| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/bsearch.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include "kfd_priv.h" |
| #include "kfd_device_queue_manager.h" |
| #include "kfd_pm4_headers_vi.h" |
| #include "cwsr_trap_handler.h" |
| #include "kfd_iommu.h" |
| |
| #define MQD_SIZE_ALIGNED 768 |
| |
| /* |
| * kfd_locked is used to lock the kfd driver during suspend or reset |
| * once locked, kfd driver will stop any further GPU execution. |
| * create process (open) will return -EAGAIN. |
| */ |
| static atomic_t kfd_locked = ATOMIC_INIT(0); |
| |
| #ifdef KFD_SUPPORT_IOMMU_V2 |
| static const struct kfd_device_info kaveri_device_info = { |
| .asic_family = CHIP_KAVERI, |
| .max_pasid_bits = 16, |
| /* max num of queues for KV.TODO should be a dynamic value */ |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = false, |
| .needs_iommu_device = true, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info carrizo_device_info = { |
| .asic_family = CHIP_CARRIZO, |
| .max_pasid_bits = 16, |
| /* max num of queues for CZ.TODO should be a dynamic value */ |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = true, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info raven_device_info = { |
| .asic_family = CHIP_RAVEN, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 8, |
| .ih_ring_entry_size = 8 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_v9, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = true, |
| .needs_pci_atomics = true, |
| .num_sdma_engines = 1, |
| }; |
| #endif |
| |
| static const struct kfd_device_info hawaii_device_info = { |
| .asic_family = CHIP_HAWAII, |
| .max_pasid_bits = 16, |
| /* max num of queues for KV.TODO should be a dynamic value */ |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = false, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info tonga_device_info = { |
| .asic_family = CHIP_TONGA, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = false, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = true, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info tonga_vf_device_info = { |
| .asic_family = CHIP_TONGA, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = false, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info fiji_device_info = { |
| .asic_family = CHIP_FIJI, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = true, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info fiji_vf_device_info = { |
| .asic_family = CHIP_FIJI, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| |
| static const struct kfd_device_info polaris10_device_info = { |
| .asic_family = CHIP_POLARIS10, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = true, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info polaris10_vf_device_info = { |
| .asic_family = CHIP_POLARIS10, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info polaris11_device_info = { |
| .asic_family = CHIP_POLARIS11, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 4, |
| .ih_ring_entry_size = 4 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_cik, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = true, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info vega10_device_info = { |
| .asic_family = CHIP_VEGA10, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 8, |
| .ih_ring_entry_size = 8 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_v9, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| static const struct kfd_device_info vega10_vf_device_info = { |
| .asic_family = CHIP_VEGA10, |
| .max_pasid_bits = 16, |
| .max_no_of_hqd = 24, |
