| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/arch/alpha/kernel/core_t2.c |
| * |
| * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com). |
| * December 1996. |
| * |
| * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com) |
| * |
| * Code common to all T2 core logic chips. |
| */ |
| |
| #define __EXTERN_INLINE |
| #include <asm/io.h> |
| #include <asm/core_t2.h> |
| #undef __EXTERN_INLINE |
| |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/delay.h> |
| #include <asm/mce.h> |
| |
| #include "proto.h" |
| #include "pci_impl.h" |
| |
| /* For dumping initial DMA window settings. */ |
| #define DEBUG_PRINT_INITIAL_SETTINGS 0 |
| |
| /* For dumping final DMA window settings. */ |
| #define DEBUG_PRINT_FINAL_SETTINGS 0 |
| |
| /* |
| * By default, we direct-map starting at 2GB, in order to allow the |
| * maximum size direct-map window (2GB) to match the maximum amount of |
| * memory (2GB) that can be present on SABLEs. But that limits the |
| * floppy to DMA only via the scatter/gather window set up for 8MB |
| * ISA DMA, since the maximum ISA DMA address is 2GB-1. |
| * |
| * For now, this seems a reasonable trade-off: even though most SABLEs |
| * have less than 1GB of memory, floppy usage/performance will not |
| * really be affected by forcing it to go via scatter/gather... |
| */ |
| #define T2_DIRECTMAP_2G 1 |
| |
| #if T2_DIRECTMAP_2G |
| # define T2_DIRECTMAP_START 0x80000000UL |
| # define T2_DIRECTMAP_LENGTH 0x80000000UL |
| #else |
| # define T2_DIRECTMAP_START 0x40000000UL |
| # define T2_DIRECTMAP_LENGTH 0x40000000UL |
| #endif |
| |
| /* The ISA scatter/gather window settings. */ |
| #define T2_ISA_SG_START 0x00800000UL |
| #define T2_ISA_SG_LENGTH 0x00800000UL |
| |
| /* |
| * NOTE: Herein lie back-to-back mb instructions. They are magic. |
| * One plausible explanation is that the i/o controller does not properly |
| * handle the system transaction. Another involves timing. Ho hum. |
| */ |
| |
| /* |
| * BIOS32-style PCI interface: |
| */ |
| |
| #define DEBUG_CONFIG 0 |
| |
| #if DEBUG_CONFIG |
| # define DBG(args) printk args |
| #else |
| # define DBG(args) |
| #endif |
| |
| static volatile unsigned int t2_mcheck_any_expected; |
| static volatile unsigned int t2_mcheck_last_taken; |
| |
| /* Place to save the DMA Window registers as set up by SRM |
| for restoration during shutdown. */ |
| static struct |
| { |
| struct { |
| unsigned long wbase; |
| unsigned long wmask; |
| unsigned long tbase; |
| } window[2]; |
| unsigned long hae_1; |
| unsigned long hae_2; |
| unsigned long hae_3; |
| unsigned long hae_4; |
| unsigned long hbase; |
| } t2_saved_config __attribute((common)); |
| |
| /* |
| * Given a bus, device, and function number, compute resulting |
| * configuration space address and setup the T2_HAXR2 register |
| * accordingly. It is therefore not safe to have concurrent |
| * invocations to configuration space access routines, but there |
| * really shouldn't be any need for this. |
| * |
| * Type 0: |
| * |
| * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 |
| * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |
| * 31:11 Device select bit. |
| * 10:8 Function number |
| * 7:2 Register number |
| * |
| * Type 1: |
| * |
| * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 |
| * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |
| * 31:24 reserved |
| * 23:16 bus number (8 bits = 128 possible buses) |
| * 15:11 Device number (5 bits) |
| * 10:8 function number |
| * 7:2 register number |
| * |
| * Notes: |
| * The function number selects which function of a multi-function device |
| * (e.g., SCSI and Ethernet). |
| * |
| * The register selects a DWORD (32 bit) register offset. Hence it |
| * doesn't get shifted by 2 bits as we want to "drop" the bottom two |
| * bits. |
| */ |
| |
| static int |
| mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, |
| unsigned long *pci_addr, unsigned char *type1) |
| { |
| unsigned long addr; |
| u8 bus = pbus->number; |
| |
| DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x," |
| " addr=0x%lx, type1=0x%x)\n", |
| bus, device_fn, where, pci_addr, type1)); |
| |
| if (bus == 0) { |
| int device = device_fn >> 3; |
| |
| /* Type 0 configuration cycle. */ |
| |
| if (device > 8) { |
| DBG(("mk_conf_addr: device (%d)>20, returning -1\n", |
| device)); |
| return -1; |
| } |
| |
| *type1 = 0; |
| addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where); |
