| /* | 
 |  * Copyright (c) 2008 Atheros Communications Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
 |  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
 |  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Implementation of transmit path. | 
 |  */ | 
 |  | 
 | #include "core.h" | 
 |  | 
 | #define BITS_PER_BYTE           8 | 
 | #define OFDM_PLCP_BITS          22 | 
 | #define HT_RC_2_MCS(_rc)        ((_rc) & 0x0f) | 
 | #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1) | 
 | #define L_STF                   8 | 
 | #define L_LTF                   8 | 
 | #define L_SIG                   4 | 
 | #define HT_SIG                  8 | 
 | #define HT_STF                  4 | 
 | #define HT_LTF(_ns)             (4 * (_ns)) | 
 | #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */ | 
 | #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */ | 
 | #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) | 
 | #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) | 
 |  | 
 | #define OFDM_SIFS_TIME    	    16 | 
 |  | 
 | static u32 bits_per_symbol[][2] = { | 
 | 	/* 20MHz 40MHz */ | 
 | 	{    26,   54 },     /*  0: BPSK */ | 
 | 	{    52,  108 },     /*  1: QPSK 1/2 */ | 
 | 	{    78,  162 },     /*  2: QPSK 3/4 */ | 
 | 	{   104,  216 },     /*  3: 16-QAM 1/2 */ | 
 | 	{   156,  324 },     /*  4: 16-QAM 3/4 */ | 
 | 	{   208,  432 },     /*  5: 64-QAM 2/3 */ | 
 | 	{   234,  486 },     /*  6: 64-QAM 3/4 */ | 
 | 	{   260,  540 },     /*  7: 64-QAM 5/6 */ | 
 | 	{    52,  108 },     /*  8: BPSK */ | 
 | 	{   104,  216 },     /*  9: QPSK 1/2 */ | 
 | 	{   156,  324 },     /* 10: QPSK 3/4 */ | 
 | 	{   208,  432 },     /* 11: 16-QAM 1/2 */ | 
 | 	{   312,  648 },     /* 12: 16-QAM 3/4 */ | 
 | 	{   416,  864 },     /* 13: 64-QAM 2/3 */ | 
 | 	{   468,  972 },     /* 14: 64-QAM 3/4 */ | 
 | 	{   520, 1080 },     /* 15: 64-QAM 5/6 */ | 
 | }; | 
 |  | 
 | #define IS_HT_RATE(_rate)     ((_rate) & 0x80) | 
 |  | 
 | /* | 
 |  * Insert a chain of ath_buf (descriptors) on a multicast txq | 
 |  * but do NOT start tx DMA on this queue. | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static void ath_tx_mcastqaddbuf(struct ath_softc *sc, | 
 | 				struct ath_txq *txq, | 
 | 				struct list_head *head) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	struct ath_buf *bf; | 
 |  | 
 | 	if (list_empty(head)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Insert the frame on the outbound list and | 
 | 	 * pass it on to the hardware. | 
 | 	 */ | 
 | 	bf = list_first_entry(head, struct ath_buf, list); | 
 |  | 
 | 	/* | 
 | 	 * The CAB queue is started from the SWBA handler since | 
 | 	 * frames only go out on DTIM and to avoid possible races. | 
 | 	 */ | 
 | 	ath9k_hw_set_interrupts(ah, 0); | 
 |  | 
 | 	/* | 
 | 	 * If there is anything in the mcastq, we want to set | 
 | 	 * the "more data" bit in the last item in the queue to | 
 | 	 * indicate that there is "more data". It makes sense to add | 
 | 	 * it here since you are *always* going to have | 
 | 	 * more data when adding to this queue, no matter where | 
 | 	 * you call from. | 
 | 	 */ | 
 |  | 
 | 	if (txq->axq_depth) { | 
 | 		struct ath_buf *lbf; | 
 | 		struct ieee80211_hdr *hdr; | 
 |  | 
 | 		/* | 
 | 		 * Add the "more data flag" to the last frame | 
 | 		 */ | 
 |  | 
 | 		lbf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
 | 		hdr = (struct ieee80211_hdr *) | 
 | 			((struct sk_buff *)(lbf->bf_mpdu))->data; | 
 | 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now, concat the frame onto the queue | 
 | 	 */ | 
 | 	list_splice_tail_init(head, &txq->axq_q); | 
 | 	txq->axq_depth++; | 
 | 	txq->axq_totalqueued++; | 
 | 	txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
 |  | 
 | 	DPRINTF(sc, ATH_DBG_QUEUE, | 
 | 		"%s: txq depth = %d\n", __func__, txq->axq_depth); | 
 | 	if (txq->axq_link != NULL) { | 
 | 		*txq->axq_link = bf->bf_daddr; | 
 | 		DPRINTF(sc, ATH_DBG_XMIT, | 
 | 			"%s: link[%u](%p)=%llx (%p)\n", | 
 | 			__func__, | 
 | 			txq->axq_qnum, txq->axq_link, | 
 | 			ito64(bf->bf_daddr), bf->bf_desc); | 
 | 	} | 
 | 	txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); | 
 | 	ath9k_hw_set_interrupts(ah, sc->sc_imask); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a chain of ath_buf (descriptors) on a txq and | 
 |  * assume the descriptors are already chained together by caller. | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static void ath_tx_txqaddbuf(struct ath_softc *sc, | 
 | 		struct ath_txq *txq, struct list_head *head) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	struct ath_buf *bf; | 
 | 	/* | 
 | 	 * Insert the frame on the outbound list and | 
 | 	 * pass it on to the hardware. | 
 | 	 */ | 
 |  | 
 | 	if (list_empty(head)) | 
 | 		return; | 
 |  | 
 | 	bf = list_first_entry(head, struct ath_buf, list); | 
 |  | 
 | 	list_splice_tail_init(head, &txq->axq_q); | 
 | 	txq->axq_depth++; | 
 | 	txq->axq_totalqueued++; | 
 | 	txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
 |  | 
 | 	DPRINTF(sc, ATH_DBG_QUEUE, | 
 | 		"%s: txq depth = %d\n", __func__, txq->axq_depth); | 
 |  | 
 | 	if (txq->axq_link == NULL) { | 
 | 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); | 
 | 		DPRINTF(sc, ATH_DBG_XMIT, | 
 | 			"%s: TXDP[%u] = %llx (%p)\n", | 
 | 			__func__, txq->axq_qnum, | 
 | 			ito64(bf->bf_daddr), bf->bf_desc); | 
 | 	} else { | 
 | 		*txq->axq_link = bf->bf_daddr; | 
 | 		DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n", | 
 | 			__func__, | 
 | 			txq->axq_qnum, txq->axq_link, | 
 | 			ito64(bf->bf_daddr), bf->bf_desc); | 
 | 	} | 
 | 	txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); | 
 | 	ath9k_hw_txstart(ah, txq->axq_qnum); | 
 | } | 
 |  | 
 | /* Get transmit rate index using rate in Kbps */ | 
 |  | 
 | static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate) | 
 | { | 
 | 	int i; | 
 | 	int ndx = 0; | 
 |  | 
 | 	for (i = 0; i < rt->rateCount; i++) { | 
 | 		if (rt->info[i].rateKbps == rate) { | 
 | 			ndx = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ndx; | 
 | } | 
 |  | 
 | /* Check if it's okay to send out aggregates */ | 
 |  | 
 | static int ath_aggr_query(struct ath_softc *sc, | 
 | 	struct ath_node *an, u8 tidno) | 
 | { | 
 | 	struct ath_atx_tid *tid; | 
 | 	tid = ATH_AN_2_TID(an, tidno); | 
 |  | 
 | 	if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress) | 
 | 		return 1; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr) | 
 | { | 
 | 	enum ath9k_pkt_type htype; | 
 | 	__le16 fc; | 
 |  | 
 | 	fc = hdr->frame_control; | 
 |  | 
 | 	/* Calculate Atheros packet type from IEEE80211 packet header */ | 
 |  | 
 | 	if (ieee80211_is_beacon(fc)) | 
 | 		htype = ATH9K_PKT_TYPE_BEACON; | 
 | 	else if (ieee80211_is_probe_resp(fc)) | 
 | 		htype = ATH9K_PKT_TYPE_PROBE_RESP; | 
 | 	else if (ieee80211_is_atim(fc)) | 
 | 		htype = ATH9K_PKT_TYPE_ATIM; | 
 | 	else if (ieee80211_is_pspoll(fc)) | 
 | 		htype = ATH9K_PKT_TYPE_PSPOLL; | 
 | 	else | 
 | 		htype = ATH9K_PKT_TYPE_NORMAL; | 
 |  | 
 | 	return htype; | 
 | } | 
 |  | 
 | static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl) | 
 | { | 
 | 	struct ieee80211_hdr *hdr; | 
 | 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 | 	__le16 fc; | 
 |  | 
 | 	hdr = (struct ieee80211_hdr *)skb->data; | 
 | 	fc = hdr->frame_control; | 
 | 	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
 |  | 
 | 	if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) { | 
 | 		txctl->use_minrate = 1; | 
 | 		txctl->min_rate = tx_info_priv->min_rate; | 
 | 	} else if (ieee80211_is_data(fc)) { | 
 | 		if (ieee80211_is_nullfunc(fc) || | 
 | 			/* Port Access Entity (IEEE 802.1X) */ | 
 | 			(skb->protocol == cpu_to_be16(0x888E))) { | 
 | 			txctl->use_minrate = 1; | 
 | 			txctl->min_rate = tx_info_priv->min_rate; | 
 | 		} | 
 | 		if (is_multicast_ether_addr(hdr->addr1)) | 
 | 			txctl->mcast_rate = tx_info_priv->min_rate; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* This function will setup additional txctl information, mostly rate stuff */ | 
 | /* FIXME: seqno, ps */ | 
 | static int ath_tx_prepare(struct ath_softc *sc, | 
 | 			  struct sk_buff *skb, | 
 | 			  struct ath_tx_control *txctl) | 
 | { | 
 | 	struct ieee80211_hw *hw = sc->hw; | 
 | 	struct ieee80211_hdr *hdr; | 
 | 	struct ath_rc_series *rcs; | 
 | 	struct ath_txq *txq = NULL; | 
 | 	const struct ath9k_rate_table *rt; | 
 | 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 | 	int hdrlen; | 
 | 	u8 rix, antenna; | 
 | 	__le16 fc; | 
 | 	u8 *qc; | 
 |  | 
 | 	memset(txctl, 0, sizeof(struct ath_tx_control)); | 
 |  | 
 | 	txctl->dev = sc; | 
 | 	hdr = (struct ieee80211_hdr *)skb->data; | 
 | 	hdrlen = ieee80211_get_hdrlen_from_skb(skb); | 
 | 	fc = hdr->frame_control; | 
 |  | 
 | 	rt = sc->sc_currates; | 
 | 	BUG_ON(!rt); | 
 |  | 
 | 	/* Fill misc fields */ | 
 |  | 
 | 	spin_lock_bh(&sc->node_lock); | 
 | 	txctl->an = ath_node_get(sc, hdr->addr1); | 
 | 	/* create a temp node, if the node is not there already */ | 
 | 	if (!txctl->an) | 
 | 		txctl->an = ath_node_attach(sc, hdr->addr1, 0); | 
 | 	spin_unlock_bh(&sc->node_lock); | 
 |  | 
 | 	if (ieee80211_is_data_qos(fc)) { | 
 | 		qc = ieee80211_get_qos_ctl(hdr); | 
 | 		txctl->tidno = qc[0] & 0xf; | 
 | 	} | 
 |  | 
 | 	txctl->if_id = 0; | 
 | 	txctl->nextfraglen = 0; | 
 | 	txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3); | 
 | 	txctl->txpower = MAX_RATE_POWER; /* FIXME */ | 
 |  | 
 | 	/* Fill Key related fields */ | 
 |  | 
 | 	txctl->keytype = ATH9K_KEY_TYPE_CLEAR; | 
 | 	txctl->keyix = ATH9K_TXKEYIX_INVALID; | 
 |  | 
 | 	if (tx_info->control.hw_key) { | 
 | 		txctl->keyix = tx_info->control.hw_key->hw_key_idx; | 
 | 		txctl->frmlen += tx_info->control.icv_len; | 
 |  | 
 | 		if (tx_info->control.hw_key->alg == ALG_WEP) | 
 | 			txctl->keytype = ATH9K_KEY_TYPE_WEP; | 
 | 		else if (tx_info->control.hw_key->alg == ALG_TKIP) | 
 | 			txctl->keytype = ATH9K_KEY_TYPE_TKIP; | 
 | 		else if (tx_info->control.hw_key->alg == ALG_CCMP) | 
 | 			txctl->keytype = ATH9K_KEY_TYPE_AES; | 
 | 	} | 
 |  | 
 | 	/* Fill packet type */ | 
 |  | 
 | 	txctl->atype = get_hal_packet_type(hdr); | 
 |  | 
 | 	/* Fill qnum */ | 
 |  | 
 | 	txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); | 
 | 	txq = &sc->sc_txq[txctl->qnum]; | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 	/* Try to avoid running out of descriptors */ | 
 | 	if (txq->axq_depth >= (ATH_TXBUF - 20)) { | 
 | 		DPRINTF(sc, ATH_DBG_FATAL, | 
 | 			"%s: TX queue: %d is full, depth: %d\n", | 
 | 			__func__, | 
 | 			txctl->qnum, | 
 | 			txq->axq_depth); | 
 | 		ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); | 
 | 		txq->stopped = 1; | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 	/* Fill rate */ | 
 |  | 
 | 	fill_min_rates(skb, txctl); | 
 |  | 
 | 	/* Fill flags */ | 
 |  | 
 | 	txctl->flags = ATH9K_TXDESC_CLRDMASK;    /* needed for crypto errors */ | 
 |  | 
 | 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) | 
 | 		txctl->flags |= ATH9K_TXDESC_NOACK; | 
 | 	if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) | 
 | 		txctl->flags |= ATH9K_TXDESC_RTSENA; | 
