|  | /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of version 2 of the GNU General Public | 
|  | * License as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/filter.h> | 
|  | #include <net/netlink.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | /* bpf_check() is a static code analyzer that walks eBPF program | 
|  | * instruction by instruction and updates register/stack state. | 
|  | * All paths of conditional branches are analyzed until 'bpf_exit' insn. | 
|  | * | 
|  | * The first pass is depth-first-search to check that the program is a DAG. | 
|  | * It rejects the following programs: | 
|  | * - larger than BPF_MAXINSNS insns | 
|  | * - if loop is present (detected via back-edge) | 
|  | * - unreachable insns exist (shouldn't be a forest. program = one function) | 
|  | * - out of bounds or malformed jumps | 
|  | * The second pass is all possible path descent from the 1st insn. | 
|  | * Since it's analyzing all pathes through the program, the length of the | 
|  | * analysis is limited to 32k insn, which may be hit even if total number of | 
|  | * insn is less then 4K, but there are too many branches that change stack/regs. | 
|  | * Number of 'branches to be analyzed' is limited to 1k | 
|  | * | 
|  | * On entry to each instruction, each register has a type, and the instruction | 
|  | * changes the types of the registers depending on instruction semantics. | 
|  | * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is | 
|  | * copied to R1. | 
|  | * | 
|  | * All registers are 64-bit. | 
|  | * R0 - return register | 
|  | * R1-R5 argument passing registers | 
|  | * R6-R9 callee saved registers | 
|  | * R10 - frame pointer read-only | 
|  | * | 
|  | * At the start of BPF program the register R1 contains a pointer to bpf_context | 
|  | * and has type PTR_TO_CTX. | 
|  | * | 
|  | * Verifier tracks arithmetic operations on pointers in case: | 
|  | *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), | 
|  | *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), | 
|  | * 1st insn copies R10 (which has FRAME_PTR) type into R1 | 
|  | * and 2nd arithmetic instruction is pattern matched to recognize | 
|  | * that it wants to construct a pointer to some element within stack. | 
|  | * So after 2nd insn, the register R1 has type PTR_TO_STACK | 
|  | * (and -20 constant is saved for further stack bounds checking). | 
|  | * Meaning that this reg is a pointer to stack plus known immediate constant. | 
|  | * | 
|  | * Most of the time the registers have UNKNOWN_VALUE type, which | 
|  | * means the register has some value, but it's not a valid pointer. | 
|  | * (like pointer plus pointer becomes UNKNOWN_VALUE type) | 
|  | * | 
|  | * When verifier sees load or store instructions the type of base register | 
|  | * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer | 
|  | * types recognized by check_mem_access() function. | 
|  | * | 
|  | * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' | 
|  | * and the range of [ptr, ptr + map's value_size) is accessible. | 
|  | * | 
|  | * registers used to pass values to function calls are checked against | 
|  | * function argument constraints. | 
|  | * | 
|  | * ARG_PTR_TO_MAP_KEY is one of such argument constraints. | 
|  | * It means that the register type passed to this function must be | 
|  | * PTR_TO_STACK and it will be used inside the function as | 
|  | * 'pointer to map element key' | 
|  | * | 
|  | * For example the argument constraints for bpf_map_lookup_elem(): | 
|  | *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, | 
|  | *   .arg1_type = ARG_CONST_MAP_PTR, | 
|  | *   .arg2_type = ARG_PTR_TO_MAP_KEY, | 
|  | * | 
|  | * ret_type says that this function returns 'pointer to map elem value or null' | 
|  | * function expects 1st argument to be a const pointer to 'struct bpf_map' and | 
|  | * 2nd argument should be a pointer to stack, which will be used inside | 
|  | * the helper function as a pointer to map element key. | 
|  | * | 
|  | * On the kernel side the helper function looks like: | 
|  | * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) | 
|  | * { | 
|  | *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; | 
|  | *    void *key = (void *) (unsigned long) r2; | 
|  | *    void *value; | 
|  | * | 
|  | *    here kernel can access 'key' and 'map' pointers safely, knowing that | 
|  | *    [key, key + map->key_size) bytes are valid and were initialized on | 
|  | *    the stack of eBPF program. | 
|  | * } | 
|  | * | 
|  | * Corresponding eBPF program may look like: | 
|  | *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR | 
|  | *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK | 
|  | *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP | 
|  | *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), | 
|  | * here verifier looks at prototype of map_lookup_elem() and sees: | 
|  | * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, | 
|  | * Now verifier knows that this map has key of R1->map_ptr->key_size bytes | 
|  | * | 
|  | * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, | 
|  | * Now verifier checks that [R2, R2 + map's key_size) are within stack limits | 
|  | * and were initialized prior to this call. | 
|  | * If it's ok, then verifier allows this BPF_CALL insn and looks at | 
|  | * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets | 
|  | * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function | 
|  | * returns ether pointer to map value or NULL. | 
|  | * | 
|  | * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' | 
|  | * insn, the register holding that pointer in the true branch changes state to | 
|  | * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false | 
|  | * branch. See check_cond_jmp_op(). | 
|  | * | 
|  | * After the call R0 is set to return type of the function and registers R1-R5 | 
|  | * are set to NOT_INIT to indicate that they are no longer readable. | 
|  | */ | 
|  |  | 
|  | /* types of values stored in eBPF registers */ | 
|  | enum bpf_reg_type { | 
|  | NOT_INIT = 0,		 /* nothing was written into register */ | 
|  | UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */ | 
|  | PTR_TO_CTX,		 /* reg points to bpf_context */ | 
|  | CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */ | 
|  | PTR_TO_MAP_VALUE,	 /* reg points to map element value */ | 
|  | PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */ | 
|  | FRAME_PTR,		 /* reg == frame_pointer */ | 
|  | PTR_TO_STACK,		 /* reg == frame_pointer + imm */ | 
|  | CONST_IMM,		 /* constant integer value */ | 
|  | }; | 
|  |  | 
|  | struct reg_state { | 
|  | enum bpf_reg_type type; | 
|  | union { | 
|  | /* valid when type == CONST_IMM | PTR_TO_STACK */ | 
|  | int imm; | 
|  |  | 
|  | /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | | 
|  | *   PTR_TO_MAP_VALUE_OR_NULL | 
|  | */ | 
|  | struct bpf_map *map_ptr; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | enum bpf_stack_slot_type { | 
|  | STACK_INVALID,    /* nothing was stored in this stack slot */ | 
|  | STACK_SPILL,      /* register spilled into stack */ | 
|  | STACK_MISC	  /* BPF program wrote some data into this slot */ | 
|  | }; | 
|  |  | 
|  | #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */ | 
|  |  | 
|  | /* state of the program: | 
|  | * type of all registers and stack info | 
|  | */ | 
|  | struct verifier_state { | 
|  | struct reg_state regs[MAX_BPF_REG]; | 
|  | u8 stack_slot_type[MAX_BPF_STACK]; | 
|  | struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE]; | 
|  | }; | 
|  |  | 
|  | /* linked list of verifier states used to prune search */ | 
|  | struct verifier_state_list { | 
|  | struct verifier_state state; | 
|  | struct verifier_state_list *next; | 
|  | }; | 
|  |  | 
|  | /* verifier_state + insn_idx are pushed to stack when branch is encountered */ | 
|  | struct verifier_stack_elem { | 
|  | /* verifer state is 'st' | 
