blob: b31d121a876bf32e64c51ad23ead9b08713f74bb [file] [log] [blame]
/*
* Copyright 2008 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
*/
#include <linux/pagemap.h>
#include <linux/sync_file.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include <drm/drm_syncobj.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_gmc.h"
static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_fence *data,
uint32_t *offset)
{
struct drm_gem_object *gobj;
unsigned long size;
int r;
gobj = drm_gem_object_lookup(p->filp, data->handle);
if (gobj == NULL)
return -EINVAL;
p->uf_entry.robj = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
p->uf_entry.priority = 0;
p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
p->uf_entry.tv.shared = true;
p->uf_entry.user_pages = NULL;
drm_gem_object_put_unlocked(gobj);
size = amdgpu_bo_size(p->uf_entry.robj);
if (size != PAGE_SIZE || (data->offset + 8) > size) {
r = -EINVAL;
goto error_unref;
}
if (amdgpu_ttm_tt_get_usermm(p->uf_entry.robj->tbo.ttm)) {
r = -EINVAL;
goto error_unref;
}
*offset = data->offset;
return 0;
error_unref:
amdgpu_bo_unref(&p->uf_entry.robj);
return r;
}
static int amdgpu_cs_bo_handles_chunk(struct amdgpu_cs_parser *p,
struct drm_amdgpu_bo_list_in *data)
{
int r;
struct drm_amdgpu_bo_list_entry *info = NULL;
r = amdgpu_bo_create_list_entry_array(data, &info);
if (r)
return r;
r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
&p->bo_list);
if (r)
goto error_free;
kvfree(info);
return 0;
error_free:
if (info)
kvfree(info);
return r;
}
static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
uint64_t *chunk_array_user;
uint64_t *chunk_array;
unsigned size, num_ibs = 0;
uint32_t uf_offset = 0;
int i;
int ret;
if (cs->in.num_chunks == 0)
return 0;
chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
if (!chunk_array)
return -ENOMEM;
p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
if (!p->ctx) {
ret = -EINVAL;
goto free_chunk;
}
/* skip guilty context job */
if (atomic_read(&p->ctx->guilty) == 1) {
ret = -ECANCELED;
goto free_chunk;
}
mutex_lock(&p->ctx->lock);
/* get chunks */
chunk_array_user = u64_to_user_ptr(cs->in.chunks);
if (copy_from_user(chunk_array, chunk_array_user,
sizeof(uint64_t)*cs->in.num_chunks)) {
ret = -EFAULT;
goto free_chunk;
}
p->nchunks = cs->in.num_chunks;
p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
GFP_KERNEL);
if (!p->chunks) {
ret = -ENOMEM;
goto free_chunk;
}
for (i = 0; i < p->nchunks; i++) {
struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
struct drm_amdgpu_cs_chunk user_chunk;
uint32_t __user *cdata;
chunk_ptr = u64_to_user_ptr(chunk_array[i]);
if (copy_from_user(&user_chunk, chunk_ptr,
sizeof(struct drm_amdgpu_cs_chunk))) {
ret = -EFAULT;
i--;
goto free_partial_kdata;
}
p->chunks[i].chunk_id = user_chunk.chunk_id;
p->chunks[i].length_dw = user_chunk.length_dw;
size = p->chunks[i].length_dw;
cdata = u64_to_user_ptr(user_chunk.chunk_data);
p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
if (p->chunks[i].kdata == NULL) {
ret = -ENOMEM;
i--;
goto free_partial_kdata;
}
size *= sizeof(uint32_t);
if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
ret = -EFAULT;
goto free_partial_kdata;
}
switch (p->chunks[i].chunk_id) {
case AMDGPU_CHUNK_ID_IB:
++num_ibs;
break;
case AMDGPU_CHUNK_ID_FENCE:
size = sizeof(struct drm_amdgpu_cs_chunk_fence);
if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
ret = -EINVAL;
goto free_partial_kdata;
}
ret = amdgpu_cs_user_fence_chunk(p, p->chunks[i].kdata,
&uf_offset);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_BO_HANDLES:
size = sizeof(struct drm_amdgpu_bo_list_in);
if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
ret = -EINVAL;
goto free_partial_kdata;
}
ret = amdgpu_cs_bo_handles_chunk(p, p->chunks[i].kdata);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_DEPENDENCIES:
case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
break;
default:
ret = -EINVAL;
goto free_partial_kdata;
}
}
ret = amdgpu_job_alloc(p->adev, num_ibs, &p->job, vm);
if (ret)
goto free_all_kdata;
if (p->ctx->vram_lost_counter != p->job->vram_lost_counter) {
ret = -ECANCELED;
goto free_all_kdata;
}
if (p->uf_entry.robj)
p->job->uf_addr = uf_offset;
kfree(chunk_array);
/* Use this opportunity to fill in task info for the vm */
amdgpu_vm_set_task_info(vm);
return 0;
free_all_kdata:
i = p->nchunks - 1;
free_partial_kdata:
for (; i >= 0; i--)
kvfree(p->chunks[i].kdata);
kfree(p->chunks);
p->chunks = NULL;
p->nchunks = 0;
free_chunk:
kfree(chunk_array);
return ret;
}
/* Convert microseconds to bytes. */
static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
{
if (us <= 0 || !adev->mm_stats.log2_max_MBps)
return 0;
/* Since accum_us is incremented by a million per second, just
* multiply it by the number of MB/s to get the number of bytes.
