| /* |
| * Copyright (C) ST-Ericsson SA 2007-2010 |
| * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson |
| * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson |
| * License terms: GNU General Public License (GPL) version 2 |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/platform_data/dma-ste-dma40.h> |
| |
| #include "ste_dma40_ll.h" |
| |
| static u8 d40_width_to_bits(enum dma_slave_buswidth width) |
| { |
| if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) |
| return STEDMA40_ESIZE_8_BIT; |
| else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) |
| return STEDMA40_ESIZE_16_BIT; |
| else if (width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| return STEDMA40_ESIZE_64_BIT; |
| else |
| return STEDMA40_ESIZE_32_BIT; |
| } |
| |
| /* Sets up proper LCSP1 and LCSP3 register for a logical channel */ |
| void d40_log_cfg(struct stedma40_chan_cfg *cfg, |
| u32 *lcsp1, u32 *lcsp3) |
| { |
| u32 l3 = 0; /* dst */ |
| u32 l1 = 0; /* src */ |
| |
| /* src is mem? -> increase address pos */ |
| if (cfg->dir == DMA_MEM_TO_DEV || |
| cfg->dir == DMA_MEM_TO_MEM) |
| l1 |= BIT(D40_MEM_LCSP1_SCFG_INCR_POS); |
| |
| /* dst is mem? -> increase address pos */ |
| if (cfg->dir == DMA_DEV_TO_MEM || |
| cfg->dir == DMA_MEM_TO_MEM) |
| l3 |= BIT(D40_MEM_LCSP3_DCFG_INCR_POS); |
| |
| /* src is hw? -> master port 1 */ |
| if (cfg->dir == DMA_DEV_TO_MEM || |
| cfg->dir == DMA_DEV_TO_DEV) |
| l1 |= BIT(D40_MEM_LCSP1_SCFG_MST_POS); |
| |
| /* dst is hw? -> master port 1 */ |
| if (cfg->dir == DMA_MEM_TO_DEV || |
| cfg->dir == DMA_DEV_TO_DEV) |
| l3 |= BIT(D40_MEM_LCSP3_DCFG_MST_POS); |
| |
| l3 |= BIT(D40_MEM_LCSP3_DCFG_EIM_POS); |
| l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS; |
| l3 |= d40_width_to_bits(cfg->dst_info.data_width) |
| << D40_MEM_LCSP3_DCFG_ESIZE_POS; |
| |
| l1 |= BIT(D40_MEM_LCSP1_SCFG_EIM_POS); |
| l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; |
| l1 |= d40_width_to_bits(cfg->src_info.data_width) |
| << D40_MEM_LCSP1_SCFG_ESIZE_POS; |
| |
| *lcsp1 = l1; |
| *lcsp3 = l3; |
| |
| } |
| |
| void d40_phy_cfg(struct stedma40_chan_cfg *cfg, u32 *src_cfg, u32 *dst_cfg) |
| { |
| u32 src = 0; |
| u32 dst = 0; |
| |
| if ((cfg->dir == DMA_DEV_TO_MEM) || |
| (cfg->dir == DMA_DEV_TO_DEV)) { |
| /* Set master port to 1 */ |
| src |= BIT(D40_SREG_CFG_MST_POS); |
| src |= D40_TYPE_TO_EVENT(cfg->dev_type); |
| |
| if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
| src |= BIT(D40_SREG_CFG_PHY_TM_POS); |
| else |
| src |= 3 << D40_SREG_CFG_PHY_TM_POS; |
| } |
| if ((cfg->dir == DMA_MEM_TO_DEV) || |
| (cfg->dir == DMA_DEV_TO_DEV)) { |
| /* Set master port to 1 */ |
| dst |= BIT(D40_SREG_CFG_MST_POS); |
| dst |= D40_TYPE_TO_EVENT(cfg->dev_type); |
| |
| if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL) |
| dst |= BIT(D40_SREG_CFG_PHY_TM_POS); |
| else |
| dst |= 3 << D40_SREG_CFG_PHY_TM_POS; |
| } |
| /* Interrupt on end of transfer for destination */ |
| dst |= BIT(D40_SREG_CFG_TIM_POS); |
| |
| /* Generate interrupt on error */ |
| src |= BIT(D40_SREG_CFG_EIM_POS); |