| .doorbell_size = 8, |
| .ih_ring_entry_size = 8 * sizeof(uint32_t), |
| .event_interrupt_class = &event_interrupt_class_v9, |
| .num_of_watch_points = 4, |
| .mqd_size_aligned = MQD_SIZE_ALIGNED, |
| .supports_cwsr = true, |
| .needs_iommu_device = false, |
| .needs_pci_atomics = false, |
| .num_sdma_engines = 2, |
| }; |
| |
| |
| struct kfd_deviceid { |
| unsigned short did; |
| const struct kfd_device_info *device_info; |
| }; |
| |
| static const struct kfd_deviceid supported_devices[] = { |
| #ifdef KFD_SUPPORT_IOMMU_V2 |
| { 0x1304, &kaveri_device_info }, /* Kaveri */ |
| { 0x1305, &kaveri_device_info }, /* Kaveri */ |
| { 0x1306, &kaveri_device_info }, /* Kaveri */ |
| { 0x1307, &kaveri_device_info }, /* Kaveri */ |
| { 0x1309, &kaveri_device_info }, /* Kaveri */ |
| { 0x130A, &kaveri_device_info }, /* Kaveri */ |
| { 0x130B, &kaveri_device_info }, /* Kaveri */ |
| { 0x130C, &kaveri_device_info }, /* Kaveri */ |
| { 0x130D, &kaveri_device_info }, /* Kaveri */ |
| { 0x130E, &kaveri_device_info }, /* Kaveri */ |
| { 0x130F, &kaveri_device_info }, /* Kaveri */ |
| { 0x1310, &kaveri_device_info }, /* Kaveri */ |
| { 0x1311, &kaveri_device_info }, /* Kaveri */ |
| { 0x1312, &kaveri_device_info }, /* Kaveri */ |
| { 0x1313, &kaveri_device_info }, /* Kaveri */ |
| { 0x1315, &kaveri_device_info }, /* Kaveri */ |
| { 0x1316, &kaveri_device_info }, /* Kaveri */ |
| { 0x1317, &kaveri_device_info }, /* Kaveri */ |
| { 0x1318, &kaveri_device_info }, /* Kaveri */ |
| { 0x131B, &kaveri_device_info }, /* Kaveri */ |
| { 0x131C, &kaveri_device_info }, /* Kaveri */ |
| { 0x131D, &kaveri_device_info }, /* Kaveri */ |
| { 0x9870, &carrizo_device_info }, /* Carrizo */ |
| { 0x9874, &carrizo_device_info }, /* Carrizo */ |
| { 0x9875, &carrizo_device_info }, /* Carrizo */ |
| { 0x9876, &carrizo_device_info }, /* Carrizo */ |
| { 0x9877, &carrizo_device_info }, /* Carrizo */ |
| { 0x15DD, &raven_device_info }, /* Raven */ |
| #endif |
| { 0x67A0, &hawaii_device_info }, /* Hawaii */ |
| { 0x67A1, &hawaii_device_info }, /* Hawaii */ |
| { 0x67A2, &hawaii_device_info }, /* Hawaii */ |
| { 0x67A8, &hawaii_device_info }, /* Hawaii */ |
| { 0x67A9, &hawaii_device_info }, /* Hawaii */ |
| { 0x67AA, &hawaii_device_info }, /* Hawaii */ |
| { 0x67B0, &hawaii_device_info }, /* Hawaii */ |
| { 0x67B1, &hawaii_device_info }, /* Hawaii */ |
| { 0x67B8, &hawaii_device_info }, /* Hawaii */ |
| { 0x67B9, &hawaii_device_info }, /* Hawaii */ |
| { 0x67BA, &hawaii_device_info }, /* Hawaii */ |
| { 0x67BE, &hawaii_device_info }, /* Hawaii */ |
| { 0x6920, &tonga_device_info }, /* Tonga */ |
| { 0x6921, &tonga_device_info }, /* Tonga */ |
| { 0x6928, &tonga_device_info }, /* Tonga */ |
| { 0x6929, &tonga_device_info }, /* Tonga */ |
| { 0x692B, &tonga_device_info }, /* Tonga */ |
| { 0x692F, &tonga_vf_device_info }, /* Tonga vf */ |
| { 0x6938, &tonga_device_info }, /* Tonga */ |
| { 0x6939, &tonga_device_info }, /* Tonga */ |
| { 0x7300, &fiji_device_info }, /* Fiji */ |
| { 0x730F, &fiji_vf_device_info }, /* Fiji vf*/ |
| { 0x67C0, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C1, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C2, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C4, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C7, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C8, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67C9, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67CA, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67CC, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67CF, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67D0, &polaris10_vf_device_info }, /* Polaris10 vf*/ |