| } else { |
| /* Type 1 configuration cycle. */ |
| *type1 = 1; |
| addr = (bus << 16) | (device_fn << 8) | (where); |
| } |
| *pci_addr = addr; |
| DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); |
| return 0; |
| } |
| |
| /* |
| * NOTE: both conf_read() and conf_write() may set HAE_3 when needing |
| * to do type1 access. This is protected by the use of spinlock IRQ |
| * primitives in the wrapper functions pci_{read,write}_config_*() |
| * defined in drivers/pci/pci.c. |
| */ |
| static unsigned int |
| conf_read(unsigned long addr, unsigned char type1) |
| { |
| unsigned int value, cpu, taken; |
| unsigned long t2_cfg = 0; |
| |
| cpu = smp_processor_id(); |
| |
| DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1)); |
| |
| /* If Type1 access, must set T2 CFG. */ |
| if (type1) { |
| t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; |
| *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg; |
| mb(); |
| } |
| mb(); |
| draina(); |
| |
| mcheck_expected(cpu) = 1; |
| mcheck_taken(cpu) = 0; |
| t2_mcheck_any_expected |= (1 << cpu); |
| mb(); |
| |
| /* Access configuration space. */ |
| value = *(vuip)addr; |
| mb(); |
| mb(); /* magic */ |
| |
| /* Wait for possible mcheck. Also, this lets other CPUs clear |
| their mchecks as well, as they can reliably tell when |
| another CPU is in the midst of handling a real mcheck via |
| the "taken" function. */ |
| udelay(100); |
| |
| if ((taken = mcheck_taken(cpu))) { |
| mcheck_taken(cpu) = 0; |
| t2_mcheck_last_taken |= (1 << cpu); |
| value = 0xffffffffU; |
| mb(); |
| } |
| mcheck_expected(cpu) = 0; |
| t2_mcheck_any_expected = 0; |
| mb(); |
| |
| /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ |
| if (type1) { |
| *(vulp)T2_HAE_3 = t2_cfg; |
| mb(); |
| } |
| |
| return value; |
| } |
| |
| static void |
| conf_write(unsigned long addr, unsigned int value, unsigned char type1) |
| { |
| unsigned int cpu, taken; |
| unsigned long t2_cfg = 0; |
| |
| cpu = smp_processor_id(); |
| |
| /* If Type1 access, must set T2 CFG. */ |
| if (type1) { |
| t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; |
| *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL; |
| mb(); |
| } |
| mb(); |
| draina(); |
| |
| mcheck_expected(cpu) = 1; |
| mcheck_taken(cpu) = 0; |
| t2_mcheck_any_expected |= (1 << cpu); |
| mb(); |
| |
| /* Access configuration space. */ |
| *(vuip)addr = value; |
| mb(); |
| mb(); /* magic */ |
| |
| /* Wait for possible mcheck. Also, this lets other CPUs clear |
| their mchecks as well, as they can reliably tell when |
| this CPU is in the midst of handling a real mcheck via |
| the "taken" function. */ |
| udelay(100); |
| |
| if ((taken = mcheck_taken(cpu))) { |
| mcheck_taken(cpu) = 0; |
| t2_mcheck_last_taken |= (1 << cpu); |
| mb(); |
| } |
| mcheck_expected(cpu) = 0; |
| t2_mcheck_any_expected = 0; |
| mb(); |
| |
| /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ |
| if (type1) { |
| *(vulp)T2_HAE_3 = t2_cfg; |
| mb(); |
| } |
| } |
| |
| static int |
| t2_read_config(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *value) |
| { |
| unsigned long addr, pci_addr; |
| unsigned char type1; |
| int shift; |
| long mask; |
| |
| if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| mask = (size - 1) * 8; |
| shift = (where & 3) * 8; |
| addr = (pci_addr << 5) + mask + T2_CONF; |
| *value = conf_read(addr, type1) >> (shift); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int |
| t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, |
| u32 value) |
| { |
| unsigned long addr, pci_addr; |
| unsigned char type1; |
| long mask; |
| |
| if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| mask = (size - 1) * 8; |
| addr = (pci_addr << 5) + mask + T2_CONF; |
| conf_write(addr, value << ((where & 3) * 8), type1); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| struct pci_ops t2_pci_ops = |
| { |
| .read = t2_read_config, |
| .write = t2_write_config, |
| }; |
| |
| static void __init |
| t2_direct_map_window1(unsigned long base, unsigned long length) |
| { |
| unsigned long temp; |
| |
| __direct_map_base = base; |
| __direct_map_size = length; |
| |
| temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); |
| *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */ |
| temp = (length - 1) & 0xfff00000UL; |
| *(vulp)T2_WMASK1 = temp; |
| *(vulp)T2_TBASE1 = 0; |
| |
| #if DEBUG_PRINT_FINAL_SETTINGS |
| printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", |
| __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); |
| #endif |
| } |
| |
| static void __init |
| t2_sg_map_window2(struct pci_controller *hose, |
| unsigned long base, |
| unsigned long length) |
| { |
| unsigned long temp; |
| |
| /* Note we can only do 1 SG window, as the other is for direct, so |
| do an ISA SG area, especially for the floppy. */ |
| hose->sg_isa = iommu_arena_new(hose, base, length, 0); |
| hose->sg_pci = NULL; |
| |
| temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); |
| *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */ |
| temp = (length - 1) & 0xfff00000UL; |
| *(vulp)T2_WMASK2 = temp; |
| *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1; |
| mb(); |
| |
| t2_pci_tbi(hose, 0, -1); /* flush TLB all */ |
| |
| #if DEBUG_PRINT_FINAL_SETTINGS |
| printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", |
| __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); |
| #endif |
| } |
| |
| static void __init |
| t2_save_configuration(void) |
| { |
| #if DEBUG_PRINT_INITIAL_SETTINGS |
| printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */ |
| printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2); |
| printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3); |
| printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4); |
| printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE); |
| |
| printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__, |
| *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); |
| printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__, |
| *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); |
| #endif |
| |
| /* |
| * Save the DMA Window registers. |
| */ |
| t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1; |
| t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1; |
| t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1; |
| t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2; |
| t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2; |
| t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2; |
| |
| t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */ |
| t2_saved_config.hae_2 = *(vulp)T2_HAE_2; |
| t2_saved_config.hae_3 = *(vulp)T2_HAE_3; |
| t2_saved_config.hae_4 = *(vulp)T2_HAE_4; |
| t2_saved_config.hbase = *(vulp)T2_HBASE; |
| } |
| |
| void __init |
| t2_init_arch(void) |
| { |
| struct pci_controller *hose; |
| struct resource *hae_mem; |
| unsigned long temp; |
| unsigned int i; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| mcheck_expected(i) = 0; |
| mcheck_taken(i) = 0; |
| } |
| t2_mcheck_any_expected = 0; |
| t2_mcheck_last_taken = 0; |
| |
| /* Enable scatter/gather TLB use. */ |
| temp = *(vulp)T2_IOCSR; |
| if (!(temp & (0x1UL << 26))) { |
| printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n", |
| temp); |
| *(vulp)T2_IOCSR = temp | (0x1UL << 26); |
| mb(); |
| *(vulp)T2_IOCSR; /* read it back to make sure */ |
| } |
| |
| t2_save_configuration(); |
| |
| /* |
| * Create our single hose. |
| */ |
| pci_isa_hose = hose = alloc_pci_controller(); |
| hose->io_space = &ioport_resource; |
| hae_mem = alloc_resource(); |
| hae_mem->start = 0; |
| hae_mem->end = T2_MEM_R1_MASK; |
| hae_mem->name = pci_hae0_name; |
| if (request_resource(&iomem_resource, hae_mem) < 0) |
| printk(KERN_ERR "Failed to request HAE_MEM\n"); |
| hose->mem_space = hae_mem; |
| hose->index = 0; |
| |
| hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR; |
| hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR; |
| hose->sparse_io_base = T2_IO - IDENT_ADDR; |
| hose->dense_io_base = 0; |
| |
| /* |
| * Set up the PCI->physical memory translation windows. |
| * |
| * Window 1 is direct mapped. |
| * Window 2 is scatter/gather (for ISA). |
| */ |
| |
| t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH); |
| |
| /* Always make an ISA DMA window. */ |
| t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH); |
| |
| *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */ |
| |
| /* Zero HAE. */ |
| *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */ |
| *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */ |
| *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */ |
| |
| /* |
| * We also now zero out HAE_4, the dense memory HAE, so that |
| * we need not account for its "offset" when accessing dense |