 |  | 
 | 	/* | 
 | 	 * Setup for rate calculations. | 
 | 	 */ | 
 | 	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
 | 	rcs = tx_info_priv->rcs; | 
 |  | 
 | 	if (ieee80211_is_data(fc) && !txctl->use_minrate) { | 
 |  | 
 | 		/* Enable HT only for DATA frames and not for EAPOL */ | 
 | 		txctl->ht = (hw->conf.ht_conf.ht_supported && | 
 | 			    (tx_info->flags & IEEE80211_TX_CTL_AMPDU)); | 
 |  | 
 | 		if (is_multicast_ether_addr(hdr->addr1)) { | 
 | 			rcs[0].rix = (u8) | 
 | 				ath_tx_findindex(rt, txctl->mcast_rate); | 
 |  | 
 | 			/* | 
 | 			 * mcast packets are not re-tried. | 
 | 			 */ | 
 | 			rcs[0].tries = 1; | 
 | 		} | 
 | 		/* For HT capable stations, we save tidno for later use. | 
 | 		 * We also override seqno set by upper layer with the one | 
 | 		 * in tx aggregation state. | 
 | 		 * | 
 | 		 * First, the fragmentation stat is determined. | 
 | 		 * If fragmentation is on, the sequence number is | 
 | 		 * not overridden, since it has been | 
 | 		 * incremented by the fragmentation routine. | 
 | 		 */ | 
 | 		if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) && | 
 | 			txctl->ht && sc->sc_txaggr) { | 
 | 			struct ath_atx_tid *tid; | 
 |  | 
 | 			tid = ATH_AN_2_TID(txctl->an, txctl->tidno); | 
 |  | 
 | 			hdr->seq_ctrl = cpu_to_le16(tid->seq_next << | 
 | 				IEEE80211_SEQ_SEQ_SHIFT); | 
 | 			txctl->seqno = tid->seq_next; | 
 | 			INCR(tid->seq_next, IEEE80211_SEQ_MAX); | 
 | 		} | 
 | 	} else { | 
 | 		/* for management and control frames, | 
 | 		 * or for NULL and EAPOL frames */ | 
 | 		if (txctl->min_rate) | 
 | 			rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate); | 
 | 		else | 
 | 			rcs[0].rix = 0; | 
 | 		rcs[0].tries = ATH_MGT_TXMAXTRY; | 
 | 	} | 
 | 	rix = rcs[0].rix; | 
 |  | 
 | 	/* | 
 | 	 * Calculate duration.  This logically belongs in the 802.11 | 
 | 	 * layer but it lacks sufficient information to calculate it. | 
 | 	 */ | 
 | 	if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) { | 
 | 		u16 dur; | 
 | 		/* | 
 | 		 * XXX not right with fragmentation. | 
 | 		 */ | 
 | 		if (sc->sc_flags & ATH_PREAMBLE_SHORT) | 
 | 			dur = rt->info[rix].spAckDuration; | 
 | 		else | 
 | 			dur = rt->info[rix].lpAckDuration; | 
 |  | 
 | 		if (le16_to_cpu(hdr->frame_control) & | 
 | 				IEEE80211_FCTL_MOREFRAGS) { | 
 | 			dur += dur;  /* Add additional 'SIFS + ACK' */ | 
 |  | 
 | 			/* | 
 | 			** Compute size of next fragment in order to compute | 
 | 			** durations needed to update NAV. | 
 | 			** The last fragment uses the ACK duration only. | 
 | 			** Add time for next fragment. | 
 | 			*/ | 
 | 			dur += ath9k_hw_computetxtime(sc->sc_ah, rt, | 
 | 					txctl->nextfraglen, | 
 | 					rix, sc->sc_flags & ATH_PREAMBLE_SHORT); | 
 | 		} | 
 |  | 
 | 		if (ieee80211_has_morefrags(fc) || | 
 | 		     (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { | 
 | 			/* | 
 | 			**  Force hardware to use computed duration for next | 
 | 			**  fragment by disabling multi-rate retry, which | 
 | 			**  updates duration based on the multi-rate | 
 | 			**  duration table. | 
 | 			*/ | 
 | 			rcs[1].tries = rcs[2].tries = rcs[3].tries = 0; | 
 | 			rcs[1].rix = rcs[2].rix = rcs[3].rix = 0; | 
 | 			/* reset tries but keep rate index */ | 
 | 			rcs[0].tries = ATH_TXMAXTRY; | 
 | 		} | 
 |  | 
 | 		hdr->duration_id = cpu_to_le16(dur); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine if a tx interrupt should be generated for | 
 | 	 * this descriptor.  We take a tx interrupt to reap | 
 | 	 * descriptors when the h/w hits an EOL condition or | 
 | 	 * when the descriptor is specifically marked to generate | 
 | 	 * an interrupt.  We periodically mark descriptors in this | 
 | 	 * way to insure timely replenishing of the supply needed | 
 | 	 * for sending frames.  Defering interrupts reduces system | 
 | 	 * load and potentially allows more concurrent work to be | 
 | 	 * done but if done to aggressively can cause senders to | 
 | 	 * backup. | 
 | 	 * | 
 | 	 * NB: use >= to deal with sc_txintrperiod changing | 
 | 	 *     dynamically through sysctl. | 
 | 	 */ | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 | 	if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) { | 
 | 		txctl->flags |= ATH9K_TXDESC_INTREQ; | 
 | 		txq->axq_intrcnt = 0; | 
 | 	} | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 	if (is_multicast_ether_addr(hdr->addr1)) { | 
 | 		antenna = sc->sc_mcastantenna + 1; | 
 | 		sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1; | 
 | 	} else | 
 | 		antenna = sc->sc_txantenna; | 
 |  | 
 | #ifdef USE_LEGACY_HAL | 
 | 	txctl->antenna = antenna; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* To complete a chain of buffers associated a frame */ | 
 |  | 
 | static void ath_tx_complete_buf(struct ath_softc *sc, | 
 | 				struct ath_buf *bf, | 
 | 				struct list_head *bf_q, | 
 | 				int txok, int sendbar) | 
 | { | 
 | 	struct sk_buff *skb = bf->bf_mpdu; | 
 | 	struct ath_xmit_status tx_status; | 
 | 	dma_addr_t *pa; | 
 |  | 
 | 	/* | 
 | 	 * Set retry information. | 
 | 	 * NB: Don't use the information in the descriptor, because the frame | 
 | 	 * could be software retried. | 
 | 	 */ | 
 | 	tx_status.retries = bf->bf_retries; | 
 | 	tx_status.flags = 0; | 
 |  | 
 | 	if (sendbar) | 
 | 		tx_status.flags = ATH_TX_BAR; | 
 |  | 
 | 	if (!txok) { | 
 | 		tx_status.flags |= ATH_TX_ERROR; | 
 |  | 
 | 		if (bf->bf_isxretried) | 
 | 			tx_status.flags |= ATH_TX_XRETRY; | 
 | 	} | 
 | 	/* Unmap this frame */ | 
 | 	pa = get_dma_mem_context(bf, bf_dmacontext); | 
 | 	pci_unmap_single(sc->pdev, | 
 | 			 *pa, | 
 | 			 skb->len, | 
 | 			 PCI_DMA_TODEVICE); | 
 | 	/* complete this frame */ | 
 | 	ath_tx_complete(sc, skb, &tx_status, bf->bf_node); | 
 |  | 
 | 	/* | 
 | 	 * Return the list of ath_buf of this mpdu to free queue | 
 | 	 */ | 
 | 	spin_lock_bh(&sc->sc_txbuflock); | 
 | 	list_splice_tail_init(bf_q, &sc->sc_txbuf); | 
 | 	spin_unlock_bh(&sc->sc_txbuflock); | 
 | } | 
 |  | 
 | /* | 
 |  * queue up a dest/ac pair for tx scheduling | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) | 
 | { | 
 | 	struct ath_atx_ac *ac = tid->ac; | 
 |  | 
 | 	/* | 
 | 	 * if tid is paused, hold off | 
 | 	 */ | 
 | 	if (tid->paused) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * add tid to ac atmost once | 
 | 	 */ | 
 | 	if (tid->sched) | 
 | 		return; | 
 |  | 
 | 	tid->sched = true; | 
 | 	list_add_tail(&tid->list, &ac->tid_q); | 
 |  | 
 | 	/* | 
 | 	 * add node ac to txq atmost once | 
 | 	 */ | 
 | 	if (ac->sched) | 
 | 		return; | 
 |  | 
 | 	ac->sched = true; | 
 | 	list_add_tail(&ac->list, &txq->axq_acq); | 
 | } | 
 |  | 
 | /* pause a tid */ | 
 |  | 
 | static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
 | { | 
 | 	struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
 |  | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 	tid->paused++; | 
 |  | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 | } | 
 |  | 
 | /* resume a tid and schedule aggregate */ | 
 |  | 
 | void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
 | { | 
 | 	struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
 |  | 
 | 	ASSERT(tid->paused > 0); | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 	tid->paused--; | 
 |  | 
 | 	if (tid->paused > 0) | 
 | 		goto unlock; | 
 |  | 
 | 	if (list_empty(&tid->buf_q)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * Add this TID to scheduler and try to send out aggregates | 
 | 	 */ | 
 | 	ath_tx_queue_tid(txq, tid); | 
 | 	ath_txq_schedule(sc, txq); | 
 | unlock: | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 | } | 
 |  | 
 | /* Compute the number of bad frames */ | 
 |  | 
 | static int ath_tx_num_badfrms(struct ath_softc *sc, | 
 | 	struct ath_buf *bf, int txok) | 
 | { | 
 | 	struct ath_node *an = bf->bf_node; | 
 | 	int isnodegone = (an->an_flags & ATH_NODE_CLEAN); | 
 | 	struct ath_buf *bf_last = bf->bf_lastbf; | 
 | 	struct ath_desc *ds = bf_last->bf_desc; | 
 | 	u16 seq_st = 0; | 
 | 	u32 ba[WME_BA_BMP_SIZE >> 5]; | 
 | 	int ba_index; | 
 | 	int nbad = 0; | 
 | 	int isaggr = 0; | 
 |  | 
 | 	if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) | 
 | 		return 0; | 
 |  | 
 | 	isaggr = bf->bf_isaggr; | 
 | 	if (isaggr) { | 
 | 		seq_st = ATH_DS_BA_SEQ(ds); | 
 | 		memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); | 
 | 	} | 
 |  | 
 | 	while (bf) { | 
 | 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); | 
 | 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) | 
 | 			nbad++; | 
 |  | 
 | 		bf = bf->bf_next; | 
 | 	} | 
 |  | 
 | 	return nbad; | 
 | } | 
 |  | 
 | static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct ieee80211_hdr *hdr; | 
 |  | 
 | 	bf->bf_isretried = 1; | 
 | 	bf->bf_retries++; | 
 |  | 
 | 	skb = bf->bf_mpdu; | 
 | 	hdr = (struct ieee80211_hdr *)skb->data; | 
 | 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); | 
 | } | 
 |  | 
 | /* Update block ack window */ | 
 |  | 
 | static void ath_tx_update_baw(struct ath_softc *sc, | 
 | 	struct ath_atx_tid *tid, int seqno) | 
 | { | 
 | 	int index, cindex; | 
 |  | 
 | 	index  = ATH_BA_INDEX(tid->seq_start, seqno); | 
 | 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
 |  | 
 | 	tid->tx_buf[cindex] = NULL; | 
 |  | 
 | 	while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { | 
 | 		INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
 | 		INCR(tid->baw_head, ATH_TID_MAX_BUFS); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * ath_pkt_dur - compute packet duration (NB: not NAV) | 
 |  * | 
 |  * rix - rate index | 
 |  * pktlen - total bytes (delims + data + fcs + pads + pad delims) | 
 |  * width  - 0 for 20 MHz, 1 for 40 MHz | 
 |  * half_gi - to use 4us v/s 3.6 us for symbol time | 
 |  */ | 
 |  | 
 | static u32 ath_pkt_duration(struct ath_softc *sc, | 
 | 				  u8 rix, | 
 | 				  struct ath_buf *bf, | 
 | 				  int width, | 
 | 				  int half_gi, | 
 | 				  bool shortPreamble) | 
 | { | 
 | 	const struct ath9k_rate_table *rt = sc->sc_currates; | 
 | 	u32 nbits, nsymbits, duration, nsymbols; | 
 | 	u8 rc; | 
 | 	int streams, pktlen; | 
 |  | 
 | 	pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen; | 
 | 	rc = rt->info[rix].rateCode; | 
 |  | 
 | 	/* | 
 | 	 * for legacy rates, use old function to compute packet duration | 
 | 	 */ | 
 | 	if (!IS_HT_RATE(rc)) | 
 | 		return ath9k_hw_computetxtime(sc->sc_ah, | 
 | 					     rt, | 
 | 					     pktlen, | 
 | 					     rix, | 
 | 					     shortPreamble); | 
 | 	/* | 
 | 	 * find number of symbols: PLCP + data | 
 | 	 */ | 
 | 	nbits = (pktlen << 3) + OFDM_PLCP_BITS; | 
 | 	nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
 | 	nsymbols = (nbits + nsymbits - 1) / nsymbits; | 
 |  | 
 | 	if (!half_gi) | 
 | 		duration = SYMBOL_TIME(nsymbols); | 
 | 	else | 
 | 		duration = SYMBOL_TIME_HALFGI(nsymbols); | 
 |  | 
 | 	/* | 
 | 	 * addup duration for legacy/ht training and signal fields | 
 | 	 */ | 
 | 	streams = HT_RC_2_STREAMS(rc); | 
 | 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); | 
 | 	return duration; | 
 | } | 
 |  | 