*/
return us << adev->mm_stats.log2_max_MBps;
}
static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
{
if (!adev->mm_stats.log2_max_MBps)
return 0;
return bytes >> adev->mm_stats.log2_max_MBps;
}
/* Returns how many bytes TTM can move right now. If no bytes can be moved,
* it returns 0. If it returns non-zero, it's OK to move at least one buffer,
* which means it can go over the threshold once. If that happens, the driver
* will be in debt and no other buffer migrations can be done until that debt
* is repaid.
*
* This approach allows moving a buffer of any size (it's important to allow
* that).
*
* The currency is simply time in microseconds and it increases as the clock
* ticks. The accumulated microseconds (us) are converted to bytes and
* returned.
*/
static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
u64 *max_bytes,
u64 *max_vis_bytes)
{
s64 time_us, increment_us;
u64 free_vram, total_vram, used_vram;
/* Allow a maximum of 200 accumulated ms. This is basically per-IB
* throttling.
*
* It means that in order to get full max MBps, at least 5 IBs per
* second must be submitted and not more than 200ms apart from each
* other.
*/
const s64 us_upper_bound = 200000;
if (!adev->mm_stats.log2_max_MBps) {
*max_bytes = 0;
*max_vis_bytes = 0;
return;
}
total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
used_vram = amdgpu_vram_mgr_usage(&adev->mman.bdev.man[TTM_PL_VRAM]);
free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
spin_lock(&adev->mm_stats.lock);
/* Increase the amount of accumulated us. */
time_us = ktime_to_us(ktime_get());
increment_us = time_us - adev->mm_stats.last_update_us;
adev->mm_stats.last_update_us = time_us;
adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
us_upper_bound);
/* This prevents the short period of low performance when the VRAM
* usage is low and the driver is in debt or doesn't have enough
* accumulated us to fill VRAM quickly.
*
* The situation can occur in these cases:
* - a lot of VRAM is freed by userspace
* - the presence of a big buffer causes a lot of evictions
* (solution: split buffers into smaller ones)
*
* If 128 MB or 1/8th of VRAM is free, start filling it now by setting
* accum_us to a positive number.
*/
if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
s64 min_us;
/* Be more aggresive on dGPUs. Try to fill a portion of free
* VRAM now.
*/
if (!(adev->flags & AMD_IS_APU))
min_us = bytes_to_us(adev, free_vram / 4);
else
min_us = 0; /* Reset accum_us on APUs. */
adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
}
/* This is set to 0 if the driver is in debt to disallow (optional)
* buffer moves.
*/
*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
/* Do the same for visible VRAM if half of it is free */
if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
u64 total_vis_vram = adev->gmc.visible_vram_size;
u64 used_vis_vram =
amdgpu_vram_mgr_vis_usage(&adev->mman.bdev.man[TTM_PL_VRAM]);
if (used_vis_vram < total_vis_vram) {
u64 free_vis_vram = total_vis_vram - used_vis_vram;
adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
increment_us, us_upper_bound);
if (free_vis_vram >= total_vis_vram / 2)
adev->mm_stats.accum_us_vis =
max(bytes_to_us(adev, free_vis_vram / 2),
adev->mm_stats.accum_us_vis);
}
*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
} else {
*max_vis_bytes = 0;
}
spin_unlock(&adev->mm_stats.lock);
}
/* Report how many bytes have really been moved for the last command
* submission. This can result in a debt that can stop buffer migrations
* temporarily.