|  | * before processing instruction 'insn_idx' | 
|  | * and after processing instruction 'prev_insn_idx' | 
|  | */ | 
|  | struct verifier_state st; | 
|  | int insn_idx; | 
|  | int prev_insn_idx; | 
|  | struct verifier_stack_elem *next; | 
|  | }; | 
|  |  | 
|  | #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ | 
|  |  | 
|  | /* single container for all structs | 
|  | * one verifier_env per bpf_check() call | 
|  | */ | 
|  | struct verifier_env { | 
|  | struct bpf_prog *prog;		/* eBPF program being verified */ | 
|  | struct verifier_stack_elem *head; /* stack of verifier states to be processed */ | 
|  | int stack_size;			/* number of states to be processed */ | 
|  | struct verifier_state cur_state; /* current verifier state */ | 
|  | struct verifier_state_list **explored_states; /* search pruning optimization */ | 
|  | struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ | 
|  | u32 used_map_cnt;		/* number of used maps */ | 
|  | }; | 
|  |  | 
|  | /* verbose verifier prints what it's seeing | 
|  | * bpf_check() is called under lock, so no race to access these global vars | 
|  | */ | 
|  | static u32 log_level, log_size, log_len; | 
|  | static char *log_buf; | 
|  |  | 
|  | static DEFINE_MUTEX(bpf_verifier_lock); | 
|  |  | 
|  | /* log_level controls verbosity level of eBPF verifier. | 
|  | * verbose() is used to dump the verification trace to the log, so the user | 
|  | * can figure out what's wrong with the program | 
|  | */ | 
|  | static void verbose(const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  |  | 
|  | if (log_level == 0 || log_len >= log_size - 1) | 
|  | return; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | /* string representation of 'enum bpf_reg_type' */ | 
|  | static const char * const reg_type_str[] = { | 
|  | [NOT_INIT]		= "?", | 
|  | [UNKNOWN_VALUE]		= "inv", | 
|  | [PTR_TO_CTX]		= "ctx", | 
|  | [CONST_PTR_TO_MAP]	= "map_ptr", | 
|  | [PTR_TO_MAP_VALUE]	= "map_value", | 
|  | [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", | 
|  | [FRAME_PTR]		= "fp", | 
|  | [PTR_TO_STACK]		= "fp", | 
|  | [CONST_IMM]		= "imm", | 
|  | }; | 
|  |  | 
|  | static void print_verifier_state(struct verifier_env *env) | 
|  | { | 
|  | enum bpf_reg_type t; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) { | 
|  | t = env->cur_state.regs[i].type; | 
|  | if (t == NOT_INIT) | 
|  | continue; | 
|  | verbose(" R%d=%s", i, reg_type_str[t]); | 
|  | if (t == CONST_IMM || t == PTR_TO_STACK) | 
|  | verbose("%d", env->cur_state.regs[i].imm); | 
|  | else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || | 
|  | t == PTR_TO_MAP_VALUE_OR_NULL) | 
|  | verbose("(ks=%d,vs=%d)", | 
|  | env->cur_state.regs[i].map_ptr->key_size, | 
|  | env->cur_state.regs[i].map_ptr->value_size); | 
|  | } | 
|  | for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { | 
|  | if (env->cur_state.stack_slot_type[i] == STACK_SPILL) | 
|  | verbose(" fp%d=%s", -MAX_BPF_STACK + i, | 
|  | reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]); | 
|  | } | 
|  | verbose("\n"); | 
|  | } | 
|  |  | 
|  | static const char *const bpf_class_string[] = { | 
|  | [BPF_LD]    = "ld", | 
|  | [BPF_LDX]   = "ldx", | 
|  | [BPF_ST]    = "st", | 
|  | [BPF_STX]   = "stx", | 
|  | [BPF_ALU]   = "alu", | 
|  | [BPF_JMP]   = "jmp", | 
|  | [BPF_RET]   = "BUG", | 
|  | [BPF_ALU64] = "alu64", | 
|  | }; | 
|  |  | 
|  | static const char *const bpf_alu_string[] = { | 
|  | [BPF_ADD >> 4]  = "+=", | 
|  | [BPF_SUB >> 4]  = "-=", | 
|  | [BPF_MUL >> 4]  = "*=", | 
|  | [BPF_DIV >> 4]  = "/=", | 
|  | [BPF_OR  >> 4]  = "|=", | 
|  | [BPF_AND >> 4]  = "&=", | 
|  | [BPF_LSH >> 4]  = "<<=", | 
|  | [BPF_RSH >> 4]  = ">>=", | 
|  | [BPF_NEG >> 4]  = "neg", | 
|  | [BPF_MOD >> 4]  = "%=", | 
|  | [BPF_XOR >> 4]  = "^=", | 
|  | [BPF_MOV >> 4]  = "=", | 
|  | [BPF_ARSH >> 4] = "s>>=", | 
|  | [BPF_END >> 4]  = "endian", | 
|  | }; | 
|  |  | 
|  | static const char *const bpf_ldst_string[] = { | 
|  | [BPF_W >> 3]  = "u32", | 
|  | [BPF_H >> 3]  = "u16", | 
|  | [BPF_B >> 3]  = "u8", | 
|  | [BPF_DW >> 3] = "u64", | 
|  | }; | 
|  |  | 
|  | static const char *const bpf_jmp_string[] = { | 
|  | [BPF_JA >> 4]   = "jmp", | 
|  | [BPF_JEQ >> 4]  = "==", | 
|  | [BPF_JGT >> 4]  = ">", | 
|  | [BPF_JGE >> 4]  = ">=", | 
|  | [BPF_JSET >> 4] = "&", | 
|  | [BPF_JNE >> 4]  = "!=", | 
|  | [BPF_JSGT >> 4] = "s>", | 
|  | [BPF_JSGE >> 4] = "s>=", | 
|  | [BPF_CALL >> 4] = "call", | 
|  | [BPF_EXIT >> 4] = "exit", | 
|  | }; | 
|  |  | 
|  | static void print_bpf_insn(struct bpf_insn *insn) | 
|  | { | 
|  | u8 class = BPF_CLASS(insn->code); | 
|  |  | 
|  | if (class == BPF_ALU || class == BPF_ALU64) { | 
|  | if (BPF_SRC(insn->code) == BPF_X) | 
|  | verbose("(%02x) %sr%d %s %sr%d\n", | 
|  | insn->code, class == BPF_ALU ? "(u32) " : "", | 
|  | insn->dst_reg, | 
|  | bpf_alu_string[BPF_OP(insn->code) >> 4], | 
|  | class == BPF_ALU ? "(u32) " : "", | 
|  | insn->src_reg); | 
|  | else | 
|  | verbose("(%02x) %sr%d %s %s%d\n", | 
|  | insn->code, class == BPF_ALU ? "(u32) " : "", | 
|  | insn->dst_reg, | 
|  | bpf_alu_string[BPF_OP(insn->code) >> 4], | 
|  | class == BPF_ALU ? "(u32) " : "", | 
|  | insn->imm); | 
|  | } else if (class == BPF_STX) { | 
|  | if (BPF_MODE(insn->code) == BPF_MEM) | 
|  | verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", | 
|  | insn->code, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->dst_reg, | 
|  | insn->off, insn->src_reg); | 
|  | else if (BPF_MODE(insn->code) == BPF_XADD) | 
|  | verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", | 
|  | insn->code, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->dst_reg, insn->off, | 
|  | insn->src_reg); | 
|  | else | 
|  | verbose("BUG_%02x\n", insn->code); | 
|  | } else if (class == BPF_ST) { | 
|  | if (BPF_MODE(insn->code) != BPF_MEM) { | 
|  | verbose("BUG_st_%02x\n", insn->code); | 
|  | return; | 
|  | } | 
|  | verbose("(%02x) *(%s *)(r%d %+d) = %d\n", | 
|  | insn->code, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->dst_reg, | 
|  | insn->off, insn->imm); | 
|  | } else if (class == BPF_LDX) { | 
|  | if (BPF_MODE(insn->code) != BPF_MEM) { | 
|  | verbose("BUG_ldx_%02x\n", insn->code); | 
|  | return; | 
|  | } | 
|  | verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", | 
|  | insn->code, insn->dst_reg, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->src_reg, insn->off); | 
|  | } else if (class == BPF_LD) { | 
|  | if (BPF_MODE(insn->code) == BPF_ABS) { | 
|  | verbose("(%02x) r0 = *(%s *)skb[%d]\n", | 
|  | insn->code, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->imm); | 
|  | } else if (BPF_MODE(insn->code) == BPF_IND) { | 
|  | verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", | 
|  | insn->code, | 
|  | bpf_ldst_string[BPF_SIZE(insn->code) >> 3], | 
|  | insn->src_reg, insn->imm); | 
|  | } else if (BPF_MODE(insn->code) == BPF_IMM) { | 
|  | verbose("(%02x) r%d = 0x%x\n", | 
|  | insn->code, insn->dst_reg, insn->imm); | 
|  | } else { | 
|  | verbose("BUG_ld_%02x\n", insn->code); | 
|  | return; | 
|  | } | 
|  | } else if (class == BPF_JMP) { | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  |  | 
|  | if (opcode == BPF_CALL) { | 
|  | verbose("(%02x) call %d\n", insn->code, insn->imm); | 
|  | } else if (insn->code == (BPF_JMP | BPF_JA)) { | 
|  | verbose("(%02x) goto pc%+d\n", | 
|  | insn->code, insn->off); | 
|  | } else if (insn->code == (BPF_JMP | BPF_EXIT)) { | 
|  | verbose("(%02x) exit\n", insn->code); | 
|  | } else if (BPF_SRC(insn->code) == BPF_X) { | 
|  | verbose("(%02x) if r%d %s r%d goto pc%+d\n", | 
|  | insn->code, insn->dst_reg, | 
|  | bpf_jmp_string[BPF_OP(insn->code) >> 4], | 
|  | insn->src_reg, insn->off); | 
|  | } else { | 
|  | verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", | 
|  | insn->code, insn->dst_reg, | 
|  | bpf_jmp_string[BPF_OP(insn->code) >> 4], | 
|  | insn->imm, insn->off); | 
|  | } | 
|  | } else { | 
