); | 
 | 		perf_event_ctx_unlock(event, ctx); | 
 | 	} | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_task_disable(void) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event; | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { | 
 | 		ctx = perf_event_ctx_lock(event); | 
 | 		perf_event_for_each_child(event, _perf_event_disable); | 
 | 		perf_event_ctx_unlock(event, ctx); | 
 | 	} | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_event_index(struct perf_event *event) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 0; | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return 0; | 
 |  | 
 | 	return event->pmu->event_idx(event); | 
 | } | 
 |  | 
 | static void calc_timer_values(struct perf_event *event, | 
 | 				u64 *now, | 
 | 				u64 *enabled, | 
 | 				u64 *running) | 
 | { | 
 | 	u64 ctx_time; | 
 |  | 
 | 	*now = perf_clock(); | 
 | 	ctx_time = event->shadow_ctx_time + *now; | 
 | 	__perf_update_times(event, ctx_time, enabled, running); | 
 | } | 
 |  | 
 | static void perf_event_init_userpage(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_mmap_page *userpg; | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	userpg = rb->user_page; | 
 |  | 
 | 	/* Allow new userspace to detect that bit 0 is deprecated */ | 
 | 	userpg->cap_bit0_is_deprecated = 1; | 
 | 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved); | 
 | 	userpg->data_offset = PAGE_SIZE; | 
 | 	userpg->data_size = perf_data_size(rb); | 
 |  | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void __weak arch_perf_update_userpage( | 
 | 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Callers need to ensure there can be no nesting of this function, otherwise | 
 |  * the seqlock logic goes bad. We can not serialize this because the arch | 
 |  * code calls this from NMI context. | 
 |  */ | 
 | void perf_event_update_userpage(struct perf_event *event) | 
 | { | 
 | 	struct perf_event_mmap_page *userpg; | 
 | 	struct ring_buffer *rb; | 
 | 	u64 enabled, running, now; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * compute total_time_enabled, total_time_running | 
 | 	 * based on snapshot values taken when the event | 
 | 	 * was last scheduled in. | 
 | 	 * | 
 | 	 * we cannot simply called update_context_time() | 
 | 	 * because of locking issue as we can be called in | 
 | 	 * NMI context | 
 | 	 */ | 
 | 	calc_timer_values(event, &now, &enabled, &running); | 
 |  | 
 | 	userpg = rb->user_page; | 
 | 	/* | 
 | 	 * Disable preemption so as to not let the corresponding user-space | 
 | 	 * spin too long if we get preempted. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	++userpg->lock; | 
 | 	barrier(); | 
 | 	userpg->index = perf_event_index(event); | 
 | 	userpg->offset = perf_event_count(event); | 
 | 	if (userpg->index) | 
 | 		userpg->offset -= local64_read(&event->hw.prev_count); | 
 |  | 
 | 	userpg->time_enabled = enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 |  | 
 | 	userpg->time_running = running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 |  | 
 | 	arch_perf_update_userpage(event, userpg, now); | 
 |  | 
 | 	barrier(); | 
 | 	++userpg->lock; | 
 | 	preempt_enable(); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_update_userpage); | 
 |  | 
 | static int perf_mmap_fault(struct vm_fault *vmf) | 
 | { | 
 | 	struct perf_event *event = vmf->vma->vm_file->private_data; | 
 | 	struct ring_buffer *rb; | 
 | 	int ret = VM_FAULT_SIGBUS; | 
 |  | 
 | 	if (vmf->flags & FAULT_FLAG_MKWRITE) { | 
 | 		if (vmf->pgoff == 0) | 
 | 			ret = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (!rb) | 
 | 		goto unlock; | 
 |  | 
 | 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) | 
 | 		goto unlock; | 
 |  | 
 | 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff); | 
 | 	if (!vmf->page) | 
 | 		goto unlock; | 
 |  | 
 | 	get_page(vmf->page); | 
 | 	vmf->page->mapping = vmf->vma->vm_file->f_mapping; | 
 | 	vmf->page->index   = vmf->pgoff; | 
 |  | 
 | 	ret = 0; | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void ring_buffer_attach(struct perf_event *event, | 
 | 			       struct ring_buffer *rb) | 
 | { | 
 | 	struct ring_buffer *old_rb = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (event->rb) { | 
 | 		/* | 
 | 		 * Should be impossible, we set this when removing | 
 | 		 * event->rb_entry and wait/clear when adding event->rb_entry. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(event->rcu_pending); | 
 |  | 
 | 		old_rb = event->rb; | 
 | 		spin_lock_irqsave(&old_rb->event_lock, flags); | 
 | 		list_del_rcu(&event->rb_entry); | 
 | 		spin_unlock_irqrestore(&old_rb->event_lock, flags); | 
 |  | 
 | 		event->rcu_batches = get_state_synchronize_rcu(); | 
 | 		event->rcu_pending = 1; | 
 | 	} | 
 |  | 
 | 	if (rb) { | 
 | 		if (event->rcu_pending) { | 
 | 			cond_synchronize_rcu(event->rcu_batches); | 
 | 			event->rcu_pending = 0; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&rb->event_lock, flags); | 
 | 		list_add_rcu(&event->rb_entry, &rb->event_list); | 
 | 		spin_unlock_irqrestore(&rb->event_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Avoid racing with perf_mmap_close(AUX): stop the event | 
 | 	 * before swizzling the event::rb pointer; if it's getting | 
 | 	 * unmapped, its aux_mmap_count will be 0 and it won't | 
 | 	 * restart. See the comment in __perf_pmu_output_stop(). | 
 | 	 * | 
 | 	 * Data will inevitably be lost when set_output is done in | 
 | 	 * mid-air, but then again, whoever does it like this is | 
 | 	 * not in for the data anyway. | 
 | 	 */ | 
 | 	if (has_aux(event)) | 
 | 		perf_event_stop(event, 0); | 
 |  | 
 | 	rcu_assign_pointer(event->rb, rb); | 
 |  | 
 | 	if (old_rb) { | 
 | 		ring_buffer_put(old_rb); | 
 | 		/* | 
 | 		 * Since we detached before setting the new rb, so that we | 
 | 		 * could attach the new rb, we could have missed a wakeup. | 
 | 		 * Provide it now. | 
 | 		 */ | 
 | 		wake_up_all(&event->waitq); | 
 | 	} | 
 | } | 
 |  | 
 | static void ring_buffer_wakeup(struct perf_event *event) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (rb) { | 
 | 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry) | 
 | 			wake_up_all(&event->waitq); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | struct ring_buffer *ring_buffer_get(struct perf_event *event) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (rb) { | 
 | 		if (!atomic_inc_not_zero(&rb->refcount)) | 
 | 			rb = NULL; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return rb; | 
 | } | 
 |  | 
 | void ring_buffer_put(struct ring_buffer *rb) | 
 | { | 
 | 	if (!atomic_dec_and_test(&rb->refcount)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(!list_empty(&rb->event_list)); | 
 |  | 
 | 	call_rcu(&rb->rcu_head, rb_free_rcu); | 
 | } | 
 |  | 
 | static void perf_mmap_open(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	atomic_inc(&event->mmap_count); | 
 | 	atomic_inc(&event->rb->mmap_count); | 
 |  | 
 | 	if (vma->vm_pgoff) | 
 | 		atomic_inc(&event->rb->aux_mmap_count); | 
 |  | 
 | 	if (event->pmu->event_mapped) | 
 | 		event->pmu->event_mapped(event, vma->vm_mm); | 
 | } | 
 |  | 
 | static void perf_pmu_output_stop(struct perf_event *event); | 
 |  | 
 | /* | 
 |  * A buffer can be mmap()ed multiple times; either directly through the same | 
 |  * event, or through other events by use of perf_event_set_output(). | 
 |  * | 
 |  * In order to undo the VM accounting done by perf_mmap() we need to destroy | 
 |  * the buffer here, where we still have a VM context. This means we need | 
 |  * to detach all events redirecting to us. | 
 |  */ | 
 | static void perf_mmap_close(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = vma->vm_file->private_data; | 
 |  | 
 | 	struct ring_buffer *rb = ring_buffer_get(event); | 
 | 	struct user_struct *mmap_user = rb->mmap_user; | 
 | 	int mmap_locked = rb->mmap_locked; | 
 | 	unsigned long size = perf_data_size(rb); | 
 |  | 
 | 	if (event->pmu->event_unmapped) | 
 | 		event->pmu->event_unmapped(event, vma->vm_mm); | 
 |  | 
 | 	/* | 
 | 	 * rb->aux_mmap_count will always drop before rb->mmap_count and | 
 | 	 * event->mmap_count, so it is ok to use event->mmap_mutex to | 
 | 	 * serialize with perf_mmap here. | 
 | 	 */ | 
 | 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && | 
 | 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { | 
 | 		/* | 
 | 		 * Stop all AUX events that are writing to this buffer, | 
 | 		 * so that we can free its AUX pages and corresponding PMU | 
 | 		 * data. Note that after rb::aux_mmap_count dropped to zero, | 
 | 		 * they won't start any more (see perf_aux_output_begin()). | 
 | 		 */ | 
 | 		perf_pmu_output_stop(event); | 
 |  | 
 | 		/* now it's safe to free the pages */ | 
 | 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); | 
 | 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; | 
 |  | 
 | 		/* this has to be the last one */ | 
 | 		rb_free_aux(rb); | 
 | 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); | 
 |  | 
 | 		mutex_unlock(&event->mmap_mutex); | 
 | 	} | 
 |  | 
 | 	atomic_dec(&rb->mmap_count); | 
 |  | 
 | 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) | 
 | 		goto out_put; | 
 |  | 
 | 	ring_buffer_attach(event, NULL); | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	/* If there's still other mmap()s of this buffer, we're done. */ | 
 | 	if (atomic_read(&rb->mmap_count)) | 
 | 		goto out_put; | 
 |  | 
 | 	/* | 
 | 	 * No other mmap()s, detach from all other events that might redirect | 
 | 	 * into the now unreachable buffer. Somewhat complicated by the | 
 | 	 * fact that rb::event_lock otherwise nests inside mmap_mutex. | 
 | 	 */ | 
 | again: | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { | 
 | 		if (!atomic_long_inc_not_zero(&event->refcount)) { | 
 | 			/* | 
 | 			 * This event is en-route to free_event() which will | 
 | 			 * detach it and remove it from the list. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		mutex_lock(&event->mmap_mutex); | 
 | 		/* | 
 | 		 * Check we didn't race with perf_event_set_output() which can | 
 | 		 * swizzle the rb from under us while we were waiting to | 
 | 		 * acquire mmap_mutex. | 
 | 		 * | 
 | 		 * If we find a different rb; ignore this event, a next | 
 | 		 * iteration will no longer find it on the list. We have to | 
 | 		 * still restart the iteration to make sure we're not now | 
 | 		 * iterating the wrong list. | 
 | 		 */ | 
 | 		if (event->rb == rb) | 
 | 			ring_buffer_attach(event, NULL); | 
 |  | 
 | 		mutex_unlock(&event->mmap_mutex); | 
 | 		put_event(event); | 
 |  | 
 | 		/* | 
 | 		 * Restart the iteration; either we're on the wrong list or | 
 | 		 * destroyed its integrity by doing a deletion. | 
 | 		 */ | 
 | 		goto again; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * It could be there's still a few 0-ref events on the list; they'll | 
 | 	 * get cleaned up by free_event() -- they'll also still have their | 
 | 	 * ref on the rb and will free it whenever they are done with it. | 
 | 	 * | 
 | 	 * Aside from that, this buffer is 'fully' detached and unmapped, | 
 | 	 * undo the VM accounting. | 
 | 	 */ | 
 |  | 
 | 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); | 
 | 	vma->vm_mm->pinned_vm -= mmap_locked; | 
 | 	free_uid(mmap_user); | 
 |  | 
 | out_put: | 
 | 	ring_buffer_put(rb); /* could be last */ | 
 | } | 
 |  | 
 | static const struct vm_operations_struct perf_mmap_vmops = { | 
 | 	.open		= perf_mmap_open, | 
 | 	.close		= perf_mmap_close, /* non mergable */ | 
 | 	.fault		= perf_mmap_fault, | 
 | 	.page_mkwrite	= perf_mmap_fault, | 
 | }; | 
 |  | 
 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event *event = file->private_data; | 
 | 	unsigned long user_locked, user_lock_limit; | 
 | 	struct user_struct *user = current_user(); | 
 | 	unsigned long locked, lock_limit; | 
 | 	struct ring_buffer *rb = NULL; | 
 | 	unsigned long vma_size; | 
 | 	unsigned long nr_pages; | 
 | 	long user_extra = 0, extra = 0; | 
 | 	int ret = 0, flags = 0; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow mmap() of inherited per-task counters. This would | 
 | 	 * create a performance issue due to all children writing to the | 
 | 	 * same rb. | 
 | 	 */ | 
 | 	if (event->cpu == -1 && event->attr.inherit) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_SHARED)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vma_size = vma->vm_end - vma->vm_start; | 
 |  | 
 | 	if (vma->vm_pgoff == 0) { | 
 | 		nr_pages = (vma_size / PAGE_SIZE) - 1; | 
 | 	} else { | 
 | 		/* | 
 | 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already | 
 | 		 * mapped, all subsequent mappings should have the same size | 
 | 		 * and offset. Must be above the normal perf buffer. | 
 | 		 */ | 
 | 		u64 aux_offset, aux_size; | 
 |  | 
 | 		if (!event->rb) | 
 | 			return -EINVAL; | 
 |  | 
 | 		nr_pages = vma_size / PAGE_SIZE; | 
 |  | 
 | 		mutex_lock(&event->mmap_mutex); | 
 | 		ret = -EINVAL; | 
 |  | 
 | 		rb = event->rb; | 
 | 		if (!rb) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		aux_offset = READ_ONCE(rb->user_page->aux_offset); | 
 | 		aux_size = READ_ONCE(rb->user_page->aux_size); | 
 |  | 
 | 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		/* already mapped with a different offset */ | 
 | 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		/* already mapped with a different size */ | 
 | 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		if (!is_power_of_2(nr_pages)) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		if (!atomic_inc_not_zero(&rb->mmap_count)) | 
 | 			goto aux_unlock; | 
 |  | 
 | 		if (rb_has_aux(rb)) { | 
 | 			atomic_inc(&rb->aux_mmap_count); | 
 | 			ret = 0; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		atomic_set(&rb->aux_mmap_count, 1); | 
 | 		user_extra = nr_pages; | 
 |  | 
 | 		goto accounting; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have rb pages ensure they're a power-of-two number, so we | 
 | 	 * can do bitmasks instead of modulo. | 
 | 	 */ | 
 | 	if (nr_pages != 0 && !is_power_of_2(nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (vma_size != PAGE_SIZE * (1 + nr_pages)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	WARN_ON_ONCE(event->ctx->parent_ctx); | 
 | again: | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	if (event->rb) { | 
 | 		if (event->rb->nr_pages != nr_pages) { | 
 | 			ret = -EINVAL; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) { | 
 | 			/* | 
 | 			 * Raced against perf_mmap_close() through | 
 | 			 * perf_event_set_output(). Try again, hope for better | 
 | 			 * luck. | 
 | 			 */ | 
 | 			mutex_unlock(&event->mmap_mutex); | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	user_extra = nr_pages + 1; | 
 |  | 
 | accounting: | 
 | 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | 
 |  | 
 | 	/* | 
 | 	 * Increase the limit linearly with more CPUs: | 
 | 	 */ | 
 | 	user_lock_limit *= num_online_cpus(); | 
 |  | 
 | 	user_locked = atomic_long_read(&user->locked_vm) + user_extra; | 
 |  | 
 | 	if (user_locked > user_lock_limit) | 
 | 		extra = user_locked - user_lock_limit; | 
 |  | 
 | 	lock_limit = rlimit(RLIMIT_MEMLOCK); | 
 | 	lock_limit >>= PAGE_SHIFT; | 
 | 	locked = vma->vm_mm->pinned_vm + extra; | 
 |  | 
 | 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | 
 | 		!capable(CAP_IPC_LOCK)) { | 
 | 		ret = -EPERM; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	WARN_ON(!rb && event->rb); | 
 |  | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		flags |= RING_BUFFER_WRITABLE; | 
 |  | 
 | 	if (!rb) { | 
 | 		rb = rb_alloc(nr_pages, | 
 | 			      event->attr.watermark ? event->attr.wakeup_watermark : 0, | 
 | 			      event->cpu, flags); | 
 |  | 
 | 		if (!rb) { | 
 | 			ret = -ENOMEM; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 		atomic_set(&rb->mmap_count, 1); | 
 | 		rb->mmap_user = get_current_user(); | 
 | 		rb->mmap_locked = extra; | 
 |  | 
 | 		ring_buffer_attach(event, rb); | 
 |  | 
 | 		perf_event_init_userpage(event); | 
 | 		perf_event_update_userpage(event); | 
 | 	} else { | 
 | 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, | 
 | 				   event->attr.aux_watermark, flags); | 
 | 		if (!ret) | 
 | 			rb->aux_mmap_locked = extra; | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	if (!ret) { | 
 | 		atomic_long_add(user_extra, &user->locked_vm); | 
 | 		vma->vm_mm->pinned_vm += extra; | 
 |  | 
 | 		atomic_inc(&event->mmap_count); | 
 | 	} else if (rb) { | 
 | 		atomic_dec(&rb->mmap_count); | 
 | 	} | 
 | aux_unlock: | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Since pinned accounting is per vm we cannot allow fork() to copy our | 
 | 	 * vma. | 
 | 	 */ | 
 | 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; | 
 | 	vma->vm_ops = &perf_mmap_vmops; | 
 |  | 
 | 	if (event->pmu->event_mapped) | 
 | 		event->pmu->event_mapped(event, vma->vm_mm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_fasync(int fd, struct file *filp, int on) | 
 | { | 
 | 	struct inode *inode = file_inode(filp); | 
 | 	struct perf_event *event = filp->private_data; | 
 | 	int retval; | 
 |  | 
 | 	inode_lock(inode); | 
 | 	retval = fasync_helper(fd, filp, on, &event->fasync); | 
 | 	inode_unlock(inode); | 
 |  | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations perf_fops = { | 
 | 	.llseek			= no_llseek, | 
 | 	.release		= perf_release, | 
 | 	.read			= perf_read, | 
 | 	.poll			= perf_poll, | 
 | 	.unlocked_ioctl		= perf_ioctl, | 
 | 	.compat_ioctl		= perf_compat_ioctl, | 
 | 	.mmap			= perf_mmap, | 
 | 	.fasync			= perf_fasync, | 
 | }; | 
 |  | 
 | /* | 
 |  * Perf event wakeup | 
 |  * | 
 |  * If there's data, ensure we set the poll() state and publish everything | 
 |  * to user-space before waking everybody up. | 
 |  */ | 
 |  | 
 | static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) | 
 | { | 
 | 	/* only the parent has fasync state */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 | 	return &event->fasync; | 
 | } | 
 |  | 
 | void perf_event_wakeup(struct perf_event *event) | 
 | { | 
 | 	ring_buffer_wakeup(event); | 
 |  | 
 | 	if (event->pending_kill) { | 
 | 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); | 
 | 		event->pending_kill = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_pending_event(struct irq_work *entry) | 
 | { | 
 | 	struct perf_event *event = container_of(entry, | 
 | 			struct perf_event, pending); | 
 | 	int rctx; | 
 |  | 
 | 	rctx = perf_swevent_get_recursion_context(); | 
 | 	/* | 
 | 	 * If we 'fail' here, that's OK, it means recursion is already disabled | 
 | 	 * and we won't recurse 'further'. | 
 | 	 */ | 
 |  | 
 | 	if (event->pending_disable) { | 
 | 		event->pending_disable = 0; | 
 | 		perf_event_disable_local(event); | 
 | 	} | 
 |  | 
 | 	if (event->pending_wakeup) { | 
 | 		event->pending_wakeup = 0; | 
 | 		perf_event_wakeup(event); | 
 | 	} | 
 |  | 
 | 	if (rctx >= 0) | 
 | 		perf_swevent_put_recursion_context(rctx); | 
 | } | 
 |  | 
 | /* | 
 |  * We assume there is only KVM supporting the callbacks. | 
 |  * Later on, we might change it to a list if there is | 
 |  * another virtualization implementation supporting the callbacks. | 
 |  */ | 
 | struct perf_guest_info_callbacks *perf_guest_cbs; | 
 |  | 
 | int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
 | { | 
 | 	perf_guest_cbs = cbs; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); | 
 |  | 
 | int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) | 
 | { | 
 | 	perf_guest_cbs = NULL; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); | 
 |  | 
 | static void | 
 | perf_output_sample_regs(struct perf_output_handle *handle, | 
 | 			struct pt_regs *regs, u64 mask) | 
 | { | 
 | 	int bit; | 
 | 	DECLARE_BITMAP(_mask, 64); | 
 |  | 
 | 	bitmap_from_u64(_mask, mask); | 
 | 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { | 
 | 		u64 val; | 
 |  | 
 | 		val = perf_reg_value(regs, bit); | 
 | 		perf_output_put(handle, val); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_sample_regs_user(struct perf_regs *regs_user, | 
 | 				  struct pt_regs *regs, | 
 | 				  struct pt_regs *regs_user_copy) | 
 | { | 
 | 	if (user_mode(regs)) { | 
 | 		regs_user->abi = perf_reg_abi(current); | 
 | 		regs_user->regs = regs; | 
 | 	} else if (current->mm) { | 
 | 		perf_get_regs_user(regs_user, regs, regs_user_copy); | 
 | 	} else { | 
 | 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; | 
 | 		regs_user->regs = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_sample_regs_intr(struct perf_regs *regs_intr, | 
 | 				  struct pt_regs *regs) | 
 | { | 
 | 	regs_intr->regs = regs; | 
 | 	regs_intr->abi  = perf_reg_abi(current); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Get remaining task size from user stack pointer. | 
 |  * | 
 |  * It'd be better to take stack vma map and limit this more | 
 |  * precisly, but there's no way to get it safely under interrupt, | 
 |  * so using TASK_SIZE as limit. | 
 |  */ | 
 | static u64 perf_ustack_task_size(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long addr = perf_user_stack_pointer(regs); | 
 |  | 
 | 	if (!addr || addr >= TASK_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	return TASK_SIZE - addr; | 
 | } | 
 |  | 
 | static u16 | 
 | perf_sample_ustack_size(u16 stack_size, u16 header_size, | 
 | 			struct pt_regs *regs) | 
 | { | 
 | 	u64 task_size; | 
 |  | 
 | 	/* No regs, no stack pointer, no dump. */ | 
 | 	if (!regs) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Check if we fit in with the requested stack size into the: | 
 | 	 * - TASK_SIZE | 
 | 	 *   If we don't, we limit the size to the TASK_SIZE. | 
 | 	 * | 
 | 	 * - remaining sample size | 
 | 	 *   If we don't, we customize the stack size to | 
 | 	 *   fit in to the remaining sample size. | 
 | 	 */ | 
 |  | 
 | 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); | 
 | 	stack_size = min(stack_size, (u16) task_size); | 
 |  | 
 | 	/* Current header size plus static size and dynamic size. */ | 
 | 	header_size += 2 * sizeof(u64); | 
 |  | 
 | 	/* Do we fit in with the current stack dump size? */ | 
 | 	if ((u16) (header_size + stack_size) < header_size) { | 
 | 		/* | 
 | 		 * If we overflow the maximum size for the sample, | 
 | 		 * we customize the stack dump size to fit in. | 
 | 		 */ | 
 | 		stack_size = USHRT_MAX - header_size - sizeof(u64); | 
 | 		stack_size = round_up(stack_size, sizeof(u64)); | 
 | 	} | 
 |  | 
 | 	return stack_size; | 
 | } | 
 |  | 
 | static void | 
 | perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	/* Case of a kernel thread, nothing to dump */ | 
 | 	if (!regs) { | 
 | 		u64 size = 0; | 
 | 		perf_output_put(handle, size); | 
 | 	} else { | 
 | 		unsigned long sp; | 
 | 		unsigned int rem; | 
 | 		u64 dyn_size; | 
 |  | 
 | 		/* | 
 | 		 * We dump: | 
 | 		 * static size | 
 | 		 *   - the size requested by user or the best one we can fit | 
 | 		 *     in to the sample max size | 
 | 		 * data | 
 | 		 *   - user stack dump data | 
 | 		 * dynamic size | 
 | 		 *   - the actual dumped size | 
 | 		 */ | 
 |  | 
 | 		/* Static size. */ | 
 | 		perf_output_put(handle, dump_size); | 
 |  | 
 | 		/* Data. */ | 
 | 		sp = perf_user_stack_pointer(regs); | 