*/
void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
u64 num_vis_bytes)
{
spin_lock(&adev->mm_stats.lock);
adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
spin_unlock(&adev->mm_stats.lock);
}
static int amdgpu_cs_bo_validate(struct amdgpu_cs_parser *p,
struct amdgpu_bo *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
.resv = bo->tbo.resv,
.flags = 0
};
uint32_t domain;
int r;
if (bo->pin_count)
return 0;
/* Don't move this buffer if we have depleted our allowance
* to move it. Don't move anything if the threshold is zero.
*/
if (p->bytes_moved < p->bytes_moved_threshold) {
if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
(bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
/* And don't move a CPU_ACCESS_REQUIRED BO to limited
* visible VRAM if we've depleted our allowance to do
* that.
*/
if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
domain = bo->preferred_domains;
else
domain = bo->allowed_domains;
} else {
domain = bo->preferred_domains;
}
} else {
domain = bo->allowed_domains;
}
retry:
amdgpu_bo_placement_from_domain(bo, domain);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
p->bytes_moved += ctx.bytes_moved;
if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
amdgpu_bo_in_cpu_visible_vram(bo))
p->bytes_moved_vis += ctx.bytes_moved;
if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
domain = bo->allowed_domains;
goto retry;
}
return r;
}
/* Last resort, try to evict something from the current working set */
static bool amdgpu_cs_try_evict(struct amdgpu_cs_parser *p,
struct amdgpu_bo *validated)
{
uint32_t domain = validated->allowed_domains;
struct ttm_operation_ctx ctx = { true, false };
int r;
if (!p->evictable)
return false;
for (;&p->evictable->tv.head != &p->validated;
p->evictable = list_prev_entry(p->evictable, tv.head)) {
struct amdgpu_bo_list_entry *candidate = p->evictable;
struct amdgpu_bo *bo = candidate->robj;
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
bool update_bytes_moved_vis;
uint32_t other;
/* If we reached our current BO we can forget it */
if (candidate->robj == validated)
break;
/* We can't move pinned BOs here */
if (bo->pin_count)
continue;
other = amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
/* Check if this BO is in one of the domains we need space for */
if (!(other & domain))
continue;
/* Check if we can move this BO somewhere else */
other = bo->allowed_domains & ~domain;
if (!other)
continue;
/* Good we can try to move this BO somewhere else */
update_bytes_moved_vis =
!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
amdgpu_bo_in_cpu_visible_vram(bo);
amdgpu_bo_placement_from_domain(bo, other);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
p->bytes_moved += ctx.bytes_moved;
if (update_bytes_moved_vis)
p->bytes_moved_vis += ctx.bytes_moved;
if (unlikely(r))
break;
p->evictable = list_prev_entry(p->evictable, tv.head);
list_move(&candidate->tv.head, &p->validated);
return true;
}
return false;
}
static int amdgpu_cs_validate(void *param, struct amdgpu_bo *bo)
{
struct amdgpu_cs_parser *p = param;
int r;
do {
r = amdgpu_cs_bo_validate(p, bo);
} while (r == -ENOMEM && amdgpu_cs_try_evict(p, bo));
if (r)
return r;
if (bo->shadow)
r = amdgpu_cs_bo_validate(p, bo->shadow);
return r;
}
static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p,
struct list_head *validated)
{
struct ttm_operation_ctx ctx = { true, false };
struct amdgpu_bo_list_entry *lobj;
int r;
list_for_each_entry(lobj, validated, tv.head) {
struct amdgpu_bo *bo = lobj->robj;
bool binding_userptr = false;
struct mm_struct *usermm;
usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
if (usermm && usermm != current->mm)
return -EPERM;
/* Check if we have user pages and nobody bound the BO already */
if (amdgpu_ttm_tt_userptr_needs_pages(bo->tbo.ttm) &&
lobj->user_pages) {
amdgpu_bo_placement_from_domain(bo,
AMDGPU_GEM_DOMAIN_CPU);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (r)
return r;
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm,
lobj->user_pages);
binding_userptr = true;
}
if (p->evictable == lobj)
p->evictable = NULL;
r = amdgpu_cs_validate(p, bo);
if (r)
return r;
if (binding_userptr) {
kvfree(lobj->user_pages);
lobj->user_pages = NULL;
}
}
return 0;
}
static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_list_entry *e;
struct list_head duplicates;
struct amdgpu_bo *gds;
struct amdgpu_bo *gws;
struct amdgpu_bo *oa;
unsigned tries = 10;
int r;