|  | verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pop_stack(struct verifier_env *env, int *prev_insn_idx) | 
|  | { | 
|  | struct verifier_stack_elem *elem; | 
|  | int insn_idx; | 
|  |  | 
|  | if (env->head == NULL) | 
|  | return -1; | 
|  |  | 
|  | memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); | 
|  | insn_idx = env->head->insn_idx; | 
|  | if (prev_insn_idx) | 
|  | *prev_insn_idx = env->head->prev_insn_idx; | 
|  | elem = env->head->next; | 
|  | kfree(env->head); | 
|  | env->head = elem; | 
|  | env->stack_size--; | 
|  | return insn_idx; | 
|  | } | 
|  |  | 
|  | static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, | 
|  | int prev_insn_idx) | 
|  | { | 
|  | struct verifier_stack_elem *elem; | 
|  |  | 
|  | elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); | 
|  | if (!elem) | 
|  | goto err; | 
|  |  | 
|  | memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); | 
|  | elem->insn_idx = insn_idx; | 
|  | elem->prev_insn_idx = prev_insn_idx; | 
|  | elem->next = env->head; | 
|  | env->head = elem; | 
|  | env->stack_size++; | 
|  | if (env->stack_size > 1024) { | 
|  | verbose("BPF program is too complex\n"); | 
|  | goto err; | 
|  | } | 
|  | return &elem->st; | 
|  | err: | 
|  | /* pop all elements and return */ | 
|  | while (pop_stack(env, NULL) >= 0); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #define CALLER_SAVED_REGS 6 | 
|  | static const int caller_saved[CALLER_SAVED_REGS] = { | 
|  | BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 | 
|  | }; | 
|  |  | 
|  | static void init_reg_state(struct reg_state *regs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) { | 
|  | regs[i].type = NOT_INIT; | 
|  | regs[i].imm = 0; | 
|  | regs[i].map_ptr = NULL; | 
|  | } | 
|  |  | 
|  | /* frame pointer */ | 
|  | regs[BPF_REG_FP].type = FRAME_PTR; | 
|  |  | 
|  | /* 1st arg to a function */ | 
|  | regs[BPF_REG_1].type = PTR_TO_CTX; | 
|  | } | 
|  |  | 
|  | static void mark_reg_unknown_value(struct reg_state *regs, u32 regno) | 
|  | { | 
|  | BUG_ON(regno >= MAX_BPF_REG); | 
|  | regs[regno].type = UNKNOWN_VALUE; | 
|  | regs[regno].imm = 0; | 
|  | regs[regno].map_ptr = NULL; | 
|  | } | 
|  |  | 
|  | enum reg_arg_type { | 
|  | SRC_OP,		/* register is used as source operand */ | 
|  | DST_OP,		/* register is used as destination operand */ | 
|  | DST_OP_NO_MARK	/* same as above, check only, don't mark */ | 
|  | }; | 
|  |  | 
|  | static int check_reg_arg(struct reg_state *regs, u32 regno, | 
|  | enum reg_arg_type t) | 
|  | { | 
|  | if (regno >= MAX_BPF_REG) { | 
|  | verbose("R%d is invalid\n", regno); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (t == SRC_OP) { | 
|  | /* check whether register used as source operand can be read */ | 
|  | if (regs[regno].type == NOT_INIT) { | 
|  | verbose("R%d !read_ok\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  | } else { | 
|  | /* check whether register used as dest operand can be written to */ | 
|  | if (regno == BPF_REG_FP) { | 
|  | verbose("frame pointer is read only\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | if (t == DST_OP) | 
|  | mark_reg_unknown_value(regs, regno); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bpf_size_to_bytes(int bpf_size) | 
|  | { | 
|  | if (bpf_size == BPF_W) | 
|  | return 4; | 
|  | else if (bpf_size == BPF_H) | 
|  | return 2; | 
|  | else if (bpf_size == BPF_B) | 
|  | return 1; | 
|  | else if (bpf_size == BPF_DW) | 
|  | return 8; | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check_stack_read/write functions track spill/fill of registers, | 
|  | * stack boundary and alignment are checked in check_mem_access() | 
|  | */ | 
|  | static int check_stack_write(struct verifier_state *state, int off, int size, | 
|  | int value_regno) | 
|  | { | 
|  | int i; | 
|  | /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, | 
|  | * so it's aligned access and [off, off + size) are within stack limits | 
|  | */ | 
|  |  | 
|  | if (value_regno >= 0 && | 
|  | (state->regs[value_regno].type == PTR_TO_MAP_VALUE || | 
|  | state->regs[value_regno].type == PTR_TO_STACK || | 
|  | state->regs[value_regno].type == PTR_TO_CTX)) { | 
|  |  | 
|  | /* register containing pointer is being spilled into stack */ | 
|  | if (size != BPF_REG_SIZE) { | 
|  | verbose("invalid size of register spill\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* save register state */ | 
|  | state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = | 
|  | state->regs[value_regno]; | 
|  |  | 
|  | for (i = 0; i < BPF_REG_SIZE; i++) | 
|  | state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; | 
|  | } else { | 
|  | /* regular write of data into stack */ | 
|  | state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = | 
|  | (struct reg_state) {}; | 
|  |  | 
|  | for (i = 0; i < size; i++) | 
|  | state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_stack_read(struct verifier_state *state, int off, int size, | 
|  | int value_regno) | 
|  | { | 
|  | u8 *slot_type; | 
|  | int i; | 
|  |  | 
|  | slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; | 
|  |  | 
|  | if (slot_type[0] == STACK_SPILL) { | 
|  | if (size != BPF_REG_SIZE) { | 
|  | verbose("invalid size of register spill\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | for (i = 1; i < BPF_REG_SIZE; i++) { | 
|  | if (slot_type[i] != STACK_SPILL) { | 
|  | verbose("corrupted spill memory\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (value_regno >= 0) | 
|  | /* restore register state from stack */ | 
|  | state->regs[value_regno] = | 
|  | state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE]; | 
|  | return 0; | 
|  | } else { | 
|  | for (i = 0; i < size; i++) { | 
|  | if (slot_type[i] != STACK_MISC) { | 
|  | verbose("invalid read from stack off %d+%d size %d\n", | 
|  | off, i, size); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | if (value_regno >= 0) | 
|  | /* have read misc data from the stack */ | 
|  | mark_reg_unknown_value(state->regs, value_regno); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check read/write into map element returned by bpf_map_lookup_elem() */ | 
|  | static int check_map_access(struct verifier_env *env, u32 regno, int off, | 
|  | int size) | 
|  | { | 
|  | struct bpf_map *map = env->cur_state.regs[regno].map_ptr; | 
|  |  | 
|  | if (off < 0 || off + size > map->value_size) { | 
|  | verbose("invalid access to map value, value_size=%d off=%d size=%d\n", | 
|  | map->value_size, off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check access to 'struct bpf_context' fields */ | 
|  | static int check_ctx_access(struct verifier_env *env, int off, int size, | 
|  | enum bpf_access_type t) | 
|  | { | 
|  | if (env->prog->aux->ops->is_valid_access && | 
|  | env->prog->aux->ops->is_valid_access(off, size, t)) | 
|  | return 0; | 
|  |  | 
|  | verbose("invalid bpf_context access off=%d size=%d\n", off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* check whether memory at (regno + off) is accessible for t = (read | write) | 
|  | * if t==write, value_regno is a register which value is stored into memory | 
|  | * if t==read, value_regno is a register which will receive the value from memory | 
|  | * if t==write && value_regno==-1, some unknown value is stored into memory | 
|  | * if t==read && value_regno==-1, don't care what we read from memory | 
|  | */ | 
|  | static int check_mem_access(struct verifier_env *env, u32 regno, int off, | 
|  | int bpf_size, enum bpf_access_type t, | 
|  | int value_regno) | 
|  | { | 
|  | struct verifier_state *state = &env->cur_state; | 
|  | int size, err = 0; | 
|  |  | 
|  | size = bpf_size_to_bytes(bpf_size); | 
|  | if (size < 0) | 
|  | return size; | 
|  |  | 
|  | if (off % size != 0) { | 
|  | verbose("misaligned access off %d size %d\n", off, size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (state->regs[regno].type == PTR_TO_MAP_VALUE) { | 