 | 		rem = __output_copy_user(handle, (void *) sp, dump_size); | 
 | 		dyn_size = dump_size - rem; | 
 |  | 
 | 		perf_output_skip(handle, rem); | 
 |  | 
 | 		/* Dynamic size. */ | 
 | 		perf_output_put(handle, dyn_size); | 
 | 	} | 
 | } | 
 |  | 
 | static void __perf_event_header__init_id(struct perf_event_header *header, | 
 | 					 struct perf_sample_data *data, | 
 | 					 struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	data->type = sample_type; | 
 | 	header->size += event->id_header_size; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) { | 
 | 		/* namespace issues */ | 
 | 		data->tid_entry.pid = perf_event_pid(event, current); | 
 | 		data->tid_entry.tid = perf_event_tid(event, current); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		data->time = perf_event_clock(event); | 
 |  | 
 | 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) | 
 | 		data->id = primary_event_id(event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		data->stream_id = event->id; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) { | 
 | 		data->cpu_entry.cpu	 = raw_smp_processor_id(); | 
 | 		data->cpu_entry.reserved = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void perf_event_header__init_id(struct perf_event_header *header, | 
 | 				struct perf_sample_data *data, | 
 | 				struct perf_event *event) | 
 | { | 
 | 	if (event->attr.sample_id_all) | 
 | 		__perf_event_header__init_id(header, data, event); | 
 | } | 
 |  | 
 | static void __perf_event__output_id_sample(struct perf_output_handle *handle, | 
 | 					   struct perf_sample_data *data) | 
 | { | 
 | 	u64 sample_type = data->type; | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		perf_output_put(handle, data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		perf_output_put(handle, data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		perf_output_put(handle, data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		perf_output_put(handle, data->cpu_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IDENTIFIER) | 
 | 		perf_output_put(handle, data->id); | 
 | } | 
 |  | 
 | void perf_event__output_id_sample(struct perf_event *event, | 
 | 				  struct perf_output_handle *handle, | 
 | 				  struct perf_sample_data *sample) | 
 | { | 
 | 	if (event->attr.sample_id_all) | 
 | 		__perf_event__output_id_sample(handle, sample); | 
 | } | 
 |  | 
 | static void perf_output_read_one(struct perf_output_handle *handle, | 
 | 				 struct perf_event *event, | 
 | 				 u64 enabled, u64 running) | 
 | { | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[4]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = perf_event_count(event); | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | 
 | 		values[n++] = enabled + | 
 | 			atomic64_read(&event->child_total_time_enabled); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | 
 | 		values[n++] = running + | 
 | 			atomic64_read(&event->child_total_time_running); | 
 | 	} | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(event); | 
 |  | 
 | 	__output_copy(handle, values, n * sizeof(u64)); | 
 | } | 
 |  | 
 | static void perf_output_read_group(struct perf_output_handle *handle, | 
 | 			    struct perf_event *event, | 
 | 			    u64 enabled, u64 running) | 
 | { | 
 | 	struct perf_event *leader = event->group_leader, *sub; | 
 | 	u64 read_format = event->attr.read_format; | 
 | 	u64 values[5]; | 
 | 	int n = 0; | 
 |  | 
 | 	values[n++] = 1 + leader->nr_siblings; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | 
 | 		values[n++] = enabled; | 
 |  | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 | 		values[n++] = running; | 
 |  | 
 | 	if ((leader != event) && | 
 | 	    (leader->state == PERF_EVENT_STATE_ACTIVE)) | 
 | 		leader->pmu->read(leader); | 
 |  | 
 | 	values[n++] = perf_event_count(leader); | 
 | 	if (read_format & PERF_FORMAT_ID) | 
 | 		values[n++] = primary_event_id(leader); | 
 |  | 
 | 	__output_copy(handle, values, n * sizeof(u64)); | 
 |  | 
 | 	for_each_sibling_event(sub, leader) { | 
 | 		n = 0; | 
 |  | 
 | 		if ((sub != event) && | 
 | 		    (sub->state == PERF_EVENT_STATE_ACTIVE)) | 
 | 			sub->pmu->read(sub); | 
 |  | 
 | 		values[n++] = perf_event_count(sub); | 
 | 		if (read_format & PERF_FORMAT_ID) | 
 | 			values[n++] = primary_event_id(sub); | 
 |  | 
 | 		__output_copy(handle, values, n * sizeof(u64)); | 
 | 	} | 
 | } | 
 |  | 
 | #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ | 
 | 				 PERF_FORMAT_TOTAL_TIME_RUNNING) | 
 |  | 
 | /* | 
 |  * XXX PERF_SAMPLE_READ vs inherited events seems difficult. | 
 |  * | 
 |  * The problem is that its both hard and excessively expensive to iterate the | 
 |  * child list, not to mention that its impossible to IPI the children running | 
 |  * on another CPU, from interrupt/NMI context. | 
 |  */ | 
 | static void perf_output_read(struct perf_output_handle *handle, | 
 | 			     struct perf_event *event) | 
 | { | 
 | 	u64 enabled = 0, running = 0, now; | 
 | 	u64 read_format = event->attr.read_format; | 
 |  | 
 | 	/* | 
 | 	 * compute total_time_enabled, total_time_running | 
 | 	 * based on snapshot values taken when the event | 
 | 	 * was last scheduled in. | 
 | 	 * | 
 | 	 * we cannot simply called update_context_time() | 
 | 	 * because of locking issue as we are called in | 
 | 	 * NMI context | 
 | 	 */ | 
 | 	if (read_format & PERF_FORMAT_TOTAL_TIMES) | 
 | 		calc_timer_values(event, &now, &enabled, &running); | 
 |  | 
 | 	if (event->attr.read_format & PERF_FORMAT_GROUP) | 
 | 		perf_output_read_group(handle, event, enabled, running); | 
 | 	else | 
 | 		perf_output_read_one(handle, event, enabled, running); | 
 | } | 
 |  | 
 | void perf_output_sample(struct perf_output_handle *handle, | 
 | 			struct perf_event_header *header, | 
 | 			struct perf_sample_data *data, | 
 | 			struct perf_event *event) | 
 | { | 
 | 	u64 sample_type = data->type; | 
 |  | 
 | 	perf_output_put(handle, *header); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IDENTIFIER) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		perf_output_put(handle, data->ip); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TID) | 
 | 		perf_output_put(handle, data->tid_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TIME) | 
 | 		perf_output_put(handle, data->time); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ADDR) | 
 | 		perf_output_put(handle, data->addr); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_ID) | 
 | 		perf_output_put(handle, data->id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STREAM_ID) | 
 | 		perf_output_put(handle, data->stream_id); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CPU) | 
 | 		perf_output_put(handle, data->cpu_entry); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PERIOD) | 
 | 		perf_output_put(handle, data->period); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_READ) | 
 | 		perf_output_read(handle, event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		int size = 1; | 
 |  | 
 | 		size += data->callchain->nr; | 
 | 		size *= sizeof(u64); | 
 | 		__output_copy(handle, data->callchain, size); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		struct perf_raw_record *raw = data->raw; | 
 |  | 
 | 		if (raw) { | 
 | 			struct perf_raw_frag *frag = &raw->frag; | 
 |  | 
 | 			perf_output_put(handle, raw->size); | 
 | 			do { | 
 | 				if (frag->copy) { | 
 | 					__output_custom(handle, frag->copy, | 
 | 							frag->data, frag->size); | 
 | 				} else { | 
 | 					__output_copy(handle, frag->data, | 
 | 						      frag->size); | 
 | 				} | 
 | 				if (perf_raw_frag_last(frag)) | 
 | 					break; | 
 | 				frag = frag->next; | 
 | 			} while (1); | 
 | 			if (frag->pad) | 
 | 				__output_skip(handle, NULL, frag->pad); | 
 | 		} else { | 
 | 			struct { | 
 | 				u32	size; | 
 | 				u32	data; | 
 | 			} raw = { | 
 | 				.size = sizeof(u32), | 
 | 				.data = 0, | 
 | 			}; | 
 | 			perf_output_put(handle, raw); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		if (data->br_stack) { | 
 | 			size_t size; | 
 |  | 
 | 			size = data->br_stack->nr | 
 | 			     * sizeof(struct perf_branch_entry); | 
 |  | 
 | 			perf_output_put(handle, data->br_stack->nr); | 
 | 			perf_output_copy(handle, data->br_stack->entries, size); | 
 | 		} else { | 
 | 			/* | 
 | 			 * we always store at least the value of nr | 
 | 			 */ | 
 | 			u64 nr = 0; | 
 | 			perf_output_put(handle, nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		u64 abi = data->regs_user.abi; | 
 |  | 
 | 		/* | 
 | 		 * If there are no regs to dump, notice it through | 
 | 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). | 
 | 		 */ | 
 | 		perf_output_put(handle, abi); | 
 |  | 
 | 		if (abi) { | 
 | 			u64 mask = event->attr.sample_regs_user; | 
 | 			perf_output_sample_regs(handle, | 
 | 						data->regs_user.regs, | 
 | 						mask); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STACK_USER) { | 
 | 		perf_output_sample_ustack(handle, | 
 | 					  data->stack_user_size, | 
 | 					  data->regs_user.regs); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_WEIGHT) | 
 | 		perf_output_put(handle, data->weight); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_DATA_SRC) | 
 | 		perf_output_put(handle, data->data_src.val); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_TRANSACTION) | 
 | 		perf_output_put(handle, data->txn); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_INTR) { | 
 | 		u64 abi = data->regs_intr.abi; | 
 | 		/* | 
 | 		 * If there are no regs to dump, notice it through | 
 | 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). | 
 | 		 */ | 
 | 		perf_output_put(handle, abi); | 
 |  | 
 | 		if (abi) { | 
 | 			u64 mask = event->attr.sample_regs_intr; | 
 |  | 
 | 			perf_output_sample_regs(handle, | 
 | 						data->regs_intr.regs, | 
 | 						mask); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PHYS_ADDR) | 
 | 		perf_output_put(handle, data->phys_addr); | 
 |  | 
 | 	if (!event->attr.watermark) { | 
 | 		int wakeup_events = event->attr.wakeup_events; | 
 |  | 
 | 		if (wakeup_events) { | 
 | 			struct ring_buffer *rb = handle->rb; | 
 | 			int events = local_inc_return(&rb->events); | 
 |  | 
 | 			if (events >= wakeup_events) { | 
 | 				local_sub(wakeup_events, &rb->events); | 
 | 				local_inc(&rb->wakeup); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static u64 perf_virt_to_phys(u64 virt) | 
 | { | 
 | 	u64 phys_addr = 0; | 
 | 	struct page *p = NULL; | 
 |  | 
 | 	if (!virt) | 
 | 		return 0; | 
 |  | 
 | 	if (virt >= TASK_SIZE) { | 
 | 		/* If it's vmalloc()d memory, leave phys_addr as 0 */ | 
 | 		if (virt_addr_valid((void *)(uintptr_t)virt) && | 
 | 		    !(virt >= VMALLOC_START && virt < VMALLOC_END)) | 
 | 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Walking the pages tables for user address. | 
 | 		 * Interrupts are disabled, so it prevents any tear down | 
 | 		 * of the page tables. | 
 | 		 * Try IRQ-safe __get_user_pages_fast first. | 
 | 		 * If failed, leave phys_addr as 0. | 
 | 		 */ | 
 | 		if ((current->mm != NULL) && | 
 | 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1)) | 
 | 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE; | 
 |  | 
 | 		if (p) | 
 | 			put_page(p); | 
 | 	} | 
 |  | 
 | 	return phys_addr; | 
 | } | 
 |  | 
 | static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; | 
 |  | 
 | static struct perf_callchain_entry * | 
 | perf_callchain(struct perf_event *event, struct pt_regs *regs) | 
 | { | 
 | 	bool kernel = !event->attr.exclude_callchain_kernel; | 
 | 	bool user   = !event->attr.exclude_callchain_user; | 
 | 	/* Disallow cross-task user callchains. */ | 
 | 	bool crosstask = event->ctx->task && event->ctx->task != current; | 
 | 	const u32 max_stack = event->attr.sample_max_stack; | 
 | 	struct perf_callchain_entry *callchain; | 
 |  | 
 | 	if (!kernel && !user) | 
 | 		return &__empty_callchain; | 
 |  | 
 | 	callchain = get_perf_callchain(regs, 0, kernel, user, | 
 | 				       max_stack, crosstask, true); | 
 | 	return callchain ?: &__empty_callchain; | 
 | } | 
 |  | 
 | void perf_prepare_sample(struct perf_event_header *header, | 
 | 			 struct perf_sample_data *data, | 
 | 			 struct perf_event *event, | 
 | 			 struct pt_regs *regs) | 
 | { | 
 | 	u64 sample_type = event->attr.sample_type; | 
 |  | 
 | 	header->type = PERF_RECORD_SAMPLE; | 
 | 	header->size = sizeof(*header) + event->header_size; | 
 |  | 
 | 	header->misc = 0; | 
 | 	header->misc |= perf_misc_flags(regs); | 
 |  | 
 | 	__perf_event_header__init_id(header, data, event); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_IP) | 
 | 		data->ip = perf_instruction_pointer(regs); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 		int size = 1; | 
 |  | 
 | 		data->callchain = perf_callchain(event, regs); | 
 | 		size += data->callchain->nr; | 
 |  | 
 | 		header->size += size * sizeof(u64); | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_RAW) { | 
 | 		struct perf_raw_record *raw = data->raw; | 
 | 		int size; | 
 |  | 
 | 		if (raw) { | 
 | 			struct perf_raw_frag *frag = &raw->frag; | 
 | 			u32 sum = 0; | 
 |  | 
 | 			do { | 
 | 				sum += frag->size; | 
 | 				if (perf_raw_frag_last(frag)) | 
 | 					break; | 
 | 				frag = frag->next; | 
 | 			} while (1); | 
 |  | 
 | 			size = round_up(sum + sizeof(u32), sizeof(u64)); | 
 | 			raw->size = size - sizeof(u32); | 
 | 			frag->pad = raw->size - sum; | 
 | 		} else { | 
 | 			size = sizeof(u64); | 
 | 		} | 
 |  | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		int size = sizeof(u64); /* nr */ | 
 | 		if (data->br_stack) { | 
 | 			size += data->br_stack->nr | 
 | 			      * sizeof(struct perf_branch_entry); | 
 | 		} | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) | 
 | 		perf_sample_regs_user(&data->regs_user, regs, | 
 | 				      &data->regs_user_copy); | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		/* regs dump ABI info */ | 
 | 		int size = sizeof(u64); | 
 |  | 
 | 		if (data->regs_user.regs) { | 
 | 			u64 mask = event->attr.sample_regs_user; | 
 | 			size += hweight64(mask) * sizeof(u64); | 
 | 		} | 
 |  | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_STACK_USER) { | 
 | 		/* | 
 | 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways | 
 | 		 * processed as the last one or have additional check added | 
 | 		 * in case new sample type is added, because we could eat | 
 | 		 * up the rest of the sample size. | 
 | 		 */ | 
 | 		u16 stack_size = event->attr.sample_stack_user; | 
 | 		u16 size = sizeof(u64); | 
 |  | 
 | 		stack_size = perf_sample_ustack_size(stack_size, header->size, | 
 | 						     data->regs_user.regs); | 
 |  | 
 | 		/* | 
 | 		 * If there is something to dump, add space for the dump | 
 | 		 * itself and for the field that tells the dynamic size, | 
 | 		 * which is how many have been actually dumped. | 
 | 		 */ | 
 | 		if (stack_size) | 
 | 			size += sizeof(u64) + stack_size; | 
 |  | 
 | 		data->stack_user_size = stack_size; | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_REGS_INTR) { | 
 | 		/* regs dump ABI info */ | 
 | 		int size = sizeof(u64); | 
 |  | 
 | 		perf_sample_regs_intr(&data->regs_intr, regs); | 
 |  | 
 | 		if (data->regs_intr.regs) { | 
 | 			u64 mask = event->attr.sample_regs_intr; | 
 |  | 
 | 			size += hweight64(mask) * sizeof(u64); | 
 | 		} | 
 |  | 
 | 		header->size += size; | 
 | 	} | 
 |  | 
 | 	if (sample_type & PERF_SAMPLE_PHYS_ADDR) | 
 | 		data->phys_addr = perf_virt_to_phys(data->addr); | 
 | } | 
 |  | 
 | static void __always_inline | 
 | __perf_event_output(struct perf_event *event, | 
 | 		    struct perf_sample_data *data, | 
 | 		    struct pt_regs *regs, | 
 | 		    int (*output_begin)(struct perf_output_handle *, | 
 | 					struct perf_event *, | 
 | 					unsigned int)) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_event_header header; | 
 |  | 
 | 	/* protect the callchain buffers */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	perf_prepare_sample(&header, data, event, regs); | 
 |  | 
 | 	if (output_begin(&handle, event, header.size)) | 
 | 		goto exit; | 
 |  | 
 | 	perf_output_sample(&handle, &header, data, event); | 
 |  | 
 | 	perf_output_end(&handle); | 
 |  | 
 | exit: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void | 
 | perf_event_output_forward(struct perf_event *event, | 
 | 			 struct perf_sample_data *data, | 
 | 			 struct pt_regs *regs) | 
 | { | 
 | 	__perf_event_output(event, data, regs, perf_output_begin_forward); | 
 | } | 
 |  | 
 | void | 
 | perf_event_output_backward(struct perf_event *event, | 
 | 			   struct perf_sample_data *data, | 
 | 			   struct pt_regs *regs) | 
 | { | 
 | 	__perf_event_output(event, data, regs, perf_output_begin_backward); | 
 | } | 
 |  | 
 | void | 
 | perf_event_output(struct perf_event *event, | 
 | 		  struct perf_sample_data *data, | 
 | 		  struct pt_regs *regs) | 
 | { | 
 | 	__perf_event_output(event, data, regs, perf_output_begin); | 
 | } | 
 |  | 
 | /* | 
 |  * read event_id | 
 |  */ | 
 |  | 
 | struct perf_read_event { | 
 | 	struct perf_event_header	header; | 
 |  | 
 | 	u32				pid; | 
 | 	u32				tid; | 
 | }; | 
 |  | 
 | static void | 
 | perf_event_read_event(struct perf_event *event, | 
 | 			struct task_struct *task) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	struct perf_read_event read_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_READ, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(read_event) + event->read_size, | 
 | 		}, | 
 | 		.pid = perf_event_pid(event, task), | 
 | 		.tid = perf_event_tid(event, task), | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	perf_event_header__init_id(&read_event.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, read_event.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, read_event); | 
 | 	perf_output_read(&handle, event); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | typedef void (perf_iterate_f)(struct perf_event *event, void *data); | 
 |  | 
 | static void | 
 | perf_iterate_ctx(struct perf_event_context *ctx, | 
 | 		   perf_iterate_f output, | 
 | 		   void *data, bool all) | 
 | { | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 		if (!all) { | 
 | 			if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 				continue; | 
 | 			if (!event_filter_match(event)) | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		output(event, data); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) | 
 | { | 
 | 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); | 
 | 	struct perf_event *event; | 
 |  | 
 | 	list_for_each_entry_rcu(event, &pel->list, sb_list) { | 
 | 		/* | 
 | 		 * Skip events that are not fully formed yet; ensure that | 
 | 		 * if we observe event->ctx, both event and ctx will be | 
 | 		 * complete enough. See perf_install_in_context(). | 
 | 		 */ | 
 | 		if (!smp_load_acquire(&event->ctx)) | 
 | 			continue; | 
 |  | 
 | 		if (event->state < PERF_EVENT_STATE_INACTIVE) | 
 | 			continue; | 
 | 		if (!event_filter_match(event)) | 
 | 			continue; | 
 | 		output(event, data); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate all events that need to receive side-band events. | 
 |  * | 
 |  * For new callers; ensure that account_pmu_sb_event() includes | 
 |  * your event, otherwise it might not get delivered. | 
 |  */ | 
 | static void | 
 | perf_iterate_sb(perf_iterate_f output, void *data, | 
 | 	       struct perf_event_context *task_ctx) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	preempt_disable(); | 
 |  | 
 | 	/* | 
 | 	 * If we have task_ctx != NULL we only notify the task context itself. | 
 | 	 * The task_ctx is set only for EXIT events before releasing task | 
 | 	 * context. | 
 | 	 */ | 
 | 	if (task_ctx) { | 
 | 		perf_iterate_ctx(task_ctx, output, data, false); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	perf_iterate_sb_cpu(output, data); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
 | 		if (ctx) | 
 | 			perf_iterate_ctx(ctx, output, data, false); | 
 | 	} | 
 | done: | 
 | 	preempt_enable(); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear all file-based filters at exec, they'll have to be | 
 |  * re-instated when/if these objects are mmapped again. | 
 |  */ | 
 | static void perf_event_addr_filters_exec(struct perf_event *event, void *data) | 
 | { | 
 | 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); | 
 | 	struct perf_addr_filter *filter; | 
 | 	unsigned int restart = 0, count = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!has_addr_filter(event)) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ifh->lock, flags); | 
 | 	list_for_each_entry(filter, &ifh->list, entry) { | 
 | 		if (filter->inode) { | 
 | 			event->addr_filters_offs[count] = 0; | 
 | 			restart++; | 
 | 		} | 
 |  | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	if (restart) | 
 | 		event->addr_filters_gen++; | 
 | 	raw_spin_unlock_irqrestore(&ifh->lock, flags); | 
 |  | 
 | 	if (restart) | 
 | 		perf_event_stop(event, 1); | 
 | } | 
 |  | 
 | void perf_event_exec(void) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = current->perf_event_ctxp[ctxn]; | 
 | 		if (!ctx) | 
 | 			continue; | 
 |  | 
 | 		perf_event_enable_on_exec(ctxn); | 
 |  | 
 | 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, | 
 | 				   true); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | struct remote_output { | 
 | 	struct ring_buffer	*rb; | 
 | 	int			err; | 
 | }; | 
 |  | 
 | static void __perf_event_output_stop(struct perf_event *event, void *data) | 
 | { | 
 | 	struct perf_event *parent = event->parent; | 
 | 	struct remote_output *ro = data; | 
 | 	struct ring_buffer *rb = ro->rb; | 
 | 	struct stop_event_data sd = { | 
 | 		.event	= event, | 
 | 	}; | 
 |  | 
 | 	if (!has_aux(event)) | 
 | 		return; | 
 |  | 
 | 	if (!parent) | 
 | 		parent = event; | 
 |  | 
 | 	/* | 
 | 	 * In case of inheritance, it will be the parent that links to the | 
 | 	 * ring-buffer, but it will be the child that's actually using it. | 
 | 	 * | 
 | 	 * We are using event::rb to determine if the event should be stopped, | 
 | 	 * however this may race with ring_buffer_attach() (through set_output), | 
 | 	 * which will make us skip the event that actually needs to be stopped. | 
 | 	 * So ring_buffer_attach() has to stop an aux event before re-assigning | 
 | 	 * its rb pointer. | 
 | 	 */ | 
 | 	if (rcu_dereference(parent->rb) == rb) | 
 | 		ro->err = __perf_event_stop(&sd); | 
 | } | 
 |  | 
 | static int __perf_pmu_output_stop(void *info) | 
 | { | 
 | 	struct perf_event *event = info; | 
 | 	struct pmu *pmu = event->pmu; | 
 | 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); | 
 | 	struct remote_output ro = { | 
 | 		.rb	= event->rb, | 
 | 	}; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); | 
 | 	if (cpuctx->task_ctx) | 
 | 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, | 
 | 				   &ro, false); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ro.err; | 
 | } | 
 |  | 
 | static void perf_pmu_output_stop(struct perf_event *event) | 
 | { | 
 | 	struct perf_event *iter; | 
 | 	int err, cpu; | 
 |  | 
 | restart: | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { | 
 | 		/* | 
