|  | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/sysctl.h> | 
 | #include <linux/sched/rt.h> | 
 | #include <linux/sched/deadline.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/irq_work.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "cpupri.h" | 
 | #include "cpudeadline.h" | 
 | #include "cpuacct.h" | 
 |  | 
 | struct rq; | 
 | struct cpuidle_state; | 
 |  | 
 | /* task_struct::on_rq states: */ | 
 | #define TASK_ON_RQ_QUEUED	1 | 
 | #define TASK_ON_RQ_MIGRATING	2 | 
 |  | 
 | extern __read_mostly int scheduler_running; | 
 |  | 
 | extern unsigned long calc_load_update; | 
 | extern atomic_long_t calc_load_tasks; | 
 |  | 
 | extern long calc_load_fold_active(struct rq *this_rq); | 
 | extern void update_cpu_load_active(struct rq *this_rq); | 
 |  | 
 | /* | 
 |  * Helpers for converting nanosecond timing to jiffy resolution | 
 |  */ | 
 | #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 
 |  | 
 | /* | 
 |  * Increase resolution of nice-level calculations for 64-bit architectures. | 
 |  * The extra resolution improves shares distribution and load balancing of | 
 |  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup | 
 |  * hierarchies, especially on larger systems. This is not a user-visible change | 
 |  * and does not change the user-interface for setting shares/weights. | 
 |  * | 
 |  * We increase resolution only if we have enough bits to allow this increased | 
 |  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution | 
 |  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the | 
 |  * increased costs. | 
 |  */ | 
 | #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */ | 
 | # define SCHED_LOAD_RESOLUTION	10 | 
 | # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION) | 
 | # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION) | 
 | #else | 
 | # define SCHED_LOAD_RESOLUTION	0 | 
 | # define scale_load(w)		(w) | 
 | # define scale_load_down(w)	(w) | 
 | #endif | 
 |  | 
 | #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION) | 
 | #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT) | 
 |  | 
 | #define NICE_0_LOAD		SCHED_LOAD_SCALE | 
 | #define NICE_0_SHIFT		SCHED_LOAD_SHIFT | 
 |  | 
 | /* | 
 |  * Single value that decides SCHED_DEADLINE internal math precision. | 
 |  * 10 -> just above 1us | 
 |  * 9  -> just above 0.5us | 
 |  */ | 
 | #define DL_SCALE (10) | 
 |  | 
 | /* | 
 |  * These are the 'tuning knobs' of the scheduler: | 
 |  */ | 
 |  | 
 | /* | 
 |  * single value that denotes runtime == period, ie unlimited time. | 
 |  */ | 
 | #define RUNTIME_INF	((u64)~0ULL) | 
 |  | 
 | static inline int fair_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_NORMAL || policy == SCHED_BATCH; | 
 | } | 
 |  | 
 | static inline int rt_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_FIFO || policy == SCHED_RR; | 
 | } | 
 |  | 
 | static inline int dl_policy(int policy) | 
 | { | 
 | 	return policy == SCHED_DEADLINE; | 
 | } | 
 |  | 
 | static inline int task_has_rt_policy(struct task_struct *p) | 
 | { | 
 | 	return rt_policy(p->policy); | 
 | } | 
 |  | 
 | static inline int task_has_dl_policy(struct task_struct *p) | 
 | { | 
 | 	return dl_policy(p->policy); | 
 | } | 
 |  | 
 | static inline bool dl_time_before(u64 a, u64 b) | 
 | { | 
 | 	return (s64)(a - b) < 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Tells if entity @a should preempt entity @b. | 
 |  */ | 
 | static inline bool | 
 | dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) | 
 | { | 
 | 	return dl_time_before(a->deadline, b->deadline); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the priority-queue data structure of the RT scheduling class: | 
 |  */ | 
 | struct rt_prio_array { | 
 | 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
 | 	struct list_head queue[MAX_RT_PRIO]; | 
 | }; | 
 |  | 
 | struct rt_bandwidth { | 
 | 	/* nests inside the rq lock: */ | 
 | 	raw_spinlock_t		rt_runtime_lock; | 
 | 	ktime_t			rt_period; | 
 | 	u64			rt_runtime; | 
 | 	struct hrtimer		rt_period_timer; | 
 | }; | 
 |  | 
 | void __dl_clear_params(struct task_struct *p); | 
 |  | 
 | /* | 
 |  * To keep the bandwidth of -deadline tasks and groups under control | 
 |  * we need some place where: | 
 |  *  - store the maximum -deadline bandwidth of the system (the group); | 
 |  *  - cache the fraction of that bandwidth that is currently allocated. | 
 |  * | 
 |  * This is all done in the data structure below. It is similar to the | 
 |  * one used for RT-throttling (rt_bandwidth), with the main difference | 
 |  * that, since here we are only interested in admission control, we | 
 |  * do not decrease any runtime while the group "executes", neither we | 
 |  * need a timer to replenish it. | 
 |  * | 
 |  * With respect to SMP, the bandwidth is given on a per-CPU basis, | 
 |  * meaning that: | 
 |  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; | 
 |  *  - dl_total_bw array contains, in the i-eth element, the currently | 
 |  *    allocated bandwidth on the i-eth CPU. | 
 |  * Moreover, groups consume bandwidth on each CPU, while tasks only | 
 |  * consume bandwidth on the CPU they're running on. | 
 |  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw | 
 |  * that will be shown the next time the proc or cgroup controls will | 
 |  * be red. It on its turn can be changed by writing on its own | 
 |  * control. | 
 |  */ | 
 | struct dl_bandwidth { | 
 | 	raw_spinlock_t dl_runtime_lock; | 
 | 	u64 dl_runtime; | 
 | 	u64 dl_period; | 
 | }; | 
 |  | 
 | static inline int dl_bandwidth_enabled(void) | 
 | { | 
 | 	return sysctl_sched_rt_runtime >= 0; | 
 | } | 
 |  | 
 | extern struct dl_bw *dl_bw_of(int i); | 
 |  | 
 | struct dl_bw { | 
 | 	raw_spinlock_t lock; | 
 | 	u64 bw, total_bw; | 
 | }; | 
 |  | 
 | static inline | 
 | void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) | 
 | { | 
 | 	dl_b->total_bw -= tsk_bw; | 
 | } | 
 |  | 
 | static inline | 
 | void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) | 
 | { | 
 | 	dl_b->total_bw += tsk_bw; | 
 | } | 
 |  | 
 | static inline | 
 | bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) | 
 | { | 
 | 	return dl_b->bw != -1 && | 
 | 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; | 
 | } | 
 |  | 
 | extern struct mutex sched_domains_mutex; | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | #include <linux/cgroup.h> | 