 | /* Rate module function to set rate related fields in tx descriptor */ | 
 |  | 
 | static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	const struct ath9k_rate_table *rt; | 
 | 	struct ath_desc *ds = bf->bf_desc; | 
 | 	struct ath_desc *lastds = bf->bf_lastbf->bf_desc; | 
 | 	struct ath9k_11n_rate_series series[4]; | 
 | 	int i, flags, rtsctsena = 0, dynamic_mimops = 0; | 
 | 	u32 ctsduration = 0; | 
 | 	u8 rix = 0, cix, ctsrate = 0; | 
 | 	u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit; | 
 | 	struct ath_node *an = (struct ath_node *) bf->bf_node; | 
 |  | 
 | 	/* | 
 | 	 * get the cix for the lowest valid rix. | 
 | 	 */ | 
 | 	rt = sc->sc_currates; | 
 | 	for (i = 4; i--;) { | 
 | 		if (bf->bf_rcs[i].tries) { | 
 | 			rix = bf->bf_rcs[i].rix; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); | 
 | 	cix = rt->info[rix].controlRate; | 
 |  | 
 | 	/* | 
 | 	 * If 802.11g protection is enabled, determine whether | 
 | 	 * to use RTS/CTS or just CTS.  Note that this is only | 
 | 	 * done for OFDM/HT unicast frames. | 
 | 	 */ | 
 | 	if (sc->sc_protmode != PROT_M_NONE && | 
 | 	    (rt->info[rix].phy == PHY_OFDM || | 
 | 	     rt->info[rix].phy == PHY_HT) && | 
 | 	    (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { | 
 | 		if (sc->sc_protmode == PROT_M_RTSCTS) | 
 | 			flags = ATH9K_TXDESC_RTSENA; | 
 | 		else if (sc->sc_protmode == PROT_M_CTSONLY) | 
 | 			flags = ATH9K_TXDESC_CTSENA; | 
 |  | 
 | 		cix = rt->info[sc->sc_protrix].controlRate; | 
 | 		rtsctsena = 1; | 
 | 	} | 
 |  | 
 | 	/* For 11n, the default behavior is to enable RTS for | 
 | 	 * hw retried frames. We enable the global flag here and | 
 | 	 * let rate series flags determine which rates will actually | 
 | 	 * use RTS. | 
 | 	 */ | 
 | 	if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf->bf_isdata) { | 
 | 		BUG_ON(!an); | 
 | 		/* | 
 | 		 * 802.11g protection not needed, use our default behavior | 
 | 		 */ | 
 | 		if (!rtsctsena) | 
 | 			flags = ATH9K_TXDESC_RTSENA; | 
 | 		/* | 
 | 		 * For dynamic MIMO PS, RTS needs to precede the first aggregate | 
 | 		 * and the second aggregate should have any protection at all. | 
 | 		 */ | 
 | 		if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) { | 
 | 			if (!bf->bf_aggrburst) { | 
 | 				flags = ATH9K_TXDESC_RTSENA; | 
 | 				dynamic_mimops = 1; | 
 | 			} else { | 
 | 				flags = 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set protection if aggregate protection on | 
 | 	 */ | 
 | 	if (sc->sc_config.ath_aggr_prot && | 
 | 	    (!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) { | 
 | 		flags = ATH9K_TXDESC_RTSENA; | 
 | 		cix = rt->info[sc->sc_protrix].controlRate; | 
 | 		rtsctsena = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *  For AR5416 - RTS cannot be followed by a frame larger than 8K. | 
 | 	 */ | 
 | 	if (bf->bf_isaggr && (bf->bf_al > aggr_limit_with_rts)) { | 
 | 		/* | 
 | 		 * Ensure that in the case of SM Dynamic power save | 
 | 		 * while we are bursting the second aggregate the | 
 | 		 * RTS is cleared. | 
 | 		 */ | 
 | 		flags &= ~(ATH9K_TXDESC_RTSENA); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * CTS transmit rate is derived from the transmit rate | 
 | 	 * by looking in the h/w rate table.  We must also factor | 
 | 	 * in whether or not a short preamble is to be used. | 
 | 	 */ | 
 | 	/* NB: cix is set above where RTS/CTS is enabled */ | 
 | 	BUG_ON(cix == 0xff); | 
 | 	ctsrate = rt->info[cix].rateCode | | 
 | 		(bf->bf_shpreamble ? rt->info[cix].shortPreamble : 0); | 
 |  | 
 | 	/* | 
 | 	 * Setup HAL rate series | 
 | 	 */ | 
 | 	memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (!bf->bf_rcs[i].tries) | 
 | 			continue; | 
 |  | 
 | 		rix = bf->bf_rcs[i].rix; | 
 |  | 
 | 		series[i].Rate = rt->info[rix].rateCode | | 
 | 			(bf->bf_shpreamble ? rt->info[rix].shortPreamble : 0); | 
 |  | 
 | 		series[i].Tries = bf->bf_rcs[i].tries; | 
 |  | 
 | 		series[i].RateFlags = ( | 
 | 			(bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ? | 
 | 				ATH9K_RATESERIES_RTS_CTS : 0) | | 
 | 			((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ? | 
 | 				ATH9K_RATESERIES_2040 : 0) | | 
 | 			((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ? | 
 | 				ATH9K_RATESERIES_HALFGI : 0); | 
 |  | 
 | 		series[i].PktDuration = ath_pkt_duration( | 
 | 			sc, rix, bf, | 
 | 			(bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0, | 
 | 			(bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG), | 
 | 			bf->bf_shpreamble); | 
 |  | 
 | 		if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) && | 
 | 		    (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) { | 
 | 			/* | 
 | 			 * When sending to an HT node that has enabled static | 
 | 			 * SM/MIMO power save, send at single stream rates but | 
 | 			 * use maximum allowed transmit chains per user, | 
 | 			 * hardware, regulatory, or country limits for | 
 | 			 * better range. | 
 | 			 */ | 
 | 			series[i].ChSel = sc->sc_tx_chainmask; | 
 | 		} else { | 
 | 			if (bf->bf_ht) | 
 | 				series[i].ChSel = | 
 | 					ath_chainmask_sel_logic(sc, an); | 
 | 			else | 
 | 				series[i].ChSel = sc->sc_tx_chainmask; | 
 | 		} | 
 |  | 
 | 		if (rtsctsena) | 
 | 			series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; | 
 |  | 
 | 		/* | 
 | 		 * Set RTS for all rates if node is in dynamic powersave | 
 | 		 * mode and we are using dual stream rates. | 
 | 		 */ | 
 | 		if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG)) | 
 | 			series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For non-HT devices, calculate RTS/CTS duration in software | 
 | 	 * and disable multi-rate retry. | 
 | 	 */ | 
 | 	if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) { | 
 | 		/* | 
 | 		 * Compute the transmit duration based on the frame | 
 | 		 * size and the size of an ACK frame.  We call into the | 
 | 		 * HAL to do the computation since it depends on the | 
 | 		 * characteristics of the actual PHY being used. | 
 | 		 * | 
 | 		 * NB: CTS is assumed the same size as an ACK so we can | 
 | 		 *     use the precalculated ACK durations. | 
 | 		 */ | 
 | 		if (flags & ATH9K_TXDESC_RTSENA) {    /* SIFS + CTS */ | 
 | 			ctsduration += bf->bf_shpreamble ? | 
 | 				rt->info[cix].spAckDuration : | 
 | 				rt->info[cix].lpAckDuration; | 
 | 		} | 
 |  | 
 | 		ctsduration += series[0].PktDuration; | 
 |  | 
 | 		if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */ | 
 | 			ctsduration += bf->bf_shpreamble ? | 
 | 				rt->info[rix].spAckDuration : | 
 | 				rt->info[rix].lpAckDuration; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Disable multi-rate retry when using RTS/CTS by clearing | 
 | 		 * series 1, 2 and 3. | 
 | 		 */ | 
 | 		memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * set dur_update_en for l-sig computation except for PS-Poll frames | 
 | 	 */ | 
 | 	ath9k_hw_set11n_ratescenario(ah, ds, lastds, | 
 | 				    !bf->bf_ispspoll, | 
 | 				    ctsrate, | 
 | 				    ctsduration, | 
 | 				    series, 4, flags); | 
 | 	if (sc->sc_config.ath_aggr_prot && flags) | 
 | 		ath9k_hw_set11n_burstduration(ah, ds, 8192); | 
 | } | 
 |  | 
 | /* | 
 |  * Function to send a normal HT (non-AMPDU) frame | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static int ath_tx_send_normal(struct ath_softc *sc, | 
 | 			      struct ath_txq *txq, | 
 | 			      struct ath_atx_tid *tid, | 
 | 			      struct list_head *bf_head) | 
 | { | 
 | 	struct ath_buf *bf; | 
 | 	struct sk_buff *skb; | 
 | 	struct ieee80211_tx_info *tx_info; | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 |  | 
 | 	BUG_ON(list_empty(bf_head)); | 
 |  | 
 | 	bf = list_first_entry(bf_head, struct ath_buf, list); | 
 | 	bf->bf_isampdu = 0; /* regular HT frame */ | 
 |  | 
 | 	skb = (struct sk_buff *)bf->bf_mpdu; | 
 | 	tx_info = IEEE80211_SKB_CB(skb); | 
 | 	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
 | 	memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
 |  | 
 | 	/* update starting sequence number for subsequent ADDBA request */ | 
 | 	INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
 |  | 
 | 	/* Queue to h/w without aggregation */ | 
 | 	bf->bf_nframes = 1; | 
 | 	bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ | 
 | 	ath_buf_set_rate(sc, bf); | 
 | 	ath_tx_txqaddbuf(sc, txq, bf_head); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* flush tid's software queue and send frames as non-ampdu's */ | 
 |  | 
 | static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
 | { | 
 | 	struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; | 
 | 	struct ath_buf *bf; | 
 | 	struct list_head bf_head; | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	ASSERT(tid->paused > 0); | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 	tid->paused--; | 
 |  | 
 | 	if (tid->paused > 0) { | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&tid->buf_q)) { | 
 | 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
 | 		ASSERT(!bf->bf_isretried); | 
 | 		list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
 | 		ath_tx_send_normal(sc, txq, tid, &bf_head); | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 | } | 
 |  | 
 | /* Completion routine of an aggregate */ | 
 |  | 
 | static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, | 
 | 				      struct ath_txq *txq, | 
 | 				      struct ath_buf *bf, | 
 | 				      struct list_head *bf_q, | 
 | 				      int txok) | 
 | { | 
 | 	struct ath_node *an = bf->bf_node; | 
 | 	struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno); | 
 | 	struct ath_buf *bf_last = bf->bf_lastbf; | 
 | 	struct ath_desc *ds = bf_last->bf_desc; | 
 | 	struct ath_buf *bf_next, *bf_lastq = NULL; | 
 | 	struct list_head bf_head, bf_pending; | 
 | 	u16 seq_st = 0; | 
 | 	u32 ba[WME_BA_BMP_SIZE >> 5]; | 
 | 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0; | 
 | 	int isnodegone = (an->an_flags & ATH_NODE_CLEAN); | 
 |  | 
 | 	isaggr = bf->bf_isaggr; | 
 | 	if (isaggr) { | 
 | 		if (txok) { | 
 | 			if (ATH_DS_TX_BA(ds)) { | 
 | 				/* | 
 | 				 * extract starting sequence and | 
 | 				 * block-ack bitmap | 
 | 				 */ | 
 | 				seq_st = ATH_DS_BA_SEQ(ds); | 
 | 				memcpy(ba, | 
 | 					ATH_DS_BA_BITMAP(ds), | 
 | 					WME_BA_BMP_SIZE >> 3); | 
 | 			} else { | 
 | 				memzero(ba, WME_BA_BMP_SIZE >> 3); | 
 |  | 
 | 				/* | 
 | 				 * AR5416 can become deaf/mute when BA | 
 | 				 * issue happens. Chip needs to be reset. | 
 | 				 * But AP code may have sychronization issues | 
 | 				 * when perform internal reset in this routine. | 
 | 				 * Only enable reset in STA mode for now. | 
 | 				 */ | 
 | 				if (sc->sc_opmode == ATH9K_M_STA) | 
 | 					needreset = 1; | 
 | 			} | 
 | 		} else { | 
 | 			memzero(ba, WME_BA_BMP_SIZE >> 3); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&bf_pending); | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	while (bf) { | 
 | 		txfail = txpending = 0; | 
 | 		bf_next = bf->bf_next; | 
 |  | 
 | 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { | 
 | 			/* transmit completion, subframe is | 
 | 			 * acked by block ack */ | 
 | 		} else if (!isaggr && txok) { | 