 | 		 * For per-CPU events, we need to make sure that neither they | 
 | 		 * nor their children are running; for cpu==-1 events it's | 
 | 		 * sufficient to stop the event itself if it's active, since | 
 | 		 * it can't have children. | 
 | 		 */ | 
 | 		cpu = iter->cpu; | 
 | 		if (cpu == -1) | 
 | 			cpu = READ_ONCE(iter->oncpu); | 
 |  | 
 | 		if (cpu == -1) | 
 | 			continue; | 
 |  | 
 | 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event); | 
 | 		if (err == -EAGAIN) { | 
 | 			rcu_read_unlock(); | 
 | 			goto restart; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * task tracking -- fork/exit | 
 |  * | 
 |  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task | 
 |  */ | 
 |  | 
 | struct perf_task_event { | 
 | 	struct task_struct		*task; | 
 | 	struct perf_event_context	*task_ctx; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				ppid; | 
 | 		u32				tid; | 
 | 		u32				ptid; | 
 | 		u64				time; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static int perf_event_task_match(struct perf_event *event) | 
 | { | 
 | 	return event->attr.comm  || event->attr.mmap || | 
 | 	       event->attr.mmap2 || event->attr.mmap_data || | 
 | 	       event->attr.task; | 
 | } | 
 |  | 
 | static void perf_event_task_output(struct perf_event *event, | 
 | 				   void *data) | 
 | { | 
 | 	struct perf_task_event *task_event = data; | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data	sample; | 
 | 	struct task_struct *task = task_event->task; | 
 | 	int ret, size = task_event->event_id.header.size; | 
 |  | 
 | 	if (!perf_event_task_match(event)) | 
 | 		return; | 
 |  | 
 | 	perf_event_header__init_id(&task_event->event_id.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				task_event->event_id.header.size); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	task_event->event_id.pid = perf_event_pid(event, task); | 
 | 	task_event->event_id.ppid = perf_event_pid(event, current); | 
 |  | 
 | 	task_event->event_id.tid = perf_event_tid(event, task); | 
 | 	task_event->event_id.ptid = perf_event_tid(event, current); | 
 |  | 
 | 	task_event->event_id.time = perf_event_clock(event); | 
 |  | 
 | 	perf_output_put(&handle, task_event->event_id); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	task_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static void perf_event_task(struct task_struct *task, | 
 | 			      struct perf_event_context *task_ctx, | 
 | 			      int new) | 
 | { | 
 | 	struct perf_task_event task_event; | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events) && | 
 | 	    !atomic_read(&nr_mmap_events) && | 
 | 	    !atomic_read(&nr_task_events)) | 
 | 		return; | 
 |  | 
 | 	task_event = (struct perf_task_event){ | 
 | 		.task	  = task, | 
 | 		.task_ctx = task_ctx, | 
 | 		.event_id    = { | 
 | 			.header = { | 
 | 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | 
 | 				.misc = 0, | 
 | 				.size = sizeof(task_event.event_id), | 
 | 			}, | 
 | 			/* .pid  */ | 
 | 			/* .ppid */ | 
 | 			/* .tid  */ | 
 | 			/* .ptid */ | 
 | 			/* .time */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_iterate_sb(perf_event_task_output, | 
 | 		       &task_event, | 
 | 		       task_ctx); | 
 | } | 
 |  | 
 | void perf_event_fork(struct task_struct *task) | 
 | { | 
 | 	perf_event_task(task, NULL, 1); | 
 | 	perf_event_namespaces(task); | 
 | } | 
 |  | 
 | /* | 
 |  * comm tracking | 
 |  */ | 
 |  | 
 | struct perf_comm_event { | 
 | 	struct task_struct	*task; | 
 | 	char			*comm; | 
 | 	int			comm_size; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static int perf_event_comm_match(struct perf_event *event) | 
 | { | 
 | 	return event->attr.comm; | 
 | } | 
 |  | 
 | static void perf_event_comm_output(struct perf_event *event, | 
 | 				   void *data) | 
 | { | 
 | 	struct perf_comm_event *comm_event = data; | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int size = comm_event->event_id.header.size; | 
 | 	int ret; | 
 |  | 
 | 	if (!perf_event_comm_match(event)) | 
 | 		return; | 
 |  | 
 | 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				comm_event->event_id.header.size); | 
 |  | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | 
 | 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | 
 |  | 
 | 	perf_output_put(&handle, comm_event->event_id); | 
 | 	__output_copy(&handle, comm_event->comm, | 
 | 				   comm_event->comm_size); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	comm_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | 
 | { | 
 | 	char comm[TASK_COMM_LEN]; | 
 | 	unsigned int size; | 
 |  | 
 | 	memset(comm, 0, sizeof(comm)); | 
 | 	strlcpy(comm, comm_event->task->comm, sizeof(comm)); | 
 | 	size = ALIGN(strlen(comm)+1, sizeof(u64)); | 
 |  | 
 | 	comm_event->comm = comm; | 
 | 	comm_event->comm_size = size; | 
 |  | 
 | 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | 
 |  | 
 | 	perf_iterate_sb(perf_event_comm_output, | 
 | 		       comm_event, | 
 | 		       NULL); | 
 | } | 
 |  | 
 | void perf_event_comm(struct task_struct *task, bool exec) | 
 | { | 
 | 	struct perf_comm_event comm_event; | 
 |  | 
 | 	if (!atomic_read(&nr_comm_events)) | 
 | 		return; | 
 |  | 
 | 	comm_event = (struct perf_comm_event){ | 
 | 		.task	= task, | 
 | 		/* .comm      */ | 
 | 		/* .comm_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_COMM, | 
 | 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_event_comm_event(&comm_event); | 
 | } | 
 |  | 
 | /* | 
 |  * namespaces tracking | 
 |  */ | 
 |  | 
 | struct perf_namespaces_event { | 
 | 	struct task_struct		*task; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 		u64				nr_namespaces; | 
 | 		struct perf_ns_link_info	link_info[NR_NAMESPACES]; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static int perf_event_namespaces_match(struct perf_event *event) | 
 | { | 
 | 	return event->attr.namespaces; | 
 | } | 
 |  | 
 | static void perf_event_namespaces_output(struct perf_event *event, | 
 | 					 void *data) | 
 | { | 
 | 	struct perf_namespaces_event *namespaces_event = data; | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	u16 header_size = namespaces_event->event_id.header.size; | 
 | 	int ret; | 
 |  | 
 | 	if (!perf_event_namespaces_match(event)) | 
 | 		return; | 
 |  | 
 | 	perf_event_header__init_id(&namespaces_event->event_id.header, | 
 | 				   &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				namespaces_event->event_id.header.size); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	namespaces_event->event_id.pid = perf_event_pid(event, | 
 | 							namespaces_event->task); | 
 | 	namespaces_event->event_id.tid = perf_event_tid(event, | 
 | 							namespaces_event->task); | 
 |  | 
 | 	perf_output_put(&handle, namespaces_event->event_id); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	namespaces_event->event_id.header.size = header_size; | 
 | } | 
 |  | 
 | static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, | 
 | 				   struct task_struct *task, | 
 | 				   const struct proc_ns_operations *ns_ops) | 
 | { | 
 | 	struct path ns_path; | 
 | 	struct inode *ns_inode; | 
 | 	void *error; | 
 |  | 
 | 	error = ns_get_path(&ns_path, task, ns_ops); | 
 | 	if (!error) { | 
 | 		ns_inode = ns_path.dentry->d_inode; | 
 | 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); | 
 | 		ns_link_info->ino = ns_inode->i_ino; | 
 | 		path_put(&ns_path); | 
 | 	} | 
 | } | 
 |  | 
 | void perf_event_namespaces(struct task_struct *task) | 
 | { | 
 | 	struct perf_namespaces_event namespaces_event; | 
 | 	struct perf_ns_link_info *ns_link_info; | 
 |  | 
 | 	if (!atomic_read(&nr_namespaces_events)) | 
 | 		return; | 
 |  | 
 | 	namespaces_event = (struct perf_namespaces_event){ | 
 | 		.task	= task, | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_NAMESPACES, | 
 | 				.misc = 0, | 
 | 				.size = sizeof(namespaces_event.event_id), | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 			.nr_namespaces = NR_NAMESPACES, | 
 | 			/* .link_info[NR_NAMESPACES] */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	ns_link_info = namespaces_event.event_id.link_info; | 
 |  | 
 | 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], | 
 | 			       task, &mntns_operations); | 
 |  | 
 | #ifdef CONFIG_USER_NS | 
 | 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], | 
 | 			       task, &userns_operations); | 
 | #endif | 
 | #ifdef CONFIG_NET_NS | 
 | 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], | 
 | 			       task, &netns_operations); | 
 | #endif | 
 | #ifdef CONFIG_UTS_NS | 
 | 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], | 
 | 			       task, &utsns_operations); | 
 | #endif | 
 | #ifdef CONFIG_IPC_NS | 
 | 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], | 
 | 			       task, &ipcns_operations); | 
 | #endif | 
 | #ifdef CONFIG_PID_NS | 
 | 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], | 
 | 			       task, &pidns_operations); | 
 | #endif | 
 | #ifdef CONFIG_CGROUPS | 
 | 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], | 
 | 			       task, &cgroupns_operations); | 
 | #endif | 
 |  | 
 | 	perf_iterate_sb(perf_event_namespaces_output, | 
 | 			&namespaces_event, | 
 | 			NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * mmap tracking | 
 |  */ | 
 |  | 
 | struct perf_mmap_event { | 
 | 	struct vm_area_struct	*vma; | 
 |  | 
 | 	const char		*file_name; | 
 | 	int			file_size; | 
 | 	int			maj, min; | 
 | 	u64			ino; | 
 | 	u64			ino_generation; | 
 | 	u32			prot, flags; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 |  | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 		u64				start; | 
 | 		u64				len; | 
 | 		u64				pgoff; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static int perf_event_mmap_match(struct perf_event *event, | 
 | 				 void *data) | 
 | { | 
 | 	struct perf_mmap_event *mmap_event = data; | 
 | 	struct vm_area_struct *vma = mmap_event->vma; | 
 | 	int executable = vma->vm_flags & VM_EXEC; | 
 |  | 
 | 	return (!executable && event->attr.mmap_data) || | 
 | 	       (executable && (event->attr.mmap || event->attr.mmap2)); | 
 | } | 
 |  | 
 | static void perf_event_mmap_output(struct perf_event *event, | 
 | 				   void *data) | 
 | { | 
 | 	struct perf_mmap_event *mmap_event = data; | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int size = mmap_event->event_id.header.size; | 
 | 	int ret; | 
 |  | 
 | 	if (!perf_event_mmap_match(event, data)) | 
 | 		return; | 
 |  | 
 | 	if (event->attr.mmap2) { | 
 | 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2; | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->maj); | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->min); | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->ino); | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->prot); | 
 | 		mmap_event->event_id.header.size += sizeof(mmap_event->flags); | 
 | 	} | 
 |  | 
 | 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				mmap_event->event_id.header.size); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	mmap_event->event_id.pid = perf_event_pid(event, current); | 
 | 	mmap_event->event_id.tid = perf_event_tid(event, current); | 
 |  | 
 | 	perf_output_put(&handle, mmap_event->event_id); | 
 |  | 
 | 	if (event->attr.mmap2) { | 
 | 		perf_output_put(&handle, mmap_event->maj); | 
 | 		perf_output_put(&handle, mmap_event->min); | 
 | 		perf_output_put(&handle, mmap_event->ino); | 
 | 		perf_output_put(&handle, mmap_event->ino_generation); | 
 | 		perf_output_put(&handle, mmap_event->prot); | 
 | 		perf_output_put(&handle, mmap_event->flags); | 
 | 	} | 
 |  | 
 | 	__output_copy(&handle, mmap_event->file_name, | 
 | 				   mmap_event->file_size); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | out: | 
 | 	mmap_event->event_id.header.size = size; | 
 | } | 
 |  | 
 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | 
 | { | 
 | 	struct vm_area_struct *vma = mmap_event->vma; | 
 | 	struct file *file = vma->vm_file; | 
 | 	int maj = 0, min = 0; | 
 | 	u64 ino = 0, gen = 0; | 
 | 	u32 prot = 0, flags = 0; | 
 | 	unsigned int size; | 
 | 	char tmp[16]; | 
 | 	char *buf = NULL; | 
 | 	char *name; | 
 |  | 
 | 	if (vma->vm_flags & VM_READ) | 
 | 		prot |= PROT_READ; | 
 | 	if (vma->vm_flags & VM_WRITE) | 
 | 		prot |= PROT_WRITE; | 
 | 	if (vma->vm_flags & VM_EXEC) | 
 | 		prot |= PROT_EXEC; | 
 |  | 
 | 	if (vma->vm_flags & VM_MAYSHARE) | 
 | 		flags = MAP_SHARED; | 
 | 	else | 
 | 		flags = MAP_PRIVATE; | 
 |  | 
 | 	if (vma->vm_flags & VM_DENYWRITE) | 
 | 		flags |= MAP_DENYWRITE; | 
 | 	if (vma->vm_flags & VM_MAYEXEC) | 
 | 		flags |= MAP_EXECUTABLE; | 
 | 	if (vma->vm_flags & VM_LOCKED) | 
 | 		flags |= MAP_LOCKED; | 
 | 	if (vma->vm_flags & VM_HUGETLB) | 
 | 		flags |= MAP_HUGETLB; | 
 |  | 
 | 	if (file) { | 
 | 		struct inode *inode; | 
 | 		dev_t dev; | 
 |  | 
 | 		buf = kmalloc(PATH_MAX, GFP_KERNEL); | 
 | 		if (!buf) { | 
 | 			name = "//enomem"; | 
 | 			goto cpy_name; | 
 | 		} | 
 | 		/* | 
 | 		 * d_path() works from the end of the rb backwards, so we | 
 | 		 * need to add enough zero bytes after the string to handle | 
 | 		 * the 64bit alignment we do later. | 
 | 		 */ | 
 | 		name = file_path(file, buf, PATH_MAX - sizeof(u64)); | 
 | 		if (IS_ERR(name)) { | 
 | 			name = "//toolong"; | 
 | 			goto cpy_name; | 
 | 		} | 
 | 		inode = file_inode(vma->vm_file); | 
 | 		dev = inode->i_sb->s_dev; | 
 | 		ino = inode->i_ino; | 
 | 		gen = inode->i_generation; | 
 | 		maj = MAJOR(dev); | 
 | 		min = MINOR(dev); | 
 |  | 
 | 		goto got_name; | 
 | 	} else { | 
 | 		if (vma->vm_ops && vma->vm_ops->name) { | 
 | 			name = (char *) vma->vm_ops->name(vma); | 
 | 			if (name) | 
 | 				goto cpy_name; | 
 | 		} | 
 |  | 
 | 		name = (char *)arch_vma_name(vma); | 
 | 		if (name) | 
 | 			goto cpy_name; | 
 |  | 
 | 		if (vma->vm_start <= vma->vm_mm->start_brk && | 
 | 				vma->vm_end >= vma->vm_mm->brk) { | 
 | 			name = "[heap]"; | 
 | 			goto cpy_name; | 
 | 		} | 
 | 		if (vma->vm_start <= vma->vm_mm->start_stack && | 
 | 				vma->vm_end >= vma->vm_mm->start_stack) { | 
 | 			name = "[stack]"; | 
 | 			goto cpy_name; | 
 | 		} | 
 |  | 
 | 		name = "//anon"; | 
 | 		goto cpy_name; | 
 | 	} | 
 |  | 
 | cpy_name: | 
 | 	strlcpy(tmp, name, sizeof(tmp)); | 
 | 	name = tmp; | 
 | got_name: | 
 | 	/* | 
 | 	 * Since our buffer works in 8 byte units we need to align our string | 
 | 	 * size to a multiple of 8. However, we must guarantee the tail end is | 
 | 	 * zero'd out to avoid leaking random bits to userspace. | 
 | 	 */ | 
 | 	size = strlen(name)+1; | 
 | 	while (!IS_ALIGNED(size, sizeof(u64))) | 
 | 		name[size++] = '\0'; | 
 |  | 
 | 	mmap_event->file_name = name; | 
 | 	mmap_event->file_size = size; | 
 | 	mmap_event->maj = maj; | 
 | 	mmap_event->min = min; | 
 | 	mmap_event->ino = ino; | 
 | 	mmap_event->ino_generation = gen; | 
 | 	mmap_event->prot = prot; | 
 | 	mmap_event->flags = flags; | 
 |  | 
 | 	if (!(vma->vm_flags & VM_EXEC)) | 
 | 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; | 
 |  | 
 | 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | 
 |  | 
 | 	perf_iterate_sb(perf_event_mmap_output, | 
 | 		       mmap_event, | 
 | 		       NULL); | 
 |  | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether inode and address range match filter criteria. | 
 |  */ | 
 | static bool perf_addr_filter_match(struct perf_addr_filter *filter, | 
 | 				     struct file *file, unsigned long offset, | 
 | 				     unsigned long size) | 
 | { | 
 | 	if (filter->inode != file_inode(file)) | 
 | 		return false; | 
 |  | 
 | 	if (filter->offset > offset + size) | 
 | 		return false; | 
 |  | 
 | 	if (filter->offset + filter->size < offset) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __perf_addr_filters_adjust(struct perf_event *event, void *data) | 
 | { | 
 | 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); | 
 | 	struct vm_area_struct *vma = data; | 
 | 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; | 
 | 	struct file *file = vma->vm_file; | 
 | 	struct perf_addr_filter *filter; | 
 | 	unsigned int restart = 0, count = 0; | 
 |  | 
 | 	if (!has_addr_filter(event)) | 
 | 		return; | 
 |  | 
 | 	if (!file) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&ifh->lock, flags); | 
 | 	list_for_each_entry(filter, &ifh->list, entry) { | 
 | 		if (perf_addr_filter_match(filter, file, off, | 
 | 					     vma->vm_end - vma->vm_start)) { | 
 | 			event->addr_filters_offs[count] = vma->vm_start; | 
 | 			restart++; | 
 | 		} | 
 |  | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	if (restart) | 
 | 		event->addr_filters_gen++; | 
 | 	raw_spin_unlock_irqrestore(&ifh->lock, flags); | 
 |  | 
 | 	if (restart) | 
 | 		perf_event_stop(event, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust all task's events' filters to the new vma | 
 |  */ | 
 | static void perf_addr_filters_adjust(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	int ctxn; | 
 |  | 
 | 	/* | 
 | 	 * Data tracing isn't supported yet and as such there is no need | 
 | 	 * to keep track of anything that isn't related to executable code: | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & VM_EXEC)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); | 
 | 		if (!ctx) | 
 | 			continue; | 
 |  | 
 | 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void perf_event_mmap(struct vm_area_struct *vma) | 
 | { | 
 | 	struct perf_mmap_event mmap_event; | 
 |  | 
 | 	if (!atomic_read(&nr_mmap_events)) | 
 | 		return; | 
 |  | 
 | 	mmap_event = (struct perf_mmap_event){ | 
 | 		.vma	= vma, | 
 | 		/* .file_name */ | 
 | 		/* .file_size */ | 
 | 		.event_id  = { | 
 | 			.header = { | 
 | 				.type = PERF_RECORD_MMAP, | 
 | 				.misc = PERF_RECORD_MISC_USER, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .pid */ | 
 | 			/* .tid */ | 
 | 			.start  = vma->vm_start, | 
 | 			.len    = vma->vm_end - vma->vm_start, | 
 | 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT, | 
 | 		}, | 
 | 		/* .maj (attr_mmap2 only) */ | 
 | 		/* .min (attr_mmap2 only) */ | 
 | 		/* .ino (attr_mmap2 only) */ | 
 | 		/* .ino_generation (attr_mmap2 only) */ | 
 | 		/* .prot (attr_mmap2 only) */ | 
 | 		/* .flags (attr_mmap2 only) */ | 
 | 	}; | 
 |  | 
 | 	perf_addr_filters_adjust(vma); | 
 | 	perf_event_mmap_event(&mmap_event); | 
 | } | 
 |  | 
 | void perf_event_aux_event(struct perf_event *event, unsigned long head, | 
 | 			  unsigned long size, u64 flags) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	struct perf_aux_event { | 
 | 		struct perf_event_header	header; | 
 | 		u64				offset; | 
 | 		u64				size; | 
 | 		u64				flags; | 
 | 	} rec = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_AUX, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(rec), | 
 | 		}, | 
 | 		.offset		= head, | 
 | 		.size		= size, | 
 | 		.flags		= flags, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	perf_event_header__init_id(&rec.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, rec.header.size); | 
 |  | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, rec); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * Lost/dropped samples logging | 
 |  */ | 
 | void perf_log_lost_samples(struct perf_event *event, u64 lost) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int ret; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 | 		u64				lost; | 
 | 	} lost_samples_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_LOST_SAMPLES, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(lost_samples_event), | 
 | 		}, | 
 | 		.lost		= lost, | 
 | 	}; | 
 |  | 
 | 	perf_event_header__init_id(&lost_samples_event.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				lost_samples_event.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, lost_samples_event); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | /* | 
 |  * context_switch tracking | 
 |  */ | 
 |  | 
 | struct perf_switch_event { | 
 | 	struct task_struct	*task; | 
 | 	struct task_struct	*next_prev; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 | 		u32				next_prev_pid; | 
 | 		u32				next_prev_tid; | 
 | 	} event_id; | 
 | }; | 
 |  | 
 | static int perf_event_switch_match(struct perf_event *event) | 
 | { | 
 | 	return event->attr.context_switch; | 
 | } | 
 |  | 
 | static void perf_event_switch_output(struct perf_event *event, void *data) | 
 | { | 
 | 	struct perf_switch_event *se = data; | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int ret; | 
 |  | 
 | 	if (!perf_event_switch_match(event)) | 
 | 		return; | 
 |  | 
 | 	/* Only CPU-wide events are allowed to see next/prev pid/tid */ | 
 | 	if (event->ctx->task) { | 
 | 		se->event_id.header.type = PERF_RECORD_SWITCH; | 
 | 		se->event_id.header.size = sizeof(se->event_id.header); | 
 | 	} else { | 
 | 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; | 
 | 		se->event_id.header.size = sizeof(se->event_id); | 
 | 		se->event_id.next_prev_pid = | 
 | 					perf_event_pid(event, se->next_prev); | 
 | 		se->event_id.next_prev_tid = | 
 | 					perf_event_tid(event, se->next_prev); | 
 | 	} | 
 |  | 
 | 	perf_event_header__init_id(&se->event_id.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, se->event_id.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	if (event->ctx->task) | 
 | 		perf_output_put(&handle, se->event_id.header); | 
 | 	else | 
 | 		perf_output_put(&handle, se->event_id); | 
 |  | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | static void perf_event_switch(struct task_struct *task, | 
 | 			      struct task_struct *next_prev, bool sched_in) | 
 | { | 
 | 	struct perf_switch_event switch_event; | 
 |  | 
 | 	/* N.B. caller checks nr_switch_events != 0 */ | 
 |  | 
 | 	switch_event = (struct perf_switch_event){ | 
 | 		.task		= task, | 
 | 		.next_prev	= next_prev, | 
 | 		.event_id	= { | 
 | 			.header = { | 
 | 				/* .type */ | 
 | 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, | 
 | 				/* .size */ | 
 | 			}, | 
 | 			/* .next_prev_pid */ | 
 | 			/* .next_prev_tid */ | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	if (!sched_in && task->state == TASK_RUNNING) | 
 | 		switch_event.event_id.header.misc |= | 
 | 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; | 
 |  | 
 | 	perf_iterate_sb(perf_event_switch_output, | 
 | 		       &switch_event, | 
 | 		       NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * IRQ throttle logging | 
 |  */ | 
 |  | 
 | static void perf_log_throttle(struct perf_event *event, int enable) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	int ret; | 
 |  | 
 | 	struct { | 
 | 		struct perf_event_header	header; | 
 | 		u64				time; | 
 | 		u64				id; | 
 | 		u64				stream_id; | 
 | 	} throttle_event = { | 
 | 		.header = { | 
 | 			.type = PERF_RECORD_THROTTLE, | 
 | 			.misc = 0, | 
 | 			.size = sizeof(throttle_event), | 
 | 		}, | 
 | 		.time		= perf_event_clock(event), | 
 | 		.id		= primary_event_id(event), | 
 | 		.stream_id	= event->id, | 
 | 	}; | 
 |  | 
 | 	if (enable) | 
 | 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | 
 |  | 
 | 	perf_event_header__init_id(&throttle_event.header, &sample, event); | 
 |  | 
 | 	ret = perf_output_begin(&handle, event, | 