 |  | 
 | struct cfs_rq; | 
 | struct rt_rq; | 
 |  | 
 | extern struct list_head task_groups; | 
 |  | 
 | struct cfs_bandwidth { | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | 	raw_spinlock_t lock; | 
 | 	ktime_t period; | 
 | 	u64 quota, runtime; | 
 | 	s64 hierarchical_quota; | 
 | 	u64 runtime_expires; | 
 |  | 
 | 	int idle, timer_active; | 
 | 	struct hrtimer period_timer, slack_timer; | 
 | 	struct list_head throttled_cfs_rq; | 
 |  | 
 | 	/* statistics */ | 
 | 	int nr_periods, nr_throttled; | 
 | 	u64 throttled_time; | 
 | #endif | 
 | }; | 
 |  | 
 | /* task group related information */ | 
 | struct task_group { | 
 | 	struct cgroup_subsys_state css; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* schedulable entities of this group on each cpu */ | 
 | 	struct sched_entity **se; | 
 | 	/* runqueue "owned" by this group on each cpu */ | 
 | 	struct cfs_rq **cfs_rq; | 
 | 	unsigned long shares; | 
 |  | 
 | #ifdef	CONFIG_SMP | 
 | 	atomic_long_t load_avg; | 
 | 	atomic_t runnable_avg; | 
 | #endif | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	struct sched_rt_entity **rt_se; | 
 | 	struct rt_rq **rt_rq; | 
 |  | 
 | 	struct rt_bandwidth rt_bandwidth; | 
 | #endif | 
 |  | 
 | 	struct rcu_head rcu; | 
 | 	struct list_head list; | 
 |  | 
 | 	struct task_group *parent; | 
 | 	struct list_head siblings; | 
 | 	struct list_head children; | 
 |  | 
 | #ifdef CONFIG_SCHED_AUTOGROUP | 
 | 	struct autogroup *autogroup; | 
 | #endif | 
 |  | 
 | 	struct cfs_bandwidth cfs_bandwidth; | 
 | }; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD | 
 |  | 
 | /* | 
 |  * A weight of 0 or 1 can cause arithmetics problems. | 
 |  * A weight of a cfs_rq is the sum of weights of which entities | 
 |  * are queued on this cfs_rq, so a weight of a entity should not be | 
 |  * too large, so as the shares value of a task group. | 
 |  * (The default weight is 1024 - so there's no practical | 
 |  *  limitation from this.) | 
 |  */ | 
 | #define MIN_SHARES	(1UL <<  1) | 
 | #define MAX_SHARES	(1UL << 18) | 
 | #endif | 
 |  | 
 | typedef int (*tg_visitor)(struct task_group *, void *); | 
 |  | 
 | extern int walk_tg_tree_from(struct task_group *from, | 
 | 			     tg_visitor down, tg_visitor up, void *data); | 
 |  | 
 | /* | 
 |  * Iterate the full tree, calling @down when first entering a node and @up when | 
 |  * leaving it for the final time. | 
 |  * | 
 |  * Caller must hold rcu_lock or sufficient equivalent. | 
 |  */ | 
 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 
 | { | 
 | 	return walk_tg_tree_from(&root_task_group, down, up, data); | 
 | } | 
 |  | 
 | extern int tg_nop(struct task_group *tg, void *data); | 
 |  | 
 | extern void free_fair_sched_group(struct task_group *tg); | 
 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); | 
 | extern void unregister_fair_sched_group(struct task_group *tg, int cpu); | 
 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
 | 			struct sched_entity *se, int cpu, | 
 | 			struct sched_entity *parent); | 
 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); | 
 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | 
 |  | 
 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); | 
 | extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); | 
 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); | 
 |  | 
 | extern void free_rt_sched_group(struct task_group *tg); | 
 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); | 
 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
 | 		struct sched_rt_entity *rt_se, int cpu, | 
 | 		struct sched_rt_entity *parent); | 
 |  | 
 | extern struct task_group *sched_create_group(struct task_group *parent); | 
 | extern void sched_online_group(struct task_group *tg, | 
 | 			       struct task_group *parent); | 
 | extern void sched_destroy_group(struct task_group *tg); | 
 | extern void sched_offline_group(struct task_group *tg); | 
 |  | 
 | extern void sched_move_task(struct task_struct *tsk); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); | 
 | #endif | 
 |  | 
 | #else /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | struct cfs_bandwidth { }; | 
 |  | 
 | #endif	/* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | /* CFS-related fields in a runqueue */ | 
 | struct cfs_rq { | 
 | 	struct load_weight load; | 
 | 	unsigned int nr_running, h_nr_running; | 
 |  | 
 | 	u64 exec_clock; | 
 | 	u64 min_vruntime; | 
 | #ifndef CONFIG_64BIT | 
 | 	u64 min_vruntime_copy; | 
 | #endif | 
 |  | 
 | 	struct rb_root tasks_timeline; | 
 | 	struct rb_node *rb_leftmost; | 
 |  | 
 | 	/* | 
 | 	 * 'curr' points to currently running entity on this cfs_rq. | 
 | 	 * It is set to NULL otherwise (i.e when none are currently running). | 
 | 	 */ | 
 | 	struct sched_entity *curr, *next, *last, *skip; | 
 |  | 
 | #ifdef	CONFIG_SCHED_DEBUG | 
 | 	unsigned int nr_spread_over; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * CFS Load tracking | 
 | 	 * Under CFS, load is tracked on a per-entity basis and aggregated up. | 
 | 	 * This allows for the description of both thread and group usage (in | 
 | 	 * the FAIR_GROUP_SCHED case). | 
 | 	 * runnable_load_avg is the sum of the load_avg_contrib of the | 
 | 	 * sched_entities on the rq. | 
 | 	 * blocked_load_avg is similar to runnable_load_avg except that its | 
 | 	 * the blocked sched_entities on the rq. | 
 | 	 * utilization_load_avg is the sum of the average running time of the | 
 | 	 * sched_entities on the rq. | 
 | 	 */ | 
 | 	unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg; | 
 | 	atomic64_t decay_counter; | 
 | 	u64 last_decay; | 
 | 	atomic_long_t removed_load; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* Required to track per-cpu representation of a task_group */ | 
 | 	u32 tg_runnable_contrib; | 
 | 	unsigned long tg_load_contrib; | 
 |  | 
 | 	/* | 
 | 	 *   h_load = weight * f(tg) | 
 | 	 * | 
 | 	 * Where f(tg) is the recursive weight fraction assigned to | 
 | 	 * this group. | 
 | 	 */ | 
 | 	unsigned long h_load; | 
 | 	u64 last_h_load_update; | 
 | 	struct sched_entity *h_load_next; | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ | 
 |  | 
 | 	/* | 
 | 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
 | 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
 | 	 * (like users, containers etc.) | 
 | 	 * | 
 | 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 