| dst |= BIT(D40_SREG_CFG_EIM_POS); |
| |
| /* PSIZE */ |
| if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) { |
| src |= BIT(D40_SREG_CFG_PHY_PEN_POS); |
| src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) { |
| dst |= BIT(D40_SREG_CFG_PHY_PEN_POS); |
| dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS; |
| } |
| |
| /* Element size */ |
| src |= d40_width_to_bits(cfg->src_info.data_width) |
| << D40_SREG_CFG_ESIZE_POS; |
| dst |= d40_width_to_bits(cfg->dst_info.data_width) |
| << D40_SREG_CFG_ESIZE_POS; |
| |
| /* Set the priority bit to high for the physical channel */ |
| if (cfg->high_priority) { |
| src |= BIT(D40_SREG_CFG_PRI_POS); |
| dst |= BIT(D40_SREG_CFG_PRI_POS); |
| } |
| |
| if (cfg->src_info.big_endian) |
| src |= BIT(D40_SREG_CFG_LBE_POS); |
| if (cfg->dst_info.big_endian) |
| dst |= BIT(D40_SREG_CFG_LBE_POS); |
| |
| *src_cfg = src; |
| *dst_cfg = dst; |
| } |
| |
| static int d40_phy_fill_lli(struct d40_phy_lli *lli, |
| dma_addr_t data, |
| u32 data_size, |
| dma_addr_t next_lli, |
| u32 reg_cfg, |
| struct stedma40_half_channel_info *info, |
| unsigned int flags) |
| { |
| bool addr_inc = flags & LLI_ADDR_INC; |
| bool term_int = flags & LLI_TERM_INT; |
| unsigned int data_width = info->data_width; |
| int psize = info->psize; |
| int num_elems; |
| |
| if (psize == STEDMA40_PSIZE_PHY_1) |
| num_elems = 1; |
| else |
| num_elems = 2 << psize; |
| |
| /* Must be aligned */ |
| if (!IS_ALIGNED(data, data_width)) |
| return -EINVAL; |
| |
| /* Transfer size can't be smaller than (num_elms * elem_size) */ |
| if (data_size < num_elems * data_width) |
| return -EINVAL; |
| |
| /* The number of elements. IE now many chunks */ |
| lli->reg_elt = (data_size / data_width) << D40_SREG_ELEM_PHY_ECNT_POS; |
| |
| /* |
| * Distance to next element sized entry. |
| * Usually the size of the element unless you want gaps. |
| */ |
| if (addr_inc) |
| lli->reg_elt |= data_width << D40_SREG_ELEM_PHY_EIDX_POS; |
| |
| /* Where the data is */ |
| lli->reg_ptr = data; |
| lli->reg_cfg = reg_cfg; |
| |
| /* If this scatter list entry is the last one, no next link */ |
| if (next_lli == 0) |
| lli->reg_lnk = BIT(D40_SREG_LNK_PHY_TCP_POS); |
| else |
| lli->reg_lnk = next_lli; |
| |
| /* Set/clear interrupt generation on this link item.*/ |
| if (term_int) |
| lli->reg_cfg |= BIT(D40_SREG_CFG_TIM_POS); |
| else |
| lli->reg_cfg &= ~BIT(D40_SREG_CFG_TIM_POS); |
| |
| /* |
| * Post link - D40_SREG_LNK_PHY_PRE_POS = 0 |
| * Relink happens after transfer completion. |
| */ |
| |
| return 0; |
| } |
| |
| static int d40_seg_size(int size, int data_width1, int data_width2) |
| { |
| u32 max_w = max(data_width1, data_width2); |
| u32 min_w = min(data_width1, data_width2); |
| u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); |
| |
| if (seg_max > STEDMA40_MAX_SEG_SIZE) |
| seg_max -= max_w; |
| |
| if (size <= seg_max) |
| return size; |
| |
| if (size <= 2 * seg_max) |
| return ALIGN(size / 2, max_w); |
| |
| return seg_max; |
| } |
| |
| static struct d40_phy_lli * |