| * memory resources which we allocated in our normal way. This |
| * HAE would need to stay untouched were we to keep the SRM |
| * resource settings. |
| * |
| * Thus we can now run standard X servers on SABLE/LYNX. :-) |
| */ |
| *(vulp)T2_HAE_4 = 0; mb(); |
| } |
| |
| void |
| t2_kill_arch(int mode) |
| { |
| /* |
| * Restore the DMA Window registers. |
| */ |
| *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase; |
| *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask; |
| *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase; |
| *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase; |
| *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask; |
| *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase; |
| mb(); |
| |
| *(vulp)T2_HAE_1 = srm_hae; |
| *(vulp)T2_HAE_2 = t2_saved_config.hae_2; |
| *(vulp)T2_HAE_3 = t2_saved_config.hae_3; |
| *(vulp)T2_HAE_4 = t2_saved_config.hae_4; |
| *(vulp)T2_HBASE = t2_saved_config.hbase; |
| mb(); |
| *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */ |
| } |
| |
| void |
| t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) |
| { |
| unsigned long t2_iocsr; |
| |
| t2_iocsr = *(vulp)T2_IOCSR; |
| |
| /* set the TLB Clear bit */ |
| *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28); |
| mb(); |
| *(vulp)T2_IOCSR; /* read it back to make sure */ |
| |
| /* clear the TLB Clear bit */ |
| *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28); |
| mb(); |
| *(vulp)T2_IOCSR; /* read it back to make sure */ |
| } |
| |
| #define SIC_SEIC (1UL << 33) /* System Event Clear */ |
| |
| static void |
| t2_clear_errors(int cpu) |
| { |
| struct sable_cpu_csr *cpu_regs; |
| |
| cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu); |
| |
| cpu_regs->sic &= ~SIC_SEIC; |
| |
| /* Clear CPU errors. */ |
| cpu_regs->bcce |= cpu_regs->bcce; |
| cpu_regs->cbe |= cpu_regs->cbe; |
| cpu_regs->bcue |= cpu_regs->bcue; |
| cpu_regs->dter |= cpu_regs->dter; |
| |
| *(vulp)T2_CERR1 |= *(vulp)T2_CERR1; |
| *(vulp)T2_PERR1 |= *(vulp)T2_PERR1; |
| |
| mb(); |
| mb(); /* magic */ |
| } |
| |
| /* |
| * SABLE seems to have a "broadcast" style machine check, in that all |
| * CPUs receive it. And, the issuing CPU, in the case of PCI Config |
| * space read/write faults, will also receive a second mcheck, upon |
| * lowering IPL during completion processing in pci_read_config_byte() |
| * et al. |
| * |
| * Hence all the taken/expected/any_expected/last_taken stuff... |
| */ |
| void |
| t2_machine_check(unsigned long vector, unsigned long la_ptr) |
| { |
| int cpu = smp_processor_id(); |
| #ifdef CONFIG_VERBOSE_MCHECK |
| struct el_common *mchk_header = (struct el_common *)la_ptr; |
| #endif |
| |
| /* Clear the error before any reporting. */ |
| mb(); |
| mb(); /* magic */ |
| draina(); |
| t2_clear_errors(cpu); |
| |
| /* This should not actually be done until the logout frame is |
| examined, but, since we don't do that, go on and do this... */ |
| wrmces(0x7); |
| mb(); |
| |
| /* Now, do testing for the anomalous conditions. */ |
| if (!mcheck_expected(cpu) && t2_mcheck_any_expected) { |
| /* |
| * FUNKY: Received mcheck on a CPU and not |
| * expecting it, but another CPU is expecting one. |
| * |
| * Just dismiss it for now on this CPU... |
| */ |
| #ifdef CONFIG_VERBOSE_MCHECK |
| if (alpha_verbose_mcheck > 1) { |
| printk("t2_machine_check(cpu%d): any_expected 0x%x -" |
| " (assumed) spurious -" |
| " code 0x%x\n", cpu, t2_mcheck_any_expected, |
| (unsigned int)mchk_header->code); |
| } |
| #endif |
| return; |
| } |
| |
| if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) { |
| if (t2_mcheck_last_taken & (1 << cpu)) { |
| #ifdef CONFIG_VERBOSE_MCHECK |
| if (alpha_verbose_mcheck > 1) { |
| printk("t2_machine_check(cpu%d): last_taken 0x%x - " |
| "unexpected mcheck - code 0x%x\n", |
| cpu, t2_mcheck_last_taken, |
| (unsigned int)mchk_header->code); |
| } |
| #endif |
| t2_mcheck_last_taken = 0; |
| mb(); |
| return; |
| } else { |
| t2_mcheck_last_taken = 0; |
| mb(); |
| } |
| } |
| |
| #ifdef CONFIG_VERBOSE_MCHECK |
| if (alpha_verbose_mcheck > 1) { |
| printk("%s t2_mcheck(cpu%d): last_taken 0x%x - " |
| "any_expected 0x%x - code 0x%x\n", |
| (mcheck_expected(cpu) ? "EX" : "UN"), cpu, |
| t2_mcheck_last_taken, t2_mcheck_any_expected, |
| (unsigned int)mchk_header->code); |
| } |
| #endif |
| |
| process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu)); |
| } |