 | 	 * list is used during load balance. | 
 | 	 */ | 
 | 	int on_list; | 
 | 	struct list_head leaf_cfs_rq_list; | 
 | 	struct task_group *tg;	/* group that "owns" this runqueue */ | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | 	int runtime_enabled; | 
 | 	u64 runtime_expires; | 
 | 	s64 runtime_remaining; | 
 |  | 
 | 	u64 throttled_clock, throttled_clock_task; | 
 | 	u64 throttled_clock_task_time; | 
 | 	int throttled, throttle_count; | 
 | 	struct list_head throttled_list; | 
 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 | }; | 
 |  | 
 | static inline int rt_bandwidth_enabled(void) | 
 | { | 
 | 	return sysctl_sched_rt_runtime >= 0; | 
 | } | 
 |  | 
 | /* RT IPI pull logic requires IRQ_WORK */ | 
 | #ifdef CONFIG_IRQ_WORK | 
 | # define HAVE_RT_PUSH_IPI | 
 | #endif | 
 |  | 
 | /* Real-Time classes' related field in a runqueue: */ | 
 | struct rt_rq { | 
 | 	struct rt_prio_array active; | 
 | 	unsigned int rt_nr_running; | 
 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
 | 	struct { | 
 | 		int curr; /* highest queued rt task prio */ | 
 | #ifdef CONFIG_SMP | 
 | 		int next; /* next highest */ | 
 | #endif | 
 | 	} highest_prio; | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long rt_nr_migratory; | 
 | 	unsigned long rt_nr_total; | 
 | 	int overloaded; | 
 | 	struct plist_head pushable_tasks; | 
 | #ifdef HAVE_RT_PUSH_IPI | 
 | 	int push_flags; | 
 | 	int push_cpu; | 
 | 	struct irq_work push_work; | 
 | 	raw_spinlock_t push_lock; | 
 | #endif | 
 | #endif /* CONFIG_SMP */ | 
 | 	int rt_queued; | 
 |  | 
 | 	int rt_throttled; | 
 | 	u64 rt_time; | 
 | 	u64 rt_runtime; | 
 | 	/* Nests inside the rq lock: */ | 
 | 	raw_spinlock_t rt_runtime_lock; | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	unsigned long rt_nr_boosted; | 
 |  | 
 | 	struct rq *rq; | 
 | 	struct task_group *tg; | 
 | #endif | 
 | }; | 
 |  | 
 | /* Deadline class' related fields in a runqueue */ | 
 | struct dl_rq { | 
 | 	/* runqueue is an rbtree, ordered by deadline */ | 
 | 	struct rb_root rb_root; | 
 | 	struct rb_node *rb_leftmost; | 
 |  | 
 | 	unsigned long dl_nr_running; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * Deadline values of the currently executing and the | 
 | 	 * earliest ready task on this rq. Caching these facilitates | 
 | 	 * the decision wether or not a ready but not running task | 
 | 	 * should migrate somewhere else. | 
 | 	 */ | 
 | 	struct { | 
 | 		u64 curr; | 
 | 		u64 next; | 
 | 	} earliest_dl; | 
 |  | 
 | 	unsigned long dl_nr_migratory; | 
 | 	int overloaded; | 
 |  | 
 | 	/* | 
 | 	 * Tasks on this rq that can be pushed away. They are kept in | 
 | 	 * an rb-tree, ordered by tasks' deadlines, with caching | 
 | 	 * of the leftmost (earliest deadline) element. | 
 | 	 */ | 
 | 	struct rb_root pushable_dl_tasks_root; | 
 | 	struct rb_node *pushable_dl_tasks_leftmost; | 
 | #else | 
 | 	struct dl_bw dl_bw; | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * We add the notion of a root-domain which will be used to define per-domain | 
 |  * variables. Each exclusive cpuset essentially defines an island domain by | 
 |  * fully partitioning the member cpus from any other cpuset. Whenever a new | 
 |  * exclusive cpuset is created, we also create and attach a new root-domain | 
 |  * object. | 
 |  * | 
 |  */ | 
 | struct root_domain { | 
 | 	atomic_t refcount; | 
 | 	atomic_t rto_count; | 
 | 	struct rcu_head rcu; | 
 | 	cpumask_var_t span; | 
 | 	cpumask_var_t online; | 
 |  | 
 | 	/* Indicate more than one runnable task for any CPU */ | 
 | 	bool overload; | 
 |  | 
 | 	/* | 
 | 	 * The bit corresponding to a CPU gets set here if such CPU has more | 
 | 	 * than one runnable -deadline task (as it is below for RT tasks). | 
 | 	 */ | 
 | 	cpumask_var_t dlo_mask; | 
 | 	atomic_t dlo_count; | 
 | 	struct dl_bw dl_bw; | 
 | 	struct cpudl cpudl; | 
 |  | 
 | 	/* | 
 | 	 * The "RT overload" flag: it gets set if a CPU has more than | 
 | 	 * one runnable RT task. | 
 | 	 */ | 
 | 	cpumask_var_t rto_mask; | 
 | 	struct cpupri cpupri; | 
 | }; | 
 |  | 
 | extern struct root_domain def_root_domain; | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * This is the main, per-CPU runqueue data structure. | 
 |  * | 
 |  * Locking rule: those places that want to lock multiple runqueues | 
 |  * (such as the load balancing or the thread migration code), lock | 
 |  * acquire operations must be ordered by ascending &runqueue. | 
 |  */ | 
 | struct rq { | 
 | 	/* runqueue lock: */ | 
 | 	raw_spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * nr_running and cpu_load should be in the same cacheline because | 
 | 	 * remote CPUs use both these fields when doing load calculation. | 
 | 	 */ | 
 | 	unsigned int nr_running; | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	unsigned int nr_numa_running; | 
 | 	unsigned int nr_preferred_running; | 
 | #endif | 
 | 	#define CPU_LOAD_IDX_MAX 5 | 
 | 	unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
 | 	unsigned long last_load_update_tick; | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	u64 nohz_stamp; | 
 | 	unsigned long nohz_flags; | 
 | #endif | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	unsigned long last_sched_tick; | 
 | #endif | 
 | 	/* capture load from *all* tasks on this cpu: */ | 
 | 	struct load_weight load; | 
 | 	unsigned long nr_load_updates; | 
 | 	u64 nr_switches; | 
 |  | 
 | 	struct cfs_rq cfs; | 
 | 	struct rt_rq rt; | 
 | 	struct dl_rq dl; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* list of leaf cfs_rq on this cpu: */ | 
 | 	struct list_head leaf_cfs_rq_list; | 
 |  | 
 | 	struct sched_avg avg; | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | 	/* | 
 | 	 * This is part of a global counter where only the total sum | 
 | 	 * over all CPUs matters. A task can increase this counter on | 
 | 	 * one CPU and if it got migrated afterwards it may decrease | 
 | 	 * it on another CPU. Always updated under the runqueue lock: | 
 | 	 */ | 
 | 	unsigned long nr_uninterruptible; | 
 |  | 
 | 	struct task_struct *curr, *idle, *stop; | 
 | 	unsigned long next_balance; | 
 | 	struct mm_struct *prev_mm; | 
 |  | 
 | 	unsigned int clock_skip_update; | 
 | 	u64 clock; | 
 | 	u64 clock_task; | 
 |  | 
 | 	atomic_t nr_iowait; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct root_domain *rd; | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	unsigned long cpu_capacity; | 