 | 				throttle_event.header.size); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, throttle_event); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | void perf_event_itrace_started(struct perf_event *event) | 
 | { | 
 | 	event->attach_state |= PERF_ATTACH_ITRACE; | 
 | } | 
 |  | 
 | static void perf_log_itrace_start(struct perf_event *event) | 
 | { | 
 | 	struct perf_output_handle handle; | 
 | 	struct perf_sample_data sample; | 
 | 	struct perf_aux_event { | 
 | 		struct perf_event_header        header; | 
 | 		u32				pid; | 
 | 		u32				tid; | 
 | 	} rec; | 
 | 	int ret; | 
 |  | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || | 
 | 	    event->attach_state & PERF_ATTACH_ITRACE) | 
 | 		return; | 
 |  | 
 | 	rec.header.type	= PERF_RECORD_ITRACE_START; | 
 | 	rec.header.misc	= 0; | 
 | 	rec.header.size	= sizeof(rec); | 
 | 	rec.pid	= perf_event_pid(event, current); | 
 | 	rec.tid	= perf_event_tid(event, current); | 
 |  | 
 | 	perf_event_header__init_id(&rec.header, &sample, event); | 
 | 	ret = perf_output_begin(&handle, event, rec.header.size); | 
 |  | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	perf_output_put(&handle, rec); | 
 | 	perf_event__output_id_sample(event, &handle, &sample); | 
 |  | 
 | 	perf_output_end(&handle); | 
 | } | 
 |  | 
 | static int | 
 | __perf_event_account_interrupt(struct perf_event *event, int throttle) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int ret = 0; | 
 | 	u64 seq; | 
 |  | 
 | 	seq = __this_cpu_read(perf_throttled_seq); | 
 | 	if (seq != hwc->interrupts_seq) { | 
 | 		hwc->interrupts_seq = seq; | 
 | 		hwc->interrupts = 1; | 
 | 	} else { | 
 | 		hwc->interrupts++; | 
 | 		if (unlikely(throttle | 
 | 			     && hwc->interrupts >= max_samples_per_tick)) { | 
 | 			__this_cpu_inc(perf_throttled_count); | 
 | 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); | 
 | 			hwc->interrupts = MAX_INTERRUPTS; | 
 | 			perf_log_throttle(event, 0); | 
 | 			ret = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (event->attr.freq) { | 
 | 		u64 now = perf_clock(); | 
 | 		s64 delta = now - hwc->freq_time_stamp; | 
 |  | 
 | 		hwc->freq_time_stamp = now; | 
 |  | 
 | 		if (delta > 0 && delta < 2*TICK_NSEC) | 
 | 			perf_adjust_period(event, delta, hwc->last_period, true); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int perf_event_account_interrupt(struct perf_event *event) | 
 | { | 
 | 	return __perf_event_account_interrupt(event, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic event overflow handling, sampling. | 
 |  */ | 
 |  | 
 | static int __perf_event_overflow(struct perf_event *event, | 
 | 				   int throttle, struct perf_sample_data *data, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	int events = atomic_read(&event->event_limit); | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Non-sampling counters might still use the PMI to fold short | 
 | 	 * hardware counters, ignore those. | 
 | 	 */ | 
 | 	if (unlikely(!is_sampling_event(event))) | 
 | 		return 0; | 
 |  | 
 | 	ret = __perf_event_account_interrupt(event, throttle); | 
 |  | 
 | 	/* | 
 | 	 * XXX event_limit might not quite work as expected on inherited | 
 | 	 * events | 
 | 	 */ | 
 |  | 
 | 	event->pending_kill = POLL_IN; | 
 | 	if (events && atomic_dec_and_test(&event->event_limit)) { | 
 | 		ret = 1; | 
 | 		event->pending_kill = POLL_HUP; | 
 |  | 
 | 		perf_event_disable_inatomic(event); | 
 | 	} | 
 |  | 
 | 	READ_ONCE(event->overflow_handler)(event, data, regs); | 
 |  | 
 | 	if (*perf_event_fasync(event) && event->pending_kill) { | 
 | 		event->pending_wakeup = 1; | 
 | 		irq_work_queue(&event->pending); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int perf_event_overflow(struct perf_event *event, | 
 | 			  struct perf_sample_data *data, | 
 | 			  struct pt_regs *regs) | 
 | { | 
 | 	return __perf_event_overflow(event, 1, data, regs); | 
 | } | 
 |  | 
 | /* | 
 |  * Generic software event infrastructure | 
 |  */ | 
 |  | 
 | struct swevent_htable { | 
 | 	struct swevent_hlist		*swevent_hlist; | 
 | 	struct mutex			hlist_mutex; | 
 | 	int				hlist_refcount; | 
 |  | 
 | 	/* Recursion avoidance in each contexts */ | 
 | 	int				recursion[PERF_NR_CONTEXTS]; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); | 
 |  | 
 | /* | 
 |  * We directly increment event->count and keep a second value in | 
 |  * event->hw.period_left to count intervals. This period event | 
 |  * is kept in the range [-sample_period, 0] so that we can use the | 
 |  * sign as trigger. | 
 |  */ | 
 |  | 
 | u64 perf_swevent_set_period(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	u64 period = hwc->last_period; | 
 | 	u64 nr, offset; | 
 | 	s64 old, val; | 
 |  | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | again: | 
 | 	old = val = local64_read(&hwc->period_left); | 
 | 	if (val < 0) | 
 | 		return 0; | 
 |  | 
 | 	nr = div64_u64(period + val, period); | 
 | 	offset = nr * period; | 
 | 	val -= offset; | 
 | 	if (local64_cmpxchg(&hwc->period_left, old, val) != old) | 
 | 		goto again; | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	int throttle = 0; | 
 |  | 
 | 	if (!overflow) | 
 | 		overflow = perf_swevent_set_period(event); | 
 |  | 
 | 	if (hwc->interrupts == MAX_INTERRUPTS) | 
 | 		return; | 
 |  | 
 | 	for (; overflow; overflow--) { | 
 | 		if (__perf_event_overflow(event, throttle, | 
 | 					    data, regs)) { | 
 | 			/* | 
 | 			 * We inhibit the overflow from happening when | 
 | 			 * hwc->interrupts == MAX_INTERRUPTS. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		throttle = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_event(struct perf_event *event, u64 nr, | 
 | 			       struct perf_sample_data *data, | 
 | 			       struct pt_regs *regs) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	local64_add(nr, &event->count); | 
 |  | 
 | 	if (!regs) | 
 | 		return; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { | 
 | 		data->period = nr; | 
 | 		return perf_swevent_overflow(event, 1, data, regs); | 
 | 	} else | 
 | 		data->period = event->hw.last_period; | 
 |  | 
 | 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) | 
 | 		return perf_swevent_overflow(event, 1, data, regs); | 
 |  | 
 | 	if (local64_add_negative(nr, &hwc->period_left)) | 
 | 		return; | 
 |  | 
 | 	perf_swevent_overflow(event, 0, data, regs); | 
 | } | 
 |  | 
 | static int perf_exclude_event(struct perf_event *event, | 
 | 			      struct pt_regs *regs) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 1; | 
 |  | 
 | 	if (regs) { | 
 | 		if (event->attr.exclude_user && user_mode(regs)) | 
 | 			return 1; | 
 |  | 
 | 		if (event->attr.exclude_kernel && !user_mode(regs)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_swevent_match(struct perf_event *event, | 
 | 				enum perf_type_id type, | 
 | 				u32 event_id, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	if (event->attr.type != type) | 
 | 		return 0; | 
 |  | 
 | 	if (event->attr.config != event_id) | 
 | 		return 0; | 
 |  | 
 | 	if (perf_exclude_event(event, regs)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline u64 swevent_hash(u64 type, u32 event_id) | 
 | { | 
 | 	u64 val = event_id | (type << 32); | 
 |  | 
 | 	return hash_64(val, SWEVENT_HLIST_BITS); | 
 | } | 
 |  | 
 | static inline struct hlist_head * | 
 | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) | 
 | { | 
 | 	u64 hash = swevent_hash(type, event_id); | 
 |  | 
 | 	return &hlist->heads[hash]; | 
 | } | 
 |  | 
 | /* For the read side: events when they trigger */ | 
 | static inline struct hlist_head * | 
 | find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) | 
 | { | 
 | 	struct swevent_hlist *hlist; | 
 |  | 
 | 	hlist = rcu_dereference(swhash->swevent_hlist); | 
 | 	if (!hlist) | 
 | 		return NULL; | 
 |  | 
 | 	return __find_swevent_head(hlist, type, event_id); | 
 | } | 
 |  | 
 | /* For the event head insertion and removal in the hlist */ | 
 | static inline struct hlist_head * | 
 | find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) | 
 | { | 
 | 	struct swevent_hlist *hlist; | 
 | 	u32 event_id = event->attr.config; | 
 | 	u64 type = event->attr.type; | 
 |  | 
 | 	/* | 
 | 	 * Event scheduling is always serialized against hlist allocation | 
 | 	 * and release. Which makes the protected version suitable here. | 
 | 	 * The context lock guarantees that. | 
 | 	 */ | 
 | 	hlist = rcu_dereference_protected(swhash->swevent_hlist, | 
 | 					  lockdep_is_held(&event->ctx->lock)); | 
 | 	if (!hlist) | 
 | 		return NULL; | 
 |  | 
 | 	return __find_swevent_head(hlist, type, event_id); | 
 | } | 
 |  | 
 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | 
 | 				    u64 nr, | 
 | 				    struct perf_sample_data *data, | 
 | 				    struct pt_regs *regs) | 
 | { | 
 | 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); | 
 | 	struct perf_event *event; | 
 | 	struct hlist_head *head; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	head = find_swevent_head_rcu(swhash, type, event_id); | 
 | 	if (!head) | 
 | 		goto end; | 
 |  | 
 | 	hlist_for_each_entry_rcu(event, head, hlist_entry) { | 
 | 		if (perf_swevent_match(event, type, event_id, data, regs)) | 
 | 			perf_swevent_event(event, nr, data, regs); | 
 | 	} | 
 | end: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); | 
 |  | 
 | int perf_swevent_get_recursion_context(void) | 
 | { | 
 | 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); | 
 |  | 
 | 	return get_recursion_context(swhash->recursion); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); | 
 |  | 
 | void perf_swevent_put_recursion_context(int rctx) | 
 | { | 
 | 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); | 
 |  | 
 | 	put_recursion_context(swhash->recursion, rctx); | 
 | } | 
 |  | 
 | void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) | 
 | { | 
 | 	struct perf_sample_data data; | 
 |  | 
 | 	if (WARN_ON_ONCE(!regs)) | 
 | 		return; | 
 |  | 
 | 	perf_sample_data_init(&data, addr, 0); | 
 | 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); | 
 | } | 
 |  | 
 | void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) | 
 | { | 
 | 	int rctx; | 
 |  | 
 | 	preempt_disable_notrace(); | 
 | 	rctx = perf_swevent_get_recursion_context(); | 
 | 	if (unlikely(rctx < 0)) | 
 | 		goto fail; | 
 |  | 
 | 	___perf_sw_event(event_id, nr, regs, addr); | 
 |  | 
 | 	perf_swevent_put_recursion_context(rctx); | 
 | fail: | 
 | 	preempt_enable_notrace(); | 
 | } | 
 |  | 
 | static void perf_swevent_read(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static int perf_swevent_add(struct perf_event *event, int flags) | 
 | { | 
 | 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	struct hlist_head *head; | 
 |  | 
 | 	if (is_sampling_event(event)) { | 
 | 		hwc->last_period = hwc->sample_period; | 
 | 		perf_swevent_set_period(event); | 
 | 	} | 
 |  | 
 | 	hwc->state = !(flags & PERF_EF_START); | 
 |  | 
 | 	head = find_swevent_head(swhash, event); | 
 | 	if (WARN_ON_ONCE(!head)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	hlist_add_head_rcu(&event->hlist_entry, head); | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_swevent_del(struct perf_event *event, int flags) | 
 | { | 
 | 	hlist_del_rcu(&event->hlist_entry); | 
 | } | 
 |  | 
 | static void perf_swevent_start(struct perf_event *event, int flags) | 
 | { | 
 | 	event->hw.state = 0; | 
 | } | 
 |  | 
 | static void perf_swevent_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	event->hw.state = PERF_HES_STOPPED; | 
 | } | 
 |  | 
 | /* Deref the hlist from the update side */ | 
 | static inline struct swevent_hlist * | 
 | swevent_hlist_deref(struct swevent_htable *swhash) | 
 | { | 
 | 	return rcu_dereference_protected(swhash->swevent_hlist, | 
 | 					 lockdep_is_held(&swhash->hlist_mutex)); | 
 | } | 
 |  | 
 | static void swevent_hlist_release(struct swevent_htable *swhash) | 
 | { | 
 | 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash); | 
 |  | 
 | 	if (!hlist) | 
 | 		return; | 
 |  | 
 | 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL); | 
 | 	kfree_rcu(hlist, rcu_head); | 
 | } | 
 |  | 
 | static void swevent_hlist_put_cpu(int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 |  | 
 | 	if (!--swhash->hlist_refcount) | 
 | 		swevent_hlist_release(swhash); | 
 |  | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 | } | 
 |  | 
 | static void swevent_hlist_put(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		swevent_hlist_put_cpu(cpu); | 
 | } | 
 |  | 
 | static int swevent_hlist_get_cpu(int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 | 	int err = 0; | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 | 	if (!swevent_hlist_deref(swhash) && | 
 | 	    cpumask_test_cpu(cpu, perf_online_mask)) { | 
 | 		struct swevent_hlist *hlist; | 
 |  | 
 | 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); | 
 | 		if (!hlist) { | 
 | 			err = -ENOMEM; | 
 | 			goto exit; | 
 | 		} | 
 | 		rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
 | 	} | 
 | 	swhash->hlist_refcount++; | 
 | exit: | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int swevent_hlist_get(void) | 
 | { | 
 | 	int err, cpu, failed_cpu; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		err = swevent_hlist_get_cpu(cpu); | 
 | 		if (err) { | 
 | 			failed_cpu = cpu; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&pmus_lock); | 
 | 	return 0; | 
 | fail: | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (cpu == failed_cpu) | 
 | 			break; | 
 | 		swevent_hlist_put_cpu(cpu); | 
 | 	} | 
 | 	mutex_unlock(&pmus_lock); | 
 | 	return err; | 
 | } | 
 |  | 
 | struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; | 
 |  | 
 | static void sw_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	u64 event_id = event->attr.config; | 
 |  | 
 | 	WARN_ON(event->parent); | 
 |  | 
 | 	static_key_slow_dec(&perf_swevent_enabled[event_id]); | 
 | 	swevent_hlist_put(); | 
 | } | 
 |  | 
 | static int perf_swevent_init(struct perf_event *event) | 
 | { | 
 | 	u64 event_id = event->attr.config; | 
 |  | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (event_id) { | 
 | 	case PERF_COUNT_SW_CPU_CLOCK: | 
 | 	case PERF_COUNT_SW_TASK_CLOCK: | 
 | 		return -ENOENT; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (event_id >= PERF_COUNT_SW_MAX) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!event->parent) { | 
 | 		int err; | 
 |  | 
 | 		err = swevent_hlist_get(); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		static_key_slow_inc(&perf_swevent_enabled[event_id]); | 
 | 		event->destroy = sw_perf_event_destroy; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_swevent = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.capabilities	= PERF_PMU_CAP_NO_NMI, | 
 |  | 
 | 	.event_init	= perf_swevent_init, | 
 | 	.add		= perf_swevent_add, | 
 | 	.del		= perf_swevent_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_EVENT_TRACING | 
 |  | 
 | static int perf_tp_filter_match(struct perf_event *event, | 
 | 				struct perf_sample_data *data) | 
 | { | 
 | 	void *record = data->raw->frag.data; | 
 |  | 
 | 	/* only top level events have filters set */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	if (likely(!event->filter) || filter_match_preds(event->filter, record)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int perf_tp_event_match(struct perf_event *event, | 
 | 				struct perf_sample_data *data, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	if (event->hw.state & PERF_HES_STOPPED) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * All tracepoints are from kernel-space. | 
 | 	 */ | 
 | 	if (event->attr.exclude_kernel) | 
 | 		return 0; | 
 |  | 
 | 	if (!perf_tp_filter_match(event, data)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, | 
 | 			       struct trace_event_call *call, u64 count, | 
 | 			       struct pt_regs *regs, struct hlist_head *head, | 
 | 			       struct task_struct *task) | 
 | { | 
 | 	if (bpf_prog_array_valid(call)) { | 
 | 		*(struct pt_regs **)raw_data = regs; | 
 | 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { | 
 | 			perf_swevent_put_recursion_context(rctx); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	perf_tp_event(call->event.type, count, raw_data, size, regs, head, | 
 | 		      rctx, task); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); | 
 |  | 
 | void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, | 
 | 		   struct pt_regs *regs, struct hlist_head *head, int rctx, | 
 | 		   struct task_struct *task) | 
 | { | 
 | 	struct perf_sample_data data; | 
 | 	struct perf_event *event; | 
 |  | 
 | 	struct perf_raw_record raw = { | 
 | 		.frag = { | 
 | 			.size = entry_size, | 
 | 			.data = record, | 
 | 		}, | 
 | 	}; | 
 |  | 
 | 	perf_sample_data_init(&data, 0, 0); | 
 | 	data.raw = &raw; | 
 |  | 
 | 	perf_trace_buf_update(record, event_type); | 
 |  | 
 | 	hlist_for_each_entry_rcu(event, head, hlist_entry) { | 
 | 		if (perf_tp_event_match(event, &data, regs)) | 
 | 			perf_swevent_event(event, count, &data, regs); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we got specified a target task, also iterate its context and | 
 | 	 * deliver this event there too. | 
 | 	 */ | 
 | 	if (task && task != current) { | 
 | 		struct perf_event_context *ctx; | 
 | 		struct trace_entry *entry = record; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); | 
 | 		if (!ctx) | 
 | 			goto unlock; | 
 |  | 
 | 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | 
 | 			if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
 | 				continue; | 
 | 			if (event->attr.config != entry->type) | 
 | 				continue; | 
 | 			if (perf_tp_event_match(event, &data, regs)) | 
 | 				perf_swevent_event(event, count, &data, regs); | 
 | 		} | 
 | unlock: | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	perf_swevent_put_recursion_context(rctx); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_tp_event); | 
 |  | 
 | static void tp_perf_event_destroy(struct perf_event *event) | 
 | { | 
 | 	perf_trace_destroy(event); | 
 | } | 
 |  | 
 | static int perf_tp_event_init(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (event->attr.type != PERF_TYPE_TRACEPOINT) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for tracepoint events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	err = perf_trace_init(event); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	event->destroy = tp_perf_event_destroy; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_tracepoint = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.event_init	= perf_tp_event_init, | 
 | 	.add		= perf_trace_add, | 
 | 	.del		= perf_trace_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 | }; | 
 |  | 
 | #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) | 
 | /* | 
 |  * Flags in config, used by dynamic PMU kprobe and uprobe | 
 |  * The flags should match following PMU_FORMAT_ATTR(). | 
 |  * | 
 |  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe | 
 |  *                               if not set, create kprobe/uprobe | 
 |  */ | 
 | enum perf_probe_config { | 
 | 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */ | 
 | }; | 
 |  | 
 | PMU_FORMAT_ATTR(retprobe, "config:0"); | 
 |  | 
 | static struct attribute *probe_attrs[] = { | 
 | 	&format_attr_retprobe.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group probe_format_group = { | 
 | 	.name = "format", | 
 | 	.attrs = probe_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *probe_attr_groups[] = { | 
 | 	&probe_format_group, | 
 | 	NULL, | 
 | }; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_KPROBE_EVENTS | 
 | static int perf_kprobe_event_init(struct perf_event *event); | 
 | static struct pmu perf_kprobe = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 | 	.event_init	= perf_kprobe_event_init, | 
 | 	.add		= perf_trace_add, | 
 | 	.del		= perf_trace_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 | 	.attr_groups	= probe_attr_groups, | 
 | }; | 
 |  | 
 | static int perf_kprobe_event_init(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 | 	bool is_retprobe; | 
 |  | 
 | 	if (event->attr.type != perf_kprobe.type) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for probe events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; | 
 | 	err = perf_kprobe_init(event, is_retprobe); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	event->destroy = perf_kprobe_destroy; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_KPROBE_EVENTS */ | 
 |  | 
 | #ifdef CONFIG_UPROBE_EVENTS | 
 | static int perf_uprobe_event_init(struct perf_event *event); | 
 | static struct pmu perf_uprobe = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 | 	.event_init	= perf_uprobe_event_init, | 
 | 	.add		= perf_trace_add, | 
 | 	.del		= perf_trace_del, | 
 | 	.start		= perf_swevent_start, | 
 | 	.stop		= perf_swevent_stop, | 
 | 	.read		= perf_swevent_read, | 
 | 	.attr_groups	= probe_attr_groups, | 
 | }; | 
 |  | 
 | static int perf_uprobe_event_init(struct perf_event *event) | 
 | { | 
 | 	int err; | 
 | 	bool is_retprobe; | 
 |  | 
 | 	if (event->attr.type != perf_uprobe.type) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for probe events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; | 
 | 	err = perf_uprobe_init(event, is_retprobe); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	event->destroy = perf_uprobe_destroy; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_UPROBE_EVENTS */ | 
 |  | 
 | static inline void perf_tp_register(void) | 
 | { | 
 | 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); | 
 | #ifdef CONFIG_KPROBE_EVENTS | 
 | 	perf_pmu_register(&perf_kprobe, "kprobe", -1); | 
 | #endif | 
 | #ifdef CONFIG_UPROBE_EVENTS | 
 | 	perf_pmu_register(&perf_uprobe, "uprobe", -1); | 
 | #endif | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event) | 
 | { | 
 | 	ftrace_profile_free_filter(event); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BPF_SYSCALL | 
 | static void bpf_overflow_handler(struct perf_event *event, | 
 | 				 struct perf_sample_data *data, | 
 | 				 struct pt_regs *regs) | 
 | { | 
 | 	struct bpf_perf_event_data_kern ctx = { | 
 | 		.data = data, | 
 | 		.event = event, | 
 | 	}; | 
 | 	int ret = 0; | 
 |  | 
 | 	ctx.regs = perf_arch_bpf_user_pt_regs(regs); | 
 | 	preempt_disable(); | 
 | 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) | 
 | 		goto out; | 
 | 	rcu_read_lock(); | 
 | 	ret = BPF_PROG_RUN(event->prog, &ctx); | 
 | 	rcu_read_unlock(); | 
 | out: | 
 | 	__this_cpu_dec(bpf_prog_active); | 
 | 	preempt_enable(); | 
 | 	if (!ret) | 
 | 		return; | 
 |  | 
 | 	event->orig_overflow_handler(event, data, regs); | 
 | } | 
 |  | 
 | static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) | 
 | { | 
 | 	struct bpf_prog *prog; | 
 |  | 
 | 	if (event->overflow_handler_context) | 
 | 		/* hw breakpoint or kernel counter */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (event->prog) | 
 | 		return -EEXIST; | 
 |  | 
 | 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); | 
 | 	if (IS_ERR(prog)) | 
 | 		return PTR_ERR(prog); | 
 |  | 
 | 	event->prog = prog; | 
 | 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler); | 
 | 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_event_free_bpf_handler(struct perf_event *event) | 