| { 0x67DF, &polaris10_device_info }, /* Polaris10 */ |
| { 0x67E0, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67E1, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67E3, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67E7, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67E8, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67E9, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67EB, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67EF, &polaris11_device_info }, /* Polaris11 */ |
| { 0x67FF, &polaris11_device_info }, /* Polaris11 */ |
| { 0x6860, &vega10_device_info }, /* Vega10 */ |
| { 0x6861, &vega10_device_info }, /* Vega10 */ |
| { 0x6862, &vega10_device_info }, /* Vega10 */ |
| { 0x6863, &vega10_device_info }, /* Vega10 */ |
| { 0x6864, &vega10_device_info }, /* Vega10 */ |
| { 0x6867, &vega10_device_info }, /* Vega10 */ |
| { 0x6868, &vega10_device_info }, /* Vega10 */ |
| { 0x686C, &vega10_vf_device_info }, /* Vega10 vf*/ |
| { 0x687F, &vega10_device_info }, /* Vega10 */ |
| }; |
| |
| static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, |
| unsigned int chunk_size); |
| static void kfd_gtt_sa_fini(struct kfd_dev *kfd); |
| |
| static int kfd_resume(struct kfd_dev *kfd); |
| |
| static const struct kfd_device_info *lookup_device_info(unsigned short did) |
| { |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(supported_devices); i++) { |
| if (supported_devices[i].did == did) { |
| WARN_ON(!supported_devices[i].device_info); |
| return supported_devices[i].device_info; |
| } |
| } |
| |
| dev_warn(kfd_device, "DID %04x is missing in supported_devices\n", |
| did); |
| |
| return NULL; |
| } |
| |
| struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, |
| struct pci_dev *pdev, const struct kfd2kgd_calls *f2g) |
| { |
| struct kfd_dev *kfd; |
| int ret; |
| const struct kfd_device_info *device_info = |
| lookup_device_info(pdev->device); |
| |
| if (!device_info) { |
| dev_err(kfd_device, "kgd2kfd_probe failed\n"); |
| return NULL; |
| } |
| |
| /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. |
| * 32 and 64-bit requests are possible and must be |
| * supported. |
| */ |
| ret = pci_enable_atomic_ops_to_root(pdev, |
| PCI_EXP_DEVCAP2_ATOMIC_COMP32 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP64); |
| if (device_info->needs_pci_atomics && ret < 0) { |
| dev_info(kfd_device, |
| "skipped device %x:%x, PCI rejects atomics\n", |
| pdev->vendor, pdev->device); |
| return NULL; |
| } |
| |
| kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); |
| if (!kfd) |
| return NULL; |
| |
| kfd->kgd = kgd; |
| kfd->device_info = device_info; |
| kfd->pdev = pdev; |
| kfd->init_complete = false; |
| kfd->kfd2kgd = f2g; |
| |
| mutex_init(&kfd->doorbell_mutex); |
| memset(&kfd->doorbell_available_index, 0, |
| sizeof(kfd->doorbell_available_index)); |
| |
| return kfd; |
| } |
| |
| static void kfd_cwsr_init(struct kfd_dev *kfd) |
| { |
| if (cwsr_enable && kfd->device_info->supports_cwsr) { |
| if (kfd->device_info->asic_family < CHIP_VEGA10) { |
| BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); |
| kfd->cwsr_isa = cwsr_trap_gfx8_hex; |
| kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); |
| } else { |
| BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); |
| kfd->cwsr_isa = cwsr_trap_gfx9_hex; |
| kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); |
| } |
| |
| kfd->cwsr_enabled = true; |
| } |
| } |
| |
| bool kgd2kfd_device_init(struct kfd_dev *kfd, |