| d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size, |
| dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg, |
| struct stedma40_half_channel_info *info, |
| struct stedma40_half_channel_info *otherinfo, |
| unsigned long flags) |
| { |
| bool lastlink = flags & LLI_LAST_LINK; |
| bool addr_inc = flags & LLI_ADDR_INC; |
| bool term_int = flags & LLI_TERM_INT; |
| bool cyclic = flags & LLI_CYCLIC; |
| int err; |
| dma_addr_t next = lli_phys; |
| int size_rest = size; |
| int size_seg = 0; |
| |
| /* |
| * This piece may be split up based on d40_seg_size(); we only want the |
| * term int on the last part. |
| */ |
| if (term_int) |
| flags &= ~LLI_TERM_INT; |
| |
| do { |
| size_seg = d40_seg_size(size_rest, info->data_width, |
| otherinfo->data_width); |
| size_rest -= size_seg; |
| |
| if (size_rest == 0 && term_int) |
| flags |= LLI_TERM_INT; |
| |
| if (size_rest == 0 && lastlink) |
| next = cyclic ? first_phys : 0; |
| else |
| next = ALIGN(next + sizeof(struct d40_phy_lli), |
| D40_LLI_ALIGN); |
| |
| err = d40_phy_fill_lli(lli, addr, size_seg, next, |
| reg_cfg, info, flags); |
| |
| if (err) |
| goto err; |
| |
| lli++; |
| if (addr_inc) |
| addr += size_seg; |
| } while (size_rest); |
| |
| return lli; |
| |
| err: |
| return NULL; |
| } |
| |
| int d40_phy_sg_to_lli(struct scatterlist *sg, |
| int sg_len, |
| dma_addr_t target, |
| struct d40_phy_lli *lli_sg, |
| dma_addr_t lli_phys, |
| u32 reg_cfg, |
| struct stedma40_half_channel_info *info, |
| struct stedma40_half_channel_info *otherinfo, |
| unsigned long flags) |
| { |
| int total_size = 0; |
| int i; |
| struct scatterlist *current_sg = sg; |
| struct d40_phy_lli *lli = lli_sg; |
| dma_addr_t l_phys = lli_phys; |
| |
| if (!target) |
| flags |= LLI_ADDR_INC; |
| |
| for_each_sg(sg, current_sg, sg_len, i) { |
| dma_addr_t sg_addr = sg_dma_address(current_sg); |
| unsigned int len = sg_dma_len(current_sg); |
| dma_addr_t dst = target ?: sg_addr; |
| |
| total_size += sg_dma_len(current_sg); |
| |
| if (i == sg_len - 1) |
| flags |= LLI_TERM_INT | LLI_LAST_LINK; |
| |
| l_phys = ALIGN(lli_phys + (lli - lli_sg) * |
| sizeof(struct d40_phy_lli), D40_LLI_ALIGN); |
| |
| lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys, |
| reg_cfg, info, otherinfo, flags); |
| |
| if (lli == NULL) |
| return -EINVAL; |
| } |
| |
| return total_size; |
| } |
| |
| |
| /* DMA logical lli operations */ |
| |
| static void d40_log_lli_link(struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next, unsigned int flags) |
| { |
| bool interrupt = flags & LLI_TERM_INT; |
| u32 slos = 0; |
| u32 dlos = 0; |
| |
| if (next != -EINVAL) { |
| slos = next * 2; |
| dlos = next * 2 + 1; |
| } |
| |
| if (interrupt) { |
| lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK; |
| lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK; |
| } |
| |
| lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
| (slos << D40_MEM_LCSP1_SLOS_POS); |
| |
| lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) | |
| (dlos << D40_MEM_LCSP1_SLOS_POS); |
| } |
| |
| void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa, |
| struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next, unsigned int flags) |
| { |
| d40_log_lli_link(lli_dst, lli_src, next, flags); |
| |
| writel_relaxed(lli_src->lcsp02, &lcpa[0].lcsp0); |
| writel_relaxed(lli_src->lcsp13, &lcpa[0].lcsp1); |
| writel_relaxed(lli_dst->lcsp02, &lcpa[0].lcsp2); |
| writel_relaxed(lli_dst->lcsp13, &lcpa[0].lcsp3); |
| } |
| |
| void d40_log_lli_lcla_write(struct d40_log_lli *lcla, |
| struct d40_log_lli *lli_dst, |
| struct d40_log_lli *lli_src, |
| int next, unsigned int flags) |
| { |
| d40_log_lli_link(lli_dst, lli_src, next, flags); |
| |
| writel_relaxed(lli_src->lcsp02, &lcla[0].lcsp02); |
| writel_relaxed(lli_src->lcsp13, &lcla[0].lcsp13); |
| writel_relaxed(lli_dst->lcsp02, &lcla[1].lcsp02); |
| writel_relaxed(lli_dst->lcsp13, &lcla[1].lcsp13); |
| } |
| |
| static void d40_log_fill_lli(struct d40_log_lli *lli, |
| dma_addr_t data, u32 data_size, |
| u32 reg_cfg, |
| u32 data_width, |
| unsigned int flags) |
| { |
| bool addr_inc = flags & LLI_ADDR_INC; |
| |
| lli->lcsp13 = reg_cfg; |
| |
| /* The number of elements to transfer */ |
| lli->lcsp02 = ((data_size / data_width) << |
| D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK; |
| |
| BUG_ON((data_size / data_width) > STEDMA40_MAX_SEG_SIZE); |
| |
| /* 16 LSBs address of the current element */ |
| lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK; |
| /* 16 MSBs address of the current element */ |
| lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK; |
| |
| if (addr_inc) |
| lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK; |
| |
| } |
| |
| static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg, |
| dma_addr_t addr, |
| int size, |
| u32 lcsp13, /* src or dst*/ |
| u32 data_width1, |
| u32 data_width2, |
| unsigned int flags) |
| { |
| bool addr_inc = flags & LLI_ADDR_INC; |
| struct d40_log_lli *lli = lli_sg; |
| int size_rest = size; |
| int size_seg = 0; |
| |
| do { |
| size_seg = d40_seg_size(size_rest, data_width1, data_width2); |
| size_rest -= size_seg; |
| |
| d40_log_fill_lli(lli, |
| addr, |
| size_seg, |
| lcsp13, data_width1, |
| flags); |
| if (addr_inc) |
| addr += size_seg; |
| lli++; |
| } while (size_rest); |
| |
| return lli; |
| } |
| |
| int d40_log_sg_to_lli(struct scatterlist *sg, |
| int sg_len, |
| dma_addr_t dev_addr, |
| struct d40_log_lli *lli_sg, |
| u32 lcsp13, /* src or dst*/ |
| u32 data_width1, u32 data_width2) |
| { |
| int total_size = 0; |
| struct scatterlist *current_sg = sg; |
| int i; |
| struct d40_log_lli *lli = lli_sg; |
| unsigned long flags = 0; |
| |
| if (!dev_addr) |
| flags |= LLI_ADDR_INC; |
| |
| for_each_sg(sg, current_sg, sg_len, i) { |
| dma_addr_t sg_addr = sg_dma_address(current_sg); |
| unsigned int len = sg_dma_len(current_sg); |
| dma_addr_t addr = dev_addr ?: sg_addr; |
| |
| total_size += sg_dma_len(current_sg); |
| |
| lli = d40_log_buf_to_lli(lli, addr, len, |
| lcsp13, |
| data_width1, |
| data_width2, |
| flags); |
| } |
| |
| return total_size; |
| } |