 | { | 
 | 	struct bpf_prog *prog = event->prog; | 
 |  | 
 | 	if (!prog) | 
 | 		return; | 
 |  | 
 | 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); | 
 | 	event->prog = NULL; | 
 | 	bpf_prog_put(prog); | 
 | } | 
 | #else | 
 | static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) | 
 | { | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 | static void perf_event_free_bpf_handler(struct perf_event *event) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * returns true if the event is a tracepoint, or a kprobe/upprobe created | 
 |  * with perf_event_open() | 
 |  */ | 
 | static inline bool perf_event_is_tracing(struct perf_event *event) | 
 | { | 
 | 	if (event->pmu == &perf_tracepoint) | 
 | 		return true; | 
 | #ifdef CONFIG_KPROBE_EVENTS | 
 | 	if (event->pmu == &perf_kprobe) | 
 | 		return true; | 
 | #endif | 
 | #ifdef CONFIG_UPROBE_EVENTS | 
 | 	if (event->pmu == &perf_uprobe) | 
 | 		return true; | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 | static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) | 
 | { | 
 | 	bool is_kprobe, is_tracepoint, is_syscall_tp; | 
 | 	struct bpf_prog *prog; | 
 | 	int ret; | 
 |  | 
 | 	if (!perf_event_is_tracing(event)) | 
 | 		return perf_event_set_bpf_handler(event, prog_fd); | 
 |  | 
 | 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; | 
 | 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; | 
 | 	is_syscall_tp = is_syscall_trace_event(event->tp_event); | 
 | 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp) | 
 | 		/* bpf programs can only be attached to u/kprobe or tracepoint */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	prog = bpf_prog_get(prog_fd); | 
 | 	if (IS_ERR(prog)) | 
 | 		return PTR_ERR(prog); | 
 |  | 
 | 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || | 
 | 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || | 
 | 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { | 
 | 		/* valid fd, but invalid bpf program type */ | 
 | 		bpf_prog_put(prog); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Kprobe override only works for kprobes, not uprobes. */ | 
 | 	if (prog->kprobe_override && | 
 | 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { | 
 | 		bpf_prog_put(prog); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (is_tracepoint || is_syscall_tp) { | 
 | 		int off = trace_event_get_offsets(event->tp_event); | 
 |  | 
 | 		if (prog->aux->max_ctx_offset > off) { | 
 | 			bpf_prog_put(prog); | 
 | 			return -EACCES; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = perf_event_attach_bpf_prog(event, prog); | 
 | 	if (ret) | 
 | 		bpf_prog_put(prog); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void perf_event_free_bpf_prog(struct perf_event *event) | 
 | { | 
 | 	if (!perf_event_is_tracing(event)) { | 
 | 		perf_event_free_bpf_handler(event); | 
 | 		return; | 
 | 	} | 
 | 	perf_event_detach_bpf_prog(event); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void perf_tp_register(void) | 
 | { | 
 | } | 
 |  | 
 | static void perf_event_free_filter(struct perf_event *event) | 
 | { | 
 | } | 
 |  | 
 | static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) | 
 | { | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | static void perf_event_free_bpf_prog(struct perf_event *event) | 
 | { | 
 | } | 
 | #endif /* CONFIG_EVENT_TRACING */ | 
 |  | 
 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
 | void perf_bp_event(struct perf_event *bp, void *data) | 
 | { | 
 | 	struct perf_sample_data sample; | 
 | 	struct pt_regs *regs = data; | 
 |  | 
 | 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0); | 
 |  | 
 | 	if (!bp->hw.state && !perf_exclude_event(bp, regs)) | 
 | 		perf_swevent_event(bp, 1, &sample, regs); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Allocate a new address filter | 
 |  */ | 
 | static struct perf_addr_filter * | 
 | perf_addr_filter_new(struct perf_event *event, struct list_head *filters) | 
 | { | 
 | 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); | 
 | 	struct perf_addr_filter *filter; | 
 |  | 
 | 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); | 
 | 	if (!filter) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&filter->entry); | 
 | 	list_add_tail(&filter->entry, filters); | 
 |  | 
 | 	return filter; | 
 | } | 
 |  | 
 | static void free_filters_list(struct list_head *filters) | 
 | { | 
 | 	struct perf_addr_filter *filter, *iter; | 
 |  | 
 | 	list_for_each_entry_safe(filter, iter, filters, entry) { | 
 | 		if (filter->inode) | 
 | 			iput(filter->inode); | 
 | 		list_del(&filter->entry); | 
 | 		kfree(filter); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Free existing address filters and optionally install new ones | 
 |  */ | 
 | static void perf_addr_filters_splice(struct perf_event *event, | 
 | 				     struct list_head *head) | 
 | { | 
 | 	unsigned long flags; | 
 | 	LIST_HEAD(list); | 
 |  | 
 | 	if (!has_addr_filter(event)) | 
 | 		return; | 
 |  | 
 | 	/* don't bother with children, they don't have their own filters */ | 
 | 	if (event->parent) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags); | 
 |  | 
 | 	list_splice_init(&event->addr_filters.list, &list); | 
 | 	if (head) | 
 | 		list_splice(head, &event->addr_filters.list); | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); | 
 |  | 
 | 	free_filters_list(&list); | 
 | } | 
 |  | 
 | /* | 
 |  * Scan through mm's vmas and see if one of them matches the | 
 |  * @filter; if so, adjust filter's address range. | 
 |  * Called with mm::mmap_sem down for reading. | 
 |  */ | 
 | static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, | 
 | 					    struct mm_struct *mm) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		struct file *file = vma->vm_file; | 
 | 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT; | 
 | 		unsigned long vma_size = vma->vm_end - vma->vm_start; | 
 |  | 
 | 		if (!file) | 
 | 			continue; | 
 |  | 
 | 		if (!perf_addr_filter_match(filter, file, off, vma_size)) | 
 | 			continue; | 
 |  | 
 | 		return vma->vm_start; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update event's address range filters based on the | 
 |  * task's existing mappings, if any. | 
 |  */ | 
 | static void perf_event_addr_filters_apply(struct perf_event *event) | 
 | { | 
 | 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); | 
 | 	struct task_struct *task = READ_ONCE(event->ctx->task); | 
 | 	struct perf_addr_filter *filter; | 
 | 	struct mm_struct *mm = NULL; | 
 | 	unsigned int count = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down | 
 | 	 * will stop on the parent's child_mutex that our caller is also holding | 
 | 	 */ | 
 | 	if (task == TASK_TOMBSTONE) | 
 | 		return; | 
 |  | 
 | 	if (!ifh->nr_file_filters) | 
 | 		return; | 
 |  | 
 | 	mm = get_task_mm(event->ctx->task); | 
 | 	if (!mm) | 
 | 		goto restart; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 |  | 
 | 	raw_spin_lock_irqsave(&ifh->lock, flags); | 
 | 	list_for_each_entry(filter, &ifh->list, entry) { | 
 | 		event->addr_filters_offs[count] = 0; | 
 |  | 
 | 		/* | 
 | 		 * Adjust base offset if the filter is associated to a binary | 
 | 		 * that needs to be mapped: | 
 | 		 */ | 
 | 		if (filter->inode) | 
 | 			event->addr_filters_offs[count] = | 
 | 				perf_addr_filter_apply(filter, mm); | 
 |  | 
 | 		count++; | 
 | 	} | 
 |  | 
 | 	event->addr_filters_gen++; | 
 | 	raw_spin_unlock_irqrestore(&ifh->lock, flags); | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	mmput(mm); | 
 |  | 
 | restart: | 
 | 	perf_event_stop(event, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Address range filtering: limiting the data to certain | 
 |  * instruction address ranges. Filters are ioctl()ed to us from | 
 |  * userspace as ascii strings. | 
 |  * | 
 |  * Filter string format: | 
 |  * | 
 |  * ACTION RANGE_SPEC | 
 |  * where ACTION is one of the | 
 |  *  * "filter": limit the trace to this region | 
 |  *  * "start": start tracing from this address | 
 |  *  * "stop": stop tracing at this address/region; | 
 |  * RANGE_SPEC is | 
 |  *  * for kernel addresses: <start address>[/<size>] | 
 |  *  * for object files:     <start address>[/<size>]@</path/to/object/file> | 
 |  * | 
 |  * if <size> is not specified or is zero, the range is treated as a single | 
 |  * address; not valid for ACTION=="filter". | 
 |  */ | 
 | enum { | 
 | 	IF_ACT_NONE = -1, | 
 | 	IF_ACT_FILTER, | 
 | 	IF_ACT_START, | 
 | 	IF_ACT_STOP, | 
 | 	IF_SRC_FILE, | 
 | 	IF_SRC_KERNEL, | 
 | 	IF_SRC_FILEADDR, | 
 | 	IF_SRC_KERNELADDR, | 
 | }; | 
 |  | 
 | enum { | 
 | 	IF_STATE_ACTION = 0, | 
 | 	IF_STATE_SOURCE, | 
 | 	IF_STATE_END, | 
 | }; | 
 |  | 
 | static const match_table_t if_tokens = { | 
 | 	{ IF_ACT_FILTER,	"filter" }, | 
 | 	{ IF_ACT_START,		"start" }, | 
 | 	{ IF_ACT_STOP,		"stop" }, | 
 | 	{ IF_SRC_FILE,		"%u/%u@%s" }, | 
 | 	{ IF_SRC_KERNEL,	"%u/%u" }, | 
 | 	{ IF_SRC_FILEADDR,	"%u@%s" }, | 
 | 	{ IF_SRC_KERNELADDR,	"%u" }, | 
 | 	{ IF_ACT_NONE,		NULL }, | 
 | }; | 
 |  | 
 | /* | 
 |  * Address filter string parser | 
 |  */ | 
 | static int | 
 | perf_event_parse_addr_filter(struct perf_event *event, char *fstr, | 
 | 			     struct list_head *filters) | 
 | { | 
 | 	struct perf_addr_filter *filter = NULL; | 
 | 	char *start, *orig, *filename = NULL; | 
 | 	struct path path; | 
 | 	substring_t args[MAX_OPT_ARGS]; | 
 | 	int state = IF_STATE_ACTION, token; | 
 | 	unsigned int kernel = 0; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	orig = fstr = kstrdup(fstr, GFP_KERNEL); | 
 | 	if (!fstr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	while ((start = strsep(&fstr, " ,\n")) != NULL) { | 
 | 		static const enum perf_addr_filter_action_t actions[] = { | 
 | 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER, | 
 | 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START, | 
 | 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP, | 
 | 		}; | 
 | 		ret = -EINVAL; | 
 |  | 
 | 		if (!*start) | 
 | 			continue; | 
 |  | 
 | 		/* filter definition begins */ | 
 | 		if (state == IF_STATE_ACTION) { | 
 | 			filter = perf_addr_filter_new(event, filters); | 
 | 			if (!filter) | 
 | 				goto fail; | 
 | 		} | 
 |  | 
 | 		token = match_token(start, if_tokens, args); | 
 | 		switch (token) { | 
 | 		case IF_ACT_FILTER: | 
 | 		case IF_ACT_START: | 
 | 		case IF_ACT_STOP: | 
 | 			if (state != IF_STATE_ACTION) | 
 | 				goto fail; | 
 |  | 
 | 			filter->action = actions[token]; | 
 | 			state = IF_STATE_SOURCE; | 
 | 			break; | 
 |  | 
 | 		case IF_SRC_KERNELADDR: | 
 | 		case IF_SRC_KERNEL: | 
 | 			kernel = 1; | 
 |  | 
 | 		case IF_SRC_FILEADDR: | 
 | 		case IF_SRC_FILE: | 
 | 			if (state != IF_STATE_SOURCE) | 
 | 				goto fail; | 
 |  | 
 | 			*args[0].to = 0; | 
 | 			ret = kstrtoul(args[0].from, 0, &filter->offset); | 
 | 			if (ret) | 
 | 				goto fail; | 
 |  | 
 | 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { | 
 | 				*args[1].to = 0; | 
 | 				ret = kstrtoul(args[1].from, 0, &filter->size); | 
 | 				if (ret) | 
 | 					goto fail; | 
 | 			} | 
 |  | 
 | 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { | 
 | 				int fpos = token == IF_SRC_FILE ? 2 : 1; | 
 |  | 
 | 				filename = match_strdup(&args[fpos]); | 
 | 				if (!filename) { | 
 | 					ret = -ENOMEM; | 
 | 					goto fail; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			state = IF_STATE_END; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Filter definition is fully parsed, validate and install it. | 
 | 		 * Make sure that it doesn't contradict itself or the event's | 
 | 		 * attribute. | 
 | 		 */ | 
 | 		if (state == IF_STATE_END) { | 
 | 			ret = -EINVAL; | 
 | 			if (kernel && event->attr.exclude_kernel) | 
 | 				goto fail; | 
 |  | 
 | 			/* | 
 | 			 * ACTION "filter" must have a non-zero length region | 
 | 			 * specified. | 
 | 			 */ | 
 | 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && | 
 | 			    !filter->size) | 
 | 				goto fail; | 
 |  | 
 | 			if (!kernel) { | 
 | 				if (!filename) | 
 | 					goto fail; | 
 |  | 
 | 				/* | 
 | 				 * For now, we only support file-based filters | 
 | 				 * in per-task events; doing so for CPU-wide | 
 | 				 * events requires additional context switching | 
 | 				 * trickery, since same object code will be | 
 | 				 * mapped at different virtual addresses in | 
 | 				 * different processes. | 
 | 				 */ | 
 | 				ret = -EOPNOTSUPP; | 
 | 				if (!event->ctx->task) | 
 | 					goto fail_free_name; | 
 |  | 
 | 				/* look up the path and grab its inode */ | 
 | 				ret = kern_path(filename, LOOKUP_FOLLOW, &path); | 
 | 				if (ret) | 
 | 					goto fail_free_name; | 
 |  | 
 | 				filter->inode = igrab(d_inode(path.dentry)); | 
 | 				path_put(&path); | 
 | 				kfree(filename); | 
 | 				filename = NULL; | 
 |  | 
 | 				ret = -EINVAL; | 
 | 				if (!filter->inode || | 
 | 				    !S_ISREG(filter->inode->i_mode)) | 
 | 					/* free_filters_list() will iput() */ | 
 | 					goto fail; | 
 |  | 
 | 				event->addr_filters.nr_file_filters++; | 
 | 			} | 
 |  | 
 | 			/* ready to consume more filters */ | 
 | 			state = IF_STATE_ACTION; | 
 | 			filter = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (state != IF_STATE_ACTION) | 
 | 		goto fail; | 
 |  | 
 | 	kfree(orig); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_free_name: | 
 | 	kfree(filename); | 
 | fail: | 
 | 	free_filters_list(filters); | 
 | 	kfree(orig); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | perf_event_set_addr_filter(struct perf_event *event, char *filter_str) | 
 | { | 
 | 	LIST_HEAD(filters); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Since this is called in perf_ioctl() path, we're already holding | 
 | 	 * ctx::mutex. | 
 | 	 */ | 
 | 	lockdep_assert_held(&event->ctx->mutex); | 
 |  | 
 | 	if (WARN_ON_ONCE(event->parent)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = perf_event_parse_addr_filter(event, filter_str, &filters); | 
 | 	if (ret) | 
 | 		goto fail_clear_files; | 
 |  | 
 | 	ret = event->pmu->addr_filters_validate(&filters); | 
 | 	if (ret) | 
 | 		goto fail_free_filters; | 
 |  | 
 | 	/* remove existing filters, if any */ | 
 | 	perf_addr_filters_splice(event, &filters); | 
 |  | 
 | 	/* install new filters */ | 
 | 	perf_event_for_each_child(event, perf_event_addr_filters_apply); | 
 |  | 
 | 	return ret; | 
 |  | 
 | fail_free_filters: | 
 | 	free_filters_list(&filters); | 
 |  | 
 | fail_clear_files: | 
 | 	event->addr_filters.nr_file_filters = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	char *filter_str; | 
 |  | 
 | 	filter_str = strndup_user(arg, PAGE_SIZE); | 
 | 	if (IS_ERR(filter_str)) | 
 | 		return PTR_ERR(filter_str); | 
 |  | 
 | #ifdef CONFIG_EVENT_TRACING | 
 | 	if (perf_event_is_tracing(event)) { | 
 | 		struct perf_event_context *ctx = event->ctx; | 
 |  | 
 | 		/* | 
 | 		 * Beware, here be dragons!! | 
 | 		 * | 
 | 		 * the tracepoint muck will deadlock against ctx->mutex, but | 
 | 		 * the tracepoint stuff does not actually need it. So | 
 | 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we | 
 | 		 * already have a reference on ctx. | 
 | 		 * | 
 | 		 * This can result in event getting moved to a different ctx, | 
 | 		 * but that does not affect the tracepoint state. | 
 | 		 */ | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); | 
 | 		mutex_lock(&ctx->mutex); | 
 | 	} else | 
 | #endif | 
 | 	if (has_addr_filter(event)) | 
 | 		ret = perf_event_set_addr_filter(event, filter_str); | 
 |  | 
 | 	kfree(filter_str); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * hrtimer based swevent callback | 
 |  */ | 
 |  | 
 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | 
 | { | 
 | 	enum hrtimer_restart ret = HRTIMER_RESTART; | 
 | 	struct perf_sample_data data; | 
 | 	struct pt_regs *regs; | 
 | 	struct perf_event *event; | 
 | 	u64 period; | 
 |  | 
 | 	event = container_of(hrtimer, struct perf_event, hw.hrtimer); | 
 |  | 
 | 	if (event->state != PERF_EVENT_STATE_ACTIVE) | 
 | 		return HRTIMER_NORESTART; | 
 |  | 
 | 	event->pmu->read(event); | 
 |  | 
 | 	perf_sample_data_init(&data, 0, event->hw.last_period); | 
 | 	regs = get_irq_regs(); | 
 |  | 
 | 	if (regs && !perf_exclude_event(event, regs)) { | 
 | 		if (!(event->attr.exclude_idle && is_idle_task(current))) | 
 | 			if (__perf_event_overflow(event, 1, &data, regs)) | 
 | 				ret = HRTIMER_NORESTART; | 
 | 	} | 
 |  | 
 | 	period = max_t(u64, 10000, event->hw.sample_period); | 
 | 	hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void perf_swevent_start_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 | 	s64 period; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	period = local64_read(&hwc->period_left); | 
 | 	if (period) { | 
 | 		if (period < 0) | 
 | 			period = 10000; | 
 |  | 
 | 		local64_set(&hwc->period_left, 0); | 
 | 	} else { | 
 | 		period = max_t(u64, 10000, hwc->sample_period); | 
 | 	} | 
 | 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), | 
 | 		      HRTIMER_MODE_REL_PINNED); | 
 | } | 
 |  | 
 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (is_sampling_event(event)) { | 
 | 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); | 
 | 		local64_set(&hwc->period_left, ktime_to_ns(remaining)); | 
 |  | 
 | 		hrtimer_cancel(&hwc->hrtimer); | 
 | 	} | 
 | } | 
 |  | 
 | static void perf_swevent_init_hrtimer(struct perf_event *event) | 
 | { | 
 | 	struct hw_perf_event *hwc = &event->hw; | 
 |  | 
 | 	if (!is_sampling_event(event)) | 
 | 		return; | 
 |  | 
 | 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	hwc->hrtimer.function = perf_swevent_hrtimer; | 
 |  | 
 | 	/* | 
 | 	 * Since hrtimers have a fixed rate, we can do a static freq->period | 
 | 	 * mapping and avoid the whole period adjust feedback stuff. | 
 | 	 */ | 
 | 	if (event->attr.freq) { | 
 | 		long freq = event->attr.sample_freq; | 
 |  | 
 | 		event->attr.sample_period = NSEC_PER_SEC / freq; | 
 | 		hwc->sample_period = event->attr.sample_period; | 
 | 		local64_set(&hwc->period_left, hwc->sample_period); | 
 | 		hwc->last_period = hwc->sample_period; | 
 | 		event->attr.freq = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Software event: cpu wall time clock | 
 |  */ | 
 |  | 
 | static void cpu_clock_event_update(struct perf_event *event) | 
 | { | 
 | 	s64 prev; | 
 | 	u64 now; | 
 |  | 
 | 	now = local_clock(); | 
 | 	prev = local64_xchg(&event->hw.prev_count, now); | 
 | 	local64_add(now - prev, &event->count); | 
 | } | 
 |  | 
 | static void cpu_clock_event_start(struct perf_event *event, int flags) | 
 | { | 
 | 	local64_set(&event->hw.prev_count, local_clock()); | 
 | 	perf_swevent_start_hrtimer(event); | 
 | } | 
 |  | 
 | static void cpu_clock_event_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	cpu_clock_event_update(event); | 
 | } | 
 |  | 
 | static int cpu_clock_event_add(struct perf_event *event, int flags) | 
 | { | 
 | 	if (flags & PERF_EF_START) | 
 | 		cpu_clock_event_start(event, flags); | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cpu_clock_event_del(struct perf_event *event, int flags) | 
 | { | 
 | 	cpu_clock_event_stop(event, flags); | 
 | } | 
 |  | 
 | static void cpu_clock_event_read(struct perf_event *event) | 
 | { | 
 | 	cpu_clock_event_update(event); | 
 | } | 
 |  | 
 | static int cpu_clock_event_init(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	perf_swevent_init_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_cpu_clock = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.capabilities	= PERF_PMU_CAP_NO_NMI, | 
 |  | 
 | 	.event_init	= cpu_clock_event_init, | 
 | 	.add		= cpu_clock_event_add, | 
 | 	.del		= cpu_clock_event_del, | 
 | 	.start		= cpu_clock_event_start, | 
 | 	.stop		= cpu_clock_event_stop, | 
 | 	.read		= cpu_clock_event_read, | 
 | }; | 
 |  | 
 | /* | 
 |  * Software event: task time clock | 
 |  */ | 
 |  | 
 | static void task_clock_event_update(struct perf_event *event, u64 now) | 
 | { | 
 | 	u64 prev; | 
 | 	s64 delta; | 
 |  | 
 | 	prev = local64_xchg(&event->hw.prev_count, now); | 
 | 	delta = now - prev; | 
 | 	local64_add(delta, &event->count); | 
 | } | 
 |  | 
 | static void task_clock_event_start(struct perf_event *event, int flags) | 
 | { | 
 | 	local64_set(&event->hw.prev_count, event->ctx->time); | 
 | 	perf_swevent_start_hrtimer(event); | 
 | } | 
 |  | 
 | static void task_clock_event_stop(struct perf_event *event, int flags) | 
 | { | 
 | 	perf_swevent_cancel_hrtimer(event); | 
 | 	task_clock_event_update(event, event->ctx->time); | 
 | } | 
 |  | 
 | static int task_clock_event_add(struct perf_event *event, int flags) | 
 | { | 
 | 	if (flags & PERF_EF_START) | 
 | 		task_clock_event_start(event, flags); | 
 | 	perf_event_update_userpage(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void task_clock_event_del(struct perf_event *event, int flags) | 
 | { | 
 | 	task_clock_event_stop(event, PERF_EF_UPDATE); | 
 | } | 
 |  | 
 | static void task_clock_event_read(struct perf_event *event) | 
 | { | 
 | 	u64 now = perf_clock(); | 
 | 	u64 delta = now - event->ctx->timestamp; | 
 | 	u64 time = event->ctx->time + delta; | 
 |  | 
 | 	task_clock_event_update(event, time); | 
 | } | 
 |  | 
 | static int task_clock_event_init(struct perf_event *event) | 
 | { | 
 | 	if (event->attr.type != PERF_TYPE_SOFTWARE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * no branch sampling for software events | 
 | 	 */ | 
 | 	if (has_branch_stack(event)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	perf_swevent_init_hrtimer(event); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pmu perf_task_clock = { | 
 | 	.task_ctx_nr	= perf_sw_context, | 
 |  | 
 | 	.capabilities	= PERF_PMU_CAP_NO_NMI, | 
 |  | 
 | 	.event_init	= task_clock_event_init, | 
 | 	.add		= task_clock_event_add, | 
 | 	.del		= task_clock_event_del, | 
 | 	.start		= task_clock_event_start, | 
 | 	.stop		= task_clock_event_stop, | 
 | 	.read		= task_clock_event_read, | 
 | }; | 
 |  | 
 | static void perf_pmu_nop_void(struct pmu *pmu) | 
 | { | 
 | } | 
 |  | 
 | static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) | 
 | { | 
 | } | 
 |  | 
 | static int perf_pmu_nop_int(struct pmu *pmu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(unsigned int, nop_txn_flags); | 
 |  | 
 | static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) | 
 | { | 
 | 	__this_cpu_write(nop_txn_flags, flags); | 
 |  | 
 | 	if (flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_disable(pmu); | 
 | } | 
 |  | 
 | static int perf_pmu_commit_txn(struct pmu *pmu) | 
 | { | 
 | 	unsigned int flags = __this_cpu_read(nop_txn_flags); | 
 |  | 
 | 	__this_cpu_write(nop_txn_flags, 0); | 
 |  | 
 | 	if (flags & ~PERF_PMU_TXN_ADD) | 
 | 		return 0; | 
 |  | 
 | 	perf_pmu_enable(pmu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_pmu_cancel_txn(struct pmu *pmu) | 
 | { | 
 | 	unsigned int flags =  __this_cpu_read(nop_txn_flags); | 
 |  | 
 | 	__this_cpu_write(nop_txn_flags, 0); | 
 |  | 
 | 	if (flags & ~PERF_PMU_TXN_ADD) | 
 | 		return; | 
 |  | 
 | 	perf_pmu_enable(pmu); | 
 | } | 
 |  | 
 | static int perf_event_idx_default(struct perf_event *event) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Ensures all contexts with the same task_ctx_nr have the same | 