|  | err = check_map_access(env, regno, off, size); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown_value(state->regs, value_regno); | 
|  |  | 
|  | } else if (state->regs[regno].type == PTR_TO_CTX) { | 
|  | err = check_ctx_access(env, off, size, t); | 
|  | if (!err && t == BPF_READ && value_regno >= 0) | 
|  | mark_reg_unknown_value(state->regs, value_regno); | 
|  |  | 
|  | } else if (state->regs[regno].type == FRAME_PTR) { | 
|  | if (off >= 0 || off < -MAX_BPF_STACK) { | 
|  | verbose("invalid stack off=%d size=%d\n", off, size); | 
|  | return -EACCES; | 
|  | } | 
|  | if (t == BPF_WRITE) | 
|  | err = check_stack_write(state, off, size, value_regno); | 
|  | else | 
|  | err = check_stack_read(state, off, size, value_regno); | 
|  | } else { | 
|  | verbose("R%d invalid mem access '%s'\n", | 
|  | regno, reg_type_str[state->regs[regno].type]); | 
|  | return -EACCES; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_xadd(struct verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct reg_state *regs = env->cur_state.regs; | 
|  | int err; | 
|  |  | 
|  | if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || | 
|  | insn->imm != 0) { | 
|  | verbose("BPF_XADD uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check whether atomic_add can read the memory */ | 
|  | err = check_mem_access(env, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_READ, -1); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check whether atomic_add can write into the same memory */ | 
|  | return check_mem_access(env, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_WRITE, -1); | 
|  | } | 
|  |  | 
|  | /* when register 'regno' is passed into function that will read 'access_size' | 
|  | * bytes from that pointer, make sure that it's within stack boundary | 
|  | * and all elements of stack are initialized | 
|  | */ | 
|  | static int check_stack_boundary(struct verifier_env *env, | 
|  | int regno, int access_size) | 
|  | { | 
|  | struct verifier_state *state = &env->cur_state; | 
|  | struct reg_state *regs = state->regs; | 
|  | int off, i; | 
|  |  | 
|  | if (regs[regno].type != PTR_TO_STACK) | 
|  | return -EACCES; | 
|  |  | 
|  | off = regs[regno].imm; | 
|  | if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || | 
|  | access_size <= 0) { | 
|  | verbose("invalid stack type R%d off=%d access_size=%d\n", | 
|  | regno, off, access_size); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < access_size; i++) { | 
|  | if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { | 
|  | verbose("invalid indirect read from stack off %d+%d size %d\n", | 
|  | off, i, access_size); | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_func_arg(struct verifier_env *env, u32 regno, | 
|  | enum bpf_arg_type arg_type, struct bpf_map **mapp) | 
|  | { | 
|  | struct reg_state *reg = env->cur_state.regs + regno; | 
|  | enum bpf_reg_type expected_type; | 
|  | int err = 0; | 
|  |  | 
|  | if (arg_type == ARG_ANYTHING) | 
|  | return 0; | 
|  |  | 
|  | if (reg->type == NOT_INIT) { | 
|  | verbose("R%d !read_ok\n", regno); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY || | 
|  | arg_type == ARG_PTR_TO_MAP_VALUE) { | 
|  | expected_type = PTR_TO_STACK; | 
|  | } else if (arg_type == ARG_CONST_STACK_SIZE) { | 
|  | expected_type = CONST_IMM; | 
|  | } else if (arg_type == ARG_CONST_MAP_PTR) { | 
|  | expected_type = CONST_PTR_TO_MAP; | 
|  | } else { | 
|  | verbose("unsupported arg_type %d\n", arg_type); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (reg->type != expected_type) { | 
|  | verbose("R%d type=%s expected=%s\n", regno, | 
|  | reg_type_str[reg->type], reg_type_str[expected_type]); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | if (arg_type == ARG_CONST_MAP_PTR) { | 
|  | /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ | 
|  | *mapp = reg->map_ptr; | 
|  |  | 
|  | } else if (arg_type == ARG_PTR_TO_MAP_KEY) { | 
|  | /* bpf_map_xxx(..., map_ptr, ..., key) call: | 
|  | * check that [key, key + map->key_size) are within | 
|  | * stack limits and initialized | 
|  | */ | 
|  | if (!*mapp) { | 
|  | /* in function declaration map_ptr must come before | 
|  | * map_key, so that it's verified and known before | 
|  | * we have to check map_key here. Otherwise it means | 
|  | * that kernel subsystem misconfigured verifier | 
|  | */ | 
|  | verbose("invalid map_ptr to access map->key\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_stack_boundary(env, regno, (*mapp)->key_size); | 
|  |  | 
|  | } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { | 
|  | /* bpf_map_xxx(..., map_ptr, ..., value) call: | 
|  | * check [value, value + map->value_size) validity | 
|  | */ | 
|  | if (!*mapp) { | 
|  | /* kernel subsystem misconfigured verifier */ | 
|  | verbose("invalid map_ptr to access map->value\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_stack_boundary(env, regno, (*mapp)->value_size); | 
|  |  | 
|  | } else if (arg_type == ARG_CONST_STACK_SIZE) { | 
|  | /* bpf_xxx(..., buf, len) call will access 'len' bytes | 
|  | * from stack pointer 'buf'. Check it | 
|  | * note: regno == len, regno - 1 == buf | 
|  | */ | 
|  | if (regno == 0) { | 
|  | /* kernel subsystem misconfigured verifier */ | 
|  | verbose("ARG_CONST_STACK_SIZE cannot be first argument\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | err = check_stack_boundary(env, regno - 1, reg->imm); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int check_call(struct verifier_env *env, int func_id) | 
|  | { | 
|  | struct verifier_state *state = &env->cur_state; | 
|  | const struct bpf_func_proto *fn = NULL; | 
|  | struct reg_state *regs = state->regs; | 
|  | struct bpf_map *map = NULL; | 
|  | struct reg_state *reg; | 
|  | int i, err; | 
|  |  | 
|  | /* find function prototype */ | 
|  | if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { | 
|  | verbose("invalid func %d\n", func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (env->prog->aux->ops->get_func_proto) | 
|  | fn = env->prog->aux->ops->get_func_proto(func_id); | 
|  |  | 
|  | if (!fn) { | 
|  | verbose("unknown func %d\n", func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* eBPF programs must be GPL compatible to use GPL-ed functions */ | 
|  | if (!env->prog->aux->is_gpl_compatible && fn->gpl_only) { | 
|  | verbose("cannot call GPL only function from proprietary program\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check args */ | 
|  | err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map); | 
|  | if (err) | 
|  | return err; | 
|  | err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map); | 
|  | if (err) | 
|  | return err; | 
|  | err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map); | 
|  | if (err) | 
|  | return err; | 
|  | err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map); | 
|  | if (err) | 
|  | return err; | 
|  | err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* reset caller saved regs */ | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
|  | reg = regs + caller_saved[i]; | 
|  | reg->type = NOT_INIT; | 
|  | reg->imm = 0; | 
|  | } | 
|  |  | 
|  | /* update return register */ | 
|  | if (fn->ret_type == RET_INTEGER) { | 
|  | regs[BPF_REG_0].type = UNKNOWN_VALUE; | 
|  | } else if (fn->ret_type == RET_VOID) { | 
|  | regs[BPF_REG_0].type = NOT_INIT; | 
|  | } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { | 
|  | regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; | 
|  | /* remember map_ptr, so that check_map_access() | 
|  | * can check 'value_size' boundary of memory access | 
|  | * to map element returned from bpf_map_lookup_elem() | 
|  | */ | 
|  | if (map == NULL) { | 
|  | verbose("kernel subsystem misconfigured verifier\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | regs[BPF_REG_0].map_ptr = map; | 
|  | } else { | 
|  | verbose("unknown return type %d of func %d\n", | 
|  | fn->ret_type, func_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check validity of 32-bit and 64-bit arithmetic operations */ | 
