blob: ba1791fd3234dbbfd5fac997ea1433119d44f92d [file] [log] [blame]
/*
* 64-bit pSeries and RS/6000 setup code.
*
* Copyright (C) 1995 Linus Torvalds
* Adapted from 'alpha' version by Gary Thomas
* Modified by Cort Dougan (cort@cs.nmt.edu)
* Modified by PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* bootup setup stuff..
*/
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/tty.h>
#include <linux/major.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/pci.h>
#include <linux/utsname.h>
#include <linux/adb.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/of.h>
#include <linux/of_pci.h>
#include <linux/memblock.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/dma.h>
#include <asm/machdep.h>
#include <asm/irq.h>
#include <asm/time.h>
#include <asm/nvram.h>
#include <asm/pmc.h>
#include <asm/xics.h>
#include <asm/xive.h>
#include <asm/ppc-pci.h>
#include <asm/i8259.h>
#include <asm/udbg.h>
#include <asm/smp.h>
#include <asm/firmware.h>
#include <asm/eeh.h>
#include <asm/reg.h>
#include <asm/plpar_wrappers.h>
#include <asm/kexec.h>
#include <asm/isa-bridge.h>
#include <asm/security_features.h>
#include <asm/asm-const.h>
#include "pseries.h"
#include "../../../../drivers/pci/pci.h"
int CMO_PrPSP = -1;
int CMO_SecPSP = -1;
unsigned long CMO_PageSize = (ASM_CONST(1) << IOMMU_PAGE_SHIFT_4K);
EXPORT_SYMBOL(CMO_PageSize);
int fwnmi_active; /* TRUE if an FWNMI handler is present */
static void pSeries_show_cpuinfo(struct seq_file *m)
{
struct device_node *root;
const char *model = "";
root = of_find_node_by_path("/");
if (root)
model = of_get_property(root, "model", NULL);
seq_printf(m, "machine\t\t: CHRP %s\n", model);
of_node_put(root);
if (radix_enabled())
seq_printf(m, "MMU\t\t: Radix\n");
else
seq_printf(m, "MMU\t\t: Hash\n");
}
/* Initialize firmware assisted non-maskable interrupts if
* the firmware supports this feature.
*/
static void __init fwnmi_init(void)
{
unsigned long system_reset_addr, machine_check_addr;
u8 *mce_data_buf;
unsigned int i;
int nr_cpus = num_possible_cpus();
int ibm_nmi_register = rtas_token("ibm,nmi-register");
if (ibm_nmi_register == RTAS_UNKNOWN_SERVICE)
return;
/* If the kernel's not linked at zero we point the firmware at low
* addresses anyway, and use a trampoline to get to the real code. */
system_reset_addr = __pa(system_reset_fwnmi) - PHYSICAL_START;
machine_check_addr = __pa(machine_check_fwnmi) - PHYSICAL_START;
if (0 == rtas_call(ibm_nmi_register, 2, 1, NULL, system_reset_addr,
machine_check_addr))
fwnmi_active = 1;
/*
* Allocate a chunk for per cpu buffer to hold rtas errorlog.
* It will be used in real mode mce handler, hence it needs to be
* below RMA.