 |  * pmu_cpu_context too. | 
 |  */ | 
 | static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) | 
 | { | 
 | 	struct pmu *pmu; | 
 |  | 
 | 	if (ctxn < 0) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		if (pmu->task_ctx_nr == ctxn) | 
 | 			return pmu->pmu_cpu_context; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void free_pmu_context(struct pmu *pmu) | 
 | { | 
 | 	/* | 
 | 	 * Static contexts such as perf_sw_context have a global lifetime | 
 | 	 * and may be shared between different PMUs. Avoid freeing them | 
 | 	 * when a single PMU is going away. | 
 | 	 */ | 
 | 	if (pmu->task_ctx_nr > perf_invalid_context) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	free_percpu(pmu->pmu_cpu_context); | 
 | 	mutex_unlock(&pmus_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Let userspace know that this PMU supports address range filtering: | 
 |  */ | 
 | static ssize_t nr_addr_filters_show(struct device *dev, | 
 | 				    struct device_attribute *attr, | 
 | 				    char *page) | 
 | { | 
 | 	struct pmu *pmu = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); | 
 | } | 
 | DEVICE_ATTR_RO(nr_addr_filters); | 
 |  | 
 | static struct idr pmu_idr; | 
 |  | 
 | static ssize_t | 
 | type_show(struct device *dev, struct device_attribute *attr, char *page) | 
 | { | 
 | 	struct pmu *pmu = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); | 
 | } | 
 | static DEVICE_ATTR_RO(type); | 
 |  | 
 | static ssize_t | 
 | perf_event_mux_interval_ms_show(struct device *dev, | 
 | 				struct device_attribute *attr, | 
 | 				char *page) | 
 | { | 
 | 	struct pmu *pmu = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(mux_interval_mutex); | 
 |  | 
 | static ssize_t | 
 | perf_event_mux_interval_ms_store(struct device *dev, | 
 | 				 struct device_attribute *attr, | 
 | 				 const char *buf, size_t count) | 
 | { | 
 | 	struct pmu *pmu = dev_get_drvdata(dev); | 
 | 	int timer, cpu, ret; | 
 |  | 
 | 	ret = kstrtoint(buf, 0, &timer); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (timer < 1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* same value, noting to do */ | 
 | 	if (timer == pmu->hrtimer_interval_ms) | 
 | 		return count; | 
 |  | 
 | 	mutex_lock(&mux_interval_mutex); | 
 | 	pmu->hrtimer_interval_ms = timer; | 
 |  | 
 | 	/* update all cpuctx for this PMU */ | 
 | 	cpus_read_lock(); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct perf_cpu_context *cpuctx; | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); | 
 |  | 
 | 		cpu_function_call(cpu, | 
 | 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx); | 
 | 	} | 
 | 	cpus_read_unlock(); | 
 | 	mutex_unlock(&mux_interval_mutex); | 
 |  | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR_RW(perf_event_mux_interval_ms); | 
 |  | 
 | static struct attribute *pmu_dev_attrs[] = { | 
 | 	&dev_attr_type.attr, | 
 | 	&dev_attr_perf_event_mux_interval_ms.attr, | 
 | 	NULL, | 
 | }; | 
 | ATTRIBUTE_GROUPS(pmu_dev); | 
 |  | 
 | static int pmu_bus_running; | 
 | static struct bus_type pmu_bus = { | 
 | 	.name		= "event_source", | 
 | 	.dev_groups	= pmu_dev_groups, | 
 | }; | 
 |  | 
 | static void pmu_dev_release(struct device *dev) | 
 | { | 
 | 	kfree(dev); | 
 | } | 
 |  | 
 | static int pmu_dev_alloc(struct pmu *pmu) | 
 | { | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); | 
 | 	if (!pmu->dev) | 
 | 		goto out; | 
 |  | 
 | 	pmu->dev->groups = pmu->attr_groups; | 
 | 	device_initialize(pmu->dev); | 
 | 	ret = dev_set_name(pmu->dev, "%s", pmu->name); | 
 | 	if (ret) | 
 | 		goto free_dev; | 
 |  | 
 | 	dev_set_drvdata(pmu->dev, pmu); | 
 | 	pmu->dev->bus = &pmu_bus; | 
 | 	pmu->dev->release = pmu_dev_release; | 
 | 	ret = device_add(pmu->dev); | 
 | 	if (ret) | 
 | 		goto free_dev; | 
 |  | 
 | 	/* For PMUs with address filters, throw in an extra attribute: */ | 
 | 	if (pmu->nr_addr_filters) | 
 | 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); | 
 |  | 
 | 	if (ret) | 
 | 		goto del_dev; | 
 |  | 
 | out: | 
 | 	return ret; | 
 |  | 
 | del_dev: | 
 | 	device_del(pmu->dev); | 
 |  | 
 | free_dev: | 
 | 	put_device(pmu->dev); | 
 | 	goto out; | 
 | } | 
 |  | 
 | static struct lock_class_key cpuctx_mutex; | 
 | static struct lock_class_key cpuctx_lock; | 
 |  | 
 | int perf_pmu_register(struct pmu *pmu, const char *name, int type) | 
 | { | 
 | 	int cpu, ret; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	ret = -ENOMEM; | 
 | 	pmu->pmu_disable_count = alloc_percpu(int); | 
 | 	if (!pmu->pmu_disable_count) | 
 | 		goto unlock; | 
 |  | 
 | 	pmu->type = -1; | 
 | 	if (!name) | 
 | 		goto skip_type; | 
 | 	pmu->name = name; | 
 |  | 
 | 	if (type < 0) { | 
 | 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); | 
 | 		if (type < 0) { | 
 | 			ret = type; | 
 | 			goto free_pdc; | 
 | 		} | 
 | 	} | 
 | 	pmu->type = type; | 
 |  | 
 | 	if (pmu_bus_running) { | 
 | 		ret = pmu_dev_alloc(pmu); | 
 | 		if (ret) | 
 | 			goto free_idr; | 
 | 	} | 
 |  | 
 | skip_type: | 
 | 	if (pmu->task_ctx_nr == perf_hw_context) { | 
 | 		static int hw_context_taken = 0; | 
 |  | 
 | 		/* | 
 | 		 * Other than systems with heterogeneous CPUs, it never makes | 
 | 		 * sense for two PMUs to share perf_hw_context. PMUs which are | 
 | 		 * uncore must use perf_invalid_context. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(hw_context_taken && | 
 | 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) | 
 | 			pmu->task_ctx_nr = perf_invalid_context; | 
 |  | 
 | 		hw_context_taken = 1; | 
 | 	} | 
 |  | 
 | 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); | 
 | 	if (pmu->pmu_cpu_context) | 
 | 		goto got_cpu_context; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); | 
 | 	if (!pmu->pmu_cpu_context) | 
 | 		goto free_dev; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct perf_cpu_context *cpuctx; | 
 |  | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		__perf_event_init_context(&cpuctx->ctx); | 
 | 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); | 
 | 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); | 
 | 		cpuctx->ctx.pmu = pmu; | 
 | 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); | 
 |  | 
 | 		__perf_mux_hrtimer_init(cpuctx, cpu); | 
 | 	} | 
 |  | 
 | got_cpu_context: | 
 | 	if (!pmu->start_txn) { | 
 | 		if (pmu->pmu_enable) { | 
 | 			/* | 
 | 			 * If we have pmu_enable/pmu_disable calls, install | 
 | 			 * transaction stubs that use that to try and batch | 
 | 			 * hardware accesses. | 
 | 			 */ | 
 | 			pmu->start_txn  = perf_pmu_start_txn; | 
 | 			pmu->commit_txn = perf_pmu_commit_txn; | 
 | 			pmu->cancel_txn = perf_pmu_cancel_txn; | 
 | 		} else { | 
 | 			pmu->start_txn  = perf_pmu_nop_txn; | 
 | 			pmu->commit_txn = perf_pmu_nop_int; | 
 | 			pmu->cancel_txn = perf_pmu_nop_void; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pmu->pmu_enable) { | 
 | 		pmu->pmu_enable  = perf_pmu_nop_void; | 
 | 		pmu->pmu_disable = perf_pmu_nop_void; | 
 | 	} | 
 |  | 
 | 	if (!pmu->event_idx) | 
 | 		pmu->event_idx = perf_event_idx_default; | 
 |  | 
 | 	list_add_rcu(&pmu->entry, &pmus); | 
 | 	atomic_set(&pmu->exclusive_cnt, 0); | 
 | 	ret = 0; | 
 | unlock: | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	return ret; | 
 |  | 
 | free_dev: | 
 | 	device_del(pmu->dev); | 
 | 	put_device(pmu->dev); | 
 |  | 
 | free_idr: | 
 | 	if (pmu->type >= PERF_TYPE_MAX) | 
 | 		idr_remove(&pmu_idr, pmu->type); | 
 |  | 
 | free_pdc: | 
 | 	free_percpu(pmu->pmu_disable_count); | 
 | 	goto unlock; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_pmu_register); | 
 |  | 
 | void perf_pmu_unregister(struct pmu *pmu) | 
 | { | 
 | 	int remove_device; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	remove_device = pmu_bus_running; | 
 | 	list_del_rcu(&pmu->entry); | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	/* | 
 | 	 * We dereference the pmu list under both SRCU and regular RCU, so | 
 | 	 * synchronize against both of those. | 
 | 	 */ | 
 | 	synchronize_srcu(&pmus_srcu); | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	free_percpu(pmu->pmu_disable_count); | 
 | 	if (pmu->type >= PERF_TYPE_MAX) | 
 | 		idr_remove(&pmu_idr, pmu->type); | 
 | 	if (remove_device) { | 
 | 		if (pmu->nr_addr_filters) | 
 | 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); | 
 | 		device_del(pmu->dev); | 
 | 		put_device(pmu->dev); | 
 | 	} | 
 | 	free_pmu_context(pmu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_pmu_unregister); | 
 |  | 
 | static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) | 
 | { | 
 | 	struct perf_event_context *ctx = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!try_module_get(pmu->module)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * A number of pmu->event_init() methods iterate the sibling_list to, | 
 | 	 * for example, validate if the group fits on the PMU. Therefore, | 
 | 	 * if this is a sibling event, acquire the ctx->mutex to protect | 
 | 	 * the sibling_list. | 
 | 	 */ | 
 | 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { | 
 | 		/* | 
 | 		 * This ctx->mutex can nest when we're called through | 
 | 		 * inheritance. See the perf_event_ctx_lock_nested() comment. | 
 | 		 */ | 
 | 		ctx = perf_event_ctx_lock_nested(event->group_leader, | 
 | 						 SINGLE_DEPTH_NESTING); | 
 | 		BUG_ON(!ctx); | 
 | 	} | 
 |  | 
 | 	event->pmu = pmu; | 
 | 	ret = pmu->event_init(event); | 
 |  | 
 | 	if (ctx) | 
 | 		perf_event_ctx_unlock(event->group_leader, ctx); | 
 |  | 
 | 	if (ret) | 
 | 		module_put(pmu->module); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct pmu *perf_init_event(struct perf_event *event) | 
 | { | 
 | 	struct pmu *pmu; | 
 | 	int idx; | 
 | 	int ret; | 
 |  | 
 | 	idx = srcu_read_lock(&pmus_srcu); | 
 |  | 
 | 	/* Try parent's PMU first: */ | 
 | 	if (event->parent && event->parent->pmu) { | 
 | 		pmu = event->parent->pmu; | 
 | 		ret = perf_try_init_event(pmu, event); | 
 | 		if (!ret) | 
 | 			goto unlock; | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pmu = idr_find(&pmu_idr, event->attr.type); | 
 | 	rcu_read_unlock(); | 
 | 	if (pmu) { | 
 | 		ret = perf_try_init_event(pmu, event); | 
 | 		if (ret) | 
 | 			pmu = ERR_PTR(ret); | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_rcu(pmu, &pmus, entry) { | 
 | 		ret = perf_try_init_event(pmu, event); | 
 | 		if (!ret) | 
 | 			goto unlock; | 
 |  | 
 | 		if (ret != -ENOENT) { | 
 | 			pmu = ERR_PTR(ret); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 | 	pmu = ERR_PTR(-ENOENT); | 
 | unlock: | 
 | 	srcu_read_unlock(&pmus_srcu, idx); | 
 |  | 
 | 	return pmu; | 
 | } | 
 |  | 
 | static void attach_sb_event(struct perf_event *event) | 
 | { | 
 | 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); | 
 |  | 
 | 	raw_spin_lock(&pel->lock); | 
 | 	list_add_rcu(&event->sb_list, &pel->list); | 
 | 	raw_spin_unlock(&pel->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * We keep a list of all !task (and therefore per-cpu) events | 
 |  * that need to receive side-band records. | 
 |  * | 
 |  * This avoids having to scan all the various PMU per-cpu contexts | 
 |  * looking for them. | 
 |  */ | 
 | static void account_pmu_sb_event(struct perf_event *event) | 
 | { | 
 | 	if (is_sb_event(event)) | 
 | 		attach_sb_event(event); | 
 | } | 
 |  | 
 | static void account_event_cpu(struct perf_event *event, int cpu) | 
 | { | 
 | 	if (event->parent) | 
 | 		return; | 
 |  | 
 | 	if (is_cgroup_event(event)) | 
 | 		atomic_inc(&per_cpu(perf_cgroup_events, cpu)); | 
 | } | 
 |  | 
 | /* Freq events need the tick to stay alive (see perf_event_task_tick). */ | 
 | static void account_freq_event_nohz(void) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	/* Lock so we don't race with concurrent unaccount */ | 
 | 	spin_lock(&nr_freq_lock); | 
 | 	if (atomic_inc_return(&nr_freq_events) == 1) | 
 | 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); | 
 | 	spin_unlock(&nr_freq_lock); | 
 | #endif | 
 | } | 
 |  | 
 | static void account_freq_event(void) | 
 | { | 
 | 	if (tick_nohz_full_enabled()) | 
 | 		account_freq_event_nohz(); | 
 | 	else | 
 | 		atomic_inc(&nr_freq_events); | 
 | } | 
 |  | 
 |  | 
 | static void account_event(struct perf_event *event) | 
 | { | 
 | 	bool inc = false; | 
 |  | 
 | 	if (event->parent) | 
 | 		return; | 
 |  | 
 | 	if (event->attach_state & PERF_ATTACH_TASK) | 
 | 		inc = true; | 
 | 	if (event->attr.mmap || event->attr.mmap_data) | 
 | 		atomic_inc(&nr_mmap_events); | 
 | 	if (event->attr.comm) | 
 | 		atomic_inc(&nr_comm_events); | 
 | 	if (event->attr.namespaces) | 
 | 		atomic_inc(&nr_namespaces_events); | 
 | 	if (event->attr.task) | 
 | 		atomic_inc(&nr_task_events); | 
 | 	if (event->attr.freq) | 
 | 		account_freq_event(); | 
 | 	if (event->attr.context_switch) { | 
 | 		atomic_inc(&nr_switch_events); | 
 | 		inc = true; | 
 | 	} | 
 | 	if (has_branch_stack(event)) | 
 | 		inc = true; | 
 | 	if (is_cgroup_event(event)) | 
 | 		inc = true; | 
 |  | 
 | 	if (inc) { | 
 | 		/* | 
 | 		 * We need the mutex here because static_branch_enable() | 
 | 		 * must complete *before* the perf_sched_count increment | 
 | 		 * becomes visible. | 
 | 		 */ | 
 | 		if (atomic_inc_not_zero(&perf_sched_count)) | 
 | 			goto enabled; | 
 |  | 
 | 		mutex_lock(&perf_sched_mutex); | 
 | 		if (!atomic_read(&perf_sched_count)) { | 
 | 			static_branch_enable(&perf_sched_events); | 
 | 			/* | 
 | 			 * Guarantee that all CPUs observe they key change and | 
 | 			 * call the perf scheduling hooks before proceeding to | 
 | 			 * install events that need them. | 
 | 			 */ | 
 | 			synchronize_sched(); | 
 | 		} | 
 | 		/* | 
 | 		 * Now that we have waited for the sync_sched(), allow further | 
 | 		 * increments to by-pass the mutex. | 
 | 		 */ | 
 | 		atomic_inc(&perf_sched_count); | 
 | 		mutex_unlock(&perf_sched_mutex); | 
 | 	} | 
 | enabled: | 
 |  | 
 | 	account_event_cpu(event, event->cpu); | 
 |  | 
 | 	account_pmu_sb_event(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialize a event structure | 
 |  */ | 
 | static struct perf_event * | 
 | perf_event_alloc(struct perf_event_attr *attr, int cpu, | 
 | 		 struct task_struct *task, | 
 | 		 struct perf_event *group_leader, | 
 | 		 struct perf_event *parent_event, | 
 | 		 perf_overflow_handler_t overflow_handler, | 
 | 		 void *context, int cgroup_fd) | 
 | { | 
 | 	struct pmu *pmu; | 
 | 	struct perf_event *event; | 
 | 	struct hw_perf_event *hwc; | 
 | 	long err = -EINVAL; | 
 |  | 
 | 	if ((unsigned)cpu >= nr_cpu_ids) { | 
 | 		if (!task || cpu != -1) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	event = kzalloc(sizeof(*event), GFP_KERNEL); | 
 | 	if (!event) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * Single events are their own group leaders, with an | 
 | 	 * empty sibling list: | 
 | 	 */ | 
 | 	if (!group_leader) | 
 | 		group_leader = event; | 
 |  | 
 | 	mutex_init(&event->child_mutex); | 
 | 	INIT_LIST_HEAD(&event->child_list); | 
 |  | 
 | 	INIT_LIST_HEAD(&event->event_entry); | 
 | 	INIT_LIST_HEAD(&event->sibling_list); | 
 | 	INIT_LIST_HEAD(&event->active_list); | 
 | 	init_event_group(event); | 
 | 	INIT_LIST_HEAD(&event->rb_entry); | 
 | 	INIT_LIST_HEAD(&event->active_entry); | 
 | 	INIT_LIST_HEAD(&event->addr_filters.list); | 
 | 	INIT_HLIST_NODE(&event->hlist_entry); | 
 |  | 
 |  | 
 | 	init_waitqueue_head(&event->waitq); | 
 | 	init_irq_work(&event->pending, perf_pending_event); | 
 |  | 
 | 	mutex_init(&event->mmap_mutex); | 
 | 	raw_spin_lock_init(&event->addr_filters.lock); | 
 |  | 
 | 	atomic_long_set(&event->refcount, 1); | 
 | 	event->cpu		= cpu; | 
 | 	event->attr		= *attr; | 
 | 	event->group_leader	= group_leader; | 
 | 	event->pmu		= NULL; | 
 | 	event->oncpu		= -1; | 
 |  | 
 | 	event->parent		= parent_event; | 
 |  | 
 | 	event->ns		= get_pid_ns(task_active_pid_ns(current)); | 
 | 	event->id		= atomic64_inc_return(&perf_event_id); | 
 |  | 
 | 	event->state		= PERF_EVENT_STATE_INACTIVE; | 
 |  | 
 | 	if (task) { | 
 | 		event->attach_state = PERF_ATTACH_TASK; | 
 | 		/* | 
 | 		 * XXX pmu::event_init needs to know what task to account to | 
 | 		 * and we cannot use the ctx information because we need the | 
 | 		 * pmu before we get a ctx. | 
 | 		 */ | 
 | 		get_task_struct(task); | 
 | 		event->hw.target = task; | 
 | 	} | 
 |  | 
 | 	event->clock = &local_clock; | 
 | 	if (parent_event) | 
 | 		event->clock = parent_event->clock; | 
 |  | 
 | 	if (!overflow_handler && parent_event) { | 
 | 		overflow_handler = parent_event->overflow_handler; | 
 | 		context = parent_event->overflow_handler_context; | 
 | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) | 
 | 		if (overflow_handler == bpf_overflow_handler) { | 
 | 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); | 
 |  | 
 | 			if (IS_ERR(prog)) { | 
 | 				err = PTR_ERR(prog); | 
 | 				goto err_ns; | 
 | 			} | 
 | 			event->prog = prog; | 
 | 			event->orig_overflow_handler = | 
 | 				parent_event->orig_overflow_handler; | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (overflow_handler) { | 
 | 		event->overflow_handler	= overflow_handler; | 
 | 		event->overflow_handler_context = context; | 
 | 	} else if (is_write_backward(event)){ | 
 | 		event->overflow_handler = perf_event_output_backward; | 
 | 		event->overflow_handler_context = NULL; | 
 | 	} else { | 
 | 		event->overflow_handler = perf_event_output_forward; | 
 | 		event->overflow_handler_context = NULL; | 
 | 	} | 
 |  | 
 | 	perf_event__state_init(event); | 
 |  | 
 | 	pmu = NULL; | 
 |  | 
 | 	hwc = &event->hw; | 
 | 	hwc->sample_period = attr->sample_period; | 
 | 	if (attr->freq && attr->sample_freq) | 
 | 		hwc->sample_period = 1; | 
 | 	hwc->last_period = hwc->sample_period; | 
 |  | 
 | 	local64_set(&hwc->period_left, hwc->sample_period); | 
 |  | 
 | 	/* | 
 | 	 * We currently do not support PERF_SAMPLE_READ on inherited events. | 
 | 	 * See perf_output_read(). | 
 | 	 */ | 
 | 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) | 
 | 		goto err_ns; | 
 |  | 
 | 	if (!has_branch_stack(event)) | 
 | 		event->attr.branch_sample_type = 0; | 
 |  | 
 | 	if (cgroup_fd != -1) { | 
 | 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); | 
 | 		if (err) | 
 | 			goto err_ns; | 
 | 	} | 
 |  | 
 | 	pmu = perf_init_event(event); | 
 | 	if (IS_ERR(pmu)) { | 
 | 		err = PTR_ERR(pmu); | 
 | 		goto err_ns; | 
 | 	} | 
 |  | 
 | 	err = exclusive_event_init(event); | 
 | 	if (err) | 
 | 		goto err_pmu; | 
 |  | 
 | 	if (has_addr_filter(event)) { | 
 | 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, | 
 | 						   sizeof(unsigned long), | 
 | 						   GFP_KERNEL); | 
 | 		if (!event->addr_filters_offs) { | 
 | 			err = -ENOMEM; | 
 | 			goto err_per_task; | 
 | 		} | 
 |  | 
 | 		/* force hw sync on the address filters */ | 
 | 		event->addr_filters_gen = 1; | 
 | 	} | 
 |  | 
 | 	if (!event->parent) { | 
 | 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { | 
 | 			err = get_callchain_buffers(attr->sample_max_stack); | 
 | 			if (err) | 
 | 				goto err_addr_filters; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* symmetric to unaccount_event() in _free_event() */ | 
 | 	account_event(event); | 
 |  | 
 | 	return event; | 
 |  | 
 | err_addr_filters: | 
 | 	kfree(event->addr_filters_offs); | 
 |  | 
 | err_per_task: | 
 | 	exclusive_event_destroy(event); | 
 |  | 
 | err_pmu: | 
 | 	if (event->destroy) | 
 | 		event->destroy(event); | 
 | 	module_put(pmu->module); | 
 | err_ns: | 
 | 	if (is_cgroup_event(event)) | 
 | 		perf_detach_cgroup(event); | 
 | 	if (event->ns) | 
 | 		put_pid_ns(event->ns); | 
 | 	if (event->hw.target) | 
 | 		put_task_struct(event->hw.target); | 
 | 	kfree(event); | 
 |  | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | 
 | 			  struct perf_event_attr *attr) | 
 | { | 
 | 	u32 size; | 
 | 	int ret; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * zero the full structure, so that a short copy will be nice. | 
 | 	 */ | 
 | 	memset(attr, 0, sizeof(*attr)); | 
 |  | 
 | 	ret = get_user(size, &uattr->size); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (size > PAGE_SIZE)	/* silly large */ | 
 | 		goto err_size; | 
 |  | 
 | 	if (!size)		/* abi compat */ | 
 | 		size = PERF_ATTR_SIZE_VER0; | 
 |  | 
 | 	if (size < PERF_ATTR_SIZE_VER0) | 
 | 		goto err_size; | 
 |  | 
 | 	/* | 
 | 	 * If we're handed a bigger struct than we know of, | 
 | 	 * ensure all the unknown bits are 0 - i.e. new | 
 | 	 * user-space does not rely on any kernel feature | 
 | 	 * extensions we dont know about yet. | 
 | 	 */ | 
 | 	if (size > sizeof(*attr)) { | 
 | 		unsigned char __user *addr; | 
 | 		unsigned char __user *end; | 
 | 		unsigned char val; | 
 |  | 
 | 		addr = (void __user *)uattr + sizeof(*attr); | 
 | 		end  = (void __user *)uattr + size; | 
 |  | 
 | 		for (; addr < end; addr++) { | 
 | 			ret = get_user(val, addr); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			if (val) | 
 | 				goto err_size; | 
 | 		} | 
 | 		size = sizeof(*attr); | 
 | 	} | 
 |  | 
 | 	ret = copy_from_user(attr, uattr, size); | 
 | 	if (ret) | 
 | 		return -EFAULT; | 
 |  | 
 | 	attr->size = size; | 
 |  | 
 | 	if (attr->__reserved_1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { | 
 | 		u64 mask = attr->branch_sample_type; | 
 |  | 
 | 		/* only using defined bits */ | 
 | 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* at least one branch bit must be set */ | 
 | 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* propagate priv level, when not set for branch */ | 
 | 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { | 
 |  | 
 | 			/* exclude_kernel checked on syscall entry */ | 
 | 			if (!attr->exclude_kernel) | 
 | 				mask |= PERF_SAMPLE_BRANCH_KERNEL; | 
 |  | 
 | 			if (!attr->exclude_user) | 
 | 				mask |= PERF_SAMPLE_BRANCH_USER; | 
 |  | 
 | 			if (!attr->exclude_hv) | 
 | 				mask |= PERF_SAMPLE_BRANCH_HV; | 
 | 			/* | 
 | 			 * adjust user setting (for HW filter setup) | 
 | 			 */ | 
 | 			attr->branch_sample_type = mask; | 
 | 		} | 
 | 		/* privileged levels capture (kernel, hv): check permissions */ | 
 | 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) | 
 | 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) { | 
 | 		ret = perf_reg_validate(attr->sample_regs_user); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) { | 
 | 		if (!arch_perf_have_user_stack_dump()) | 
 | 			return -ENOSYS; | 
 |  | 
 | 		/* | 
 | 		 * We have __u32 type for the size, but so far | 
 | 		 * we can only use __u16 as maximum due to the | 
 | 		 * __u16 sample size limit. | 
 | 		 */ | 
 | 		if (attr->sample_stack_user >= USHRT_MAX) | 
 | 			return -EINVAL; | 
 | 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!attr->sample_max_stack) | 
 | 		attr->sample_max_stack = sysctl_perf_event_max_stack; | 
 |  | 
 | 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR) | 
 | 		ret = perf_reg_validate(attr->sample_regs_intr); | 
 | out: | 
 | 	return ret; | 
 |  | 
 | err_size: | 
 | 	put_user(sizeof(*attr), &uattr->size); | 
 | 	ret = -E2BIG; | 
 | 	goto out; | 
 | } | 
 |  | 
 | static int | 
 | perf_event_set_output(struct perf_event *event, struct perf_event *output_event) | 
 | { | 