 | 	unsigned long cpu_capacity_orig; | 
 |  | 
 | 	unsigned char idle_balance; | 
 | 	/* For active balancing */ | 
 | 	int post_schedule; | 
 | 	int active_balance; | 
 | 	int push_cpu; | 
 | 	struct cpu_stop_work active_balance_work; | 
 | 	/* cpu of this runqueue: */ | 
 | 	int cpu; | 
 | 	int online; | 
 |  | 
 | 	struct list_head cfs_tasks; | 
 |  | 
 | 	u64 rt_avg; | 
 | 	u64 age_stamp; | 
 | 	u64 idle_stamp; | 
 | 	u64 avg_idle; | 
 |  | 
 | 	/* This is used to determine avg_idle's max value */ | 
 | 	u64 max_idle_balance_cost; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
 | 	u64 prev_irq_time; | 
 | #endif | 
 | #ifdef CONFIG_PARAVIRT | 
 | 	u64 prev_steal_time; | 
 | #endif | 
 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING | 
 | 	u64 prev_steal_time_rq; | 
 | #endif | 
 |  | 
 | 	/* calc_load related fields */ | 
 | 	unsigned long calc_load_update; | 
 | 	long calc_load_active; | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | #ifdef CONFIG_SMP | 
 | 	int hrtick_csd_pending; | 
 | 	struct call_single_data hrtick_csd; | 
 | #endif | 
 | 	struct hrtimer hrtick_timer; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* latency stats */ | 
 | 	struct sched_info rq_sched_info; | 
 | 	unsigned long long rq_cpu_time; | 
 | 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ | 
 |  | 
 | 	/* sys_sched_yield() stats */ | 
 | 	unsigned int yld_count; | 
 |  | 
 | 	/* schedule() stats */ | 
 | 	unsigned int sched_count; | 
 | 	unsigned int sched_goidle; | 
 |  | 
 | 	/* try_to_wake_up() stats */ | 
 | 	unsigned int ttwu_count; | 
 | 	unsigned int ttwu_local; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	struct llist_head wake_list; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | 	/* Must be inspected within a rcu lock section */ | 
 | 	struct cpuidle_state *idle_state; | 
 | #endif | 
 | }; | 
 |  | 
 | static inline int cpu_of(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return rq->cpu; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
 |  | 
 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
 | #define this_rq()		this_cpu_ptr(&runqueues) | 
 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
 | #define raw_rq()		raw_cpu_ptr(&runqueues) | 
 |  | 
 | static inline u64 __rq_clock_broken(struct rq *rq) | 
 | { | 
 | 	return ACCESS_ONCE(rq->clock); | 
 | } | 
 |  | 
 | static inline u64 rq_clock(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	return rq->clock; | 
 | } | 
 |  | 
 | static inline u64 rq_clock_task(struct rq *rq) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	return rq->clock_task; | 
 | } | 
 |  | 
 | #define RQCF_REQ_SKIP	0x01 | 
 | #define RQCF_ACT_SKIP	0x02 | 
 |  | 
 | static inline void rq_clock_skip_update(struct rq *rq, bool skip) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 | 	if (skip) | 
 | 		rq->clock_skip_update |= RQCF_REQ_SKIP; | 
 | 	else | 
 | 		rq->clock_skip_update &= ~RQCF_REQ_SKIP; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | enum numa_topology_type { | 
 | 	NUMA_DIRECT, | 
 | 	NUMA_GLUELESS_MESH, | 
 | 	NUMA_BACKPLANE, | 
 | }; | 
 | extern enum numa_topology_type sched_numa_topology_type; | 
 | extern int sched_max_numa_distance; | 
 | extern bool find_numa_distance(int distance); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* The regions in numa_faults array from task_struct */ | 
 | enum numa_faults_stats { | 
 | 	NUMA_MEM = 0, | 
 | 	NUMA_CPU, | 
 | 	NUMA_MEMBUF, | 
 | 	NUMA_CPUBUF | 
 | }; | 
 | extern void sched_setnuma(struct task_struct *p, int node); | 
 | extern int migrate_task_to(struct task_struct *p, int cpu); | 
 | extern int migrate_swap(struct task_struct *, struct task_struct *); | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | extern void sched_ttwu_pending(void); | 
 |  | 
 | #define rcu_dereference_check_sched_domain(p) \ | 
 | 	rcu_dereference_check((p), \ | 
 | 			      lockdep_is_held(&sched_domains_mutex)) | 
 |  | 
 | /* | 
 |  * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
 |  * See detach_destroy_domains: synchronize_sched for details. | 
 |  * | 
 |  * The domain tree of any CPU may only be accessed from within | 
 |  * preempt-disabled sections. | 
 |  */ | 
 | #define for_each_domain(cpu, __sd) \ | 
 | 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ | 
 | 			__sd; __sd = __sd->parent) | 
 |  | 
 | #define for_each_lower_domain(sd) for (; sd; sd = sd->child) | 
 |  | 
 | /** | 
 |  * highest_flag_domain - Return highest sched_domain containing flag. | 
 |  * @cpu:	The cpu whose highest level of sched domain is to | 
 |  *		be returned. | 
 |  * @flag:	The flag to check for the highest sched_domain | 
 |  *		for the given cpu. | 
 |  * | 
 |  * Returns the highest sched_domain of a cpu which contains the given flag. | 
 |  */ | 
 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd, *hsd = NULL; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (!(sd->flags & flag)) | 
 | 			break; | 
 | 		hsd = sd; | 
 | 	} | 
 |  | 
 | 	return hsd; | 
 | } | 
 |  | 
 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) | 
 | { | 
 | 	struct sched_domain *sd; | 
 |  | 
 | 	for_each_domain(cpu, sd) { | 
 | 		if (sd->flags & flag) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return sd; | 
 | } | 
 |  | 
 | DECLARE_PER_CPU(struct sched_domain *, sd_llc); | 
 | DECLARE_PER_CPU(int, sd_llc_size); | 
 | DECLARE_PER_CPU(int, sd_llc_id); | 
 | DECLARE_PER_CPU(struct sched_domain *, sd_numa); | 
 | DECLARE_PER_CPU(struct sched_domain *, sd_busy); | 
 | DECLARE_PER_CPU(struct sched_domain *, sd_asym); | 
 |  | 
 | struct sched_group_capacity { | 
 | 	atomic_t ref; | 
 | 	/* | 
 | 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity | 
 | 	 * for a single CPU. | 
 | 	 */ | 
 | 	unsigned int capacity; | 
 | 	unsigned long next_update; | 
 | 	int imbalance; /* XXX unrelated to capacity but shared group state */ | 
 | 	/* | 
 | 	 * Number of busy cpus in this group. | 
 | 	 */ | 
 | 	atomic_t nr_busy_cpus; | 
 |  | 
 | 	unsigned long cpumask[0]; /* iteration mask */ | 
 | }; | 
 |  | 
 | struct sched_group { | 
 | 	struct sched_group *next;	/* Must be a circular list */ | 
 | 	atomic_t ref; | 
 |  | 
 | 	unsigned int group_weight; | 
 | 	struct sched_group_capacity *sgc; | 
 |  | 
 | 	/* | 
 | 	 * The CPUs this group covers. | 
 | 	 * | 
 | 	 * NOTE: this field is variable length. (Allocated dynamically | 