| const struct kgd2kfd_shared_resources *gpu_resources) |
| { |
| unsigned int size; |
| |
| kfd->shared_resources = *gpu_resources; |
| |
| kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; |
| kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; |
| kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd |
| - kfd->vm_info.first_vmid_kfd + 1; |
| |
| /* Verify module parameters regarding mapped process number*/ |
| if ((hws_max_conc_proc < 0) |
| || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { |
| dev_err(kfd_device, |
| "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", |
| hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, |
| kfd->vm_info.vmid_num_kfd); |
| kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; |
| } else |
| kfd->max_proc_per_quantum = hws_max_conc_proc; |
| |
| /* calculate max size of mqds needed for queues */ |
| size = max_num_of_queues_per_device * |
| kfd->device_info->mqd_size_aligned; |
| |
| /* |
| * calculate max size of runlist packet. |
| * There can be only 2 packets at once |
| */ |
| size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + |
| max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) |
| + sizeof(struct pm4_mes_runlist)) * 2; |
| |
| /* Add size of HIQ & DIQ */ |
| size += KFD_KERNEL_QUEUE_SIZE * 2; |
| |
| /* add another 512KB for all other allocations on gart (HPD, fences) */ |
| size += 512 * 1024; |
| |
| if (kfd->kfd2kgd->init_gtt_mem_allocation( |
| kfd->kgd, size, &kfd->gtt_mem, |
| &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, |
| false)) { |
| dev_err(kfd_device, "Could not allocate %d bytes\n", size); |
| goto out; |
| } |
| |
| dev_info(kfd_device, "Allocated %d bytes on gart\n", size); |
| |
| /* Initialize GTT sa with 512 byte chunk size */ |
| if (kfd_gtt_sa_init(kfd, size, 512) != 0) { |
| dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); |
| goto kfd_gtt_sa_init_error; |
| } |
| |
| if (kfd_doorbell_init(kfd)) { |
| dev_err(kfd_device, |
| "Error initializing doorbell aperture\n"); |
| goto kfd_doorbell_error; |
| } |
| |
| if (kfd_topology_add_device(kfd)) { |
| dev_err(kfd_device, "Error adding device to topology\n"); |
| goto kfd_topology_add_device_error; |
| } |
| |
| if (kfd_interrupt_init(kfd)) { |
| dev_err(kfd_device, "Error initializing interrupts\n"); |
| goto kfd_interrupt_error; |
| } |
| |
| kfd->dqm = device_queue_manager_init(kfd); |
| if (!kfd->dqm) { |
| dev_err(kfd_device, "Error initializing queue manager\n"); |
| goto device_queue_manager_error; |
| } |
| |
| if (kfd_iommu_device_init(kfd)) { |
| dev_err(kfd_device, "Error initializing iommuv2\n"); |
| goto device_iommu_error; |
| } |
| |
| kfd_cwsr_init(kfd); |
| |
| if (kfd_resume(kfd)) |
| goto kfd_resume_error; |
| |
| kfd->dbgmgr = NULL; |
| |
| kfd->init_complete = true; |
| dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, |
| kfd->pdev->device); |
| |
| pr_debug("Starting kfd with the following scheduling policy %d\n", |
| kfd->dqm->sched_policy); |
| |
| goto out; |
| |
| kfd_resume_error: |
| device_iommu_error: |
| device_queue_manager_uninit(kfd->dqm); |
| device_queue_manager_error: |
| kfd_interrupt_exit(kfd); |
| kfd_interrupt_error: |
| kfd_topology_remove_device(kfd); |
| kfd_topology_add_device_error: |
| kfd_doorbell_fini(kfd); |
| kfd_doorbell_error: |
| kfd_gtt_sa_fini(kfd); |
| kfd_gtt_sa_init_error: |
| kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); |
| dev_err(kfd_device, |
| "device %x:%x NOT added due to errors\n", |
| kfd->pdev->vendor, kfd->pdev->device); |
| out: |