 | 	struct ring_buffer *rb = NULL; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (!output_event) | 
 | 		goto set; | 
 |  | 
 | 	/* don't allow circular references */ | 
 | 	if (event == output_event) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow cross-cpu buffers | 
 | 	 */ | 
 | 	if (output_event->cpu != event->cpu) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If its not a per-cpu rb, it must be the same task. | 
 | 	 */ | 
 | 	if (output_event->cpu == -1 && output_event->ctx != event->ctx) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Mixing clocks in the same buffer is trouble you don't need. | 
 | 	 */ | 
 | 	if (output_event->clock != event->clock) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Either writing ring buffer from beginning or from end. | 
 | 	 * Mixing is not allowed. | 
 | 	 */ | 
 | 	if (is_write_backward(output_event) != is_write_backward(event)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If both events generate aux data, they must be on the same PMU | 
 | 	 */ | 
 | 	if (has_aux(event) && has_aux(output_event) && | 
 | 	    event->pmu != output_event->pmu) | 
 | 		goto out; | 
 |  | 
 | set: | 
 | 	mutex_lock(&event->mmap_mutex); | 
 | 	/* Can't redirect output if we've got an active mmap() */ | 
 | 	if (atomic_read(&event->mmap_count)) | 
 | 		goto unlock; | 
 |  | 
 | 	if (output_event) { | 
 | 		/* get the rb we want to redirect to */ | 
 | 		rb = ring_buffer_get(output_event); | 
 | 		if (!rb) | 
 | 			goto unlock; | 
 | 	} | 
 |  | 
 | 	ring_buffer_attach(event, rb); | 
 |  | 
 | 	ret = 0; | 
 | unlock: | 
 | 	mutex_unlock(&event->mmap_mutex); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mutex_lock_double(struct mutex *a, struct mutex *b) | 
 | { | 
 | 	if (b < a) | 
 | 		swap(a, b); | 
 |  | 
 | 	mutex_lock(a); | 
 | 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) | 
 | { | 
 | 	bool nmi_safe = false; | 
 |  | 
 | 	switch (clk_id) { | 
 | 	case CLOCK_MONOTONIC: | 
 | 		event->clock = &ktime_get_mono_fast_ns; | 
 | 		nmi_safe = true; | 
 | 		break; | 
 |  | 
 | 	case CLOCK_MONOTONIC_RAW: | 
 | 		event->clock = &ktime_get_raw_fast_ns; | 
 | 		nmi_safe = true; | 
 | 		break; | 
 |  | 
 | 	case CLOCK_REALTIME: | 
 | 		event->clock = &ktime_get_real_ns; | 
 | 		break; | 
 |  | 
 | 	case CLOCK_BOOTTIME: | 
 | 		event->clock = &ktime_get_boot_ns; | 
 | 		break; | 
 |  | 
 | 	case CLOCK_TAI: | 
 | 		event->clock = &ktime_get_tai_ns; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Variation on perf_event_ctx_lock_nested(), except we take two context | 
 |  * mutexes. | 
 |  */ | 
 | static struct perf_event_context * | 
 | __perf_event_ctx_lock_double(struct perf_event *group_leader, | 
 | 			     struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event_context *gctx; | 
 |  | 
 | again: | 
 | 	rcu_read_lock(); | 
 | 	gctx = READ_ONCE(group_leader->ctx); | 
 | 	if (!atomic_inc_not_zero(&gctx->refcount)) { | 
 | 		rcu_read_unlock(); | 
 | 		goto again; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	mutex_lock_double(&gctx->mutex, &ctx->mutex); | 
 |  | 
 | 	if (group_leader->ctx != gctx) { | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 		mutex_unlock(&gctx->mutex); | 
 | 		put_ctx(gctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return gctx; | 
 | } | 
 |  | 
 | /** | 
 |  * sys_perf_event_open - open a performance event, associate it to a task/cpu | 
 |  * | 
 |  * @attr_uptr:	event_id type attributes for monitoring/sampling | 
 |  * @pid:		target pid | 
 |  * @cpu:		target cpu | 
 |  * @group_fd:		group leader event fd | 
 |  */ | 
 | SYSCALL_DEFINE5(perf_event_open, | 
 | 		struct perf_event_attr __user *, attr_uptr, | 
 | 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | 
 | { | 
 | 	struct perf_event *group_leader = NULL, *output_event = NULL; | 
 | 	struct perf_event *event, *sibling; | 
 | 	struct perf_event_attr attr; | 
 | 	struct perf_event_context *ctx, *uninitialized_var(gctx); | 
 | 	struct file *event_file = NULL; | 
 | 	struct fd group = {NULL, 0}; | 
 | 	struct task_struct *task = NULL; | 
 | 	struct pmu *pmu; | 
 | 	int event_fd; | 
 | 	int move_group = 0; | 
 | 	int err; | 
 | 	int f_flags = O_RDWR; | 
 | 	int cgroup_fd = -1; | 
 |  | 
 | 	/* for future expandability... */ | 
 | 	if (flags & ~PERF_FLAG_ALL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	err = perf_copy_attr(attr_uptr, &attr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!attr.exclude_kernel) { | 
 | 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (attr.namespaces) { | 
 | 		if (!capable(CAP_SYS_ADMIN)) | 
 | 			return -EACCES; | 
 | 	} | 
 |  | 
 | 	if (attr.freq) { | 
 | 		if (attr.sample_freq > sysctl_perf_event_sample_rate) | 
 | 			return -EINVAL; | 
 | 	} else { | 
 | 		if (attr.sample_period & (1ULL << 63)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Only privileged users can get physical addresses */ | 
 | 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && | 
 | 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * In cgroup mode, the pid argument is used to pass the fd | 
 | 	 * opened to the cgroup directory in cgroupfs. The cpu argument | 
 | 	 * designates the cpu on which to monitor threads from that | 
 | 	 * cgroup. | 
 | 	 */ | 
 | 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (flags & PERF_FLAG_FD_CLOEXEC) | 
 | 		f_flags |= O_CLOEXEC; | 
 |  | 
 | 	event_fd = get_unused_fd_flags(f_flags); | 
 | 	if (event_fd < 0) | 
 | 		return event_fd; | 
 |  | 
 | 	if (group_fd != -1) { | 
 | 		err = perf_fget_light(group_fd, &group); | 
 | 		if (err) | 
 | 			goto err_fd; | 
 | 		group_leader = group.file->private_data; | 
 | 		if (flags & PERF_FLAG_FD_OUTPUT) | 
 | 			output_event = group_leader; | 
 | 		if (flags & PERF_FLAG_FD_NO_GROUP) | 
 | 			group_leader = NULL; | 
 | 	} | 
 |  | 
 | 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { | 
 | 		task = find_lively_task_by_vpid(pid); | 
 | 		if (IS_ERR(task)) { | 
 | 			err = PTR_ERR(task); | 
 | 			goto err_group_fd; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (task && group_leader && | 
 | 	    group_leader->attr.inherit != attr.inherit) { | 
 | 		err = -EINVAL; | 
 | 		goto err_task; | 
 | 	} | 
 |  | 
 | 	if (task) { | 
 | 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); | 
 | 		if (err) | 
 | 			goto err_task; | 
 |  | 
 | 		/* | 
 | 		 * Reuse ptrace permission checks for now. | 
 | 		 * | 
 | 		 * We must hold cred_guard_mutex across this and any potential | 
 | 		 * perf_install_in_context() call for this new event to | 
 | 		 * serialize against exec() altering our credentials (and the | 
 | 		 * perf_event_exit_task() that could imply). | 
 | 		 */ | 
 | 		err = -EACCES; | 
 | 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) | 
 | 			goto err_cred; | 
 | 	} | 
 |  | 
 | 	if (flags & PERF_FLAG_PID_CGROUP) | 
 | 		cgroup_fd = pid; | 
 |  | 
 | 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, | 
 | 				 NULL, NULL, cgroup_fd); | 
 | 	if (IS_ERR(event)) { | 
 | 		err = PTR_ERR(event); | 
 | 		goto err_cred; | 
 | 	} | 
 |  | 
 | 	if (is_sampling_event(event)) { | 
 | 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { | 
 | 			err = -EOPNOTSUPP; | 
 | 			goto err_alloc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Special case software events and allow them to be part of | 
 | 	 * any hardware group. | 
 | 	 */ | 
 | 	pmu = event->pmu; | 
 |  | 
 | 	if (attr.use_clockid) { | 
 | 		err = perf_event_set_clock(event, attr.clockid); | 
 | 		if (err) | 
 | 			goto err_alloc; | 
 | 	} | 
 |  | 
 | 	if (pmu->task_ctx_nr == perf_sw_context) | 
 | 		event->event_caps |= PERF_EV_CAP_SOFTWARE; | 
 |  | 
 | 	if (group_leader && | 
 | 	    (is_software_event(event) != is_software_event(group_leader))) { | 
 | 		if (is_software_event(event)) { | 
 | 			/* | 
 | 			 * If event and group_leader are not both a software | 
 | 			 * event, and event is, then group leader is not. | 
 | 			 * | 
 | 			 * Allow the addition of software events to !software | 
 | 			 * groups, this is safe because software events never | 
 | 			 * fail to schedule. | 
 | 			 */ | 
 | 			pmu = group_leader->pmu; | 
 | 		} else if (is_software_event(group_leader) && | 
 | 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { | 
 | 			/* | 
 | 			 * In case the group is a pure software group, and we | 
 | 			 * try to add a hardware event, move the whole group to | 
 | 			 * the hardware context. | 
 | 			 */ | 
 | 			move_group = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Get the target context (task or percpu): | 
 | 	 */ | 
 | 	ctx = find_get_context(pmu, task, event); | 
 | 	if (IS_ERR(ctx)) { | 
 | 		err = PTR_ERR(ctx); | 
 | 		goto err_alloc; | 
 | 	} | 
 |  | 
 | 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { | 
 | 		err = -EBUSY; | 
 | 		goto err_context; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Look up the group leader (we will attach this event to it): | 
 | 	 */ | 
 | 	if (group_leader) { | 
 | 		err = -EINVAL; | 
 |  | 
 | 		/* | 
 | 		 * Do not allow a recursive hierarchy (this new sibling | 
 | 		 * becoming part of another group-sibling): | 
 | 		 */ | 
 | 		if (group_leader->group_leader != group_leader) | 
 | 			goto err_context; | 
 |  | 
 | 		/* All events in a group should have the same clock */ | 
 | 		if (group_leader->clock != event->clock) | 
 | 			goto err_context; | 
 |  | 
 | 		/* | 
 | 		 * Make sure we're both events for the same CPU; | 
 | 		 * grouping events for different CPUs is broken; since | 
 | 		 * you can never concurrently schedule them anyhow. | 
 | 		 */ | 
 | 		if (group_leader->cpu != event->cpu) | 
 | 			goto err_context; | 
 |  | 
 | 		/* | 
 | 		 * Make sure we're both on the same task, or both | 
 | 		 * per-CPU events. | 
 | 		 */ | 
 | 		if (group_leader->ctx->task != ctx->task) | 
 | 			goto err_context; | 
 |  | 
 | 		/* | 
 | 		 * Do not allow to attach to a group in a different task | 
 | 		 * or CPU context. If we're moving SW events, we'll fix | 
 | 		 * this up later, so allow that. | 
 | 		 */ | 
 | 		if (!move_group && group_leader->ctx != ctx) | 
 | 			goto err_context; | 
 |  | 
 | 		/* | 
 | 		 * Only a group leader can be exclusive or pinned | 
 | 		 */ | 
 | 		if (attr.exclusive || attr.pinned) | 
 | 			goto err_context; | 
 | 	} | 
 |  | 
 | 	if (output_event) { | 
 | 		err = perf_event_set_output(event, output_event); | 
 | 		if (err) | 
 | 			goto err_context; | 
 | 	} | 
 |  | 
 | 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, | 
 | 					f_flags); | 
 | 	if (IS_ERR(event_file)) { | 
 | 		err = PTR_ERR(event_file); | 
 | 		event_file = NULL; | 
 | 		goto err_context; | 
 | 	} | 
 |  | 
 | 	if (move_group) { | 
 | 		gctx = __perf_event_ctx_lock_double(group_leader, ctx); | 
 |  | 
 | 		if (gctx->task == TASK_TOMBSTONE) { | 
 | 			err = -ESRCH; | 
 | 			goto err_locked; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if we raced against another sys_perf_event_open() call | 
 | 		 * moving the software group underneath us. | 
 | 		 */ | 
 | 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { | 
 | 			/* | 
 | 			 * If someone moved the group out from under us, check | 
 | 			 * if this new event wound up on the same ctx, if so | 
 | 			 * its the regular !move_group case, otherwise fail. | 
 | 			 */ | 
 | 			if (gctx != ctx) { | 
 | 				err = -EINVAL; | 
 | 				goto err_locked; | 
 | 			} else { | 
 | 				perf_event_ctx_unlock(group_leader, gctx); | 
 | 				move_group = 0; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		mutex_lock(&ctx->mutex); | 
 | 	} | 
 |  | 
 | 	if (ctx->task == TASK_TOMBSTONE) { | 
 | 		err = -ESRCH; | 
 | 		goto err_locked; | 
 | 	} | 
 |  | 
 | 	if (!perf_event_validate_size(event)) { | 
 | 		err = -E2BIG; | 
 | 		goto err_locked; | 
 | 	} | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Check if the @cpu we're creating an event for is online. | 
 | 		 * | 
 | 		 * We use the perf_cpu_context::ctx::mutex to serialize against | 
 | 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). | 
 | 		 */ | 
 | 		struct perf_cpu_context *cpuctx = | 
 | 			container_of(ctx, struct perf_cpu_context, ctx); | 
 |  | 
 | 		if (!cpuctx->online) { | 
 | 			err = -ENODEV; | 
 | 			goto err_locked; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Must be under the same ctx::mutex as perf_install_in_context(), | 
 | 	 * because we need to serialize with concurrent event creation. | 
 | 	 */ | 
 | 	if (!exclusive_event_installable(event, ctx)) { | 
 | 		/* exclusive and group stuff are assumed mutually exclusive */ | 
 | 		WARN_ON_ONCE(move_group); | 
 |  | 
 | 		err = -EBUSY; | 
 | 		goto err_locked; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 |  | 
 | 	/* | 
 | 	 * This is the point on no return; we cannot fail hereafter. This is | 
 | 	 * where we start modifying current state. | 
 | 	 */ | 
 |  | 
 | 	if (move_group) { | 
 | 		/* | 
 | 		 * See perf_event_ctx_lock() for comments on the details | 
 | 		 * of swizzling perf_event::ctx. | 
 | 		 */ | 
 | 		perf_remove_from_context(group_leader, 0); | 
 | 		put_ctx(gctx); | 
 |  | 
 | 		for_each_sibling_event(sibling, group_leader) { | 
 | 			perf_remove_from_context(sibling, 0); | 
 | 			put_ctx(gctx); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wait for everybody to stop referencing the events through | 
 | 		 * the old lists, before installing it on new lists. | 
 | 		 */ | 
 | 		synchronize_rcu(); | 
 |  | 
 | 		/* | 
 | 		 * Install the group siblings before the group leader. | 
 | 		 * | 
 | 		 * Because a group leader will try and install the entire group | 
 | 		 * (through the sibling list, which is still in-tact), we can | 
 | 		 * end up with siblings installed in the wrong context. | 
 | 		 * | 
 | 		 * By installing siblings first we NO-OP because they're not | 
 | 		 * reachable through the group lists. | 
 | 		 */ | 
 | 		for_each_sibling_event(sibling, group_leader) { | 
 | 			perf_event__state_init(sibling); | 
 | 			perf_install_in_context(ctx, sibling, sibling->cpu); | 
 | 			get_ctx(ctx); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Removing from the context ends up with disabled | 
 | 		 * event. What we want here is event in the initial | 
 | 		 * startup state, ready to be add into new context. | 
 | 		 */ | 
 | 		perf_event__state_init(group_leader); | 
 | 		perf_install_in_context(ctx, group_leader, group_leader->cpu); | 
 | 		get_ctx(ctx); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Precalculate sample_data sizes; do while holding ctx::mutex such | 
 | 	 * that we're serialized against further additions and before | 
 | 	 * perf_install_in_context() which is the point the event is active and | 
 | 	 * can use these values. | 
 | 	 */ | 
 | 	perf_event__header_size(event); | 
 | 	perf_event__id_header_size(event); | 
 |  | 
 | 	event->owner = current; | 
 |  | 
 | 	perf_install_in_context(ctx, event, event->cpu); | 
 | 	perf_unpin_context(ctx); | 
 |  | 
 | 	if (move_group) | 
 | 		perf_event_ctx_unlock(group_leader, gctx); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	if (task) { | 
 | 		mutex_unlock(&task->signal->cred_guard_mutex); | 
 | 		put_task_struct(task); | 
 | 	} | 
 |  | 
 | 	mutex_lock(¤t->perf_event_mutex); | 
 | 	list_add_tail(&event->owner_entry, ¤t->perf_event_list); | 
 | 	mutex_unlock(¤t->perf_event_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Drop the reference on the group_event after placing the | 
 | 	 * new event on the sibling_list. This ensures destruction | 
 | 	 * of the group leader will find the pointer to itself in | 
 | 	 * perf_group_detach(). | 
 | 	 */ | 
 | 	fdput(group); | 
 | 	fd_install(event_fd, event_file); | 
 | 	return event_fd; | 
 |  | 
 | err_locked: | 
 | 	if (move_group) | 
 | 		perf_event_ctx_unlock(group_leader, gctx); | 
 | 	mutex_unlock(&ctx->mutex); | 
 | /* err_file: */ | 
 | 	fput(event_file); | 
 | err_context: | 
 | 	perf_unpin_context(ctx); | 
 | 	put_ctx(ctx); | 
 | err_alloc: | 
 | 	/* | 
 | 	 * If event_file is set, the fput() above will have called ->release() | 
 | 	 * and that will take care of freeing the event. | 
 | 	 */ | 
 | 	if (!event_file) | 
 | 		free_event(event); | 
 | err_cred: | 
 | 	if (task) | 
 | 		mutex_unlock(&task->signal->cred_guard_mutex); | 
 | err_task: | 
 | 	if (task) | 
 | 		put_task_struct(task); | 
 | err_group_fd: | 
 | 	fdput(group); | 
 | err_fd: | 
 | 	put_unused_fd(event_fd); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * perf_event_create_kernel_counter | 
 |  * | 
 |  * @attr: attributes of the counter to create | 
 |  * @cpu: cpu in which the counter is bound | 
 |  * @task: task to profile (NULL for percpu) | 
 |  */ | 
 | struct perf_event * | 
 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, | 
 | 				 struct task_struct *task, | 
 | 				 perf_overflow_handler_t overflow_handler, | 
 | 				 void *context) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Get the target context (task or percpu): | 
 | 	 */ | 
 |  | 
 | 	event = perf_event_alloc(attr, cpu, task, NULL, NULL, | 
 | 				 overflow_handler, context, -1); | 
 | 	if (IS_ERR(event)) { | 
 | 		err = PTR_ERR(event); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* Mark owner so we could distinguish it from user events. */ | 
 | 	event->owner = TASK_TOMBSTONE; | 
 |  | 
 | 	ctx = find_get_context(event->pmu, task, event); | 
 | 	if (IS_ERR(ctx)) { | 
 | 		err = PTR_ERR(ctx); | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(ctx->parent_ctx); | 
 | 	mutex_lock(&ctx->mutex); | 
 | 	if (ctx->task == TASK_TOMBSTONE) { | 
 | 		err = -ESRCH; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (!task) { | 
 | 		/* | 
 | 		 * Check if the @cpu we're creating an event for is online. | 
 | 		 * | 
 | 		 * We use the perf_cpu_context::ctx::mutex to serialize against | 
 | 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). | 
 | 		 */ | 
 | 		struct perf_cpu_context *cpuctx = | 
 | 			container_of(ctx, struct perf_cpu_context, ctx); | 
 | 		if (!cpuctx->online) { | 
 | 			err = -ENODEV; | 
 | 			goto err_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!exclusive_event_installable(event, ctx)) { | 
 | 		err = -EBUSY; | 
 | 		goto err_unlock; | 
 | 	} | 
 |  | 
 | 	perf_install_in_context(ctx, event, cpu); | 
 | 	perf_unpin_context(ctx); | 
 | 	mutex_unlock(&ctx->mutex); | 
 |  | 
 | 	return event; | 
 |  | 
 | err_unlock: | 
 | 	mutex_unlock(&ctx->mutex); | 
 | 	perf_unpin_context(ctx); | 
 | 	put_ctx(ctx); | 
 | err_free: | 
 | 	free_event(event); | 
 | err: | 
 | 	return ERR_PTR(err); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); | 
 |  | 
 | void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) | 
 | { | 
 | 	struct perf_event_context *src_ctx; | 
 | 	struct perf_event_context *dst_ctx; | 
 | 	struct perf_event *event, *tmp; | 
 | 	LIST_HEAD(events); | 
 |  | 
 | 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; | 
 | 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; | 
 |  | 
 | 	/* | 
 | 	 * See perf_event_ctx_lock() for comments on the details | 
 | 	 * of swizzling perf_event::ctx. | 
 | 	 */ | 
 | 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); | 
 | 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list, | 
 | 				 event_entry) { | 
 | 		perf_remove_from_context(event, 0); | 
 | 		unaccount_event_cpu(event, src_cpu); | 
 | 		put_ctx(src_ctx); | 
 | 		list_add(&event->migrate_entry, &events); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wait for the events to quiesce before re-instating them. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 |  | 
 | 	/* | 
 | 	 * Re-instate events in 2 passes. | 
 | 	 * | 
 | 	 * Skip over group leaders and only install siblings on this first | 
 | 	 * pass, siblings will not get enabled without a leader, however a | 
 | 	 * leader will enable its siblings, even if those are still on the old | 
 | 	 * context. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) { | 
 | 		if (event->group_leader == event) | 
 | 			continue; | 
 |  | 
 | 		list_del(&event->migrate_entry); | 
 | 		if (event->state >= PERF_EVENT_STATE_OFF) | 
 | 			event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 		account_event_cpu(event, dst_cpu); | 
 | 		perf_install_in_context(dst_ctx, event, dst_cpu); | 
 | 		get_ctx(dst_ctx); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Once all the siblings are setup properly, install the group leaders | 
 | 	 * to make it go. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) { | 
 | 		list_del(&event->migrate_entry); | 
 | 		if (event->state >= PERF_EVENT_STATE_OFF) | 
 | 			event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 		account_event_cpu(event, dst_cpu); | 
 | 		perf_install_in_context(dst_ctx, event, dst_cpu); | 
 | 		get_ctx(dst_ctx); | 
 | 	} | 
 | 	mutex_unlock(&dst_ctx->mutex); | 
 | 	mutex_unlock(&src_ctx->mutex); | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); | 
 |  | 
 | static void sync_child_event(struct perf_event *child_event, | 
 | 			       struct task_struct *child) | 
 | { | 
 | 	struct perf_event *parent_event = child_event->parent; | 
 | 	u64 child_val; | 
 |  | 
 | 	if (child_event->attr.inherit_stat) | 
 | 		perf_event_read_event(child_event, child); | 
 |  | 
 | 	child_val = perf_event_count(child_event); | 
 |  | 
 | 	/* | 
 | 	 * Add back the child's count to the parent's count: | 
 | 	 */ | 
 | 	atomic64_add(child_val, &parent_event->child_count); | 
 | 	atomic64_add(child_event->total_time_enabled, | 
 | 		     &parent_event->child_total_time_enabled); | 
 | 	atomic64_add(child_event->total_time_running, | 
 | 		     &parent_event->child_total_time_running); | 
 | } | 
 |  | 
 | static void | 
 | perf_event_exit_event(struct perf_event *child_event, | 
 | 		      struct perf_event_context *child_ctx, | 
 | 		      struct task_struct *child) | 
 | { | 
 | 	struct perf_event *parent_event = child_event->parent; | 
 |  | 
 | 	/* | 
 | 	 * Do not destroy the 'original' grouping; because of the context | 
 | 	 * switch optimization the original events could've ended up in a | 
 | 	 * random child task. | 
 | 	 * | 
 | 	 * If we were to destroy the original group, all group related | 
 | 	 * operations would cease to function properly after this random | 
 | 	 * child dies. | 
 | 	 * | 
 | 	 * Do destroy all inherited groups, we don't care about those | 
 | 	 * and being thorough is better. | 
 | 	 */ | 
 | 	raw_spin_lock_irq(&child_ctx->lock); | 
 | 	WARN_ON_ONCE(child_ctx->is_active); | 
 |  | 
 | 	if (parent_event) | 
 | 		perf_group_detach(child_event); | 
 | 	list_del_event(child_event, child_ctx); | 
 | 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ | 
 | 	raw_spin_unlock_irq(&child_ctx->lock); | 
 |  | 
 | 	/* | 
 | 	 * Parent events are governed by their filedesc, retain them. | 
 | 	 */ | 
 | 	if (!parent_event) { | 
 | 		perf_event_wakeup(child_event); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * Child events can be cleaned up. | 
 | 	 */ | 
 |  | 
 | 	sync_child_event(child_event, child); | 
 |  | 
 | 	/* | 
 | 	 * Remove this event from the parent's list | 
 | 	 */ | 
 | 	WARN_ON_ONCE(parent_event->ctx->parent_ctx); | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	list_del_init(&child_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Kick perf_poll() for is_event_hup(). | 