 | 	 * by attaching extra space to the end of the structure, | 
 | 	 * depending on how many CPUs the kernel has booted up with) | 
 | 	 */ | 
 | 	unsigned long cpumask[0]; | 
 | }; | 
 |  | 
 | static inline struct cpumask *sched_group_cpus(struct sched_group *sg) | 
 | { | 
 | 	return to_cpumask(sg->cpumask); | 
 | } | 
 |  | 
 | /* | 
 |  * cpumask masking which cpus in the group are allowed to iterate up the domain | 
 |  * tree. | 
 |  */ | 
 | static inline struct cpumask *sched_group_mask(struct sched_group *sg) | 
 | { | 
 | 	return to_cpumask(sg->sgc->cpumask); | 
 | } | 
 |  | 
 | /** | 
 |  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. | 
 |  * @group: The group whose first cpu is to be returned. | 
 |  */ | 
 | static inline unsigned int group_first_cpu(struct sched_group *group) | 
 | { | 
 | 	return cpumask_first(sched_group_cpus(group)); | 
 | } | 
 |  | 
 | extern int group_balance_cpu(struct sched_group *sg); | 
 |  | 
 | #else | 
 |  | 
 | static inline void sched_ttwu_pending(void) { } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #include "stats.h" | 
 | #include "auto_group.h" | 
 |  | 
 | #ifdef CONFIG_CGROUP_SCHED | 
 |  | 
 | /* | 
 |  * Return the group to which this tasks belongs. | 
 |  * | 
 |  * We cannot use task_css() and friends because the cgroup subsystem | 
 |  * changes that value before the cgroup_subsys::attach() method is called, | 
 |  * therefore we cannot pin it and might observe the wrong value. | 
 |  * | 
 |  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup | 
 |  * core changes this before calling sched_move_task(). | 
 |  * | 
 |  * Instead we use a 'copy' which is updated from sched_move_task() while | 
 |  * holding both task_struct::pi_lock and rq::lock. | 
 |  */ | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	return p->sched_task_group; | 
 | } | 
 |  | 
 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) | 
 | 	struct task_group *tg = task_group(p); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	p->se.cfs_rq = tg->cfs_rq[cpu]; | 
 | 	p->se.parent = tg->se[cpu]; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RT_GROUP_SCHED | 
 | 	p->rt.rt_rq  = tg->rt_rq[cpu]; | 
 | 	p->rt.parent = tg->rt_se[cpu]; | 
 | #endif | 
 | } | 
 |  | 
 | #else /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
 | static inline struct task_group *task_group(struct task_struct *p) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif /* CONFIG_CGROUP_SCHED */ | 
 |  | 
 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
 | { | 
 | 	set_task_rq(p, cpu); | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 
 | 	 * successfuly executed on another CPU. We must ensure that updates of | 
 | 	 * per-task data have been completed by this moment. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	task_thread_info(p)->cpu = cpu; | 
 | 	p->wake_cpu = cpu; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 
 |  */ | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | # include <linux/static_key.h> | 
 | # define const_debug __read_mostly | 
 | #else | 
 | # define const_debug const | 
 | #endif | 
 |  | 
 | extern const_debug unsigned int sysctl_sched_features; | 
 |  | 
 | #define SCHED_FEAT(name, enabled)	\ | 
 | 	__SCHED_FEAT_##name , | 
 |  | 
 | enum { | 
 | #include "features.h" | 
 | 	__SCHED_FEAT_NR, | 
 | }; | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) | 
 | #define SCHED_FEAT(name, enabled)					\ | 
 | static __always_inline bool static_branch_##name(struct static_key *key) \ | 
 | {									\ | 
 | 	return static_key_##enabled(key);				\ | 
 | } | 
 |  | 
 | #include "features.h" | 
 |  | 
 | #undef SCHED_FEAT | 
 |  | 
 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; | 
 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) | 
 | #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ | 
 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
 | #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | #define sched_feat_numa(x) sched_feat(x) | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | #define numabalancing_enabled sched_feat_numa(NUMA) | 
 | #else | 
 | extern bool numabalancing_enabled; | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 | #else | 
 | #define sched_feat_numa(x) (0) | 
 | #define numabalancing_enabled (0) | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | static inline u64 global_rt_period(void) | 
 | { | 
 | 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | static inline u64 global_rt_runtime(void) | 
 | { | 
 | 	if (sysctl_sched_rt_runtime < 0) | 
 | 		return RUNTIME_INF; | 
 |  | 
 | 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | static inline int task_current(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	return rq->curr == p; | 
 | } | 
 |  | 
 | static inline int task_running(struct rq *rq, struct task_struct *p) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return p->on_cpu; | 
 | #else | 
 | 	return task_current(rq, p); | 
 | #endif | 
 | } | 
 |  | 
 | static inline int task_on_rq_queued(struct task_struct *p) | 
 | { | 
 | 	return p->on_rq == TASK_ON_RQ_QUEUED; | 
 | } | 
 |  | 
 | static inline int task_on_rq_migrating(struct task_struct *p) | 
 | { | 
 | 	return p->on_rq == TASK_ON_RQ_MIGRATING; | 
 | } | 
 |  | 
 | #ifndef prepare_arch_switch | 
 | # define prepare_arch_switch(next)	do { } while (0) | 
 | #endif | 
 | #ifndef finish_arch_switch | 
 | # define finish_arch_switch(prev)	do { } while (0) | 
 | #endif | 
 | #ifndef finish_arch_post_lock_switch | 
 | # define finish_arch_post_lock_switch()	do { } while (0) | 
 | #endif | 
 |  | 
 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * We can optimise this out completely for !SMP, because the | 
 | 	 * SMP rebalancing from interrupt is the only thing that cares | 
 | 	 * here. | 
 | 	 */ | 
 | 	next->on_cpu = 1; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * After ->on_cpu is cleared, the task can be moved to a different CPU. | 
 | 	 * We must ensure this doesn't happen until the switch is completely | 
 | 	 * finished. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	prev->on_cpu = 0; | 
 | #endif | 
 | #ifdef CONFIG_DEBUG_SPINLOCK | 
 | 	/* this is a valid case when another task releases the spinlock */ | 
 | 	rq->lock.owner = current; | 
 | #endif | 
 | 	/* | 
 | 	 * If we are tracking spinlock dependencies then we have to | 