|  | static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn) | 
|  | { | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | int err; | 
|  |  | 
|  | if (opcode == BPF_END || opcode == BPF_NEG) { | 
|  | if (opcode == BPF_NEG) { | 
|  | if (BPF_SRC(insn->code) != 0 || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->off != 0 || insn->imm != 0) { | 
|  | verbose("BPF_NEG uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off != 0 || | 
|  | (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { | 
|  | verbose("BPF_END uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check dest operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (opcode == BPF_MOV) { | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (insn->imm != 0 || insn->off != 0) { | 
|  | verbose("BPF_MOV uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 
|  | verbose("BPF_MOV uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check dest operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (BPF_CLASS(insn->code) == BPF_ALU64) { | 
|  | /* case: R1 = R2 | 
|  | * copy register state to dest reg | 
|  | */ | 
|  | regs[insn->dst_reg] = regs[insn->src_reg]; | 
|  | } else { | 
|  | regs[insn->dst_reg].type = UNKNOWN_VALUE; | 
|  | regs[insn->dst_reg].map_ptr = NULL; | 
|  | } | 
|  | } else { | 
|  | /* case: R = imm | 
|  | * remember the value we stored into this reg | 
|  | */ | 
|  | regs[insn->dst_reg].type = CONST_IMM; | 
|  | regs[insn->dst_reg].imm = insn->imm; | 
|  | } | 
|  |  | 
|  | } else if (opcode > BPF_END) { | 
|  | verbose("invalid BPF_ALU opcode %x\n", opcode); | 
|  | return -EINVAL; | 
|  |  | 
|  | } else {	/* all other ALU ops: and, sub, xor, add, ... */ | 
|  |  | 
|  | bool stack_relative = false; | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (insn->imm != 0 || insn->off != 0) { | 
|  | verbose("BPF_ALU uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | 
|  | verbose("BPF_ALU uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if ((opcode == BPF_MOD || opcode == BPF_DIV) && | 
|  | BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { | 
|  | verbose("div by zero\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* pattern match 'bpf_add Rx, imm' instruction */ | 
|  | if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && | 
|  | regs[insn->dst_reg].type == FRAME_PTR && | 
|  | BPF_SRC(insn->code) == BPF_K) | 
|  | stack_relative = true; | 
|  |  | 
|  | /* check dest operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (stack_relative) { | 
|  | regs[insn->dst_reg].type = PTR_TO_STACK; | 
|  | regs[insn->dst_reg].imm = insn->imm; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_cond_jmp_op(struct verifier_env *env, | 
|  | struct bpf_insn *insn, int *insn_idx) | 
|  | { | 
|  | struct reg_state *regs = env->cur_state.regs; | 
|  | struct verifier_state *other_branch; | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  | int err; | 
|  |  | 
|  | if (opcode > BPF_EXIT) { | 
|  | verbose("invalid BPF_JMP opcode %x\n", opcode); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (BPF_SRC(insn->code) == BPF_X) { | 
|  | if (insn->imm != 0) { | 
|  | verbose("BPF_JMP uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } else { | 
|  | if (insn->src_reg != BPF_REG_0) { | 
|  | verbose("BPF_JMP uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* detect if R == 0 where R was initialized to zero earlier */ | 
|  | if (BPF_SRC(insn->code) == BPF_K && | 
|  | (opcode == BPF_JEQ || opcode == BPF_JNE) && | 
|  | regs[insn->dst_reg].type == CONST_IMM && | 
|  | regs[insn->dst_reg].imm == insn->imm) { | 
|  | if (opcode == BPF_JEQ) { | 
|  | /* if (imm == imm) goto pc+off; | 
|  | * only follow the goto, ignore fall-through | 
|  | */ | 
|  | *insn_idx += insn->off; | 
|  | return 0; | 
|  | } else { | 
|  | /* if (imm != imm) goto pc+off; | 
|  | * only follow fall-through branch, since | 
|  | * that's where the program will go | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); | 
|  | if (!other_branch) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ | 
|  | if (BPF_SRC(insn->code) == BPF_K && | 
|  | insn->imm == 0 && (opcode == BPF_JEQ || | 
|  | opcode == BPF_JNE) && | 
|  | regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) { | 
|  | if (opcode == BPF_JEQ) { | 
|  | /* next fallthrough insn can access memory via | 
|  | * this register | 
|  | */ | 
|  | regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; | 
|  | /* branch targer cannot access it, since reg == 0 */ | 
|  | other_branch->regs[insn->dst_reg].type = CONST_IMM; | 
|  | other_branch->regs[insn->dst_reg].imm = 0; | 
|  | } else { | 
|  | other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; | 
|  | regs[insn->dst_reg].type = CONST_IMM; | 
|  | regs[insn->dst_reg].imm = 0; | 
|  | } | 
|  | } else if (BPF_SRC(insn->code) == BPF_K && | 
|  | (opcode == BPF_JEQ || opcode == BPF_JNE)) { | 
|  |  | 
|  | if (opcode == BPF_JEQ) { | 
|  | /* detect if (R == imm) goto | 
|  | * and in the target state recognize that R = imm | 
|  | */ | 
|  | other_branch->regs[insn->dst_reg].type = CONST_IMM; | 
|  | other_branch->regs[insn->dst_reg].imm = insn->imm; | 
|  | } else { | 
|  | /* detect if (R != imm) goto | 
|  | * and in the fall-through state recognize that R = imm | 
|  | */ | 
|  | regs[insn->dst_reg].type = CONST_IMM; | 
|  | regs[insn->dst_reg].imm = insn->imm; | 
|  | } | 
|  | } | 
|  | if (log_level) | 
|  | print_verifier_state(env); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return the map pointer stored inside BPF_LD_IMM64 instruction */ | 
|  | static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) | 
|  | { | 
|  | u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; | 
|  |  | 
|  | return (struct bpf_map *) (unsigned long) imm64; | 
|  | } | 
|  |  | 
|  | /* verify BPF_LD_IMM64 instruction */ | 
|  | static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct reg_state *regs = env->cur_state.regs; | 
|  | int err; | 
|  |  | 
|  | if (BPF_SIZE(insn->code) != BPF_DW) { | 
|  | verbose("invalid BPF_LD_IMM insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (insn->off != 0) { | 
|  | verbose("BPF_LD_IMM64 uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = check_reg_arg(regs, insn->dst_reg, DST_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (insn->src_reg == 0) | 
|  | /* generic move 64-bit immediate into a register */ | 
|  | return 0; | 
|  |  | 
|  | /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ | 
|  | BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); | 
|  |  | 
|  | regs[insn->dst_reg].type = CONST_PTR_TO_MAP; | 
|  | regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* verify safety of LD_ABS|LD_IND instructions: | 
|  | * - they can only appear in the programs where ctx == skb | 
|  | * - since they are wrappers of function calls, they scratch R1-R5 registers, | 
|  | *   preserve R6-R9, and store return value into R0 | 
|  | * | 
|  | * Implicit input: | 
|  | *   ctx == skb == R6 == CTX | 
|  | * | 
|  | * Explicit input: | 
|  | *   SRC == any register | 
|  | *   IMM == 32-bit immediate | 
|  | * | 
|  | * Output: | 
|  | *   R0 - 8/16/32-bit skb data converted to cpu endianness | 
|  | */ | 
|  | static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn) | 
|  | { | 
|  | struct reg_state *regs = env->cur_state.regs; | 
|  | u8 mode = BPF_MODE(insn->code); | 
|  | struct reg_state *reg; | 
|  | int i, err; | 
|  |  | 
|  | if (env->prog->aux->prog_type != BPF_PROG_TYPE_SOCKET_FILTER) { | 
|  | verbose("BPF_LD_ABS|IND instructions are only allowed in socket filters\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || | 
|  | (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { | 
|  | verbose("BPF_LD_ABS uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* check whether implicit source operand (register R6) is readable */ | 
|  | err = check_reg_arg(regs, BPF_REG_6, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (regs[BPF_REG_6].type != PTR_TO_CTX) { | 