INIT_LIST_HEAD(&p->validated);
/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
if (cs->in.bo_list_handle) {
if (p->bo_list)
return -EINVAL;
r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
&p->bo_list);
if (r)
return r;
} else if (!p->bo_list) {
/* Create a empty bo_list when no handle is provided */
r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
&p->bo_list);
if (r)
return r;
}
amdgpu_bo_list_get_list(p->bo_list, &p->validated);
if (p->bo_list->first_userptr != p->bo_list->num_entries)
p->mn = amdgpu_mn_get(p->adev, AMDGPU_MN_TYPE_GFX);
INIT_LIST_HEAD(&duplicates);
amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
if (p->uf_entry.robj && !p->uf_entry.robj->parent)
list_add(&p->uf_entry.tv.head, &p->validated);
while (1) {
struct list_head need_pages;
r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true,
&duplicates);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
DRM_ERROR("ttm_eu_reserve_buffers failed.\n");
goto error_free_pages;
}
INIT_LIST_HEAD(&need_pages);
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
struct amdgpu_bo *bo = e->robj;
if (amdgpu_ttm_tt_userptr_invalidated(bo->tbo.ttm,
&e->user_invalidated) && e->user_pages) {
/* We acquired a page array, but somebody
* invalidated it. Free it and try again
*/
release_pages(e->user_pages,
bo->tbo.ttm->num_pages);
kvfree(e->user_pages);
e->user_pages = NULL;
}
if (amdgpu_ttm_tt_userptr_needs_pages(bo->tbo.ttm) &&
!e->user_pages) {
list_del(&e->tv.head);
list_add(&e->tv.head, &need_pages);
amdgpu_bo_unreserve(e->robj);
}
}
if (list_empty(&need_pages))
break;
/* Unreserve everything again. */
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
/* We tried too many times, just abort */
if (!--tries) {
r = -EDEADLK;
DRM_ERROR("deadlock in %s\n", __func__);
goto error_free_pages;
}
/* Fill the page arrays for all userptrs. */
list_for_each_entry(e, &need_pages, tv.head) {
struct ttm_tt *ttm = e->robj->tbo.ttm;
e->user_pages = kvmalloc_array(ttm->num_pages,
sizeof(struct page*),
GFP_KERNEL | __GFP_ZERO);
if (!e->user_pages) {
r = -ENOMEM;
DRM_ERROR("calloc failure in %s\n", __func__);
goto error_free_pages;
}
r = amdgpu_ttm_tt_get_user_pages(ttm, e->user_pages);
if (r) {
DRM_ERROR("amdgpu_ttm_tt_get_user_pages failed.\n");
kvfree(e->user_pages);
e->user_pages = NULL;
goto error_free_pages;
}
}
/* And try again. */
list_splice(&need_pages, &p->validated);
}
amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
&p->bytes_moved_vis_threshold);
p->bytes_moved = 0;
p->bytes_moved_vis = 0;
p->evictable = list_last_entry(&p->validated,
struct amdgpu_bo_list_entry,
tv.head);
r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm,
amdgpu_cs_validate, p);
if (r) {
DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n");
goto error_validate;
}
r = amdgpu_cs_list_validate(p, &duplicates);
if (r) {
DRM_ERROR("amdgpu_cs_list_validate(duplicates) failed.\n");
goto error_validate;
}
r = amdgpu_cs_list_validate(p, &p->validated);
if (r) {
DRM_ERROR("amdgpu_cs_list_validate(validated) failed.\n");
goto error_validate;
}
amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
p->bytes_moved_vis);
gds = p->bo_list->gds_obj;
gws = p->bo_list->gws_obj;
oa = p->bo_list->oa_obj;
amdgpu_bo_list_for_each_entry(e, p->bo_list)
e->bo_va = amdgpu_vm_bo_find(vm, e->robj);
if (gds) {
p->job->gds_base = amdgpu_bo_gpu_offset(gds);
p->job->gds_size = amdgpu_bo_size(gds);
}
if (gws) {
p->job->gws_base = amdgpu_bo_gpu_offset(gws);
p->job->gws_size = amdgpu_bo_size(gws);
}
if (oa) {
p->job->oa_base = amdgpu_bo_gpu_offset(oa);
p->job->oa_size = amdgpu_bo_size(oa);
}
if (!r && p->uf_entry.robj) {
struct amdgpu_bo *uf = p->uf_entry.robj;
r = amdgpu_ttm_alloc_gart(&uf->tbo);
p->job->uf_addr += amdgpu_bo_gpu_offset(uf);
}
error_validate:
if (r)
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
error_free_pages:
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
if (!e->user_pages)
continue;
release_pages(e->user_pages,
e->robj->tbo.ttm->num_pages);
kvfree(e->user_pages);
}
return r;
}
static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
{
struct amdgpu_bo_list_entry *e;
int r;
list_for_each_entry(e, &p->validated, tv.head) {
struct reservation_object *resv = e->robj->tbo.resv;
r = amdgpu_sync_resv(p->adev, &p->job->sync, resv, p->filp,
amdgpu_bo_explicit_sync(e->robj));
if (r)
return r;
}
return 0;
}
/**
* cs_parser_fini() - clean parser states
* @parser: parser structure holding parsing context.