| return kfd->init_complete; |
| } |
| |
| void kgd2kfd_device_exit(struct kfd_dev *kfd) |
| { |
| if (kfd->init_complete) { |
| kgd2kfd_suspend(kfd); |
| device_queue_manager_uninit(kfd->dqm); |
| kfd_interrupt_exit(kfd); |
| kfd_topology_remove_device(kfd); |
| kfd_doorbell_fini(kfd); |
| kfd_gtt_sa_fini(kfd); |
| kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem); |
| } |
| |
| kfree(kfd); |
| } |
| |
| int kgd2kfd_pre_reset(struct kfd_dev *kfd) |
| { |
| if (!kfd->init_complete) |
| return 0; |
| kgd2kfd_suspend(kfd); |
| |
| /* hold dqm->lock to prevent further execution*/ |
| dqm_lock(kfd->dqm); |
| |
| kfd_signal_reset_event(kfd); |
| return 0; |
| } |
| |
| /* |
| * Fix me. KFD won't be able to resume existing process for now. |
| * We will keep all existing process in a evicted state and |
| * wait the process to be terminated. |
| */ |
| |
| int kgd2kfd_post_reset(struct kfd_dev *kfd) |
| { |
| int ret, count; |
| |
| if (!kfd->init_complete) |
| return 0; |
| |
| dqm_unlock(kfd->dqm); |
| |
| ret = kfd_resume(kfd); |
| if (ret) |
| return ret; |
| count = atomic_dec_return(&kfd_locked); |
| WARN_ONCE(count != 0, "KFD reset ref. error"); |
| return 0; |
| } |
| |
| bool kfd_is_locked(void) |
| { |
| return (atomic_read(&kfd_locked) > 0); |
| } |
| |
| void kgd2kfd_suspend(struct kfd_dev *kfd) |
| { |
| if (!kfd->init_complete) |
| return; |
| |
| /* For first KFD device suspend all the KFD processes */ |
| if (atomic_inc_return(&kfd_locked) == 1) |
| kfd_suspend_all_processes(); |
| |
| kfd->dqm->ops.stop(kfd->dqm); |
| |
| kfd_iommu_suspend(kfd); |
| } |
| |
| int kgd2kfd_resume(struct kfd_dev *kfd) |
| { |
| int ret, count; |
| |
| if (!kfd->init_complete) |
| return 0; |
| |
| ret = kfd_resume(kfd); |
| if (ret) |
| return ret; |
| |
| count = atomic_dec_return(&kfd_locked); |
| WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); |
| if (count == 0) |
| ret = kfd_resume_all_processes(); |
| |
| return ret; |
| } |
| |
| static int kfd_resume(struct kfd_dev *kfd) |
| { |
| int err = 0; |
| |
| err = kfd_iommu_resume(kfd); |
| if (err) { |
| dev_err(kfd_device, |
| "Failed to resume IOMMU for device %x:%x\n", |
| kfd->pdev->vendor, kfd->pdev->device); |
| return err; |
| } |
| |
| err = kfd->dqm->ops.start(kfd->dqm); |
| if (err) { |
| dev_err(kfd_device, |
| "Error starting queue manager for device %x:%x\n", |
| kfd->pdev->vendor, kfd->pdev->device); |
| goto dqm_start_error; |
| } |
| |
| return err; |
| |
| dqm_start_error: |
| kfd_iommu_suspend(kfd); |
| return err; |
| } |
| |
| /* This is called directly from KGD at ISR. */ |
| void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) |
| { |
| uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; |
| bool is_patched = false; |
| |
| if (!kfd->init_complete) |
| return; |
| |
| if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { |
| dev_err_once(kfd_device, "Ring entry too small\n"); |
| return; |
| } |
| |
| spin_lock(&kfd->interrupt_lock); |
| |
| if (kfd->interrupts_active |
| && interrupt_is_wanted(kfd, ih_ring_entry, |
| patched_ihre, &is_patched) |
| && enqueue_ih_ring_entry(kfd, |
| is_patched ? patched_ihre : ih_ring_entry)) |
| queue_work(kfd->ih_wq, &kfd->interrupt_work); |
| |
| spin_unlock(&kfd->interrupt_lock); |
| } |
| |
| int kgd2kfd_quiesce_mm(struct mm_struct *mm) |
| { |
| struct kfd_process *p; |
| int r; |
| |
| /* Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function increments the process ref count. |
| */ |
| p = kfd_lookup_process_by_mm(mm); |
| if (!p) |
| return -ESRCH; |
| |
| r = kfd_process_evict_queues(p); |