|  | verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mode == BPF_IND) { | 
|  | /* check explicit source operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* reset caller saved regs to unreadable */ | 
|  | for (i = 0; i < CALLER_SAVED_REGS; i++) { | 
|  | reg = regs + caller_saved[i]; | 
|  | reg->type = NOT_INIT; | 
|  | reg->imm = 0; | 
|  | } | 
|  |  | 
|  | /* mark destination R0 register as readable, since it contains | 
|  | * the value fetched from the packet | 
|  | */ | 
|  | regs[BPF_REG_0].type = UNKNOWN_VALUE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* non-recursive DFS pseudo code | 
|  | * 1  procedure DFS-iterative(G,v): | 
|  | * 2      label v as discovered | 
|  | * 3      let S be a stack | 
|  | * 4      S.push(v) | 
|  | * 5      while S is not empty | 
|  | * 6            t <- S.pop() | 
|  | * 7            if t is what we're looking for: | 
|  | * 8                return t | 
|  | * 9            for all edges e in G.adjacentEdges(t) do | 
|  | * 10               if edge e is already labelled | 
|  | * 11                   continue with the next edge | 
|  | * 12               w <- G.adjacentVertex(t,e) | 
|  | * 13               if vertex w is not discovered and not explored | 
|  | * 14                   label e as tree-edge | 
|  | * 15                   label w as discovered | 
|  | * 16                   S.push(w) | 
|  | * 17                   continue at 5 | 
|  | * 18               else if vertex w is discovered | 
|  | * 19                   label e as back-edge | 
|  | * 20               else | 
|  | * 21                   // vertex w is explored | 
|  | * 22                   label e as forward- or cross-edge | 
|  | * 23           label t as explored | 
|  | * 24           S.pop() | 
|  | * | 
|  | * convention: | 
|  | * 0x10 - discovered | 
|  | * 0x11 - discovered and fall-through edge labelled | 
|  | * 0x12 - discovered and fall-through and branch edges labelled | 
|  | * 0x20 - explored | 
|  | */ | 
|  |  | 
|  | enum { | 
|  | DISCOVERED = 0x10, | 
|  | EXPLORED = 0x20, | 
|  | FALLTHROUGH = 1, | 
|  | BRANCH = 2, | 
|  | }; | 
|  |  | 
|  | #define STATE_LIST_MARK ((struct verifier_state_list *) -1L) | 
|  |  | 
|  | static int *insn_stack;	/* stack of insns to process */ | 
|  | static int cur_stack;	/* current stack index */ | 
|  | static int *insn_state; | 
|  |  | 
|  | /* t, w, e - match pseudo-code above: | 
|  | * t - index of current instruction | 
|  | * w - next instruction | 
|  | * e - edge | 
|  | */ | 
|  | static int push_insn(int t, int w, int e, struct verifier_env *env) | 
|  | { | 
|  | if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) | 
|  | return 0; | 
|  |  | 
|  | if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) | 
|  | return 0; | 
|  |  | 
|  | if (w < 0 || w >= env->prog->len) { | 
|  | verbose("jump out of range from insn %d to %d\n", t, w); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (e == BRANCH) | 
|  | /* mark branch target for state pruning */ | 
|  | env->explored_states[w] = STATE_LIST_MARK; | 
|  |  | 
|  | if (insn_state[w] == 0) { | 
|  | /* tree-edge */ | 
|  | insn_state[t] = DISCOVERED | e; | 
|  | insn_state[w] = DISCOVERED; | 
|  | if (cur_stack >= env->prog->len) | 
|  | return -E2BIG; | 
|  | insn_stack[cur_stack++] = w; | 
|  | return 1; | 
|  | } else if ((insn_state[w] & 0xF0) == DISCOVERED) { | 
|  | verbose("back-edge from insn %d to %d\n", t, w); | 
|  | return -EINVAL; | 
|  | } else if (insn_state[w] == EXPLORED) { | 
|  | /* forward- or cross-edge */ | 
|  | insn_state[t] = DISCOVERED | e; | 
|  | } else { | 
|  | verbose("insn state internal bug\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* non-recursive depth-first-search to detect loops in BPF program | 
|  | * loop == back-edge in directed graph | 
|  | */ | 
|  | static int check_cfg(struct verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insns = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int ret = 0; | 
|  | int i, t; | 
|  |  | 
|  | insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
|  | if (!insn_state) | 
|  | return -ENOMEM; | 
|  |  | 
|  | insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); | 
|  | if (!insn_stack) { | 
|  | kfree(insn_state); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ | 
|  | insn_stack[0] = 0; /* 0 is the first instruction */ | 
|  | cur_stack = 1; | 
|  |  | 
|  | peek_stack: | 
|  | if (cur_stack == 0) | 
|  | goto check_state; | 
|  | t = insn_stack[cur_stack - 1]; | 
|  |  | 
|  | if (BPF_CLASS(insns[t].code) == BPF_JMP) { | 
|  | u8 opcode = BPF_OP(insns[t].code); | 
|  |  | 
|  | if (opcode == BPF_EXIT) { | 
|  | goto mark_explored; | 
|  | } else if (opcode == BPF_CALL) { | 
|  | ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
|  | if (ret == 1) | 
|  | goto peek_stack; | 
|  | else if (ret < 0) | 
|  | goto err_free; | 
|  | } else if (opcode == BPF_JA) { | 
|  | if (BPF_SRC(insns[t].code) != BPF_K) { | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | /* unconditional jump with single edge */ | 
|  | ret = push_insn(t, t + insns[t].off + 1, | 
|  | FALLTHROUGH, env); | 
|  | if (ret == 1) | 
|  | goto peek_stack; | 
|  | else if (ret < 0) | 
|  | goto err_free; | 
|  | /* tell verifier to check for equivalent states | 
|  | * after every call and jump | 
|  | */ | 
|  | env->explored_states[t + 1] = STATE_LIST_MARK; | 
|  | } else { | 
|  | /* conditional jump with two edges */ | 
|  | ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
|  | if (ret == 1) | 
|  | goto peek_stack; | 
|  | else if (ret < 0) | 
|  | goto err_free; | 
|  |  | 
|  | ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); | 
|  | if (ret == 1) | 
|  | goto peek_stack; | 
|  | else if (ret < 0) | 
|  | goto err_free; | 
|  | } | 
|  | } else { | 
|  | /* all other non-branch instructions with single | 
|  | * fall-through edge | 
|  | */ | 
|  | ret = push_insn(t, t + 1, FALLTHROUGH, env); | 
|  | if (ret == 1) | 
|  | goto peek_stack; | 
|  | else if (ret < 0) | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | mark_explored: | 
|  | insn_state[t] = EXPLORED; | 
|  | if (cur_stack-- <= 0) { | 
|  | verbose("pop stack internal bug\n"); | 
|  | ret = -EFAULT; | 
|  | goto err_free; | 
|  | } | 
|  | goto peek_stack; | 
|  |  | 
|  | check_state: | 
|  | for (i = 0; i < insn_cnt; i++) { | 
|  | if (insn_state[i] != EXPLORED) { | 
|  | verbose("unreachable insn %d\n", i); | 
|  | ret = -EINVAL; | 
|  | goto err_free; | 
|  | } | 
|  | } | 
|  | ret = 0; /* cfg looks good */ | 
|  |  | 
|  | err_free: | 
|  | kfree(insn_state); | 
|  | kfree(insn_stack); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* compare two verifier states | 
|  | * | 
|  | * all states stored in state_list are known to be valid, since | 
|  | * verifier reached 'bpf_exit' instruction through them | 
|  | * | 
|  | * this function is called when verifier exploring different branches of | 
|  | * execution popped from the state stack. If it sees an old state that has | 
|  | * more strict register state and more strict stack state then this execution | 
|  | * branch doesn't need to be explored further, since verifier already | 
|  | * concluded that more strict state leads to valid finish. | 
|  | * | 
|  | * Therefore two states are equivalent if register state is more conservative | 
|  | * and explored stack state is more conservative than the current one. | 
|  | * Example: | 
|  | *       explored                   current | 
|  | * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) | 
|  | * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) | 
|  | * | 
|  | * In other words if current stack state (one being explored) has more | 
|  | * valid slots than old one that already passed validation, it means | 
|  | * the verifier can stop exploring and conclude that current state is valid too | 
|  | * | 