 | 			/* transmit completion */ | 
 | 		} else { | 
 |  | 
 | 			if (!tid->cleanup_inprogress && !isnodegone && | 
 | 			    ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { | 
 | 				if (bf->bf_retries < ATH_MAX_SW_RETRIES) { | 
 | 					ath_tx_set_retry(sc, bf); | 
 | 					txpending = 1; | 
 | 				} else { | 
 | 					bf->bf_isxretried = 1; | 
 | 					txfail = 1; | 
 | 					sendbar = 1; | 
 | 				} | 
 | 			} else { | 
 | 				/* | 
 | 				 * cleanup in progress, just fail | 
 | 				 * the un-acked sub-frames | 
 | 				 */ | 
 | 				txfail = 1; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * Remove ath_buf's of this sub-frame from aggregate queue. | 
 | 		 */ | 
 | 		if (bf_next == NULL) {  /* last subframe in the aggregate */ | 
 | 			ASSERT(bf->bf_lastfrm == bf_last); | 
 |  | 
 | 			/* | 
 | 			 * The last descriptor of the last sub frame could be | 
 | 			 * a holding descriptor for h/w. If that's the case, | 
 | 			 * bf->bf_lastfrm won't be in the bf_q. | 
 | 			 * Make sure we handle bf_q properly here. | 
 | 			 */ | 
 |  | 
 | 			if (!list_empty(bf_q)) { | 
 | 				bf_lastq = list_entry(bf_q->prev, | 
 | 					struct ath_buf, list); | 
 | 				list_cut_position(&bf_head, | 
 | 					bf_q, &bf_lastq->list); | 
 | 			} else { | 
 | 				/* | 
 | 				 * XXX: if the last subframe only has one | 
 | 				 * descriptor which is also being used as | 
 | 				 * a holding descriptor. Then the ath_buf | 
 | 				 * is not in the bf_q at all. | 
 | 				 */ | 
 | 				INIT_LIST_HEAD(&bf_head); | 
 | 			} | 
 | 		} else { | 
 | 			ASSERT(!list_empty(bf_q)); | 
 | 			list_cut_position(&bf_head, | 
 | 				bf_q, &bf->bf_lastfrm->list); | 
 | 		} | 
 |  | 
 | 		if (!txpending) { | 
 | 			/* | 
 | 			 * complete the acked-ones/xretried ones; update | 
 | 			 * block-ack window | 
 | 			 */ | 
 | 			spin_lock_bh(&txq->axq_lock); | 
 | 			ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 			/* complete this sub-frame */ | 
 | 			ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); | 
 | 		} else { | 
 | 			/* | 
 | 			 * retry the un-acked ones | 
 | 			 */ | 
 | 			/* | 
 | 			 * XXX: if the last descriptor is holding descriptor, | 
 | 			 * in order to requeue the frame to software queue, we | 
 | 			 * need to allocate a new descriptor and | 
 | 			 * copy the content of holding descriptor to it. | 
 | 			 */ | 
 | 			if (bf->bf_next == NULL && | 
 | 			    bf_last->bf_status & ATH_BUFSTATUS_STALE) { | 
 | 				struct ath_buf *tbf; | 
 |  | 
 | 				/* allocate new descriptor */ | 
 | 				spin_lock_bh(&sc->sc_txbuflock); | 
 | 				ASSERT(!list_empty((&sc->sc_txbuf))); | 
 | 				tbf = list_first_entry(&sc->sc_txbuf, | 
 | 						struct ath_buf, list); | 
 | 				list_del(&tbf->list); | 
 | 				spin_unlock_bh(&sc->sc_txbuflock); | 
 |  | 
 | 				ATH_TXBUF_RESET(tbf); | 
 |  | 
 | 				/* copy descriptor content */ | 
 | 				tbf->bf_mpdu = bf_last->bf_mpdu; | 
 | 				tbf->bf_node = bf_last->bf_node; | 
 | 				tbf->bf_buf_addr = bf_last->bf_buf_addr; | 
 | 				*(tbf->bf_desc) = *(bf_last->bf_desc); | 
 |  | 
 | 				/* link it to the frame */ | 
 | 				if (bf_lastq) { | 
 | 					bf_lastq->bf_desc->ds_link = | 
 | 						tbf->bf_daddr; | 
 | 					bf->bf_lastfrm = tbf; | 
 | 					ath9k_hw_cleartxdesc(sc->sc_ah, | 
 | 						bf->bf_lastfrm->bf_desc); | 
 | 				} else { | 
 | 					tbf->bf_state = bf_last->bf_state; | 
 | 					tbf->bf_lastfrm = tbf; | 
 | 					ath9k_hw_cleartxdesc(sc->sc_ah, | 
 | 						tbf->bf_lastfrm->bf_desc); | 
 |  | 
 | 					/* copy the DMA context */ | 
 | 					copy_dma_mem_context( | 
 | 						get_dma_mem_context(tbf, | 
 | 							bf_dmacontext), | 
 | 						get_dma_mem_context(bf_last, | 
 | 							bf_dmacontext)); | 
 | 				} | 
 | 				list_add_tail(&tbf->list, &bf_head); | 
 | 			} else { | 
 | 				/* | 
 | 				 * Clear descriptor status words for | 
 | 				 * software retry | 
 | 				 */ | 
 | 				ath9k_hw_cleartxdesc(sc->sc_ah, | 
 | 					bf->bf_lastfrm->bf_desc); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Put this buffer to the temporary pending | 
 | 			 * queue to retain ordering | 
 | 			 */ | 
 | 			list_splice_tail_init(&bf_head, &bf_pending); | 
 | 		} | 
 |  | 
 | 		bf = bf_next; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * node is already gone. no more assocication | 
 | 	 * with the node. the node might have been freed | 
 | 	 * any  node acces can result in panic.note tid | 
 | 	 * is part of the node. | 
 | 	 */ | 
 | 	if (isnodegone) | 
 | 		return; | 
 |  | 
 | 	if (tid->cleanup_inprogress) { | 
 | 		/* check to see if we're done with cleaning the h/w queue */ | 
 | 		spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 		if (tid->baw_head == tid->baw_tail) { | 
 | 			tid->addba_exchangecomplete = 0; | 
 | 			tid->addba_exchangeattempts = 0; | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 			tid->cleanup_inprogress = false; | 
 |  | 
 | 			/* send buffered frames as singles */ | 
 | 			ath_tx_flush_tid(sc, tid); | 
 | 		} else | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * prepend un-acked frames to the beginning of the pending frame queue | 
 | 	 */ | 
 | 	if (!list_empty(&bf_pending)) { | 
 | 		spin_lock_bh(&txq->axq_lock); | 
 | 		/* Note: we _prepend_, we _do_not_ at to | 
 | 		 * the end of the queue ! */ | 
 | 		list_splice(&bf_pending, &tid->buf_q); | 
 | 		ath_tx_queue_tid(txq, tid); | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 	} | 
 |  | 
 | 	if (needreset) | 
 | 		ath_internal_reset(sc); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* Process completed xmit descriptors from the specified queue */ | 
 |  | 
 | static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	struct ath_buf *bf, *lastbf, *bf_held = NULL; | 
 | 	struct list_head bf_head; | 
 | 	struct ath_desc *ds, *tmp_ds; | 
 | 	struct sk_buff *skb; | 
 | 	struct ieee80211_tx_info *tx_info; | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 | 	int nacked, txok, nbad = 0, isrifs = 0; | 
 | 	int status; | 
 |  | 
 | 	DPRINTF(sc, ATH_DBG_QUEUE, | 
 | 		"%s: tx queue %d (%x), link %p\n", __func__, | 
 | 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), | 
 | 		txq->axq_link); | 
 |  | 
 | 	nacked = 0; | 
 | 	for (;;) { | 
 | 		spin_lock_bh(&txq->axq_lock); | 
 | 		txq->axq_intrcnt = 0; /* reset periodic desc intr count */ | 
 | 		if (list_empty(&txq->axq_q)) { | 
 | 			txq->axq_link = NULL; | 
 | 			txq->axq_linkbuf = NULL; | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 | 			break; | 
 | 		} | 
 | 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
 |  | 
 | 		/* | 
 | 		 * There is a race condition that a BH gets scheduled | 
 | 		 * after sw writes TxE and before hw re-load the last | 
 | 		 * descriptor to get the newly chained one. | 
 | 		 * Software must keep the last DONE descriptor as a | 
 | 		 * holding descriptor - software does so by marking | 
 | 		 * it with the STALE flag. | 
 | 		 */ | 
 | 		bf_held = NULL; | 
 | 		if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
 | 			bf_held = bf; | 
 | 			if (list_is_last(&bf_held->list, &txq->axq_q)) { | 
 | 				/* FIXME: | 
 | 				 * The holding descriptor is the last | 
 | 				 * descriptor in queue. It's safe to remove | 
 | 				 * the last holding descriptor in BH context. | 
 | 				 */ | 
 | 				spin_unlock_bh(&txq->axq_lock); | 
 | 				break; | 
 | 			} else { | 
 | 				/* Lets work with the next buffer now */ | 
 | 				bf = list_entry(bf_held->list.next, | 
 | 					struct ath_buf, list); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		lastbf = bf->bf_lastbf; | 
 | 		ds = lastbf->bf_desc;    /* NB: last decriptor */ | 
 |  | 
 | 		status = ath9k_hw_txprocdesc(ah, ds); | 
 | 		if (status == -EINPROGRESS) { | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 | 			break; | 
 | 		} | 
 | 		if (bf->bf_desc == txq->axq_lastdsWithCTS) | 
 | 			txq->axq_lastdsWithCTS = NULL; | 
 | 		if (ds == txq->axq_gatingds) | 
 | 			txq->axq_gatingds = NULL; | 
 |  | 
 | 		/* | 
 | 		 * Remove ath_buf's of the same transmit unit from txq, | 
 | 		 * however leave the last descriptor back as the holding | 
 | 		 * descriptor for hw. | 
 | 		 */ | 
 | 		lastbf->bf_status |= ATH_BUFSTATUS_STALE; | 
 | 		INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 		if (!list_is_singular(&lastbf->list)) | 
 | 			list_cut_position(&bf_head, | 
 | 				&txq->axq_q, lastbf->list.prev); | 
 |  | 
 | 		txq->axq_depth--; | 
 |  | 
 | 		if (bf->bf_isaggr) | 
 | 			txq->axq_aggr_depth--; | 
 |  | 
 | 		txok = (ds->ds_txstat.ts_status == 0); | 
 |  | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 		if (bf_held) { | 
 | 			list_del(&bf_held->list); | 
 | 			spin_lock_bh(&sc->sc_txbuflock); | 
 | 			list_add_tail(&bf_held->list, &sc->sc_txbuf); | 
 | 			spin_unlock_bh(&sc->sc_txbuflock); | 
 | 		} | 
 |  | 
 | 		if (!bf->bf_isampdu) { | 
 | 			/* | 
 | 			 * This frame is sent out as a single frame. | 
 | 			 * Use hardware retry status for this frame. | 
 | 			 */ | 
 | 			bf->bf_retries = ds->ds_txstat.ts_longretry; | 
 | 			if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) | 
 | 				bf->bf_isxretried = 1; | 
 | 			nbad = 0; | 
 | 		} else { | 
 | 			nbad = ath_tx_num_badfrms(sc, bf, txok); | 
 | 		} | 
 | 		skb = bf->bf_mpdu; | 
 | 		tx_info = IEEE80211_SKB_CB(skb); | 
 | 		tx_info_priv = (struct ath_tx_info_priv *) | 
 | 			tx_info->driver_data[0]; | 
 | 		if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) | 
 | 			tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; | 
 | 		if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && | 
 | 				(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { | 
 | 			if (ds->ds_txstat.ts_status == 0) | 
 | 				nacked++; | 
 |  | 
 | 			if (bf->bf_isdata) { | 
 | 				if (isrifs) | 
 | 					tmp_ds = bf->bf_rifslast->bf_desc; | 
 | 				else | 
 | 					tmp_ds = ds; | 
 | 				memcpy(&tx_info_priv->tx, | 
 | 					&tmp_ds->ds_txstat, | 
 | 					sizeof(tx_info_priv->tx)); | 
 | 				tx_info_priv->n_frames = bf->bf_nframes; | 
 | 				tx_info_priv->n_bad_frames = nbad; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Complete this transmit unit | 
 | 		 */ | 
 | 		if (bf->bf_isampdu) | 
 | 			ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok); | 
 | 		else | 
 | 			ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); | 
 |  | 
 | 		/* Wake up mac80211 queue */ | 
 |  | 
 | 		spin_lock_bh(&txq->axq_lock); | 
 | 		if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <= | 
 | 				(ATH_TXBUF - 20)) { | 
 | 			int qnum; | 
 | 			qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); | 
 | 			if (qnum != -1) { | 
 | 				ieee80211_wake_queue(sc->hw, qnum); | 
 | 				txq->stopped = 0; | 
 | 			} | 
 |  | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * schedule any pending packets if aggregation is enabled | 
 | 		 */ | 
 | 		if (sc->sc_txaggr) | 
 | 			ath_txq_schedule(sc, txq); | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 	} | 
 | 	return nacked; | 
 | } | 
 |  | 
 | static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 |  | 
 | 	(void) ath9k_hw_stoptxdma(ah, txq->axq_qnum); | 
 | 	DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n", | 
 | 		__func__, txq->axq_qnum, | 