| |
| kfd_unref_process(p); |
| return r; |
| } |
| |
| int kgd2kfd_resume_mm(struct mm_struct *mm) |
| { |
| struct kfd_process *p; |
| int r; |
| |
| /* Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function increments the process ref count. |
| */ |
| p = kfd_lookup_process_by_mm(mm); |
| if (!p) |
| return -ESRCH; |
| |
| r = kfd_process_restore_queues(p); |
| |
| kfd_unref_process(p); |
| return r; |
| } |
| |
| /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will |
| * prepare for safe eviction of KFD BOs that belong to the specified |
| * process. |
| * |
| * @mm: mm_struct that identifies the specified KFD process |
| * @fence: eviction fence attached to KFD process BOs |
| * |
| */ |
| int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, |
| struct dma_fence *fence) |
| { |
| struct kfd_process *p; |
| unsigned long active_time; |
| unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); |
| |
| if (!fence) |
| return -EINVAL; |
| |
| if (dma_fence_is_signaled(fence)) |
| return 0; |
| |
| p = kfd_lookup_process_by_mm(mm); |
| if (!p) |
| return -ENODEV; |
| |
| if (fence->seqno == p->last_eviction_seqno) |
| goto out; |
| |
| p->last_eviction_seqno = fence->seqno; |
| |
| /* Avoid KFD process starvation. Wait for at least |
| * PROCESS_ACTIVE_TIME_MS before evicting the process again |
| */ |
| active_time = get_jiffies_64() - p->last_restore_timestamp; |
| if (delay_jiffies > active_time) |
| delay_jiffies -= active_time; |
| else |
| delay_jiffies = 0; |
| |
| /* During process initialization eviction_work.dwork is initialized |
| * to kfd_evict_bo_worker |
| */ |
| schedule_delayed_work(&p->eviction_work, delay_jiffies); |
| out: |
| kfd_unref_process(p); |
| return 0; |
| } |
| |
| static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, |
| unsigned int chunk_size) |
| { |
| unsigned int num_of_longs; |
| |
| if (WARN_ON(buf_size < chunk_size)) |
| return -EINVAL; |
| if (WARN_ON(buf_size == 0)) |
| return -EINVAL; |
| if (WARN_ON(chunk_size == 0)) |
| return -EINVAL; |
| |
| kfd->gtt_sa_chunk_size = chunk_size; |
| kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; |
| |
| num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / |
| BITS_PER_LONG; |
| |
| kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); |
| |
| if (!kfd->gtt_sa_bitmap) |
| return -ENOMEM; |
| |
| pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", |
| kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); |
| |
| mutex_init(&kfd->gtt_sa_lock); |
| |
| return 0; |
| |
| } |
| |
| static void kfd_gtt_sa_fini(struct kfd_dev *kfd) |
| { |
| mutex_destroy(&kfd->gtt_sa_lock); |
| kfree(kfd->gtt_sa_bitmap); |
| } |
| |
| static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, |
| unsigned int bit_num, |
| unsigned int chunk_size) |
| { |
| return start_addr + bit_num * chunk_size; |
| } |
| |
| static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, |
| unsigned int bit_num, |
| unsigned int chunk_size) |
| { |
| return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); |
| } |
| |
| int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, |
| struct kfd_mem_obj **mem_obj) |
| { |
| unsigned int found, start_search, cur_size; |
| |
| if (size == 0) |
| return -EINVAL; |
| |
| if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) |
| return -ENOMEM; |
| |
| *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); |
| if (!(*mem_obj)) |
| return -ENOMEM; |
| |
| pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); |
| |
| start_search = 0; |
| |
| mutex_lock(&kfd->gtt_sa_lock); |