|  | * Similarly with registers. If explored state has register type as invalid | 
|  | * whereas register type in current state is meaningful, it means that | 
|  | * the current state will reach 'bpf_exit' instruction safely | 
|  | */ | 
|  | static bool states_equal(struct verifier_state *old, struct verifier_state *cur) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_REG; i++) { | 
|  | if (memcmp(&old->regs[i], &cur->regs[i], | 
|  | sizeof(old->regs[0])) != 0) { | 
|  | if (old->regs[i].type == NOT_INIT || | 
|  | (old->regs[i].type == UNKNOWN_VALUE && | 
|  | cur->regs[i].type != NOT_INIT)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MAX_BPF_STACK; i++) { | 
|  | if (old->stack_slot_type[i] == STACK_INVALID) | 
|  | continue; | 
|  | if (old->stack_slot_type[i] != cur->stack_slot_type[i]) | 
|  | /* Ex: old explored (safe) state has STACK_SPILL in | 
|  | * this stack slot, but current has has STACK_MISC -> | 
|  | * this verifier states are not equivalent, | 
|  | * return false to continue verification of this path | 
|  | */ | 
|  | return false; | 
|  | if (i % BPF_REG_SIZE) | 
|  | continue; | 
|  | if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE], | 
|  | &cur->spilled_regs[i / BPF_REG_SIZE], | 
|  | sizeof(old->spilled_regs[0]))) | 
|  | /* when explored and current stack slot types are | 
|  | * the same, check that stored pointers types | 
|  | * are the same as well. | 
|  | * Ex: explored safe path could have stored | 
|  | * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8} | 
|  | * but current path has stored: | 
|  | * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16} | 
|  | * such verifier states are not equivalent. | 
|  | * return false to continue verification of this path | 
|  | */ | 
|  | return false; | 
|  | else | 
|  | continue; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int is_state_visited(struct verifier_env *env, int insn_idx) | 
|  | { | 
|  | struct verifier_state_list *new_sl; | 
|  | struct verifier_state_list *sl; | 
|  |  | 
|  | sl = env->explored_states[insn_idx]; | 
|  | if (!sl) | 
|  | /* this 'insn_idx' instruction wasn't marked, so we will not | 
|  | * be doing state search here | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | while (sl != STATE_LIST_MARK) { | 
|  | if (states_equal(&sl->state, &env->cur_state)) | 
|  | /* reached equivalent register/stack state, | 
|  | * prune the search | 
|  | */ | 
|  | return 1; | 
|  | sl = sl->next; | 
|  | } | 
|  |  | 
|  | /* there were no equivalent states, remember current one. | 
|  | * technically the current state is not proven to be safe yet, | 
|  | * but it will either reach bpf_exit (which means it's safe) or | 
|  | * it will be rejected. Since there are no loops, we won't be | 
|  | * seeing this 'insn_idx' instruction again on the way to bpf_exit | 
|  | */ | 
|  | new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER); | 
|  | if (!new_sl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* add new state to the head of linked list */ | 
|  | memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); | 
|  | new_sl->next = env->explored_states[insn_idx]; | 
|  | env->explored_states[insn_idx] = new_sl; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_check(struct verifier_env *env) | 
|  | { | 
|  | struct verifier_state *state = &env->cur_state; | 
|  | struct bpf_insn *insns = env->prog->insnsi; | 
|  | struct reg_state *regs = state->regs; | 
|  | int insn_cnt = env->prog->len; | 
|  | int insn_idx, prev_insn_idx = 0; | 
|  | int insn_processed = 0; | 
|  | bool do_print_state = false; | 
|  |  | 
|  | init_reg_state(regs); | 
|  | insn_idx = 0; | 
|  | for (;;) { | 
|  | struct bpf_insn *insn; | 
|  | u8 class; | 
|  | int err; | 
|  |  | 
|  | if (insn_idx >= insn_cnt) { | 
|  | verbose("invalid insn idx %d insn_cnt %d\n", | 
|  | insn_idx, insn_cnt); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | insn = &insns[insn_idx]; | 
|  | class = BPF_CLASS(insn->code); | 
|  |  | 
|  | if (++insn_processed > 32768) { | 
|  | verbose("BPF program is too large. Proccessed %d insn\n", | 
|  | insn_processed); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | err = is_state_visited(env, insn_idx); | 
|  | if (err < 0) | 
|  | return err; | 
|  | if (err == 1) { | 
|  | /* found equivalent state, can prune the search */ | 
|  | if (log_level) { | 
|  | if (do_print_state) | 
|  | verbose("\nfrom %d to %d: safe\n", | 
|  | prev_insn_idx, insn_idx); | 
|  | else | 
|  | verbose("%d: safe\n", insn_idx); | 
|  | } | 
|  | goto process_bpf_exit; | 
|  | } | 
|  |  | 
|  | if (log_level && do_print_state) { | 
|  | verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx); | 
|  | print_verifier_state(env); | 
|  | do_print_state = false; | 
|  | } | 
|  |  | 
|  | if (log_level) { | 
|  | verbose("%d: ", insn_idx); | 
|  | print_bpf_insn(insn); | 
|  | } | 
|  |  | 
|  | if (class == BPF_ALU || class == BPF_ALU64) { | 
|  | err = check_alu_op(regs, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (class == BPF_LDX) { | 
|  | if (BPF_MODE(insn->code) != BPF_MEM || | 
|  | insn->imm != 0) { | 
|  | verbose("BPF_LDX uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check that memory (src_reg + off) is readable, | 
|  | * the state of dst_reg will be updated by this func | 
|  | */ | 
|  | err = check_mem_access(env, insn->src_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_READ, | 
|  | insn->dst_reg); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (class == BPF_STX) { | 
|  | if (BPF_MODE(insn->code) == BPF_XADD) { | 
|  | err = check_xadd(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  | insn_idx++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (BPF_MODE(insn->code) != BPF_MEM || | 
|  | insn->imm != 0) { | 
|  | verbose("BPF_STX uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src1 operand */ | 
|  | err = check_reg_arg(regs, insn->src_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  | /* check src2 operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check that memory (dst_reg + off) is writeable */ | 
|  | err = check_mem_access(env, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_WRITE, | 
|  | insn->src_reg); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (class == BPF_ST) { | 
|  | if (BPF_MODE(insn->code) != BPF_MEM || | 
|  | insn->src_reg != BPF_REG_0) { | 
|  | verbose("BPF_ST uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* check src operand */ | 
|  | err = check_reg_arg(regs, insn->dst_reg, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* check that memory (dst_reg + off) is writeable */ | 
|  | err = check_mem_access(env, insn->dst_reg, insn->off, | 
|  | BPF_SIZE(insn->code), BPF_WRITE, | 
|  | -1); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (class == BPF_JMP) { | 
|  | u8 opcode = BPF_OP(insn->code); | 
|  |  | 
|  | if (opcode == BPF_CALL) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->off != 0 || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->dst_reg != BPF_REG_0) { | 
|  | verbose("BPF_CALL uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = check_call(env, insn->imm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (opcode == BPF_JA) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->imm != 0 || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->dst_reg != BPF_REG_0) { | 
|  | verbose("BPF_JA uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | insn_idx += insn->off + 1; | 
|  | continue; | 
|  |  | 
|  | } else if (opcode == BPF_EXIT) { | 
|  | if (BPF_SRC(insn->code) != BPF_K || | 
|  | insn->imm != 0 || | 
|  | insn->src_reg != BPF_REG_0 || | 
|  | insn->dst_reg != BPF_REG_0) { | 
|  | verbose("BPF_EXIT uses reserved fields\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* eBPF calling convetion is such that R0 is used | 
|  | * to return the value from eBPF program. | 
|  | * Make sure that it's readable at this time | 
|  | * of bpf_exit, which means that program wrote | 