 | 		ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link); | 
 | } | 
 |  | 
 | /* Drain only the data queues */ | 
 |  | 
 | static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	int i; | 
 | 	int npend = 0; | 
 | 	enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc); | 
 |  | 
 | 	/* XXX return value */ | 
 | 	if (!sc->sc_invalid) { | 
 | 		for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
 | 			if (ATH_TXQ_SETUP(sc, i)) { | 
 | 				ath_tx_stopdma(sc, &sc->sc_txq[i]); | 
 |  | 
 | 				/* The TxDMA may not really be stopped. | 
 | 				 * Double check the hal tx pending count */ | 
 | 				npend += ath9k_hw_numtxpending(ah, | 
 | 					sc->sc_txq[i].axq_qnum); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (npend) { | 
 | 		int status; | 
 |  | 
 | 		/* TxDMA not stopped, reset the hal */ | 
 | 		DPRINTF(sc, ATH_DBG_XMIT, | 
 | 			"%s: Unable to stop TxDMA. Reset HAL!\n", __func__); | 
 |  | 
 | 		spin_lock_bh(&sc->sc_resetlock); | 
 | 		if (!ath9k_hw_reset(ah, sc->sc_opmode, | 
 | 			&sc->sc_curchan, ht_macmode, | 
 | 			sc->sc_tx_chainmask, sc->sc_rx_chainmask, | 
 | 			sc->sc_ht_extprotspacing, true, &status)) { | 
 |  | 
 | 			DPRINTF(sc, ATH_DBG_FATAL, | 
 | 				"%s: unable to reset hardware; hal status %u\n", | 
 | 				__func__, | 
 | 				status); | 
 | 		} | 
 | 		spin_unlock_bh(&sc->sc_resetlock); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
 | 		if (ATH_TXQ_SETUP(sc, i)) | 
 | 			ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx); | 
 | 	} | 
 | } | 
 |  | 
 | /* Add a sub-frame to block ack window */ | 
 |  | 
 | static void ath_tx_addto_baw(struct ath_softc *sc, | 
 | 			     struct ath_atx_tid *tid, | 
 | 			     struct ath_buf *bf) | 
 | { | 
 | 	int index, cindex; | 
 |  | 
 | 	if (bf->bf_isretried) | 
 | 		return; | 
 |  | 
 | 	index  = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); | 
 | 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
 |  | 
 | 	ASSERT(tid->tx_buf[cindex] == NULL); | 
 | 	tid->tx_buf[cindex] = bf; | 
 |  | 
 | 	if (index >= ((tid->baw_tail - tid->baw_head) & | 
 | 		(ATH_TID_MAX_BUFS - 1))) { | 
 | 		tid->baw_tail = cindex; | 
 | 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Function to send an A-MPDU | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static int ath_tx_send_ampdu(struct ath_softc *sc, | 
 | 			     struct ath_txq *txq, | 
 | 			     struct ath_atx_tid *tid, | 
 | 			     struct list_head *bf_head, | 
 | 			     struct ath_tx_control *txctl) | 
 | { | 
 | 	struct ath_buf *bf; | 
 | 	struct sk_buff *skb; | 
 | 	struct ieee80211_tx_info *tx_info; | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 |  | 
 | 	BUG_ON(list_empty(bf_head)); | 
 |  | 
 | 	bf = list_first_entry(bf_head, struct ath_buf, list); | 
 | 	bf->bf_isampdu = 1; | 
 | 	bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */ | 
 | 	bf->bf_tidno = txctl->tidno; | 
 |  | 
 | 	/* | 
 | 	 * Do not queue to h/w when any of the following conditions is true: | 
 | 	 * - there are pending frames in software queue | 
 | 	 * - the TID is currently paused for ADDBA/BAR request | 
 | 	 * - seqno is not within block-ack window | 
 | 	 * - h/w queue depth exceeds low water mark | 
 | 	 */ | 
 | 	if (!list_empty(&tid->buf_q) || tid->paused || | 
 | 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || | 
 | 	    txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { | 
 | 		/* | 
 | 		 * Add this frame to software queue for scheduling later | 
 | 		 * for aggregation. | 
 | 		 */ | 
 | 		list_splice_tail_init(bf_head, &tid->buf_q); | 
 | 		ath_tx_queue_tid(txq, tid); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	skb = (struct sk_buff *)bf->bf_mpdu; | 
 | 	tx_info = IEEE80211_SKB_CB(skb); | 
 | 	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
 | 	memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
 |  | 
 | 	/* Add sub-frame to BAW */ | 
 | 	ath_tx_addto_baw(sc, tid, bf); | 
 |  | 
 | 	/* Queue to h/w without aggregation */ | 
 | 	bf->bf_nframes = 1; | 
 | 	bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ | 
 | 	ath_buf_set_rate(sc, bf); | 
 | 	ath_tx_txqaddbuf(sc, txq, bf_head); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * looks up the rate | 
 |  * returns aggr limit based on lowest of the rates | 
 |  */ | 
 |  | 
 | static u32 ath_lookup_rate(struct ath_softc *sc, | 
 | 				 struct ath_buf *bf) | 
 | { | 
 | 	const struct ath9k_rate_table *rt = sc->sc_currates; | 
 | 	struct sk_buff *skb; | 
 | 	struct ieee80211_tx_info *tx_info; | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 | 	u32 max_4ms_framelen, frame_length; | 
 | 	u16 aggr_limit, legacy = 0, maxampdu; | 
 | 	int i; | 
 |  | 
 |  | 
 | 	skb = (struct sk_buff *)bf->bf_mpdu; | 
 | 	tx_info = IEEE80211_SKB_CB(skb); | 
 | 	tx_info_priv = (struct ath_tx_info_priv *) | 
 | 		tx_info->driver_data[0]; | 
 | 	memcpy(bf->bf_rcs, | 
 | 		tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); | 
 |  | 
 | 	/* | 
 | 	 * Find the lowest frame length among the rate series that will have a | 
 | 	 * 4ms transmit duration. | 
 | 	 * TODO - TXOP limit needs to be considered. | 
 | 	 */ | 
 | 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (bf->bf_rcs[i].tries) { | 
 | 			frame_length = bf->bf_rcs[i].max_4ms_framelen; | 
 |  | 
 | 			if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) { | 
 | 				legacy = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			max_4ms_framelen = min(max_4ms_framelen, frame_length); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * limit aggregate size by the minimum rate if rate selected is | 
 | 	 * not a probe rate, if rate selected is a probe rate then | 
 | 	 * avoid aggregation of this packet. | 
 | 	 */ | 
 | 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) | 
 | 		return 0; | 
 |  | 
 | 	aggr_limit = min(max_4ms_framelen, | 
 | 		(u32)ATH_AMPDU_LIMIT_DEFAULT); | 
 |  | 
 | 	/* | 
 | 	 * h/w can accept aggregates upto 16 bit lengths (65535). | 
 | 	 * The IE, however can hold upto 65536, which shows up here | 
 | 	 * as zero. Ignore 65536 since we  are constrained by hw. | 
 | 	 */ | 
 | 	maxampdu = sc->sc_ht_info.maxampdu; | 
 | 	if (maxampdu) | 
 | 		aggr_limit = min(aggr_limit, maxampdu); | 
 |  | 
 | 	return aggr_limit; | 
 | } | 
 |  | 
 | /* | 
 |  * returns the number of delimiters to be added to | 
 |  * meet the minimum required mpdudensity. | 
 |  * caller should make sure that the rate is  HT rate . | 
 |  */ | 
 |  | 
 | static int ath_compute_num_delims(struct ath_softc *sc, | 
 | 				  struct ath_buf *bf, | 
 | 				  u16 frmlen) | 
 | { | 
 | 	const struct ath9k_rate_table *rt = sc->sc_currates; | 
 | 	u32 nsymbits, nsymbols, mpdudensity; | 
 | 	u16 minlen; | 
 | 	u8 rc, flags, rix; | 
 | 	int width, half_gi, ndelim, mindelim; | 
 |  | 
 | 	/* Select standard number of delimiters based on frame length alone */ | 
 | 	ndelim = ATH_AGGR_GET_NDELIM(frmlen); | 
 |  | 
 | 	/* | 
 | 	 * If encryption enabled, hardware requires some more padding between | 
 | 	 * subframes. | 
 | 	 * TODO - this could be improved to be dependent on the rate. | 
 | 	 *      The hardware can keep up at lower rates, but not higher rates | 
 | 	 */ | 
 | 	if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) | 
 | 		ndelim += ATH_AGGR_ENCRYPTDELIM; | 
 |  | 
 | 	/* | 
 | 	 * Convert desired mpdu density from microeconds to bytes based | 
 | 	 * on highest rate in rate series (i.e. first rate) to determine | 
 | 	 * required minimum length for subframe. Take into account | 
 | 	 * whether high rate is 20 or 40Mhz and half or full GI. | 
 | 	 */ | 
 | 	mpdudensity = sc->sc_ht_info.mpdudensity; | 
 |  | 
 | 	/* | 
 | 	 * If there is no mpdu density restriction, no further calculation | 
 | 	 * is needed. | 
 | 	 */ | 
 | 	if (mpdudensity == 0) | 
 | 		return ndelim; | 
 |  | 
 | 	rix = bf->bf_rcs[0].rix; | 
 | 	flags = bf->bf_rcs[0].flags; | 
 | 	rc = rt->info[rix].rateCode; | 
 | 	width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0; | 
 | 	half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0; | 
 |  | 
 | 	if (half_gi) | 
 | 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); | 
 | 	else | 
 | 		nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); | 
 |  | 
 | 	if (nsymbols == 0) | 
 | 		nsymbols = 1; | 
 |  | 
 | 	nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
 | 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; | 
 |  | 
 | 	/* Is frame shorter than required minimum length? */ | 
 | 	if (frmlen < minlen) { | 
 | 		/* Get the minimum number of delimiters required. */ | 
 | 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; | 
 | 		ndelim = max(mindelim, ndelim); | 
 | 	} | 
 |  | 
 | 	return ndelim; | 
 | } | 
 |  | 
 | /* | 
 |  * For aggregation from software buffer queue. | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, | 
 | 					struct ath_atx_tid *tid, | 
 | 					struct list_head *bf_q, | 
 | 					struct ath_buf **bf_last, | 
 | 					struct aggr_rifs_param *param, | 
 | 					int *prev_frames) | 
 | { | 
 | #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) | 
 | 	struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; | 
 | 	struct list_head bf_head; | 
 | 	int rl = 0, nframes = 0, ndelim; | 
 | 	u16 aggr_limit = 0, al = 0, bpad = 0, | 
 | 		al_delta, h_baw = tid->baw_size / 2; | 
 | 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; | 
 | 	int prev_al = 0, is_ds_rate = 0; | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	BUG_ON(list_empty(&tid->buf_q)); | 
 |  | 
 | 	bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
 |  | 
 | 	do { | 
 | 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
 |  | 
 | 		/* | 
 | 		 * do not step over block-ack window | 
 | 		 */ | 
 | 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { | 
 | 			status = ATH_AGGR_BAW_CLOSED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!rl) { | 
 | 			aggr_limit = ath_lookup_rate(sc, bf); | 
 | 			rl = 1; | 
 | 			/* | 
 | 			 * Is rate dual stream | 
 | 			 */ | 
 | 			is_ds_rate = | 
 | 				(bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * do not exceed aggregation limit | 
 | 		 */ | 
 | 		al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; | 
 |  | 
 | 		if (nframes && (aggr_limit < | 
 | 			(al + bpad + al_delta + prev_al))) { | 
 | 			status = ATH_AGGR_LIMITED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * do not exceed subframe limit | 
 | 		 */ | 
 | 		if ((nframes + *prev_frames) >= | 
 | 		    min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { | 
 | 			status = ATH_AGGR_LIMITED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * add padding for previous frame to aggregation length | 
 | 		 */ | 
 | 		al += bpad + al_delta; | 
 |  | 
 | 		/* | 
 | 		 * Get the delimiters needed to meet the MPDU | 
 | 		 * density for this node. | 
 | 		 */ | 
 | 		ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen); | 
 |  | 
 | 		bpad = PADBYTES(al_delta) + (ndelim << 2); | 
 |  | 
 | 		bf->bf_next = NULL; | 
 | 		bf->bf_lastfrm->bf_desc->ds_link = 0; | 
 |  | 
 | 		/* | 
 | 		 * this packet is part of an aggregate | 
 | 		 * - remove all descriptors belonging to this frame from | 