| |
| kfd_gtt_restart_search: |
| /* Find the first chunk that is free */ |
| found = find_next_zero_bit(kfd->gtt_sa_bitmap, |
| kfd->gtt_sa_num_of_chunks, |
| start_search); |
| |
| pr_debug("Found = %d\n", found); |
| |
| /* If there wasn't any free chunk, bail out */ |
| if (found == kfd->gtt_sa_num_of_chunks) |
| goto kfd_gtt_no_free_chunk; |
| |
| /* Update fields of mem_obj */ |
| (*mem_obj)->range_start = found; |
| (*mem_obj)->range_end = found; |
| (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( |
| kfd->gtt_start_gpu_addr, |
| found, |
| kfd->gtt_sa_chunk_size); |
| (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( |
| kfd->gtt_start_cpu_ptr, |
| found, |
| kfd->gtt_sa_chunk_size); |
| |
| pr_debug("gpu_addr = %p, cpu_addr = %p\n", |
| (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); |
| |
| /* If we need only one chunk, mark it as allocated and get out */ |
| if (size <= kfd->gtt_sa_chunk_size) { |
| pr_debug("Single bit\n"); |
| set_bit(found, kfd->gtt_sa_bitmap); |
| goto kfd_gtt_out; |
| } |
| |
| /* Otherwise, try to see if we have enough contiguous chunks */ |
| cur_size = size - kfd->gtt_sa_chunk_size; |
| do { |
| (*mem_obj)->range_end = |
| find_next_zero_bit(kfd->gtt_sa_bitmap, |
| kfd->gtt_sa_num_of_chunks, ++found); |
| /* |
| * If next free chunk is not contiguous than we need to |
| * restart our search from the last free chunk we found (which |
| * wasn't contiguous to the previous ones |
| */ |
| if ((*mem_obj)->range_end != found) { |
| start_search = found; |
| goto kfd_gtt_restart_search; |
| } |
| |
| /* |
| * If we reached end of buffer, bail out with error |
| */ |
| if (found == kfd->gtt_sa_num_of_chunks) |
| goto kfd_gtt_no_free_chunk; |
| |
| /* Check if we don't need another chunk */ |
| if (cur_size <= kfd->gtt_sa_chunk_size) |
| cur_size = 0; |
| else |
| cur_size -= kfd->gtt_sa_chunk_size; |
| |
| } while (cur_size > 0); |
| |
| pr_debug("range_start = %d, range_end = %d\n", |
| (*mem_obj)->range_start, (*mem_obj)->range_end); |
| |
| /* Mark the chunks as allocated */ |
| for (found = (*mem_obj)->range_start; |
| found <= (*mem_obj)->range_end; |
| found++) |
| set_bit(found, kfd->gtt_sa_bitmap); |
| |
| kfd_gtt_out: |
| mutex_unlock(&kfd->gtt_sa_lock); |
| return 0; |
| |
| kfd_gtt_no_free_chunk: |
| pr_debug("Allocation failed with mem_obj = %p\n", mem_obj); |
| mutex_unlock(&kfd->gtt_sa_lock); |
| kfree(mem_obj); |
| return -ENOMEM; |
| } |
| |
| int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) |
| { |
| unsigned int bit; |
| |
| /* Act like kfree when trying to free a NULL object */ |
| if (!mem_obj) |
| return 0; |
| |
| pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", |
| mem_obj, mem_obj->range_start, mem_obj->range_end); |
| |
| mutex_lock(&kfd->gtt_sa_lock); |
| |
| /* Mark the chunks as free */ |
| for (bit = mem_obj->range_start; |
| bit <= mem_obj->range_end; |
| bit++) |
| clear_bit(bit, kfd->gtt_sa_bitmap); |
| |
| mutex_unlock(&kfd->gtt_sa_lock); |
| |
| kfree(mem_obj); |
| return 0; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| |
| /* This function will send a package to HIQ to hang the HWS |
| * which will trigger a GPU reset and bring the HWS back to normal state |
| */ |
| int kfd_debugfs_hang_hws(struct kfd_dev *dev) |
| { |
| int r = 0; |
| |
| if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { |
| pr_err("HWS is not enabled"); |
| return -EINVAL; |
| } |
| |
| r = pm_debugfs_hang_hws(&dev->dqm->packets); |
| if (!r) |
| r = dqm_debugfs_execute_queues(dev->dqm); |
| |
| return r; |
| } |
| |
| #endif |