* @error: error number
*
* If error is set than unvalidate buffer, otherwise just free memory
* used by parsing context.
**/
static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error,
bool backoff)
{
unsigned i;
if (error && backoff)
ttm_eu_backoff_reservation(&parser->ticket,
&parser->validated);
for (i = 0; i < parser->num_post_dep_syncobjs; i++)
drm_syncobj_put(parser->post_dep_syncobjs[i]);
kfree(parser->post_dep_syncobjs);
dma_fence_put(parser->fence);
if (parser->ctx) {
mutex_unlock(&parser->ctx->lock);
amdgpu_ctx_put(parser->ctx);
}
if (parser->bo_list)
amdgpu_bo_list_put(parser->bo_list);
for (i = 0; i < parser->nchunks; i++)
kvfree(parser->chunks[i].kdata);
kfree(parser->chunks);
if (parser->job)
amdgpu_job_free(parser->job);
amdgpu_bo_unref(&parser->uf_entry.robj);
}
static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_device *adev = p->adev;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_list_entry *e;
struct amdgpu_bo_va *bo_va;
struct amdgpu_bo *bo;
int r;
r = amdgpu_vm_clear_freed(adev, vm, NULL);
if (r)
return r;
r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
if (r)
return r;
r = amdgpu_sync_fence(adev, &p->job->sync,
fpriv->prt_va->last_pt_update, false);
if (r)
return r;
if (amdgpu_sriov_vf(adev)) {
struct dma_fence *f;
bo_va = fpriv->csa_va;
BUG_ON(!bo_va);
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
f = bo_va->last_pt_update;
r = amdgpu_sync_fence(adev, &p->job->sync, f, false);
if (r)
return r;
}
amdgpu_bo_list_for_each_entry(e, p->bo_list) {
struct dma_fence *f;
/* ignore duplicates */
bo = e->robj;
if (!bo)
continue;
bo_va = e->bo_va;
if (bo_va == NULL)
continue;
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
f = bo_va->last_pt_update;
r = amdgpu_sync_fence(adev, &p->job->sync, f, false);
if (r)
return r;
}
r = amdgpu_vm_handle_moved(adev, vm);
if (r)
return r;
r = amdgpu_vm_update_directories(adev, vm);
if (r)
return r;
r = amdgpu_sync_fence(adev, &p->job->sync, vm->last_update, false);
if (r)
return r;
if (amdgpu_vm_debug) {
/* Invalidate all BOs to test for userspace bugs */
amdgpu_bo_list_for_each_entry(e, p->bo_list) {
/* ignore duplicates */
if (!e->robj)
continue;
amdgpu_vm_bo_invalidate(adev, e->robj, false);
}
}
return r;
}
static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_ring *ring = p->ring;
int r;
/* Only for UVD/VCE VM emulation */
if (p->ring->funcs->parse_cs || p->ring->funcs->patch_cs_in_place) {
unsigned i, j;
for (i = 0, j = 0; i < p->nchunks && j < p->job->num_ibs; i++) {
struct drm_amdgpu_cs_chunk_ib *chunk_ib;
struct amdgpu_bo_va_mapping *m;
struct amdgpu_bo *aobj = NULL;
struct amdgpu_cs_chunk *chunk;
uint64_t offset, va_start;
struct amdgpu_ib *ib;
uint8_t *kptr;
chunk = &p->chunks[i];
ib = &p->job->ibs[j];
chunk_ib = chunk->kdata;
if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
continue;
va_start = chunk_ib->va_start & AMDGPU_VA_HOLE_MASK;
r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
if (r) {
DRM_ERROR("IB va_start is invalid\n");
return r;
}
if ((va_start + chunk_ib->ib_bytes) >
(m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
DRM_ERROR("IB va_start+ib_bytes is invalid\n");
return -EINVAL;
}
/* the IB should be reserved at this point */