 | 	 * fix up the runqueue lock - which gets 'carried over' from | 
 | 	 * prev into current: | 
 | 	 */ | 
 | 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
 |  | 
 | 	raw_spin_unlock_irq(&rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * wake flags | 
 |  */ | 
 | #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */ | 
 | #define WF_FORK		0x02		/* child wakeup after fork */ | 
 | #define WF_MIGRATED	0x4		/* internal use, task got migrated */ | 
 |  | 
 | /* | 
 |  * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
 |  * of tasks with abnormal "nice" values across CPUs the contribution that | 
 |  * each task makes to its run queue's load is weighted according to its | 
 |  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 
 |  * scaled version of the new time slice allocation that they receive on time | 
 |  * slice expiry etc. | 
 |  */ | 
 |  | 
 | #define WEIGHT_IDLEPRIO                3 | 
 | #define WMULT_IDLEPRIO         1431655765 | 
 |  | 
 | /* | 
 |  * Nice levels are multiplicative, with a gentle 10% change for every | 
 |  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
 |  * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
 |  * that remained on nice 0. | 
 |  * | 
 |  * The "10% effect" is relative and cumulative: from _any_ nice level, | 
 |  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
 |  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
 |  * If a task goes up by ~10% and another task goes down by ~10% then | 
 |  * the relative distance between them is ~25%.) | 
 |  */ | 
 | static const int prio_to_weight[40] = { | 
 |  /* -20 */     88761,     71755,     56483,     46273,     36291, | 
 |  /* -15 */     29154,     23254,     18705,     14949,     11916, | 
 |  /* -10 */      9548,      7620,      6100,      4904,      3906, | 
 |  /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
 |  /*   0 */      1024,       820,       655,       526,       423, | 
 |  /*   5 */       335,       272,       215,       172,       137, | 
 |  /*  10 */       110,        87,        70,        56,        45, | 
 |  /*  15 */        36,        29,        23,        18,        15, | 
 | }; | 
 |  | 
 | /* | 
 |  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 
 |  * | 
 |  * In cases where the weight does not change often, we can use the | 
 |  * precalculated inverse to speed up arithmetics by turning divisions | 
 |  * into multiplications: | 
 |  */ | 
 | static const u32 prio_to_wmult[40] = { | 
 |  /* -20 */     48388,     59856,     76040,     92818,    118348, | 
 |  /* -15 */    147320,    184698,    229616,    287308,    360437, | 
 |  /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
 |  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
 |  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
 |  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
 |  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
 |  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
 | }; | 
 |  | 
 | #define ENQUEUE_WAKEUP		1 | 
 | #define ENQUEUE_HEAD		2 | 
 | #ifdef CONFIG_SMP | 
 | #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */ | 
 | #else | 
 | #define ENQUEUE_WAKING		0 | 
 | #endif | 
 | #define ENQUEUE_REPLENISH	8 | 
 |  | 
 | #define DEQUEUE_SLEEP		1 | 
 |  | 
 | #define RETRY_TASK		((void *)-1UL) | 
 |  | 
 | struct sched_class { | 
 | 	const struct sched_class *next; | 
 |  | 
 | 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); | 
 | 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); | 
 | 	void (*yield_task) (struct rq *rq); | 
 | 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); | 
 |  | 
 | 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | 	/* | 
 | 	 * It is the responsibility of the pick_next_task() method that will | 
 | 	 * return the next task to call put_prev_task() on the @prev task or | 
 | 	 * something equivalent. | 
 | 	 * | 
 | 	 * May return RETRY_TASK when it finds a higher prio class has runnable | 
 | 	 * tasks. | 
 | 	 */ | 
 | 	struct task_struct * (*pick_next_task) (struct rq *rq, | 
 | 						struct task_struct *prev); | 
 | 	void (*put_prev_task) (struct rq *rq, struct task_struct *p); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); | 
 | 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu); | 
 |  | 
 | 	void (*post_schedule) (struct rq *this_rq); | 
 | 	void (*task_waking) (struct task_struct *task); | 
 | 	void (*task_woken) (struct rq *this_rq, struct task_struct *task); | 
 |  | 
 | 	void (*set_cpus_allowed)(struct task_struct *p, | 
 | 				 const struct cpumask *newmask); | 
 |  | 
 | 	void (*rq_online)(struct rq *rq); | 
 | 	void (*rq_offline)(struct rq *rq); | 
 | #endif | 
 |  | 
 | 	void (*set_curr_task) (struct rq *rq); | 
 | 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); | 
 | 	void (*task_fork) (struct task_struct *p); | 
 | 	void (*task_dead) (struct task_struct *p); | 
 |  | 
 | 	/* | 
 | 	 * The switched_from() call is allowed to drop rq->lock, therefore we | 
 | 	 * cannot assume the switched_from/switched_to pair is serliazed by | 
 | 	 * rq->lock. They are however serialized by p->pi_lock. | 
 | 	 */ | 
 | 	void (*switched_from) (struct rq *this_rq, struct task_struct *task); | 
 | 	void (*switched_to) (struct rq *this_rq, struct task_struct *task); | 
 | 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task, | 
 | 			     int oldprio); | 
 |  | 
 | 	unsigned int (*get_rr_interval) (struct rq *rq, | 
 | 					 struct task_struct *task); | 
 |  | 
 | 	void (*update_curr) (struct rq *rq); | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	void (*task_move_group) (struct task_struct *p, int on_rq); | 
 | #endif | 
 | }; | 
 |  | 
 | static inline void put_prev_task(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	prev->sched_class->put_prev_task(rq, prev); | 
 | } | 
 |  | 
 | #define sched_class_highest (&stop_sched_class) | 
 | #define for_each_class(class) \ | 
 |    for (class = sched_class_highest; class; class = class->next) | 
 |  | 
 | extern const struct sched_class stop_sched_class; | 
 | extern const struct sched_class dl_sched_class; | 
 | extern const struct sched_class rt_sched_class; | 
 | extern const struct sched_class fair_sched_class; | 
 | extern const struct sched_class idle_sched_class; | 
 |  | 
 |  | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | extern void update_group_capacity(struct sched_domain *sd, int cpu); | 