 | 		 *   software queue | 
 | 		 * - add it to block ack window | 
 | 		 * - set up descriptors for aggregation | 
 | 		 */ | 
 | 		list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
 | 		ath_tx_addto_baw(sc, tid, bf); | 
 |  | 
 | 		list_for_each_entry(tbf, &bf_head, list) { | 
 | 			ath9k_hw_set11n_aggr_middle(sc->sc_ah, | 
 | 				tbf->bf_desc, ndelim); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * link buffers of this frame to the aggregate | 
 | 		 */ | 
 | 		list_splice_tail_init(&bf_head, bf_q); | 
 | 		nframes++; | 
 |  | 
 | 		if (bf_prev) { | 
 | 			bf_prev->bf_next = bf; | 
 | 			bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr; | 
 | 		} | 
 | 		bf_prev = bf; | 
 |  | 
 | #ifdef AGGR_NOSHORT | 
 | 		/* | 
 | 		 * terminate aggregation on a small packet boundary | 
 | 		 */ | 
 | 		if (bf->bf_frmlen < ATH_AGGR_MINPLEN) { | 
 | 			status = ATH_AGGR_SHORTPKT; | 
 | 			break; | 
 | 		} | 
 | #endif | 
 | 	} while (!list_empty(&tid->buf_q)); | 
 |  | 
 | 	bf_first->bf_al = al; | 
 | 	bf_first->bf_nframes = nframes; | 
 | 	*bf_last = bf_prev; | 
 | 	return status; | 
 | #undef PADBYTES | 
 | } | 
 |  | 
 | /* | 
 |  * process pending frames possibly doing a-mpdu aggregation | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static void ath_tx_sched_aggr(struct ath_softc *sc, | 
 | 	struct ath_txq *txq, struct ath_atx_tid *tid) | 
 | { | 
 | 	struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; | 
 | 	enum ATH_AGGR_STATUS status; | 
 | 	struct list_head bf_q; | 
 | 	struct aggr_rifs_param param = {0, 0, 0, 0, NULL}; | 
 | 	int prev_frames = 0; | 
 |  | 
 | 	do { | 
 | 		if (list_empty(&tid->buf_q)) | 
 | 			return; | 
 |  | 
 | 		INIT_LIST_HEAD(&bf_q); | 
 |  | 
 | 		status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m, | 
 | 					  &prev_frames); | 
 |  | 
 | 		/* | 
 | 		 * no frames picked up to be aggregated; block-ack | 
 | 		 * window is not open | 
 | 		 */ | 
 | 		if (list_empty(&bf_q)) | 
 | 			break; | 
 |  | 
 | 		bf = list_first_entry(&bf_q, struct ath_buf, list); | 
 | 		bf_last = list_entry(bf_q.prev, struct ath_buf, list); | 
 | 		bf->bf_lastbf = bf_last; | 
 |  | 
 | 		/* | 
 | 		 * if only one frame, send as non-aggregate | 
 | 		 */ | 
 | 		if (bf->bf_nframes == 1) { | 
 | 			ASSERT(bf->bf_lastfrm == bf_last); | 
 |  | 
 | 			bf->bf_isaggr = 0; | 
 | 			/* | 
 | 			 * clear aggr bits for every descriptor | 
 | 			 * XXX TODO: is there a way to optimize it? | 
 | 			 */ | 
 | 			list_for_each_entry(tbf, &bf_q, list) { | 
 | 				ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc); | 
 | 			} | 
 |  | 
 | 			ath_buf_set_rate(sc, bf); | 
 | 			ath_tx_txqaddbuf(sc, txq, &bf_q); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * setup first desc with rate and aggr info | 
 | 		 */ | 
 | 		bf->bf_isaggr  = 1; | 
 | 		ath_buf_set_rate(sc, bf); | 
 | 		ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); | 
 |  | 
 | 		/* | 
 | 		 * anchor last frame of aggregate correctly | 
 | 		 */ | 
 | 		ASSERT(bf_lastaggr); | 
 | 		ASSERT(bf_lastaggr->bf_lastfrm == bf_last); | 
 | 		tbf = bf_lastaggr; | 
 | 		ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); | 
 |  | 
 | 		/* XXX: We don't enter into this loop, consider removing this */ | 
 | 		while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) { | 
 | 			tbf = list_entry(tbf->list.next, struct ath_buf, list); | 
 | 			ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); | 
 | 		} | 
 |  | 
 | 		txq->axq_aggr_depth++; | 
 |  | 
 | 		/* | 
 | 		 * Normal aggregate, queue to hardware | 
 | 		 */ | 
 | 		ath_tx_txqaddbuf(sc, txq, &bf_q); | 
 |  | 
 | 	} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && | 
 | 		 status != ATH_AGGR_BAW_CLOSED); | 
 | } | 
 |  | 
 | /* Called with txq lock held */ | 
 |  | 
 | static void ath_tid_drain(struct ath_softc *sc, | 
 | 			  struct ath_txq *txq, | 
 | 			  struct ath_atx_tid *tid, | 
 | 			  bool bh_flag) | 
 | { | 
 | 	struct ath_buf *bf; | 
 | 	struct list_head bf_head; | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	for (;;) { | 
 | 		if (list_empty(&tid->buf_q)) | 
 | 			break; | 
 | 		bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
 |  | 
 | 		list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); | 
 |  | 
 | 		/* update baw for software retried frame */ | 
 | 		if (bf->bf_isretried) | 
 | 			ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
 |  | 
 | 		/* | 
 | 		 * do not indicate packets while holding txq spinlock. | 
 | 		 * unlock is intentional here | 
 | 		 */ | 
 | 		if (likely(bh_flag)) | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 | 		else | 
 | 			spin_unlock(&txq->axq_lock); | 
 |  | 
 | 		/* complete this sub-frame */ | 
 | 		ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
 |  | 
 | 		if (likely(bh_flag)) | 
 | 			spin_lock_bh(&txq->axq_lock); | 
 | 		else | 
 | 			spin_lock(&txq->axq_lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: For frame(s) that are in the retry state, we will reuse the | 
 | 	 * sequence number(s) without setting the retry bit. The | 
 | 	 * alternative is to give up on these and BAR the receiver's window | 
 | 	 * forward. | 
 | 	 */ | 
 | 	tid->seq_next = tid->seq_start; | 
 | 	tid->baw_tail = tid->baw_head; | 
 | } | 
 |  | 
 | /* | 
 |  * Drain all pending buffers | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | static void ath_txq_drain_pending_buffers(struct ath_softc *sc, | 
 | 					  struct ath_txq *txq, | 
 | 					  bool bh_flag) | 
 | { | 
 | 	struct ath_atx_ac *ac, *ac_tmp; | 
 | 	struct ath_atx_tid *tid, *tid_tmp; | 
 |  | 
 | 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { | 
 | 		list_del(&ac->list); | 
 | 		ac->sched = false; | 
 | 		list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { | 
 | 			list_del(&tid->list); | 
 | 			tid->sched = false; | 
 | 			ath_tid_drain(sc, txq, tid, bh_flag); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int ath_tx_start_dma(struct ath_softc *sc, | 
 | 			    struct sk_buff *skb, | 
 | 			    struct scatterlist *sg, | 
 | 			    u32 n_sg, | 
 | 			    struct ath_tx_control *txctl) | 
 | { | 
 | 	struct ath_node *an = txctl->an; | 
 | 	struct ath_buf *bf = NULL; | 
 | 	struct list_head bf_head; | 
 | 	struct ath_desc *ds; | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	struct ath_txq *txq = &sc->sc_txq[txctl->qnum]; | 
 | 	struct ath_tx_info_priv *tx_info_priv; | 
 | 	struct ath_rc_series *rcs; | 
 | 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
 | 	struct ieee80211_tx_info *tx_info =  IEEE80211_SKB_CB(skb); | 
 | 	__le16 fc = hdr->frame_control; | 
 |  | 
 | 	/* For each sglist entry, allocate an ath_buf for DMA */ | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 | 	spin_lock_bh(&sc->sc_txbuflock); | 
 | 	if (unlikely(list_empty(&sc->sc_txbuf))) { | 
 | 		spin_unlock_bh(&sc->sc_txbuflock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list); | 
 | 	list_del(&bf->list); | 
 | 	spin_unlock_bh(&sc->sc_txbuflock); | 
 |  | 
 | 	list_add_tail(&bf->list, &bf_head); | 
 |  | 
 | 	/* set up this buffer */ | 
 | 	ATH_TXBUF_RESET(bf); | 
 | 	bf->bf_frmlen = txctl->frmlen; | 
 | 	bf->bf_isdata = ieee80211_is_data(fc); | 
 | 	bf->bf_isbar = ieee80211_is_back_req(fc); | 
 | 	bf->bf_ispspoll = ieee80211_is_pspoll(fc); | 
 | 	bf->bf_flags = txctl->flags; | 
 | 	bf->bf_shpreamble = sc->sc_flags & ATH_PREAMBLE_SHORT; | 
 | 	bf->bf_keytype = txctl->keytype; | 
 | 	tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; | 
 | 	rcs = tx_info_priv->rcs; | 
 | 	bf->bf_rcs[0] = rcs[0]; | 
 | 	bf->bf_rcs[1] = rcs[1]; | 
 | 	bf->bf_rcs[2] = rcs[2]; | 
 | 	bf->bf_rcs[3] = rcs[3]; | 
 | 	bf->bf_node = an; | 
 | 	bf->bf_mpdu = skb; | 
 | 	bf->bf_buf_addr = sg_dma_address(sg); | 
 |  | 
 | 	/* setup descriptor */ | 
 | 	ds = bf->bf_desc; | 
 | 	ds->ds_link = 0; | 
 | 	ds->ds_data = bf->bf_buf_addr; | 
 |  | 
 | 	/* | 
 | 	 * Save the DMA context in the first ath_buf | 
 | 	 */ | 
 | 	copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext), | 
 | 			     get_dma_mem_context(txctl, dmacontext)); | 
 |  | 
 | 	/* | 
 | 	 * Formulate first tx descriptor with tx controls. | 
 | 	 */ | 
 | 	ath9k_hw_set11n_txdesc(ah, | 
 | 			       ds, | 
 | 			       bf->bf_frmlen, /* frame length */ | 
 | 			       txctl->atype, /* Atheros packet type */ | 
 | 			       min(txctl->txpower, (u16)60), /* txpower */ | 
 | 			       txctl->keyix,            /* key cache index */ | 
 | 			       txctl->keytype,          /* key type */ | 
 | 			       txctl->flags);           /* flags */ | 
 | 	ath9k_hw_filltxdesc(ah, | 
 | 			    ds, | 
 | 			    sg_dma_len(sg),     /* segment length */ | 
 | 			    true,            /* first segment */ | 
 | 			    (n_sg == 1) ? true : false, /* last segment */ | 
 | 			    ds);                /* first descriptor */ | 
 |  | 
 | 	bf->bf_lastfrm = bf; | 
 | 	bf->bf_ht = txctl->ht; | 
 |  | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 	if (txctl->ht && sc->sc_txaggr) { | 
 | 		struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno); | 
 | 		if (ath_aggr_query(sc, an, txctl->tidno)) { | 
 | 			/* | 
 | 			 * Try aggregation if it's a unicast data frame | 
 | 			 * and the destination is HT capable. | 
 | 			 */ | 
 | 			ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Send this frame as regular when ADDBA exchange | 
 | 			 * is neither complete nor pending. | 
 | 			 */ | 
 | 			ath_tx_send_normal(sc, txq, tid, &bf_head); | 
 | 		} | 
 | 	} else { | 
 | 		bf->bf_lastbf = bf; | 
 | 		bf->bf_nframes = 1; | 
 | 		ath_buf_set_rate(sc, bf); | 
 |  | 
 | 		if (ieee80211_is_back_req(fc)) { | 
 | 			/* This is required for resuming tid | 
 | 			 * during BAR completion */ | 
 | 			bf->bf_tidno = txctl->tidno; | 
 | 		} | 
 |  | 
 | 		if (is_multicast_ether_addr(hdr->addr1)) { | 
 | 			struct ath_vap *avp = sc->sc_vaps[txctl->if_id]; | 
 |  | 
 | 			/* | 
 | 			 * When servicing one or more stations in power-save | 
 | 			 * mode (or) if there is some mcast data waiting on | 
 | 			 * mcast queue (to prevent out of order delivery of | 
 | 			 * mcast,bcast packets) multicast frames must be | 
 | 			 * buffered until after the beacon. We use the private | 
 | 			 * mcast queue for that. | 
 | 			 */ | 
 | 			/* XXX? more bit in 802.11 frame header */ | 
 | 			spin_lock_bh(&avp->av_mcastq.axq_lock); | 
 | 			if (txctl->ps || avp->av_mcastq.axq_depth) | 
 | 				ath_tx_mcastqaddbuf(sc, | 
 | 					&avp->av_mcastq, &bf_head); | 
 | 			else | 
 | 				ath_tx_txqaddbuf(sc, txq, &bf_head); | 
 | 			spin_unlock_bh(&avp->av_mcastq.axq_lock); | 
 | 		} else | 
 | 			ath_tx_txqaddbuf(sc, txq, &bf_head); | 
 | 	} | 
 | 	spin_unlock_bh(&txq->axq_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void xmit_map_sg(struct ath_softc *sc, | 
 | 			struct sk_buff *skb, | 
 | 			dma_addr_t *pa, | 
 | 			struct ath_tx_control *txctl) | 
 | { | 
 | 	struct ath_xmit_status tx_status; | 
 | 	struct ath_atx_tid *tid; | 
 | 	struct scatterlist sg; | 
 |  | 
 | 	*pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); | 
 |  | 
 | 	/* setup S/G list */ | 
 | 	memset(&sg, 0, sizeof(struct scatterlist)); | 
 | 	sg_dma_address(&sg) = *pa; | 
 | 	sg_dma_len(&sg) = skb->len; | 
 |  | 
 | 	if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) { | 
 | 		/* | 
 | 		 *  We have to do drop frame here. | 
 | 		 */ | 
 | 		pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE); | 
 |  | 
 | 		tx_status.retries = 0; | 
 | 		tx_status.flags = ATH_TX_ERROR; | 
 |  | 
 | 		if (txctl->ht && sc->sc_txaggr) { | 
 | 			/* Reclaim the seqno. */ | 
 | 			tid = ATH_AN_2_TID((struct ath_node *) | 
 | 				txctl->an, txctl->tidno); | 
 | 			DECR(tid->seq_next, IEEE80211_SEQ_MAX); | 
 | 		} | 
 | 		ath_tx_complete(sc, skb, &tx_status, txctl->an); | 
 | 	} | 
 | } | 
 |  | 
 | /* Initialize TX queue and h/w */ | 
 |  | 
 | int ath_tx_init(struct ath_softc *sc, int nbufs) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	do { | 
 | 		spin_lock_init(&sc->sc_txbuflock); | 
 |  | 
 | 		/* Setup tx descriptors */ | 
 | 		error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, | 
 | 			"tx", nbufs * ATH_FRAG_PER_MSDU, ATH_TXDESC); | 
 | 		if (error != 0) { | 
 | 			DPRINTF(sc, ATH_DBG_FATAL, | 
 | 				"%s: failed to allocate tx descriptors: %d\n", | 
 | 				__func__, error); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* XXX allocate beacon state together with vap */ | 
 | 		error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, | 
 | 					  "beacon", ATH_BCBUF, 1); | 
 | 		if (error != 0) { | 
 | 			DPRINTF(sc, ATH_DBG_FATAL, | 
 | 				"%s: failed to allocate " | 
 | 				"beacon descripotrs: %d\n", | 
 | 				__func__, error); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	} while (0); | 
 |  | 
 | 	if (error != 0) | 
 | 		ath_tx_cleanup(sc); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Reclaim all tx queue resources */ | 
 |  | 
 | int ath_tx_cleanup(struct ath_softc *sc) | 
 | { | 
 | 	/* cleanup beacon descriptors */ | 
 | 	if (sc->sc_bdma.dd_desc_len != 0) | 
 | 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); | 
 |  | 
 | 	/* cleanup tx descriptors */ | 
 | 	if (sc->sc_txdma.dd_desc_len != 0) | 
 | 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Setup a h/w transmit queue */ | 
 |  | 
 | struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	struct ath9k_tx_queue_info qi; | 
 | 	int qnum; | 
 |  | 
 | 	memzero(&qi, sizeof(qi)); | 
 | 	qi.tqi_subtype = subtype; | 
 | 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; | 
 | 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; | 
 | 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; | 
 | 	qi.tqi_physCompBuf = 0; | 
 |  | 
 | 	/* | 
 | 	 * Enable interrupts only for EOL and DESC conditions. | 
 | 	 * We mark tx descriptors to receive a DESC interrupt | 
 | 	 * when a tx queue gets deep; otherwise waiting for the | 
 | 	 * EOL to reap descriptors.  Note that this is done to | 
 | 	 * reduce interrupt load and this only defers reaping | 
 | 	 * descriptors, never transmitting frames.  Aside from | 
 | 	 * reducing interrupts this also permits more concurrency. | 
 | 	 * The only potential downside is if the tx queue backs | 
 | 	 * up in which case the top half of the kernel may backup | 
 | 	 * due to a lack of tx descriptors. | 
 | 	 * | 
 | 	 * The UAPSD queue is an exception, since we take a desc- | 
 | 	 * based intr on the EOSP frames. | 
 | 	 */ | 
 | 	if (qtype == ATH9K_TX_QUEUE_UAPSD) | 
 | 		qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; | 
 | 	else | 
 | 		qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | | 
 | 			TXQ_FLAG_TXDESCINT_ENABLE; | 
 | 	qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); | 
 | 	if (qnum == -1) { | 
 | 		/* | 
 | 		 * NB: don't print a message, this happens | 
 | 		 * normally on parts with too few tx queues | 
 | 		 */ | 
 | 		return NULL; | 
 | 	} | 
 | 	if (qnum >= ARRAY_SIZE(sc->sc_txq)) { | 
 | 		DPRINTF(sc, ATH_DBG_FATAL, | 
 | 			"%s: hal qnum %u out of range, max %u!\n", | 
 | 			__func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq)); | 
 | 		ath9k_hw_releasetxqueue(ah, qnum); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (!ATH_TXQ_SETUP(sc, qnum)) { | 
 | 		struct ath_txq *txq = &sc->sc_txq[qnum]; | 
 |  | 
 | 		txq->axq_qnum = qnum; | 
 | 		txq->axq_link = NULL; | 
 | 		INIT_LIST_HEAD(&txq->axq_q); | 
 | 		INIT_LIST_HEAD(&txq->axq_acq); | 
 | 		spin_lock_init(&txq->axq_lock); | 
 | 		txq->axq_depth = 0; | 
 | 		txq->axq_aggr_depth = 0; | 
 | 		txq->axq_totalqueued = 0; | 
 | 		txq->axq_intrcnt = 0; | 
 | 		txq->axq_linkbuf = NULL; | 
 | 		sc->sc_txqsetup |= 1<<qnum; | 
 | 	} | 
 | 	return &sc->sc_txq[qnum]; | 
 | } | 
 |  | 
 | /* Reclaim resources for a setup queue */ | 
 |  | 
 | void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) | 
 | { | 
 | 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); | 
 | 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum); | 
 | } | 
 |  | 
 | /* | 
 |  * Setup a hardware data transmit queue for the specified | 
 |  * access control.  The hal may not support all requested | 
 |  * queues in which case it will return a reference to a | 
 |  * previously setup queue.  We record the mapping from ac's | 
 |  * to h/w queues for use by ath_tx_start and also track | 
 |  * the set of h/w queues being used to optimize work in the | 
 |  * transmit interrupt handler and related routines. | 
 |  */ | 
 |  | 
 | int ath_tx_setup(struct ath_softc *sc, int haltype) | 
 | { | 
 | 	struct ath_txq *txq; | 
 |  | 
 | 	if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { | 
 | 		DPRINTF(sc, ATH_DBG_FATAL, | 
 | 			"%s: HAL AC %u out of range, max %zu!\n", | 
 | 			__func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); | 
 | 		return 0; | 
 | 	} | 
 | 	txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); | 
 | 	if (txq != NULL) { | 
 | 		sc->sc_haltype2q[haltype] = txq->axq_qnum; | 
 | 		return 1; | 
 | 	} else | 
 | 		return 0; | 
 | } | 
 |  | 
 | int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) | 
 | { | 
 | 	int qnum; | 
 |  | 
 | 	switch (qtype) { | 
 | 	case ATH9K_TX_QUEUE_DATA: | 
 | 		if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { | 
 | 			DPRINTF(sc, ATH_DBG_FATAL, | 
 | 				"%s: HAL AC %u out of range, max %zu!\n", | 
 | 				__func__, | 
 | 				haltype, ARRAY_SIZE(sc->sc_haltype2q)); | 
 | 			return -1; | 
 | 		} | 
 | 		qnum = sc->sc_haltype2q[haltype]; | 
 | 		break; | 
 | 	case ATH9K_TX_QUEUE_BEACON: | 
 | 		qnum = sc->sc_bhalq; | 
 | 		break; | 
 | 	case ATH9K_TX_QUEUE_CAB: | 
 | 		qnum = sc->sc_cabq->axq_qnum; | 
 | 		break; | 
 | 	default: | 
 | 		qnum = -1; | 
 | 	} | 
 | 	return qnum; | 
 | } | 
 |  | 
 | /* Update parameters for a transmit queue */ | 
 |  | 
 | int ath_txq_update(struct ath_softc *sc, int qnum, | 
 | 		   struct ath9k_tx_queue_info *qinfo) | 
 | { | 
 | 	struct ath_hal *ah = sc->sc_ah; | 
 | 	int error = 0; | 
 | 	struct ath9k_tx_queue_info qi; | 
 |  | 
 | 	if (qnum == sc->sc_bhalq) { | 
 | 		/* | 
 | 		 * XXX: for beacon queue, we just save the parameter. | 
 | 		 * It will be picked up by ath_beaconq_config when | 
 | 		 * it's necessary. | 
 | 		 */ | 
 | 		sc->sc_beacon_qi = *qinfo; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ASSERT(sc->sc_txq[qnum].axq_qnum == qnum); | 
 |  | 
 | 	ath9k_hw_get_txq_props(ah, qnum, &qi); | 
 | 	qi.tqi_aifs = qinfo->tqi_aifs; | 
 | 	qi.tqi_cwmin = qinfo->tqi_cwmin; | 
 | 	qi.tqi_cwmax = qinfo->tqi_cwmax; | 
 | 	qi.tqi_burstTime = qinfo->tqi_burstTime; | 
 | 	qi.tqi_readyTime = qinfo->tqi_readyTime; | 
 |  | 
 | 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { | 
 | 		DPRINTF(sc, ATH_DBG_FATAL, | 
 | 			"%s: unable to update hardware queue %u!\n", | 
 | 			__func__, qnum); | 
 | 		error = -EIO; | 
 | 	} else { | 
 | 		ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */ | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | int ath_cabq_update(struct ath_softc *sc) | 
 | { | 
 | 	struct ath9k_tx_queue_info qi; | 
 | 	int qnum = sc->sc_cabq->axq_qnum; | 
 | 	struct ath_beacon_config conf; | 
 |  | 
 | 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); | 
 | 	/* | 
 | 	 * Ensure the readytime % is within the bounds. | 
 | 	 */ | 
 | 	if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) | 
 | 		sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; | 
 | 	else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) | 
 | 		sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; | 
 |  | 
 | 	ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); | 
 | 	qi.tqi_readyTime = | 
 | 		(conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; | 
 | 	ath_txq_update(sc, qnum, &qi); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb) | 
 | { | 
 | 	struct ath_tx_control txctl; | 
 | 	int error = 0; | 
 |  | 
 | 	error = ath_tx_prepare(sc, skb, &txctl); | 
 | 	if (error == 0) | 
 | 		/* | 
 | 		 * Start DMA mapping. | 
 | 		 * ath_tx_start_dma() will be called either synchronously | 
 | 		 * or asynchrounsly once DMA is complete. | 
 | 		 */ | 
 | 		xmit_map_sg(sc, skb, | 
 | 			    get_dma_mem_context(&txctl, dmacontext), | 
 | 			    &txctl); | 
 | 	else | 
 | 		ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE); | 
 |  | 
 | 	/* failed packets will be dropped by the caller */ | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Deferred processing of transmit interrupt */ | 
 |  | 
 | void ath_tx_tasklet(struct ath_softc *sc) | 
 | { | 
 | 	u64 tsf = ath9k_hw_gettsf64(sc->sc_ah); | 
 | 	int i, nacked = 0; | 
 | 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); | 
 |  | 
 | 	ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); | 
 |  | 
 | 	/* | 
 | 	 * Process each active queue. | 
 | 	 */ | 
 | 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
 | 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) | 
 | 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]); | 
 | 	} | 
 | 	if (nacked) | 
 | 		sc->sc_lastrx = tsf; | 
 | } | 
 |  | 
 | void ath_tx_draintxq(struct ath_softc *sc, | 
 | 	struct ath_txq *txq, bool retry_tx) | 
 | { | 
 | 	struct ath_buf *bf, *lastbf; | 
 | 	struct list_head bf_head; | 
 |  | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	/* | 
 | 	 * NB: this assumes output has been stopped and | 
 | 	 *     we do not need to block ath_tx_tasklet | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		spin_lock_bh(&txq->axq_lock); | 
 |  | 
 | 		if (list_empty(&txq->axq_q)) { | 
 | 			txq->axq_link = NULL; | 
 | 			txq->axq_linkbuf = NULL; | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
 |  | 
 | 		if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
 | 			list_del(&bf->list); | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 			spin_lock_bh(&sc->sc_txbuflock); | 
 | 			list_add_tail(&bf->list, &sc->sc_txbuf); | 
 | 			spin_unlock_bh(&sc->sc_txbuflock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		lastbf = bf->bf_lastbf; | 
 | 		if (!retry_tx) | 
 | 			lastbf->bf_desc->ds_txstat.ts_flags = | 
 | 				ATH9K_TX_SW_ABORTED; | 
 |  | 
 | 		/* remove ath_buf's of the same mpdu from txq */ | 
 | 		list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); | 
 | 		txq->axq_depth--; | 
 |  | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 |  | 
 | 		if (bf->bf_isampdu) | 