|  | * something into it earlier | 
|  | */ | 
|  | err = check_reg_arg(regs, BPF_REG_0, SRC_OP); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | process_bpf_exit: | 
|  | insn_idx = pop_stack(env, &prev_insn_idx); | 
|  | if (insn_idx < 0) { | 
|  | break; | 
|  | } else { | 
|  | do_print_state = true; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | err = check_cond_jmp_op(env, insn, &insn_idx); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } else if (class == BPF_LD) { | 
|  | u8 mode = BPF_MODE(insn->code); | 
|  |  | 
|  | if (mode == BPF_ABS || mode == BPF_IND) { | 
|  | err = check_ld_abs(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | } else if (mode == BPF_IMM) { | 
|  | err = check_ld_imm(env, insn); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | insn_idx++; | 
|  | } else { | 
|  | verbose("invalid BPF_LD mode\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | verbose("unknown insn class %d\n", class); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | insn_idx++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* look for pseudo eBPF instructions that access map FDs and | 
|  | * replace them with actual map pointers | 
|  | */ | 
|  | static int replace_map_fd_with_map_ptr(struct verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { | 
|  | struct bpf_map *map; | 
|  | struct fd f; | 
|  |  | 
|  | if (i == insn_cnt - 1 || insn[1].code != 0 || | 
|  | insn[1].dst_reg != 0 || insn[1].src_reg != 0 || | 
|  | insn[1].off != 0) { | 
|  | verbose("invalid bpf_ld_imm64 insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (insn->src_reg == 0) | 
|  | /* valid generic load 64-bit imm */ | 
|  | goto next_insn; | 
|  |  | 
|  | if (insn->src_reg != BPF_PSEUDO_MAP_FD) { | 
|  | verbose("unrecognized bpf_ld_imm64 insn\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | f = fdget(insn->imm); | 
|  |  | 
|  | map = bpf_map_get(f); | 
|  | if (IS_ERR(map)) { | 
|  | verbose("fd %d is not pointing to valid bpf_map\n", | 
|  | insn->imm); | 
|  | fdput(f); | 
|  | return PTR_ERR(map); | 
|  | } | 
|  |  | 
|  | /* store map pointer inside BPF_LD_IMM64 instruction */ | 
|  | insn[0].imm = (u32) (unsigned long) map; | 
|  | insn[1].imm = ((u64) (unsigned long) map) >> 32; | 
|  |  | 
|  | /* check whether we recorded this map already */ | 
|  | for (j = 0; j < env->used_map_cnt; j++) | 
|  | if (env->used_maps[j] == map) { | 
|  | fdput(f); | 
|  | goto next_insn; | 
|  | } | 
|  |  | 
|  | if (env->used_map_cnt >= MAX_USED_MAPS) { | 
|  | fdput(f); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /* remember this map */ | 
|  | env->used_maps[env->used_map_cnt++] = map; | 
|  |  | 
|  | /* hold the map. If the program is rejected by verifier, | 
|  | * the map will be released by release_maps() or it | 
|  | * will be used by the valid program until it's unloaded | 
|  | * and all maps are released in free_bpf_prog_info() | 
|  | */ | 
|  | atomic_inc(&map->refcnt); | 
|  |  | 
|  | fdput(f); | 
|  | next_insn: | 
|  | insn++; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now all pseudo BPF_LD_IMM64 instructions load valid | 
|  | * 'struct bpf_map *' into a register instead of user map_fd. | 
|  | * These pointers will be used later by verifier to validate map access. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* drop refcnt of maps used by the rejected program */ | 
|  | static void release_maps(struct verifier_env *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < env->used_map_cnt; i++) | 
|  | bpf_map_put(env->used_maps[i]); | 
|  | } | 
|  |  | 
|  | /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ | 
|  | static void convert_pseudo_ld_imm64(struct verifier_env *env) | 
|  | { | 
|  | struct bpf_insn *insn = env->prog->insnsi; | 
|  | int insn_cnt = env->prog->len; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) | 
|  | if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) | 
|  | insn->src_reg = 0; | 
|  | } | 
|  |  | 
|  | static void free_states(struct verifier_env *env) | 
|  | { | 
|  | struct verifier_state_list *sl, *sln; | 
|  | int i; | 
|  |  | 
|  | if (!env->explored_states) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < env->prog->len; i++) { | 
|  | sl = env->explored_states[i]; | 
|  |  | 
|  | if (sl) | 
|  | while (sl != STATE_LIST_MARK) { | 
|  | sln = sl->next; | 
|  | kfree(sl); | 
|  | sl = sln; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(env->explored_states); | 
|  | } | 
|  |  | 
|  | int bpf_check(struct bpf_prog *prog, union bpf_attr *attr) | 
|  | { | 
|  | char __user *log_ubuf = NULL; | 
|  | struct verifier_env *env; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (prog->len <= 0 || prog->len > BPF_MAXINSNS) | 
|  | return -E2BIG; | 
|  |  | 
|  | /* 'struct verifier_env' can be global, but since it's not small, | 
|  | * allocate/free it every time bpf_check() is called | 
|  | */ | 
|  | env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); | 
|  | if (!env) | 
|  | return -ENOMEM; | 
|  |  | 
|  | env->prog = prog; | 
|  |  | 
|  | /* grab the mutex to protect few globals used by verifier */ | 
|  | mutex_lock(&bpf_verifier_lock); | 
|  |  | 
|  | if (attr->log_level || attr->log_buf || attr->log_size) { | 
|  | /* user requested verbose verifier output | 
|  | * and supplied buffer to store the verification trace | 
|  | */ | 
|  | log_level = attr->log_level; | 
|  | log_ubuf = (char __user *) (unsigned long) attr->log_buf; | 
|  | log_size = attr->log_size; | 
|  | log_len = 0; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | /* log_* values have to be sane */ | 
|  | if (log_size < 128 || log_size > UINT_MAX >> 8 || | 
|  | log_level == 0 || log_ubuf == NULL) | 
|  | goto free_env; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | log_buf = vmalloc(log_size); | 
|  | if (!log_buf) | 
|  | goto free_env; | 
|  | } else { | 
|  | log_level = 0; | 
|  | } | 
|  |  | 
|  | ret = replace_map_fd_with_map_ptr(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | env->explored_states = kcalloc(prog->len, | 
|  | sizeof(struct verifier_state_list *), | 
|  | GFP_USER); | 
|  | ret = -ENOMEM; | 
|  | if (!env->explored_states) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = check_cfg(env); | 
|  | if (ret < 0) | 
|  | goto skip_full_check; | 
|  |  | 
|  | ret = do_check(env); | 
|  |  | 
|  | skip_full_check: | 
|  | while (pop_stack(env, NULL) >= 0); | 
|  | free_states(env); | 
|  |  | 
|  | if (log_level && log_len >= log_size - 1) { | 
|  | BUG_ON(log_len >= log_size); | 
|  | /* verifier log exceeded user supplied buffer */ | 
|  | ret = -ENOSPC; | 
|  | /* fall through to return what was recorded */ | 
|  | } | 
|  |  | 
|  | /* copy verifier log back to user space including trailing zero */ | 
|  | if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { | 
|  | ret = -EFAULT; | 
|  | goto free_log_buf; | 
|  | } | 
|  |  | 
|  | if (ret == 0 && env->used_map_cnt) { | 
|  | /* if program passed verifier, update used_maps in bpf_prog_info */ | 
|  | prog->aux->used_maps = kmalloc_array(env->used_map_cnt, | 
|  | sizeof(env->used_maps[0]), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!prog->aux->used_maps) { | 
|  | ret = -ENOMEM; | 
|  | goto free_log_buf; | 
|  | } | 
|  |  | 
|  | memcpy(prog->aux->used_maps, env->used_maps, | 
|  | sizeof(env->used_maps[0]) * env->used_map_cnt); | 
|  | prog->aux->used_map_cnt = env->used_map_cnt; | 
|  |  | 
|  | /* program is valid. Convert pseudo bpf_ld_imm64 into generic | 
|  | * bpf_ld_imm64 instructions | 
|  | */ | 
|  | convert_pseudo_ld_imm64(env); | 
|  | } | 
|  |  | 
|  | free_log_buf: | 
|  | if (log_level) | 
|  | vfree(log_buf); | 
|  | free_env: | 
|  | if (!prog->aux->used_maps) | 
|  | /* if we didn't copy map pointers into bpf_prog_info, release | 
|  | * them now. Otherwise free_bpf_prog_info() will release them. | 
|  | */ | 
|  | release_maps(env); | 
|  | kfree(env); | 
|  | mutex_unlock(&bpf_verifier_lock); | 
|  | return ret; | 
|  | } |