 |  | 
 | extern void trigger_load_balance(struct rq *rq); | 
 |  | 
 | extern void idle_enter_fair(struct rq *this_rq); | 
 | extern void idle_exit_fair(struct rq *this_rq); | 
 |  | 
 | #else | 
 |  | 
 | static inline void idle_enter_fair(struct rq *rq) { } | 
 | static inline void idle_exit_fair(struct rq *rq) { } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CPU_IDLE | 
 | static inline void idle_set_state(struct rq *rq, | 
 | 				  struct cpuidle_state *idle_state) | 
 | { | 
 | 	rq->idle_state = idle_state; | 
 | } | 
 |  | 
 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | 
 | { | 
 | 	WARN_ON(!rcu_read_lock_held()); | 
 | 	return rq->idle_state; | 
 | } | 
 | #else | 
 | static inline void idle_set_state(struct rq *rq, | 
 | 				  struct cpuidle_state *idle_state) | 
 | { | 
 | } | 
 |  | 
 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 |  | 
 | extern void sysrq_sched_debug_show(void); | 
 | extern void sched_init_granularity(void); | 
 | extern void update_max_interval(void); | 
 |  | 
 | extern void init_sched_dl_class(void); | 
 | extern void init_sched_rt_class(void); | 
 | extern void init_sched_fair_class(void); | 
 | extern void init_sched_dl_class(void); | 
 |  | 
 | extern void resched_curr(struct rq *rq); | 
 | extern void resched_cpu(int cpu); | 
 |  | 
 | extern struct rt_bandwidth def_rt_bandwidth; | 
 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); | 
 |  | 
 | extern struct dl_bandwidth def_dl_bandwidth; | 
 | extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); | 
 | extern void init_dl_task_timer(struct sched_dl_entity *dl_se); | 
 |  | 
 | unsigned long to_ratio(u64 period, u64 runtime); | 
 |  | 
 | extern void update_idle_cpu_load(struct rq *this_rq); | 
 |  | 
 | extern void init_task_runnable_average(struct task_struct *p); | 
 |  | 
 | static inline void add_nr_running(struct rq *rq, unsigned count) | 
 | { | 
 | 	unsigned prev_nr = rq->nr_running; | 
 |  | 
 | 	rq->nr_running = prev_nr + count; | 
 |  | 
 | 	if (prev_nr < 2 && rq->nr_running >= 2) { | 
 | #ifdef CONFIG_SMP | 
 | 		if (!rq->rd->overload) | 
 | 			rq->rd->overload = true; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 		if (tick_nohz_full_cpu(rq->cpu)) { | 
 | 			/* | 
 | 			 * Tick is needed if more than one task runs on a CPU. | 
 | 			 * Send the target an IPI to kick it out of nohz mode. | 
 | 			 * | 
 | 			 * We assume that IPI implies full memory barrier and the | 
 | 			 * new value of rq->nr_running is visible on reception | 
 | 			 * from the target. | 
 | 			 */ | 
 | 			tick_nohz_full_kick_cpu(rq->cpu); | 
 | 		} | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | static inline void sub_nr_running(struct rq *rq, unsigned count) | 
 | { | 
 | 	rq->nr_running -= count; | 
 | } | 
 |  | 
 | static inline void rq_last_tick_reset(struct rq *rq) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	rq->last_sched_tick = jiffies; | 
 | #endif | 
 | } | 
 |  | 
 | extern void update_rq_clock(struct rq *rq); | 
 |  | 
 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); | 
 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); | 
 |  | 
 | extern const_debug unsigned int sysctl_sched_time_avg; | 
 | extern const_debug unsigned int sysctl_sched_nr_migrate; | 
 | extern const_debug unsigned int sysctl_sched_migration_cost; | 
 |  | 
 | static inline u64 sched_avg_period(void) | 
 | { | 
 | 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 |  | 
 | /* | 
 |  * Use hrtick when: | 
 |  *  - enabled by features | 
 |  *  - hrtimer is actually high res | 
 |  */ | 
 | static inline int hrtick_enabled(struct rq *rq) | 
 | { | 
 | 	if (!sched_feat(HRTICK)) | 
 | 		return 0; | 
 | 	if (!cpu_active(cpu_of(rq))) | 
 | 		return 0; | 
 | 	return hrtimer_is_hres_active(&rq->hrtick_timer); | 
 | } | 
 |  | 
 | void hrtick_start(struct rq *rq, u64 delay); | 
 |  | 
 | #else | 
 |  | 
 | static inline int hrtick_enabled(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SCHED_HRTICK */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | extern void sched_avg_update(struct rq *rq); | 
 |  | 
 | #ifndef arch_scale_freq_capacity | 
 | static __always_inline | 
 | unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	return SCHED_CAPACITY_SCALE; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) | 
 | { | 
 | 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); | 
 | 	sched_avg_update(rq); | 
 | } | 
 | #else | 
 | static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } | 
 | static inline void sched_avg_update(struct rq *rq) { } | 
 | #endif | 
 |  | 
 | extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); | 
 |  | 
 | /* | 
 |  * __task_rq_lock - lock the rq @p resides on. | 
 |  */ | 
 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	lockdep_assert_held(&p->pi_lock); | 
 |  | 
 | 	for (;;) { | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock(&rq->lock); | 
 |  | 
 | 		while (unlikely(task_on_rq_migrating(p))) | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. | 
 |  */ | 
 | static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
 | 	__acquires(p->pi_lock) | 
 | 	__acquires(rq->lock) | 
 | { | 
 | 	struct rq *rq; | 
 |  | 
 | 	for (;;) { | 
 | 		raw_spin_lock_irqsave(&p->pi_lock, *flags); | 
 | 		rq = task_rq(p); | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		/* | 
 | 		 *	move_queued_task()		task_rq_lock() | 
 | 		 * | 
 | 		 *	ACQUIRE (rq->lock) | 
 | 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq() | 
 | 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock); | 
 | 		 *	[S] ->cpu = new_cpu		[L] task_rq() | 
 | 		 *					[L] ->on_rq | 
 | 		 *	RELEASE (rq->lock) | 
 | 		 * | 
 | 		 * If we observe the old cpu in task_rq_lock, the acquire of | 
 | 		 * the old rq->lock will fully serialize against the stores. | 
 | 		 * | 
 | 		 * If we observe the new cpu in task_rq_lock, the acquire will | 
 | 		 * pair with the WMB to ensure we must then also see migrating. | 
 | 		 */ | 
 | 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) | 
 | 			return rq; | 
 | 		raw_spin_unlock(&rq->lock); | 
 | 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 
 |  | 
 | 		while (unlikely(task_on_rq_migrating(p))) | 
 | 			cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void __task_rq_unlock(struct rq *rq) | 
 | 	__releases(rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | static inline void | 