 | 	 */ | 
 | 	perf_event_wakeup(parent_event); | 
 | 	free_event(child_event); | 
 | 	put_event(parent_event); | 
 | } | 
 |  | 
 | static void perf_event_exit_task_context(struct task_struct *child, int ctxn) | 
 | { | 
 | 	struct perf_event_context *child_ctx, *clone_ctx = NULL; | 
 | 	struct perf_event *child_event, *next; | 
 |  | 
 | 	WARN_ON_ONCE(child != current); | 
 |  | 
 | 	child_ctx = perf_pin_task_context(child, ctxn); | 
 | 	if (!child_ctx) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * In order to reduce the amount of tricky in ctx tear-down, we hold | 
 | 	 * ctx::mutex over the entire thing. This serializes against almost | 
 | 	 * everything that wants to access the ctx. | 
 | 	 * | 
 | 	 * The exception is sys_perf_event_open() / | 
 | 	 * perf_event_create_kernel_count() which does find_get_context() | 
 | 	 * without ctx::mutex (it cannot because of the move_group double mutex | 
 | 	 * lock thing). See the comments in perf_install_in_context(). | 
 | 	 */ | 
 | 	mutex_lock(&child_ctx->mutex); | 
 |  | 
 | 	/* | 
 | 	 * In a single ctx::lock section, de-schedule the events and detach the | 
 | 	 * context from the task such that we cannot ever get it scheduled back | 
 | 	 * in. | 
 | 	 */ | 
 | 	raw_spin_lock_irq(&child_ctx->lock); | 
 | 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); | 
 |  | 
 | 	/* | 
 | 	 * Now that the context is inactive, destroy the task <-> ctx relation | 
 | 	 * and mark the context dead. | 
 | 	 */ | 
 | 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); | 
 | 	put_ctx(child_ctx); /* cannot be last */ | 
 | 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); | 
 | 	put_task_struct(current); /* cannot be last */ | 
 |  | 
 | 	clone_ctx = unclone_ctx(child_ctx); | 
 | 	raw_spin_unlock_irq(&child_ctx->lock); | 
 |  | 
 | 	if (clone_ctx) | 
 | 		put_ctx(clone_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Report the task dead after unscheduling the events so that we | 
 | 	 * won't get any samples after PERF_RECORD_EXIT. We can however still | 
 | 	 * get a few PERF_RECORD_READ events. | 
 | 	 */ | 
 | 	perf_event_task(child, child_ctx, 0); | 
 |  | 
 | 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) | 
 | 		perf_event_exit_event(child_event, child_ctx, child); | 
 |  | 
 | 	mutex_unlock(&child_ctx->mutex); | 
 |  | 
 | 	put_ctx(child_ctx); | 
 | } | 
 |  | 
 | /* | 
 |  * When a child task exits, feed back event values to parent events. | 
 |  * | 
 |  * Can be called with cred_guard_mutex held when called from | 
 |  * install_exec_creds(). | 
 |  */ | 
 | void perf_event_exit_task(struct task_struct *child) | 
 | { | 
 | 	struct perf_event *event, *tmp; | 
 | 	int ctxn; | 
 |  | 
 | 	mutex_lock(&child->perf_event_mutex); | 
 | 	list_for_each_entry_safe(event, tmp, &child->perf_event_list, | 
 | 				 owner_entry) { | 
 | 		list_del_init(&event->owner_entry); | 
 |  | 
 | 		/* | 
 | 		 * Ensure the list deletion is visible before we clear | 
 | 		 * the owner, closes a race against perf_release() where | 
 | 		 * we need to serialize on the owner->perf_event_mutex. | 
 | 		 */ | 
 | 		smp_store_release(&event->owner, NULL); | 
 | 	} | 
 | 	mutex_unlock(&child->perf_event_mutex); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		perf_event_exit_task_context(child, ctxn); | 
 |  | 
 | 	/* | 
 | 	 * The perf_event_exit_task_context calls perf_event_task | 
 | 	 * with child's task_ctx, which generates EXIT events for | 
 | 	 * child contexts and sets child->perf_event_ctxp[] to NULL. | 
 | 	 * At this point we need to send EXIT events to cpu contexts. | 
 | 	 */ | 
 | 	perf_event_task(child, NULL, 0); | 
 | } | 
 |  | 
 | static void perf_free_event(struct perf_event *event, | 
 | 			    struct perf_event_context *ctx) | 
 | { | 
 | 	struct perf_event *parent = event->parent; | 
 |  | 
 | 	if (WARN_ON_ONCE(!parent)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&parent->child_mutex); | 
 | 	list_del_init(&event->child_list); | 
 | 	mutex_unlock(&parent->child_mutex); | 
 |  | 
 | 	put_event(parent); | 
 |  | 
 | 	raw_spin_lock_irq(&ctx->lock); | 
 | 	perf_group_detach(event); | 
 | 	list_del_event(event, ctx); | 
 | 	raw_spin_unlock_irq(&ctx->lock); | 
 | 	free_event(event); | 
 | } | 
 |  | 
 | /* | 
 |  * Free an unexposed, unused context as created by inheritance by | 
 |  * perf_event_init_task below, used by fork() in case of fail. | 
 |  * | 
 |  * Not all locks are strictly required, but take them anyway to be nice and | 
 |  * help out with the lockdep assertions. | 
 |  */ | 
 | void perf_event_free_task(struct task_struct *task) | 
 | { | 
 | 	struct perf_event_context *ctx; | 
 | 	struct perf_event *event, *tmp; | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ctx = task->perf_event_ctxp[ctxn]; | 
 | 		if (!ctx) | 
 | 			continue; | 
 |  | 
 | 		mutex_lock(&ctx->mutex); | 
 | 		raw_spin_lock_irq(&ctx->lock); | 
 | 		/* | 
 | 		 * Destroy the task <-> ctx relation and mark the context dead. | 
 | 		 * | 
 | 		 * This is important because even though the task hasn't been | 
 | 		 * exposed yet the context has been (through child_list). | 
 | 		 */ | 
 | 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); | 
 | 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE); | 
 | 		put_task_struct(task); /* cannot be last */ | 
 | 		raw_spin_unlock_irq(&ctx->lock); | 
 |  | 
 | 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) | 
 | 			perf_free_event(event, ctx); | 
 |  | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 		put_ctx(ctx); | 
 | 	} | 
 | } | 
 |  | 
 | void perf_event_delayed_put(struct task_struct *task) | 
 | { | 
 | 	int ctxn; | 
 |  | 
 | 	for_each_task_context_nr(ctxn) | 
 | 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); | 
 | } | 
 |  | 
 | struct file *perf_event_get(unsigned int fd) | 
 | { | 
 | 	struct file *file; | 
 |  | 
 | 	file = fget_raw(fd); | 
 | 	if (!file) | 
 | 		return ERR_PTR(-EBADF); | 
 |  | 
 | 	if (file->f_op != &perf_fops) { | 
 | 		fput(file); | 
 | 		return ERR_PTR(-EBADF); | 
 | 	} | 
 |  | 
 | 	return file; | 
 | } | 
 |  | 
 | const struct perf_event_attr *perf_event_attrs(struct perf_event *event) | 
 | { | 
 | 	if (!event) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	return &event->attr; | 
 | } | 
 |  | 
 | /* | 
 |  * Inherit a event from parent task to child task. | 
 |  * | 
 |  * Returns: | 
 |  *  - valid pointer on success | 
 |  *  - NULL for orphaned events | 
 |  *  - IS_ERR() on error | 
 |  */ | 
 | static struct perf_event * | 
 | inherit_event(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event *group_leader, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	enum perf_event_state parent_state = parent_event->state; | 
 | 	struct perf_event *child_event; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Instead of creating recursive hierarchies of events, | 
 | 	 * we link inherited events back to the original parent, | 
 | 	 * which has a filp for sure, which we use as the reference | 
 | 	 * count: | 
 | 	 */ | 
 | 	if (parent_event->parent) | 
 | 		parent_event = parent_event->parent; | 
 |  | 
 | 	child_event = perf_event_alloc(&parent_event->attr, | 
 | 					   parent_event->cpu, | 
 | 					   child, | 
 | 					   group_leader, parent_event, | 
 | 					   NULL, NULL, -1); | 
 | 	if (IS_ERR(child_event)) | 
 | 		return child_event; | 
 |  | 
 |  | 
 | 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && | 
 | 	    !child_ctx->task_ctx_data) { | 
 | 		struct pmu *pmu = child_event->pmu; | 
 |  | 
 | 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, | 
 | 						   GFP_KERNEL); | 
 | 		if (!child_ctx->task_ctx_data) { | 
 | 			free_event(child_event); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list) | 
 | 	 * must be under the same lock in order to serialize against | 
 | 	 * perf_event_release_kernel(), such that either we must observe | 
 | 	 * is_orphaned_event() or they will observe us on the child_list. | 
 | 	 */ | 
 | 	mutex_lock(&parent_event->child_mutex); | 
 | 	if (is_orphaned_event(parent_event) || | 
 | 	    !atomic_long_inc_not_zero(&parent_event->refcount)) { | 
 | 		mutex_unlock(&parent_event->child_mutex); | 
 | 		/* task_ctx_data is freed with child_ctx */ | 
 | 		free_event(child_event); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	get_ctx(child_ctx); | 
 |  | 
 | 	/* | 
 | 	 * Make the child state follow the state of the parent event, | 
 | 	 * not its attr.disabled bit.  We hold the parent's mutex, | 
 | 	 * so we won't race with perf_event_{en, dis}able_family. | 
 | 	 */ | 
 | 	if (parent_state >= PERF_EVENT_STATE_INACTIVE) | 
 | 		child_event->state = PERF_EVENT_STATE_INACTIVE; | 
 | 	else | 
 | 		child_event->state = PERF_EVENT_STATE_OFF; | 
 |  | 
 | 	if (parent_event->attr.freq) { | 
 | 		u64 sample_period = parent_event->hw.sample_period; | 
 | 		struct hw_perf_event *hwc = &child_event->hw; | 
 |  | 
 | 		hwc->sample_period = sample_period; | 
 | 		hwc->last_period   = sample_period; | 
 |  | 
 | 		local64_set(&hwc->period_left, sample_period); | 
 | 	} | 
 |  | 
 | 	child_event->ctx = child_ctx; | 
 | 	child_event->overflow_handler = parent_event->overflow_handler; | 
 | 	child_event->overflow_handler_context | 
 | 		= parent_event->overflow_handler_context; | 
 |  | 
 | 	/* | 
 | 	 * Precalculate sample_data sizes | 
 | 	 */ | 
 | 	perf_event__header_size(child_event); | 
 | 	perf_event__id_header_size(child_event); | 
 |  | 
 | 	/* | 
 | 	 * Link it up in the child's context: | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&child_ctx->lock, flags); | 
 | 	add_event_to_ctx(child_event, child_ctx); | 
 | 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Link this into the parent event's child list | 
 | 	 */ | 
 | 	list_add_tail(&child_event->child_list, &parent_event->child_list); | 
 | 	mutex_unlock(&parent_event->child_mutex); | 
 |  | 
 | 	return child_event; | 
 | } | 
 |  | 
 | /* | 
 |  * Inherits an event group. | 
 |  * | 
 |  * This will quietly suppress orphaned events; !inherit_event() is not an error. | 
 |  * This matches with perf_event_release_kernel() removing all child events. | 
 |  * | 
 |  * Returns: | 
 |  *  - 0 on success | 
 |  *  - <0 on error | 
 |  */ | 
 | static int inherit_group(struct perf_event *parent_event, | 
 | 	      struct task_struct *parent, | 
 | 	      struct perf_event_context *parent_ctx, | 
 | 	      struct task_struct *child, | 
 | 	      struct perf_event_context *child_ctx) | 
 | { | 
 | 	struct perf_event *leader; | 
 | 	struct perf_event *sub; | 
 | 	struct perf_event *child_ctr; | 
 |  | 
 | 	leader = inherit_event(parent_event, parent, parent_ctx, | 
 | 				 child, NULL, child_ctx); | 
 | 	if (IS_ERR(leader)) | 
 | 		return PTR_ERR(leader); | 
 | 	/* | 
 | 	 * @leader can be NULL here because of is_orphaned_event(). In this | 
 | 	 * case inherit_event() will create individual events, similar to what | 
 | 	 * perf_group_detach() would do anyway. | 
 | 	 */ | 
 | 	for_each_sibling_event(sub, parent_event) { | 
 | 		child_ctr = inherit_event(sub, parent, parent_ctx, | 
 | 					    child, leader, child_ctx); | 
 | 		if (IS_ERR(child_ctr)) | 
 | 			return PTR_ERR(child_ctr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Creates the child task context and tries to inherit the event-group. | 
 |  * | 
 |  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave | 
 |  * inherited_all set when we 'fail' to inherit an orphaned event; this is | 
 |  * consistent with perf_event_release_kernel() removing all child events. | 
 |  * | 
 |  * Returns: | 
 |  *  - 0 on success | 
 |  *  - <0 on error | 
 |  */ | 
 | static int | 
 | inherit_task_group(struct perf_event *event, struct task_struct *parent, | 
 | 		   struct perf_event_context *parent_ctx, | 
 | 		   struct task_struct *child, int ctxn, | 
 | 		   int *inherited_all) | 
 | { | 
 | 	int ret; | 
 | 	struct perf_event_context *child_ctx; | 
 |  | 
 | 	if (!event->attr.inherit) { | 
 | 		*inherited_all = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	child_ctx = child->perf_event_ctxp[ctxn]; | 
 | 	if (!child_ctx) { | 
 | 		/* | 
 | 		 * This is executed from the parent task context, so | 
 | 		 * inherit events that have been marked for cloning. | 
 | 		 * First allocate and initialize a context for the | 
 | 		 * child. | 
 | 		 */ | 
 | 		child_ctx = alloc_perf_context(parent_ctx->pmu, child); | 
 | 		if (!child_ctx) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		child->perf_event_ctxp[ctxn] = child_ctx; | 
 | 	} | 
 |  | 
 | 	ret = inherit_group(event, parent, parent_ctx, | 
 | 			    child, child_ctx); | 
 |  | 
 | 	if (ret) | 
 | 		*inherited_all = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in task_struct | 
 |  */ | 
 | static int perf_event_init_context(struct task_struct *child, int ctxn) | 
 | { | 
 | 	struct perf_event_context *child_ctx, *parent_ctx; | 
 | 	struct perf_event_context *cloned_ctx; | 
 | 	struct perf_event *event; | 
 | 	struct task_struct *parent = current; | 
 | 	int inherited_all = 1; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (likely(!parent->perf_event_ctxp[ctxn])) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * If the parent's context is a clone, pin it so it won't get | 
 | 	 * swapped under us. | 
 | 	 */ | 
 | 	parent_ctx = perf_pin_task_context(parent, ctxn); | 
 | 	if (!parent_ctx) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * No need to check if parent_ctx != NULL here; since we saw | 
 | 	 * it non-NULL earlier, the only reason for it to become NULL | 
 | 	 * is if we exit, and since we're currently in the middle of | 
 | 	 * a fork we can't be exiting at the same time. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Lock the parent list. No need to lock the child - not PID | 
 | 	 * hashed yet and not running, so nobody can access it. | 
 | 	 */ | 
 | 	mutex_lock(&parent_ctx->mutex); | 
 |  | 
 | 	/* | 
 | 	 * We dont have to disable NMIs - we are only looking at | 
 | 	 * the list, not manipulating it: | 
 | 	 */ | 
 | 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { | 
 | 		ret = inherit_task_group(event, parent, parent_ctx, | 
 | 					 child, ctxn, &inherited_all); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't hold ctx->lock when iterating the ->flexible_group list due | 
 | 	 * to allocations, but we need to prevent rotation because | 
 | 	 * rotate_ctx() will change the list from interrupt context. | 
 | 	 */ | 
 | 	raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
 | 	parent_ctx->rotate_disable = 1; | 
 | 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
 |  | 
 | 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { | 
 | 		ret = inherit_task_group(event, parent, parent_ctx, | 
 | 					 child, ctxn, &inherited_all); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&parent_ctx->lock, flags); | 
 | 	parent_ctx->rotate_disable = 0; | 
 |  | 
 | 	child_ctx = child->perf_event_ctxp[ctxn]; | 
 |  | 
 | 	if (child_ctx && inherited_all) { | 
 | 		/* | 
 | 		 * Mark the child context as a clone of the parent | 
 | 		 * context, or of whatever the parent is a clone of. | 
 | 		 * | 
 | 		 * Note that if the parent is a clone, the holding of | 
 | 		 * parent_ctx->lock avoids it from being uncloned. | 
 | 		 */ | 
 | 		cloned_ctx = parent_ctx->parent_ctx; | 
 | 		if (cloned_ctx) { | 
 | 			child_ctx->parent_ctx = cloned_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->parent_gen; | 
 | 		} else { | 
 | 			child_ctx->parent_ctx = parent_ctx; | 
 | 			child_ctx->parent_gen = parent_ctx->generation; | 
 | 		} | 
 | 		get_ctx(child_ctx->parent_ctx); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); | 
 | out_unlock: | 
 | 	mutex_unlock(&parent_ctx->mutex); | 
 |  | 
 | 	perf_unpin_context(parent_ctx); | 
 | 	put_ctx(parent_ctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the perf_event context in task_struct | 
 |  */ | 
 | int perf_event_init_task(struct task_struct *child) | 
 | { | 
 | 	int ctxn, ret; | 
 |  | 
 | 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); | 
 | 	mutex_init(&child->perf_event_mutex); | 
 | 	INIT_LIST_HEAD(&child->perf_event_list); | 
 |  | 
 | 	for_each_task_context_nr(ctxn) { | 
 | 		ret = perf_event_init_context(child, ctxn); | 
 | 		if (ret) { | 
 | 			perf_event_free_task(child); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init perf_event_init_all_cpus(void) | 
 | { | 
 | 	struct swevent_htable *swhash; | 
 | 	int cpu; | 
 |  | 
 | 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		swhash = &per_cpu(swevent_htable, cpu); | 
 | 		mutex_init(&swhash->hlist_mutex); | 
 | 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); | 
 |  | 
 | 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); | 
 | 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 | 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); | 
 | #endif | 
 | 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | void perf_swevent_init_cpu(unsigned int cpu) | 
 | { | 
 | 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); | 
 |  | 
 | 	mutex_lock(&swhash->hlist_mutex); | 
 | 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { | 
 | 		struct swevent_hlist *hlist; | 
 |  | 
 | 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); | 
 | 		WARN_ON(!hlist); | 
 | 		rcu_assign_pointer(swhash->swevent_hlist, hlist); | 
 | 	} | 
 | 	mutex_unlock(&swhash->hlist_mutex); | 
 | } | 
 |  | 
 | #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE | 
 | static void __perf_event_exit_context(void *__info) | 
 | { | 
 | 	struct perf_event_context *ctx = __info; | 
 | 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); | 
 | 	struct perf_event *event; | 
 |  | 
 | 	raw_spin_lock(&ctx->lock); | 
 | 	ctx_sched_out(ctx, cpuctx, EVENT_TIME); | 
 | 	list_for_each_entry(event, &ctx->event_list, event_entry) | 
 | 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); | 
 | 	raw_spin_unlock(&ctx->lock); | 
 | } | 
 |  | 
 | static void perf_event_exit_cpu_context(int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct pmu *pmu; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		ctx = &cpuctx->ctx; | 
 |  | 
 | 		mutex_lock(&ctx->mutex); | 
 | 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); | 
 | 		cpuctx->online = 0; | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 	} | 
 | 	cpumask_clear_cpu(cpu, perf_online_mask); | 
 | 	mutex_unlock(&pmus_lock); | 
 | } | 
 | #else | 
 |  | 
 | static void perf_event_exit_cpu_context(int cpu) { } | 
 |  | 
 | #endif | 
 |  | 
 | int perf_event_init_cpu(unsigned int cpu) | 
 | { | 
 | 	struct perf_cpu_context *cpuctx; | 
 | 	struct perf_event_context *ctx; | 
 | 	struct pmu *pmu; | 
 |  | 
 | 	perf_swevent_init_cpu(cpu); | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 | 	cpumask_set_cpu(cpu, perf_online_mask); | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); | 
 | 		ctx = &cpuctx->ctx; | 
 |  | 
 | 		mutex_lock(&ctx->mutex); | 
 | 		cpuctx->online = 1; | 
 | 		mutex_unlock(&ctx->mutex); | 
 | 	} | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int perf_event_exit_cpu(unsigned int cpu) | 
 | { | 
 | 	perf_event_exit_cpu_context(cpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		perf_event_exit_cpu(cpu); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Run the perf reboot notifier at the very last possible moment so that | 
 |  * the generic watchdog code runs as long as possible. | 
 |  */ | 
 | static struct notifier_block perf_reboot_notifier = { | 
 | 	.notifier_call = perf_reboot, | 
 | 	.priority = INT_MIN, | 
 | }; | 
 |  | 
 | void __init perf_event_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	idr_init(&pmu_idr); | 
 |  | 
 | 	perf_event_init_all_cpus(); | 
 | 	init_srcu_struct(&pmus_srcu); | 
 | 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); | 
 | 	perf_pmu_register(&perf_cpu_clock, NULL, -1); | 
 | 	perf_pmu_register(&perf_task_clock, NULL, -1); | 
 | 	perf_tp_register(); | 
 | 	perf_event_init_cpu(smp_processor_id()); | 
 | 	register_reboot_notifier(&perf_reboot_notifier); | 
 |  | 
 | 	ret = init_hw_breakpoint(); | 
 | 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret); | 
 |  | 
 | 	/* | 
 | 	 * Build time assertion that we keep the data_head at the intended | 
 | 	 * location.  IOW, validation we got the __reserved[] size right. | 
 | 	 */ | 
 | 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) | 
 | 		     != 1024); | 
 | } | 
 |  | 
 | ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, | 
 | 			      char *page) | 
 | { | 
 | 	struct perf_pmu_events_attr *pmu_attr = | 
 | 		container_of(attr, struct perf_pmu_events_attr, attr); | 
 |  | 
 | 	if (pmu_attr->event_str) | 
 | 		return sprintf(page, "%s\n", pmu_attr->event_str); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(perf_event_sysfs_show); | 
 |  | 
 | static int __init perf_event_sysfs_init(void) | 
 | { | 
 | 	struct pmu *pmu; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&pmus_lock); | 
 |  | 
 | 	ret = bus_register(&pmu_bus); | 
 | 	if (ret) | 
 | 		goto unlock; | 
 |  | 
 | 	list_for_each_entry(pmu, &pmus, entry) { | 
 | 		if (!pmu->name || pmu->type < 0) | 
 | 			continue; | 
 |  | 
 | 		ret = pmu_dev_alloc(pmu); | 
 | 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); | 
 | 	} | 
 | 	pmu_bus_running = 1; | 
 | 	ret = 0; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&pmus_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | device_initcall(perf_event_sysfs_init); | 
 |  | 
 | #ifdef CONFIG_CGROUP_PERF | 
 | static struct cgroup_subsys_state * | 
 | perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
 | { | 
 | 	struct perf_cgroup *jc; | 
 |  | 
 | 	jc = kzalloc(sizeof(*jc), GFP_KERNEL); | 
 | 	if (!jc) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	jc->info = alloc_percpu(struct perf_cgroup_info); | 
 | 	if (!jc->info) { | 
 | 		kfree(jc); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	return &jc->css; | 
 | } | 
 |  | 
 | static void perf_cgroup_css_free(struct cgroup_subsys_state *css) | 
 | { | 
 | 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); | 
 |  | 
 | 	free_percpu(jc->info); | 
 | 	kfree(jc); | 
 | } | 
 |  | 
 | static int __perf_cgroup_move(void *info) | 
 | { | 
 | 	struct task_struct *task = info; | 
 | 	rcu_read_lock(); | 
 | 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); | 
 | 	rcu_read_unlock(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void perf_cgroup_attach(struct cgroup_taskset *tset) | 
 | { | 
 | 	struct task_struct *task; | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	cgroup_taskset_for_each(task, css, tset) | 
 | 		task_function_call(task, __perf_cgroup_move, task); | 
 | } | 
 |  | 
 | struct cgroup_subsys perf_event_cgrp_subsys = { | 
 | 	.css_alloc	= perf_cgroup_css_alloc, | 
 | 	.css_free	= perf_cgroup_css_free, | 
 | 	.attach		= perf_cgroup_attach, | 
 | 	/* | 
 | 	 * Implicitly enable on dfl hierarchy so that perf events can | 
 | 	 * always be filtered by cgroup2 path as long as perf_event | 
 | 	 * controller is not mounted on a legacy hierarchy. | 
 | 	 */ | 
 | 	.implicit_on_dfl = true, | 
 | 	.threaded	= true, | 
 | }; | 
 | #endif /* CONFIG_CGROUP_PERF */ |