*/
mce_data_buf = __va(memblock_alloc_base(RTAS_ERROR_LOG_MAX * nr_cpus,
RTAS_ERROR_LOG_MAX, ppc64_rma_size));
for_each_possible_cpu(i) {
paca_ptrs[i]->mce_data_buf = mce_data_buf +
(RTAS_ERROR_LOG_MAX * i);
}
}
static void pseries_8259_cascade(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
unsigned int cascade_irq = i8259_irq();
if (cascade_irq)
generic_handle_irq(cascade_irq);
chip->irq_eoi(&desc->irq_data);
}
static void __init pseries_setup_i8259_cascade(void)
{
struct device_node *np, *old, *found = NULL;
unsigned int cascade;
const u32 *addrp;
unsigned long intack = 0;
int naddr;
for_each_node_by_type(np, "interrupt-controller") {
if (of_device_is_compatible(np, "chrp,iic")) {
found = np;
break;
}
}
if (found == NULL) {
printk(KERN_DEBUG "pic: no ISA interrupt controller\n");
return;
}
cascade = irq_of_parse_and_map(found, 0);
if (!cascade) {
printk(KERN_ERR "pic: failed to map cascade interrupt");
return;
}
pr_debug("pic: cascade mapped to irq %d\n", cascade);
for (old = of_node_get(found); old != NULL ; old = np) {
np = of_get_parent(old);
of_node_put(old);
if (np == NULL)
break;
if (strcmp(np->name, "pci") != 0)
continue;
addrp = of_get_property(np, "8259-interrupt-acknowledge", NULL);
if (addrp == NULL)
continue;
naddr = of_n_addr_cells(np);
intack = addrp[naddr-1];
if (naddr > 1)
intack |= ((unsigned long)addrp[naddr-2]) << 32;
}
if (intack)
printk(KERN_DEBUG "pic: PCI 8259 intack at 0x%016lx\n", intack);
i8259_init(found, intack);
of_node_put(found);
irq_set_chained_handler(cascade, pseries_8259_cascade);
}
static void __init pseries_init_irq(void)
{
/* Try using a XIVE if available, otherwise use a XICS */
if (!xive_spapr_init()) {
xics_init();
pseries_setup_i8259_cascade();
}
}
static void pseries_lpar_enable_pmcs(void)
{
unsigned long set, reset;
set = 1UL << 63;
reset = 0;
plpar_hcall_norets(H_PERFMON, set, reset);
}
static int pci_dn_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
struct of_reconfig_data *rd = data;
struct device_node *parent, *np = rd->dn;
struct pci_dn *pdn;
int err = NOTIFY_OK;
switch (action) {
case OF_RECONFIG_ATTACH_NODE:
parent = of_get_parent(np);
pdn = parent ? PCI_DN(parent) : NULL;
if (pdn)
pci_add_device_node_info(pdn->phb, np);
of_node_put(parent);
break;
case OF_RECONFIG_DETACH_NODE:
pdn = PCI_DN(np);
if (pdn)
list_del(&pdn->list);
break;
default:
err = NOTIFY_DONE;
break;
}
return err;
}
static struct notifier_block pci_dn_reconfig_nb = {
.notifier_call = pci_dn_reconfig_notifier,
};
struct kmem_cache *dtl_cache;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
* Allocate space for the dispatch trace log for all possible cpus
* and register the buffers with the hypervisor. This is used for
* computing time stolen by the hypervisor.
*/
static int alloc_dispatch_logs(void)
{
int cpu, ret;
struct paca_struct *pp;
struct dtl_entry *dtl;
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return 0;
if (!dtl_cache)
return 0;
for_each_possible_cpu(cpu) {
pp = paca_ptrs[cpu];
dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
if (!dtl) {
pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
cpu);
pr_warn("Stolen time statistics will be unreliable\n");
break;
}
pp->dtl_ridx = 0;
pp->dispatch_log = dtl;
pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
pp->dtl_curr = dtl;
}
/* Register the DTL for the current (boot) cpu */
dtl = get_paca()->dispatch_log;
get_paca()->dtl_ridx = 0;
get_paca()->dtl_curr = dtl;
get_paca()->lppaca_ptr->dtl_idx = 0;
/* hypervisor reads buffer length from this field */
dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
ret = register_dtl(hard_smp_processor_id(), __pa(dtl));
if (ret)
pr_err("WARNING: DTL registration of cpu %d (hw %d) failed "
"with %d\n", smp_processor_id(),
hard_smp_processor_id(), ret);
get_paca()->lppaca_ptr->dtl_enable_mask = 2;
return 0;
}
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
static inline int alloc_dispatch_logs(void)
{
return 0;
}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
static int alloc_dispatch_log_kmem_cache(void)
{
dtl_cache = kmem_cache_create("dtl", DISPATCH_LOG_BYTES,
DISPATCH_LOG_BYTES, 0, NULL);
if (!dtl_cache) {
pr_warn("Failed to create dispatch trace log buffer cache\n");
pr_warn("Stolen time statistics will be unreliable\n");
return 0;
}
return alloc_dispatch_logs();
}
machine_early_initcall(pseries, alloc_dispatch_log_kmem_cache);
static void pseries_lpar_idle(void)
{
/*
* Default handler to go into low thread priority and possibly
* low power mode by ceding processor to hypervisor
*/
/* Indicate to hypervisor that we are idle. */
get_lppaca()->idle = 1;
/*
* Yield the processor to the hypervisor. We return if
* an external interrupt occurs (which are driven prior
* to returning here) or if a prod occurs from another
* processor. When returning here, external interrupts
* are enabled.
*/
cede_processor();
get_lppaca()->idle = 0;
}
/*
* Enable relocation on during exceptions. This has partition wide scope and
* may take a while to complete, if it takes longer than one second we will
* just give up rather than wasting any more time on this - if that turns out
* to ever be a problem in practice we can move this into a kernel thread to
* finish off the process later in boot.
*/
void pseries_enable_reloc_on_exc(void)
{
long rc;
unsigned int delay, total_delay = 0;
while (1) {
rc = enable_reloc_on_exceptions();
if (!H_IS_LONG_BUSY(rc)) {
if (rc == H_P2) {
pr_info("Relocation on exceptions not"
" supported\n");
} else if (rc != H_SUCCESS) {
pr_warn("Unable to enable relocation"
" on exceptions: %ld\n", rc);
}
break;
}
delay = get_longbusy_msecs(rc);
total_delay += delay;
if (total_delay > 1000) {
pr_warn("Warning: Giving up waiting to enable "
"relocation on exceptions (%u msec)!\n",
total_delay);
return;
}
mdelay(delay);
}
}
EXPORT_SYMBOL(pseries_enable_reloc_on_exc);
void pseries_disable_reloc_on_exc(void)
{
long rc;
while (1) {
rc = disable_reloc_on_exceptions();
if (!H_IS_LONG_BUSY(rc))
break;
mdelay(get_longbusy_msecs(rc));
}
if (rc != H_SUCCESS)
pr_warn("Warning: Failed to disable relocation on exceptions: %ld\n",
rc);
}
EXPORT_SYMBOL(pseries_disable_reloc_on_exc);
#ifdef CONFIG_KEXEC_CORE
static void pSeries_machine_kexec(struct kimage *image)
{
if (firmware_has_feature(FW_FEATURE_SET_MODE))
pseries_disable_reloc_on_exc();
default_machine_kexec(image);
}
#endif
#ifdef __LITTLE_ENDIAN__
void pseries_big_endian_exceptions(void)
{
long rc;
while (1) {
rc = enable_big_endian_exceptions();
if (!H_IS_LONG_BUSY(rc))
break;
mdelay(get_longbusy_msecs(rc));
}
/*
* At this point it is unlikely panic() will get anything
* out to the user, since this is called very late in kexec
* but at least this will stop us from continuing on further
* and creating an even more difficult to debug situation.
*
* There is a known problem when kdump'ing, if cpus are offline
* the above call will fail. Rather than panicking again, keep
* going and hope the kdump kernel is also little endian, which
* it usually is.
*/
if (rc && !kdump_in_progress())
panic("Could not enable big endian exceptions");
}
void pseries_little_endian_exceptions(void)
{
long rc;
while (1) {
rc = enable_little_endian_exceptions();
if (!H_IS_LONG_BUSY(rc))
break;
mdelay(get_longbusy_msecs(rc));
}
if (rc) {
ppc_md.progress("H_SET_MODE LE exception fail", 0);
panic("Could not enable little endian exceptions");
}
}
#endif
static void __init find_and_init_phbs(void)
{
struct device_node *node;
struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
for_each_child_of_node(root, node) {
if (node->type == NULL || (strcmp(node->type, "pci") != 0 &&
strcmp(node->type, "pciex") != 0))
continue;
phb = pcibios_alloc_controller(node);
if (!phb)
continue;
rtas_setup_phb(phb);
pci_process_bridge_OF_ranges(phb, node, 0);
isa_bridge_find_early(phb);
phb->controller_ops = pseries_pci_controller_ops;
}
of_node_put(root);
/*
* PCI_PROBE_ONLY and PCI_REASSIGN_ALL_BUS can be set via properties
* in chosen.
*/
of_pci_check_probe_only();
}
static void init_cpu_char_feature_flags(struct h_cpu_char_result *result)
{
/*
* The features below are disabled by default, so we instead look to see
* if firmware has *enabled* them, and set them if so.
*/
if (result->character & H_CPU_CHAR_SPEC_BAR_ORI31)
security_ftr_set(SEC_FTR_SPEC_BAR_ORI31);
if (result->character & H_CPU_CHAR_BCCTRL_SERIALISED)
security_ftr_set(SEC_FTR_BCCTRL_SERIALISED);
if (result->character & H_CPU_CHAR_L1D_FLUSH_ORI30)
security_ftr_set(SEC_FTR_L1D_FLUSH_ORI30);
if (result->character & H_CPU_CHAR_L1D_FLUSH_TRIG2)
security_ftr_set(SEC_FTR_L1D_FLUSH_TRIG2);
if (result->character & H_CPU_CHAR_L1D_THREAD_PRIV)
security_ftr_set(SEC_FTR_L1D_THREAD_PRIV);
if (result->character & H_CPU_CHAR_COUNT_CACHE_DISABLED)
security_ftr_set(SEC_FTR_COUNT_CACHE_DISABLED);
if (result->character & H_CPU_CHAR_BCCTR_FLUSH_ASSIST)
security_ftr_set(SEC_FTR_BCCTR_FLUSH_ASSIST);
if (result->behaviour & H_CPU_BEHAV_FLUSH_COUNT_CACHE)
security_ftr_set(SEC_FTR_FLUSH_COUNT_CACHE);
/*
* The features below are enabled by default, so we instead look to see
* if firmware has *disabled* them, and clear them if so.
*/
if (!(result->behaviour & H_CPU_BEHAV_FAVOUR_SECURITY))
security_ftr_clear(SEC_FTR_FAVOUR_SECURITY);
if (!(result->behaviour & H_CPU_BEHAV_L1D_FLUSH_PR))
security_ftr_clear(SEC_FTR_L1D_FLUSH_PR);
if (!(result->behaviour & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR))
security_ftr_clear(SEC_FTR_BNDS_CHK_SPEC_BAR);
}
void pseries_setup_rfi_flush(void)
{
struct h_cpu_char_result result;
enum l1d_flush_type types;
bool enable;
long rc;
/*
* Set features to the defaults assumed by init_cpu_char_feature_flags()
* so it can set/clear again any features that might have changed after
* migration, and in case the hypercall fails and it is not even called.
*/
powerpc_security_features = SEC_FTR_DEFAULT;
rc = plpar_get_cpu_characteristics(&result);
if (rc == H_SUCCESS)
init_cpu_char_feature_flags(&result);
/*
* We're the guest so this doesn't apply to us, clear it to simplify
* handling of it elsewhere.
*/
security_ftr_clear(SEC_FTR_L1D_FLUSH_HV);
types = L1D_FLUSH_FALLBACK;
if (security_ftr_enabled(SEC_FTR_L1D_FLUSH_TRIG2))
types |= L1D_FLUSH_MTTRIG;
if (security_ftr_enabled(SEC_FTR_L1D_FLUSH_ORI30))
types |= L1D_FLUSH_ORI;
enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && \
security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR);
setup_rfi_flush(types, enable);
setup_count_cache_flush();
}
#ifdef CONFIG_PCI_IOV
enum rtas_iov_fw_value_map {
NUM_RES_PROPERTY = 0, /* Number of Resources */
LOW_INT = 1, /* Lowest 32 bits of Address */
START_OF_ENTRIES = 2, /* Always start of entry */
APERTURE_PROPERTY = 2, /* Start of entry+ to Aperture Size */
WDW_SIZE_PROPERTY = 4, /* Start of entry+ to Window Size */
NEXT_ENTRY = 7 /* Go to next entry on array */
};
enum get_iov_fw_value_index {
BAR_ADDRS = 1, /* Get Bar Address */
APERTURE_SIZE = 2, /* Get Aperture Size */
WDW_SIZE = 3 /* Get Window Size */
};
resource_size_t pseries_get_iov_fw_value(struct pci_dev *dev, int resno,
enum get_iov_fw_value_index value)
{
const int *indexes;
struct device_node *dn = pci_device_to_OF_node(dev);
int i, num_res, ret = 0;
indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL);
if (!indexes)
return 0;
/*
* First element in the array is the number of Bars
* returned. Search through the list to find the matching
* bar
*/
num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1);
if (resno >= num_res)
return 0; /* or an errror */
i = START_OF_ENTRIES + NEXT_ENTRY * resno;
switch (value) {
case BAR_ADDRS:
ret = of_read_number(&indexes[i], 2);
break;
case APERTURE_SIZE:
ret = of_read_number(&indexes[i + APERTURE_PROPERTY], 2);
break;
case WDW_SIZE:
ret = of_read_number(&indexes[i + WDW_SIZE_PROPERTY], 2);
break;
}
return ret;
}
void of_pci_set_vf_bar_size(struct pci_dev *dev, const int *indexes)
{
struct resource *res;
resource_size_t base, size;
int i, r, num_res;
num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1);
num_res = min_t(int, num_res, PCI_SRIOV_NUM_BARS);
for (i = START_OF_ENTRIES, r = 0; r < num_res && r < PCI_SRIOV_NUM_BARS;
i += NEXT_ENTRY, r++) {
res = &dev->resource[r + PCI_IOV_RESOURCES];
base = of_read_number(&indexes[i], 2);
size = of_read_number(&indexes[i + APERTURE_PROPERTY], 2);
res->flags = pci_parse_of_flags(of_read_number
(&indexes[i + LOW_INT], 1), 0);
res->flags |= (IORESOURCE_MEM_64 | IORESOURCE_PCI_FIXED);
res->name = pci_name(dev);
res->start = base;
res->end = base + size - 1;
}
}
void of_pci_parse_iov_addrs(struct pci_dev *dev, const int *indexes)
{
struct resource *res, *root, *conflict;
resource_size_t base, size;
int i, r, num_res;
/*
* First element in the array is the number of Bars
* returned. Search through the list to find the matching
* bars assign them from firmware into resources structure.
*/
num_res = of_read_number(&indexes[NUM_RES_PROPERTY], 1);
for (i = START_OF_ENTRIES, r = 0; r < num_res && r < PCI_SRIOV_NUM_BARS;
i += NEXT_ENTRY, r++) {
res = &dev->resource[r + PCI_IOV_RESOURCES];
base = of_read_number(&indexes[i], 2);
size = of_read_number(&indexes[i + WDW_SIZE_PROPERTY], 2);
res->name = pci_name(dev);
res->start = base;
res->end = base + size - 1;
root = &iomem_resource;
dev_dbg(&dev->dev,
"pSeries IOV BAR %d: trying firmware assignment %pR\n",
r + PCI_IOV_RESOURCES, res);
conflict = request_resource_conflict(root, res);
if (conflict) {
dev_info(&dev->dev,
"BAR %d: %pR conflicts with %s %pR\n",
r + PCI_IOV_RESOURCES, res,
conflict->name, conflict);
res->flags |= IORESOURCE_UNSET;
}
}
}
static void pseries_disable_sriov_resources(struct pci_dev *pdev)
{
int i;
pci_warn(pdev, "No hypervisor support for SR-IOV on this device, IOV BARs disabled.\n");
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
pdev->resource[i + PCI_IOV_RESOURCES].flags = 0;
}
static void pseries_pci_fixup_resources(struct pci_dev *pdev)
{
const int *indexes;
struct device_node *dn = pci_device_to_OF_node(pdev);
/*Firmware must support open sriov otherwise dont configure*/
indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL);
if (indexes)
of_pci_set_vf_bar_size(pdev, indexes);
else
pseries_disable_sriov_resources(pdev);
}
static void pseries_pci_fixup_iov_resources(struct pci_dev *pdev)
{
const int *indexes;
struct device_node *dn = pci_device_to_OF_node(pdev);
if (!pdev->is_physfn || pci_dev_is_added(pdev))
return;
/*Firmware must support open sriov otherwise dont configure*/
indexes = of_get_property(dn, "ibm,open-sriov-vf-bar-info", NULL);
if (indexes)
of_pci_parse_iov_addrs(pdev, indexes);
else
pseries_disable_sriov_resources(pdev);
}
static resource_size_t pseries_pci_iov_resource_alignment(struct pci_dev *pdev,
int resno)
{
const __be32 *reg;
struct device_node *dn = pci_device_to_OF_node(pdev);
/*Firmware must support open sriov otherwise report regular alignment*/
reg = of_get_property(dn, "ibm,is-open-sriov-pf", NULL);
if (!reg)
return pci_iov_resource_size(pdev, resno);
if (!pdev->is_physfn)
return 0;
return pseries_get_iov_fw_value(pdev,
resno - PCI_IOV_RESOURCES,
APERTURE_SIZE);
}
#endif
static void __init pSeries_setup_arch(void)
{
set_arch_panic_timeout(10, ARCH_PANIC_TIMEOUT);
/* Discover PIC type and setup ppc_md accordingly */
smp_init_pseries();
/* openpic global configuration register (64-bit format). */
/* openpic Interrupt Source Unit pointer (64-bit format). */
/* python0 facility area (mmio) (64-bit format) REAL address. */
/* init to some ~sane value until calibrate_delay() runs */
loops_per_jiffy = 50000000;
fwnmi_init();
pseries_setup_rfi_flush();
setup_stf_barrier();
/* By default, only probe PCI (can be overridden by rtas_pci) */
pci_add_flags(PCI_PROBE_ONLY);
/* Find and initialize PCI host bridges */
init_pci_config_tokens();
find_and_init_phbs();
of_reconfig_notifier_register(&pci_dn_reconfig_nb);
pSeries_nvram_init();
if (firmware_has_feature(FW_FEATURE_LPAR)) {
vpa_init(boot_cpuid);
ppc_md.power_save = pseries_lpar_idle;
ppc_md.enable_pmcs = pseries_lpar_enable_pmcs;
#ifdef CONFIG_PCI_IOV
ppc_md.pcibios_fixup_resources =
pseries_pci_fixup_resources;
ppc_md.pcibios_fixup_sriov =
pseries_pci_fixup_iov_resources;
ppc_md.pcibios_iov_resource_alignment =
pseries_pci_iov_resource_alignment;
#endif
} else {
/* No special idle routine */
ppc_md.enable_pmcs = power4_enable_pmcs;
}
ppc_md.pcibios_root_bridge_prepare = pseries_root_bridge_prepare;
}
static void pseries_panic(char *str)
{
panic_flush_kmsg_end();
rtas_os_term(str);
}
static int __init pSeries_init_panel(void)
{
/* Manually leave the kernel version on the panel. */
#ifdef __BIG_ENDIAN__
ppc_md.progress("Linux ppc64\n", 0);
#else
ppc_md.progress("Linux ppc64le\n", 0);
#endif
ppc_md.progress(init_utsname()->version, 0);
return 0;
}
machine_arch_initcall(pseries, pSeries_init_panel);
static int pseries_set_dabr(unsigned long dabr, unsigned long dabrx)
{
return plpar_hcall_norets(H_SET_DABR, dabr);
}
static int pseries_set_xdabr(unsigned long dabr, unsigned long dabrx)
{
/* Have to set at least one bit in the DABRX according to PAPR */
if (dabrx == 0 && dabr == 0)
dabrx = DABRX_USER;
/* PAPR says we can only set kernel and user bits */
dabrx &= DABRX_KERNEL | DABRX_USER;
return plpar_hcall_norets(H_SET_XDABR, dabr, dabrx);
}
static int pseries_set_dawr(unsigned long dawr, unsigned long dawrx)
{
/* PAPR says we can't set HYP */
dawrx &= ~DAWRX_HYP;
return plpar_set_watchpoint0(dawr, dawrx);
}
#define CMO_CHARACTERISTICS_TOKEN 44
#define CMO_MAXLENGTH 1026
void pSeries_coalesce_init(void)
{
struct hvcall_mpp_x_data mpp_x_data;
if (firmware_has_feature(FW_FEATURE_CMO) && !h_get_mpp_x(&mpp_x_data))
powerpc_firmware_features |= FW_FEATURE_XCMO;
else
powerpc_firmware_features &= ~FW_FEATURE_XCMO;
}
/**
* fw_cmo_feature_init - FW_FEATURE_CMO is not stored in ibm,hypertas-functions,
* handle that here. (Stolen from parse_system_parameter_string)
*/
static void pSeries_cmo_feature_init(void)
{
char *ptr, *key, *value, *end;
int call_status;
int page_order = IOMMU_PAGE_SHIFT_4K;
pr_debug(" -> fw_cmo_feature_init()\n");
spin_lock(&rtas_data_buf_lock);
memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
NULL,
CMO_CHARACTERISTICS_TOKEN,
__pa(rtas_data_buf),
RTAS_DATA_BUF_SIZE);
if (call_status != 0) {
spin_unlock(&rtas_data_buf_lock);
pr_debug("CMO not available\n");
pr_debug(" <- fw_cmo_feature_init()\n");
return;
}
end = rtas_data_buf + CMO_MAXLENGTH - 2;
ptr = rtas_data_buf + 2; /* step over strlen value */
key = value = ptr;
while (*ptr && (ptr <= end)) {
/* Separate the key and value by replacing '=' with '\0' and
* point the value at the string after the '='
*/
if (ptr[0] == '=') {
ptr[0] = '\0';
value = ptr + 1;
} else if (ptr[0] == '\0' || ptr[0] == ',') {
/* Terminate the string containing the key/value pair */
ptr[0] = '\0';
if (key == value) {
pr_debug("Malformed key/value pair\n");
/* Never found a '=', end processing */
break;
}
if (0 == strcmp(key, "CMOPageSize"))
page_order = simple_strtol(value, NULL, 10);
else if (0 == strcmp(key, "PrPSP"))
CMO_PrPSP = simple_strtol(value, NULL, 10);
else if (0 == strcmp(key, "SecPSP"))
CMO_SecPSP = simple_strtol(value, NULL, 10);
value = key = ptr + 1;
}
ptr++;
}
/* Page size is returned as the power of 2 of the page size,
* convert to the page size in bytes before returning
*/
CMO_PageSize = 1 << page_order;
pr_debug("CMO_PageSize = %lu\n", CMO_PageSize);
if (CMO_PrPSP != -1 || CMO_SecPSP != -1) {
pr_info("CMO enabled\n");
pr_debug("CMO enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP,
CMO_SecPSP);
powerpc_firmware_features |= FW_FEATURE_CMO;
pSeries_coalesce_init();
} else
pr_debug("CMO not enabled, PrPSP=%d, SecPSP=%d\n", CMO_PrPSP,
CMO_SecPSP);
spin_unlock(&rtas_data_buf_lock);
pr_debug(" <- fw_cmo_feature_init()\n");
}
/*
* Early initialization. Relocation is on but do not reference unbolted pages
*/
static void __init pseries_init(void)
{
pr_debug(" -> pseries_init()\n");
#ifdef CONFIG_HVC_CONSOLE
if (firmware_has_feature(FW_FEATURE_LPAR))
hvc_vio_init_early();
#endif
if (firmware_has_feature(FW_FEATURE_XDABR))
ppc_md.set_dabr = pseries_set_xdabr;
else if (firmware_has_feature(FW_FEATURE_DABR))
ppc_md.set_dabr = pseries_set_dabr;
if (firmware_has_feature(FW_FEATURE_SET_MODE))
ppc_md.set_dawr = pseries_set_dawr;
pSeries_cmo_feature_init();
iommu_init_early_pSeries();
pr_debug(" <- pseries_init()\n");
}
/**
* pseries_power_off - tell firmware about how to power off the system.
*
* This function calls either the power-off rtas token in normal cases
* or the ibm,power-off-ups token (if present & requested) in case of
* a power failure. If power-off token is used, power on will only be
* possible with power button press. If ibm,power-off-ups token is used
* it will allow auto poweron after power is restored.
*/
static void pseries_power_off(void)
{
int rc;
int rtas_poweroff_ups_token = rtas_token("ibm,power-off-ups");
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_POWER_OFF);
if (rtas_poweron_auto == 0 ||
rtas_poweroff_ups_token == RTAS_UNKNOWN_SERVICE) {
rc = rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1);
printk(KERN_INFO "RTAS power-off returned %d\n", rc);
} else {
rc = rtas_call(rtas_poweroff_ups_token, 0, 1, NULL);
printk(KERN_INFO "RTAS ibm,power-off-ups returned %d\n", rc);
}
for (;;);
}
static int __init pSeries_probe(void)
{
const char *dtype = of_get_property(of_root, "device_type", NULL);
if (dtype == NULL)
return 0;
if (strcmp(dtype, "chrp"))
return 0;
/* Cell blades firmware claims to be chrp while it's not. Until this
* is fixed, we need to avoid those here.
*/
if (of_machine_is_compatible("IBM,CPBW-1.0") ||
of_machine_is_compatible("IBM,CBEA"))
return 0;
pm_power_off = pseries_power_off;
pr_debug("Machine is%s LPAR !\n",
(powerpc_firmware_features & FW_FEATURE_LPAR) ? "" : " not");
pseries_init();
return 1;
}
static int pSeries_pci_probe_mode(struct pci_bus *bus)
{
if (firmware_has_feature(FW_FEATURE_LPAR))
return PCI_PROBE_DEVTREE;
return PCI_PROBE_NORMAL;
}
struct pci_controller_ops pseries_pci_controller_ops = {
.probe_mode = pSeries_pci_probe_mode,
};
define_machine(pseries) {
.name = "pSeries",
.probe = pSeries_probe,
.setup_arch = pSeries_setup_arch,
.init_IRQ = pseries_init_irq,
.show_cpuinfo = pSeries_show_cpuinfo,
.log_error = pSeries_log_error,
.pcibios_fixup = pSeries_final_fixup,
.restart = rtas_restart,
.halt = rtas_halt,
.panic = pseries_panic,
.get_boot_time = rtas_get_boot_time,
.get_rtc_time = rtas_get_rtc_time,
.set_rtc_time = rtas_set_rtc_time,
.calibrate_decr = generic_calibrate_decr,
.progress = rtas_progress,
.system_reset_exception = pSeries_system_reset_exception,
.machine_check_exception = pSeries_machine_check_exception,
#ifdef CONFIG_KEXEC_CORE
.machine_kexec = pSeries_machine_kexec,
.kexec_cpu_down = pseries_kexec_cpu_down,
#endif
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
.memory_block_size = pseries_memory_block_size,
#endif
};