 | task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) | 
 | 	__releases(rq->lock) | 
 | 	__releases(p->pi_lock) | 
 | { | 
 | 	raw_spin_unlock(&rq->lock); | 
 | 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #ifdef CONFIG_PREEMPT | 
 |  | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); | 
 |  | 
 | /* | 
 |  * fair double_lock_balance: Safely acquires both rq->locks in a fair | 
 |  * way at the expense of forcing extra atomic operations in all | 
 |  * invocations.  This assures that the double_lock is acquired using the | 
 |  * same underlying policy as the spinlock_t on this architecture, which | 
 |  * reduces latency compared to the unfair variant below.  However, it | 
 |  * also adds more overhead and therefore may reduce throughput. | 
 |  */ | 
 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 | 	double_rq_lock(this_rq, busiest); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else | 
 | /* | 
 |  * Unfair double_lock_balance: Optimizes throughput at the expense of | 
 |  * latency by eliminating extra atomic operations when the locks are | 
 |  * already in proper order on entry.  This favors lower cpu-ids and will | 
 |  * grant the double lock to lower cpus over higher ids under contention, | 
 |  * regardless of entry order into the function. | 
 |  */ | 
 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(this_rq->lock) | 
 | 	__acquires(busiest->lock) | 
 | 	__acquires(this_rq->lock) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(!raw_spin_trylock(&busiest->lock))) { | 
 | 		if (busiest < this_rq) { | 
 | 			raw_spin_unlock(&this_rq->lock); | 
 | 			raw_spin_lock(&busiest->lock); | 
 | 			raw_spin_lock_nested(&this_rq->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 			ret = 1; | 
 | 		} else | 
 | 			raw_spin_lock_nested(&busiest->lock, | 
 | 					      SINGLE_DEPTH_NESTING); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_PREEMPT */ | 
 |  | 
 | /* | 
 |  * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
 |  */ | 
 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
 | { | 
 | 	if (unlikely(!irqs_disabled())) { | 
 | 		/* printk() doesn't work good under rq->lock */ | 
 | 		raw_spin_unlock(&this_rq->lock); | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	return _double_lock_balance(this_rq, busiest); | 
 | } | 
 |  | 
 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
 | 	__releases(busiest->lock) | 
 | { | 
 | 	raw_spin_unlock(&busiest->lock); | 
 | 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 
 | } | 
 |  | 
 | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	spin_lock(l1); | 
 | 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	spin_lock_irq(l1); | 
 | 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) | 
 | { | 
 | 	if (l1 > l2) | 
 | 		swap(l1, l2); | 
 |  | 
 | 	raw_spin_lock(l1); | 
 | 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	if (rq1 == rq2) { | 
 | 		raw_spin_lock(&rq1->lock); | 
 | 		__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | 	} else { | 
 | 		if (rq1 < rq2) { | 
 | 			raw_spin_lock(&rq1->lock); | 
 | 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 
 | 		} else { | 
 | 			raw_spin_lock(&rq2->lock); | 
 | 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	raw_spin_unlock(&rq1->lock); | 
 | 	if (rq1 != rq2) | 
 | 		raw_spin_unlock(&rq2->lock); | 
 | 	else | 
 | 		__release(rq2->lock); | 
 | } | 
 |  | 
 | #else /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * double_rq_lock - safely lock two runqueues | 
 |  * | 
 |  * Note this does not disable interrupts like task_rq_lock, | 
 |  * you need to do so manually before calling. | 
 |  */ | 
 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
 | 	__acquires(rq1->lock) | 
 | 	__acquires(rq2->lock) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | 	BUG_ON(rq1 != rq2); | 
 | 	raw_spin_lock(&rq1->lock); | 
 | 	__acquire(rq2->lock);	/* Fake it out ;) */ | 
 | } | 
 |  | 
 | /* | 
 |  * double_rq_unlock - safely unlock two runqueues | 
 |  * | 
 |  * Note this does not restore interrupts like task_rq_unlock, | 
 |  * you need to do so manually after calling. | 
 |  */ | 
 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
 | 	__releases(rq1->lock) | 
 | 	__releases(rq2->lock) | 
 | { | 
 | 	BUG_ON(rq1 != rq2); | 
 | 	raw_spin_unlock(&rq1->lock); | 
 | 	__release(rq2->lock); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); | 
 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); | 
 | extern void print_cfs_stats(struct seq_file *m, int cpu); | 
 | extern void print_rt_stats(struct seq_file *m, int cpu); | 
 | extern void print_dl_stats(struct seq_file *m, int cpu); | 
 |  | 
 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); | 
 | extern void init_rt_rq(struct rt_rq *rt_rq); | 
 | extern void init_dl_rq(struct dl_rq *dl_rq); | 
 |  | 
 | extern void cfs_bandwidth_usage_inc(void); | 
 | extern void cfs_bandwidth_usage_dec(void); | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | enum rq_nohz_flag_bits { | 
 | 	NOHZ_TICK_STOPPED, | 
 | 	NOHZ_BALANCE_KICK, | 
 | }; | 
 |  | 
 | #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING | 
 |  | 
 | DECLARE_PER_CPU(u64, cpu_hardirq_time); | 
 | DECLARE_PER_CPU(u64, cpu_softirq_time); | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | DECLARE_PER_CPU(seqcount_t, irq_time_seq); | 
 |  | 
 | static inline void irq_time_write_begin(void) | 
 | { | 
 | 	__this_cpu_inc(irq_time_seq.sequence); | 
 | 	smp_wmb(); | 
 | } | 
 |  | 
 | static inline void irq_time_write_end(void) | 
 | { | 
 | 	smp_wmb(); | 
 | 	__this_cpu_inc(irq_time_seq.sequence); | 
 | } | 
 |  | 
 | static inline u64 irq_time_read(int cpu) | 
 | { | 
 | 	u64 irq_time; | 
 | 	unsigned seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); | 
 | 		irq_time = per_cpu(cpu_softirq_time, cpu) + | 
 | 			   per_cpu(cpu_hardirq_time, cpu); | 
 | 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); | 
 |  | 
 | 	return irq_time; | 
 | } | 
 | #else /* CONFIG_64BIT */ | 
 | static inline void irq_time_write_begin(void) | 
 | { | 
 | } | 
 |  | 
 | static inline void irq_time_write_end(void) | 
 | { | 
 | } | 
 |  | 
 | static inline u64 irq_time_read(int cpu) | 
 | { | 
 | 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); | 
 | } | 
 | #endif /* CONFIG_64BIT */ | 
 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |