| /* |
| * Copyright 2012-2013 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/clockchips.h> |
| #include <linux/clk.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/sched_clock.h> |
| |
| /* |
| * Each pit takes 0x10 Bytes register space |
| */ |
| #define PITMCR 0x00 |
| #define PIT0_OFFSET 0x100 |
| #define PITn_OFFSET(n) (PIT0_OFFSET + 0x10 * (n)) |
| #define PITLDVAL 0x00 |
| #define PITCVAL 0x04 |
| #define PITTCTRL 0x08 |
| #define PITTFLG 0x0c |
| |
| #define PITMCR_MDIS (0x1 << 1) |
| |
| #define PITTCTRL_TEN (0x1 << 0) |
| #define PITTCTRL_TIE (0x1 << 1) |
| #define PITCTRL_CHN (0x1 << 2) |
| |
| #define PITTFLG_TIF 0x1 |
| |
| static void __iomem *clksrc_base; |
| static void __iomem *clkevt_base; |
| static unsigned long cycle_per_jiffy; |
| |
| static inline void pit_timer_enable(void) |
| { |
| __raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL); |
| } |
| |
| static inline void pit_timer_disable(void) |
| { |
| __raw_writel(0, clkevt_base + PITTCTRL); |
| } |
| |
| static inline void pit_irq_acknowledge(void) |
| { |
| __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG); |
| } |
| |
| static u64 notrace pit_read_sched_clock(void) |
| { |
| return ~__raw_readl(clksrc_base + PITCVAL); |
| } |
| |
| static int __init pit_clocksource_init(unsigned long rate) |
| { |
| /* set the max load value and start the clock source counter */ |
| __raw_writel(0, clksrc_base + PITTCTRL); |
| __raw_writel(~0UL, clksrc_base + PITLDVAL); |
| __raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL); |
| |
| sched_clock_register(pit_read_sched_clock, 32, rate); |
| return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate, |
| 300, 32, clocksource_mmio_readl_down); |
| } |
| |
| static int pit_set_next_event(unsigned long delta, |
| struct clock_event_device *unused) |
| { |
| /* |
| * set a new value to PITLDVAL register will not restart the timer, |
| * to abort the current cycle and start a timer period with the new |
| * value, the timer must be disabled and enabled again. |
| * and the PITLAVAL should be set to delta minus one according to pit |
| * hardware requirement. |
| */ |
| pit_timer_disable(); |
| __raw_writel(delta - 1, clkevt_base + PITLDVAL); |
| pit_timer_enable(); |
| |
| return 0; |
| } |
| |
| static int pit_shutdown(struct clock_event_device *evt) |
| { |
| pit_timer_disable(); |
| return 0; |
| } |
| |
| static int pit_set_periodic(struct clock_event_device *evt) |
| { |
| pit_set_next_event(cycle_per_jiffy, evt); |
| return 0; |
| } |
| |
| static irqreturn_t pit_timer_interrupt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = dev_id; |
| |
| pit_irq_acknowledge(); |
| |
| /* |
| * pit hardware doesn't support oneshot, it will generate an interrupt |
| * and reload the counter value from PITLDVAL when PITCVAL reach zero, |
| * and start the counter again. So software need to disable the timer |
| * to stop the counter loop in ONESHOT mode. |
| */ |
| if (likely(clockevent_state_oneshot(evt))) |
| pit_timer_disable(); |
| |
| evt->event_handler(evt); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct clock_event_device clockevent_pit = { |
| .name = "VF pit timer", |
| .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| .set_state_shutdown = pit_shutdown, |
| .set_state_periodic = pit_set_periodic, |
| .set_next_event = pit_set_next_event, |
| .rating = 300, |
| }; |
| |
| static struct irqaction pit_timer_irq = { |
| .name = "VF pit timer", |
| .flags = IRQF_TIMER | IRQF_IRQPOLL, |
| .handler = pit_timer_interrupt, |
| .dev_id = &clockevent_pit, |
| }; |
| |
| static int __init pit_clockevent_init(unsigned long rate, int irq) |
| { |
| __raw_writel(0, clkevt_base + PITTCTRL); |
| __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG); |
| |
| BUG_ON(setup_irq(irq, &pit_timer_irq)); |
| |
| clockevent_pit.cpumask = cpumask_of(0); |
| clockevent_pit.irq = irq; |
| /* |
| * The value for the LDVAL register trigger is calculated as: |
| * LDVAL trigger = (period / clock period) - 1 |
| * The pit is a 32-bit down count timer, when the conter value |
| * reaches 0, it will generate an interrupt, thus the minimal |
| * LDVAL trigger value is 1. And then the min_delta is |
| * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit. |
| */ |
| clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff); |
| |
| return 0; |
| } |
| |
| static int __init pit_timer_init(struct device_node *np) |
| { |
| struct clk *pit_clk; |
| void __iomem *timer_base; |
| unsigned long clk_rate; |
| int irq, ret; |
| |
| timer_base = of_iomap(np, 0); |
| if (!timer_base) { |
| pr_err("Failed to iomap\n"); |
| return -ENXIO; |
| } |
| |
| /* |
| * PIT0 and PIT1 can be chained to build a 64-bit timer, |
| * so choose PIT2 as clocksource, PIT3 as clockevent device, |
| * and leave PIT0 and PIT1 unused for anyone else who needs them. |
| */ |
| clksrc_base = timer_base + PITn_OFFSET(2); |
| clkevt_base = timer_base + PITn_OFFSET(3); |
| |
| irq = irq_of_parse_and_map(np, 0); |
| if (irq <= 0) |
| return -EINVAL; |
| |
| pit_clk = of_clk_get(np, 0); |
| if (IS_ERR(pit_clk)) |
| return PTR_ERR(pit_clk); |
| |
| ret = clk_prepare_enable(pit_clk); |
| if (ret) |
| return ret; |
| |
| clk_rate = clk_get_rate(pit_clk); |
| cycle_per_jiffy = clk_rate / (HZ); |
| |
| /* enable the pit module */ |
| __raw_writel(~PITMCR_MDIS, timer_base + PITMCR); |
| |
| ret = pit_clocksource_init(clk_rate); |
| if (ret) |
| return ret; |
| |
| return pit_clockevent_init(clk_rate, irq); |
| } |
| TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init); |