 | 			ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0); | 
 | 		else | 
 | 			ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
 | 	} | 
 |  | 
 | 	/* flush any pending frames if aggregation is enabled */ | 
 | 	if (sc->sc_txaggr) { | 
 | 		if (!retry_tx) { | 
 | 			spin_lock_bh(&txq->axq_lock); | 
 | 			ath_txq_drain_pending_buffers(sc, txq, | 
 | 				ATH9K_BH_STATUS_CHANGE); | 
 | 			spin_unlock_bh(&txq->axq_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Drain the transmit queues and reclaim resources */ | 
 |  | 
 | void ath_draintxq(struct ath_softc *sc, bool retry_tx) | 
 | { | 
 | 	/* stop beacon queue. The beacon will be freed when | 
 | 	 * we go to INIT state */ | 
 | 	if (!sc->sc_invalid) { | 
 | 		(void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); | 
 | 		DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__, | 
 | 			ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq)); | 
 | 	} | 
 |  | 
 | 	ath_drain_txdataq(sc, retry_tx); | 
 | } | 
 |  | 
 | u32 ath_txq_depth(struct ath_softc *sc, int qnum) | 
 | { | 
 | 	return sc->sc_txq[qnum].axq_depth; | 
 | } | 
 |  | 
 | u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum) | 
 | { | 
 | 	return sc->sc_txq[qnum].axq_aggr_depth; | 
 | } | 
 |  | 
 | /* Check if an ADDBA is required. A valid node must be passed. */ | 
 | enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc, | 
 | 				      struct ath_node *an, | 
 | 				      u8 tidno) | 
 | { | 
 | 	struct ath_atx_tid *txtid; | 
 | 	DECLARE_MAC_BUF(mac); | 
 |  | 
 | 	if (!sc->sc_txaggr) | 
 | 		return AGGR_NOT_REQUIRED; | 
 |  | 
 | 	/* ADDBA exchange must be completed before sending aggregates */ | 
 | 	txtid = ATH_AN_2_TID(an, tidno); | 
 |  | 
 | 	if (txtid->addba_exchangecomplete) | 
 | 		return AGGR_EXCHANGE_DONE; | 
 |  | 
 | 	if (txtid->cleanup_inprogress) | 
 | 		return AGGR_CLEANUP_PROGRESS; | 
 |  | 
 | 	if (txtid->addba_exchangeinprogress) | 
 | 		return AGGR_EXCHANGE_PROGRESS; | 
 |  | 
 | 	if (!txtid->addba_exchangecomplete) { | 
 | 		if (!txtid->addba_exchangeinprogress && | 
 | 		    (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { | 
 | 			txtid->addba_exchangeattempts++; | 
 | 			return AGGR_REQUIRED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return AGGR_NOT_REQUIRED; | 
 | } | 
 |  | 
 | /* Start TX aggregation */ | 
 |  | 
 | int ath_tx_aggr_start(struct ath_softc *sc, | 
 | 		      const u8 *addr, | 
 | 		      u16 tid, | 
 | 		      u16 *ssn) | 
 | { | 
 | 	struct ath_atx_tid *txtid; | 
 | 	struct ath_node *an; | 
 |  | 
 | 	spin_lock_bh(&sc->node_lock); | 
 | 	an = ath_node_find(sc, (u8 *) addr); | 
 | 	spin_unlock_bh(&sc->node_lock); | 
 |  | 
 | 	if (!an) { | 
 | 		DPRINTF(sc, ATH_DBG_AGGR, | 
 | 			"%s: Node not found to initialize " | 
 | 			"TX aggregation\n", __func__); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (sc->sc_txaggr) { | 
 | 		txtid = ATH_AN_2_TID(an, tid); | 
 | 		txtid->addba_exchangeinprogress = 1; | 
 | 		ath_tx_pause_tid(sc, txtid); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Stop tx aggregation */ | 
 |  | 
 | int ath_tx_aggr_stop(struct ath_softc *sc, | 
 | 		     const u8 *addr, | 
 | 		     u16 tid) | 
 | { | 
 | 	struct ath_node *an; | 
 |  | 
 | 	spin_lock_bh(&sc->node_lock); | 
 | 	an = ath_node_find(sc, (u8 *) addr); | 
 | 	spin_unlock_bh(&sc->node_lock); | 
 |  | 
 | 	if (!an) { | 
 | 		DPRINTF(sc, ATH_DBG_AGGR, | 
 | 			"%s: TX aggr stop for non-existent node\n", __func__); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	ath_tx_aggr_teardown(sc, an, tid); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Performs transmit side cleanup when TID changes from aggregated to | 
 |  * unaggregated. | 
 |  * - Pause the TID and mark cleanup in progress | 
 |  * - Discard all retry frames from the s/w queue. | 
 |  */ | 
 |  | 
 | void ath_tx_aggr_teardown(struct ath_softc *sc, | 
 | 	struct ath_node *an, u8 tid) | 
 | { | 
 | 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); | 
 | 	struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum]; | 
 | 	struct ath_buf *bf; | 
 | 	struct list_head bf_head; | 
 | 	INIT_LIST_HEAD(&bf_head); | 
 |  | 
 | 	DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__); | 
 |  | 
 | 	if (txtid->cleanup_inprogress) /* cleanup is in progress */ | 
 | 		return; | 
 |  | 
 | 	if (!txtid->addba_exchangecomplete) { | 
 | 		txtid->addba_exchangeattempts = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* TID must be paused first */ | 
 | 	ath_tx_pause_tid(sc, txtid); | 
 |  | 
 | 	/* drop all software retried frames and mark this TID */ | 
 | 	spin_lock_bh(&txq->axq_lock); | 
 | 	while (!list_empty(&txtid->buf_q)) { | 
 | 		bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); | 
 | 		if (!bf->bf_isretried) { | 
 | 			/* | 
 | 			 * NB: it's based on the assumption that | 
 | 			 * software retried frame will always stay | 
 | 			 * at the head of software queue. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 | 		list_cut_position(&bf_head, | 
 | 			&txtid->buf_q, &bf->bf_lastfrm->list); | 
 | 		ath_tx_update_baw(sc, txtid, bf->bf_seqno); | 
 |  | 
 | 		/* complete this sub-frame */ | 
 | 		ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
 | 	} | 
 |  | 
 | 	if (txtid->baw_head != txtid->baw_tail) { | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 		txtid->cleanup_inprogress = true; | 
 | 	} else { | 
 | 		txtid->addba_exchangecomplete = 0; | 
 | 		txtid->addba_exchangeattempts = 0; | 
 | 		spin_unlock_bh(&txq->axq_lock); | 
 | 		ath_tx_flush_tid(sc, txtid); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Tx scheduling logic | 
 |  * NB: must be called with txq lock held | 
 |  */ | 
 |  | 
 | void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) | 
 | { | 
 | 	struct ath_atx_ac *ac; | 
 | 	struct ath_atx_tid *tid; | 
 |  | 
 | 	/* nothing to schedule */ | 
 | 	if (list_empty(&txq->axq_acq)) | 
 | 		return; | 
 | 	/* | 
 | 	 * get the first node/ac pair on the queue | 
 | 	 */ | 
 | 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); | 
 | 	list_del(&ac->list); | 
 | 	ac->sched = false; | 
 |  | 
 | 	/* | 
 | 	 * process a single tid per destination | 
 | 	 */ | 
 | 	do { | 
 | 		/* nothing to schedule */ | 
 | 		if (list_empty(&ac->tid_q)) | 
 | 			return; | 
 |  | 
 | 		tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); | 
 | 		list_del(&tid->list); | 
 | 		tid->sched = false; | 
 |  | 
 | 		if (tid->paused)    /* check next tid to keep h/w busy */ | 
 | 			continue; | 
 |  | 
 | 		if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) || | 
 | 		    ((txq->axq_depth % 2) == 0)) { | 
 | 			ath_tx_sched_aggr(sc, txq, tid); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * add tid to round-robin queue if more frames | 
 | 		 * are pending for the tid | 
 | 		 */ | 
 | 		if (!list_empty(&tid->buf_q)) | 
 | 			ath_tx_queue_tid(txq, tid); | 
 |  | 
 | 		/* only schedule one TID at a time */ | 
 | 		break; | 
 | 	} while (!list_empty(&ac->tid_q)); | 
 |  | 
 | 	/* | 
 | 	 * schedule AC if more TIDs need processing | 
 | 	 */ | 
 | 	if (!list_empty(&ac->tid_q)) { | 
 | 		/* | 
 | 		 * add dest ac to txq if not already added | 
 | 		 */ | 
 | 		if (!ac->sched) { | 
 | 			ac->sched = true; | 
 | 			list_add_tail(&ac->list, &txq->axq_acq); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Initialize per-node transmit state */ | 
 |  | 
 | void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) | 
 | { | 
 | 	if (sc->sc_txaggr) { | 
 | 		struct ath_atx_tid *tid; | 
 | 		struct ath_atx_ac *ac; | 
 | 		int tidno, acno; | 
 |  | 
 | 		sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT; | 
 |  | 
 | 		/* | 
 | 		 * Init per tid tx state | 
 | 		 */ | 
 | 		for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; | 
 | 				tidno < WME_NUM_TID; | 
 | 				tidno++, tid++) { | 
 | 			tid->an        = an; | 
 | 			tid->tidno     = tidno; | 
 | 			tid->seq_start = tid->seq_next = 0; | 
 | 			tid->baw_size  = WME_MAX_BA; | 
 | 			tid->baw_head  = tid->baw_tail = 0; | 
 | 			tid->sched     = false; | 
 | 			tid->paused = false; | 
 | 			tid->cleanup_inprogress = false; | 
 | 			INIT_LIST_HEAD(&tid->buf_q); | 
 |  | 
 | 			acno = TID_TO_WME_AC(tidno); | 
 | 			tid->ac = &an->an_aggr.tx.ac[acno]; | 
 |  | 
 | 			/* ADDBA state */ | 
 | 			tid->addba_exchangecomplete     = 0; | 
 | 			tid->addba_exchangeinprogress   = 0; | 
 | 			tid->addba_exchangeattempts     = 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Init per ac tx state | 
 | 		 */ | 
 | 		for (acno = 0, ac = &an->an_aggr.tx.ac[acno]; | 
 | 				acno < WME_NUM_AC; acno++, ac++) { | 
 | 			ac->sched    = false; | 
 | 			INIT_LIST_HEAD(&ac->tid_q); | 
 |  | 
 | 			switch (acno) { | 
 | 			case WME_AC_BE: | 
 | 				ac->qnum = ath_tx_get_qnum(sc, | 
 | 					ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); | 
 | 				break; | 
 | 			case WME_AC_BK: | 
 | 				ac->qnum = ath_tx_get_qnum(sc, | 
 | 					ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); | 
 | 				break; | 
 | 			case WME_AC_VI: | 
 | 				ac->qnum = ath_tx_get_qnum(sc, | 
 | 					ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); | 
 | 				break; | 
 | 			case WME_AC_VO: | 
 | 				ac->qnum = ath_tx_get_qnum(sc, | 
 | 					ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Cleanupthe pending buffers for the node. */ | 
 |  | 
 | void ath_tx_node_cleanup(struct ath_softc *sc, | 
 | 	struct ath_node *an, bool bh_flag) | 
 | { | 
 | 	int i; | 
 | 	struct ath_atx_ac *ac, *ac_tmp; | 
 | 	struct ath_atx_tid *tid, *tid_tmp; | 
 | 	struct ath_txq *txq; | 
 | 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
 | 		if (ATH_TXQ_SETUP(sc, i)) { | 
 | 			txq = &sc->sc_txq[i]; | 
 |  | 
 | 			if (likely(bh_flag)) | 
 | 				spin_lock_bh(&txq->axq_lock); | 
 | 			else | 
 | 				spin_lock(&txq->axq_lock); | 
 |  | 
 | 			list_for_each_entry_safe(ac, | 
 | 					ac_tmp, &txq->axq_acq, list) { | 
 | 				tid = list_first_entry(&ac->tid_q, | 
 | 						struct ath_atx_tid, list); | 
 | 				if (tid && tid->an != an) | 
 | 					continue; | 
 | 				list_del(&ac->list); | 
 | 				ac->sched = false; | 
 |  | 
 | 				list_for_each_entry_safe(tid, | 
 | 						tid_tmp, &ac->tid_q, list) { | 
 | 					list_del(&tid->list); | 
 | 					tid->sched = false; | 
 | 					ath_tid_drain(sc, txq, tid, bh_flag); | 
 | 					tid->addba_exchangecomplete = 0; | 
 | 					tid->addba_exchangeattempts = 0; | 
 | 					tid->cleanup_inprogress = false; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (likely(bh_flag)) | 
 | 				spin_unlock_bh(&txq->axq_lock); | 
 | 			else | 
 | 				spin_unlock(&txq->axq_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Cleanup per node transmit state */ | 
 |  | 
 | void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an) | 
 | { | 
 | 	if (sc->sc_txaggr) { | 
 | 		struct ath_atx_tid *tid; | 
 | 		int tidno, i; | 
 |  | 
 | 		/* Init per tid rx state */ | 
 | 		for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; | 
 | 			tidno < WME_NUM_TID; | 
 | 		     tidno++, tid++) { | 
 |  | 
 | 			for (i = 0; i < ATH_TID_MAX_BUFS; i++) | 
 | 				ASSERT(tid->tx_buf[i] == NULL); | 
 | 		} | 
 | 	} | 
 | } |