r = amdgpu_bo_kmap(aobj, (void **)&kptr);
if (r) {
return r;
}
offset = m->start * AMDGPU_GPU_PAGE_SIZE;
kptr += va_start - offset;
if (p->ring->funcs->parse_cs) {
memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
amdgpu_bo_kunmap(aobj);
r = amdgpu_ring_parse_cs(ring, p, j);
if (r)
return r;
} else {
ib->ptr = (uint32_t *)kptr;
r = amdgpu_ring_patch_cs_in_place(ring, p, j);
amdgpu_bo_kunmap(aobj);
if (r)
return r;
}
j++;
}
}
if (p->job->vm) {
p->job->vm_pd_addr = amdgpu_bo_gpu_offset(vm->root.base.bo);
r = amdgpu_bo_vm_update_pte(p);
if (r)
return r;
r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
if (r)
return r;
}
return amdgpu_cs_sync_rings(p);
}
static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
struct amdgpu_cs_parser *parser)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
int i, j;
int r, ce_preempt = 0, de_preempt = 0;
for (i = 0, j = 0; i < parser->nchunks && j < parser->job->num_ibs; i++) {
struct amdgpu_cs_chunk *chunk;
struct amdgpu_ib *ib;
struct drm_amdgpu_cs_chunk_ib *chunk_ib;
struct amdgpu_ring *ring;
chunk = &parser->chunks[i];
ib = &parser->job->ibs[j];
chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
continue;
if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && amdgpu_sriov_vf(adev)) {
if (chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
ce_preempt++;
else
de_preempt++;
}
/* each GFX command submit allows 0 or 1 IB preemptible for CE & DE */
if (ce_preempt > 1 || de_preempt > 1)
return -EINVAL;
}
r = amdgpu_queue_mgr_map(adev, &parser->ctx->queue_mgr, chunk_ib->ip_type,
chunk_ib->ip_instance, chunk_ib->ring, &ring);
if (r)
return r;
if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
parser->job->preamble_status |=
AMDGPU_PREAMBLE_IB_PRESENT;
if (parser->ring && parser->ring != ring)
return -EINVAL;
parser->ring = ring;
r = amdgpu_ib_get(adev, vm,
ring->funcs->parse_cs ? chunk_ib->ib_bytes : 0,
ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
ib->gpu_addr = chunk_ib->va_start;
ib->length_dw = chunk_ib->ib_bytes / 4;
ib->flags = chunk_ib->flags;
j++;
}
/* UVD & VCE fw doesn't support user fences */
if (parser->job->uf_addr && (
parser->ring->funcs->type == AMDGPU_RING_TYPE_UVD ||
parser->ring->funcs->type == AMDGPU_RING_TYPE_VCE))
return -EINVAL;
return amdgpu_ctx_wait_prev_fence(parser->ctx, parser->ring->idx);
}
static int amdgpu_cs_process_fence_dep(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
unsigned num_deps;
int i, r;
struct drm_amdgpu_cs_chunk_dep *deps;
deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_dep);
for (i = 0; i < num_deps; ++i) {
struct amdgpu_ring *ring;
struct amdgpu_ctx *ctx;
struct dma_fence *fence;
ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
if (ctx == NULL)
return -EINVAL;
r = amdgpu_queue_mgr_map(p->adev, &ctx->queue_mgr,
deps[i].ip_type,
deps[i].ip_instance,
deps[i].ring, &ring);
if (r) {
amdgpu_ctx_put(ctx);
return r;
}
fence = amdgpu_ctx_get_fence(ctx, ring,
deps[i].handle);
if (IS_ERR(fence)) {
r = PTR_ERR(fence);
amdgpu_ctx_put(ctx);
return r;
} else if (fence) {
r = amdgpu_sync_fence(p->adev, &p->job->sync, fence,
true);
dma_fence_put(fence);
amdgpu_ctx_put(ctx);
if (r)
return r;
}
}
return 0;
}
static int amdgpu_syncobj_lookup_and_add_to_sync(struct amdgpu_cs_parser *p,
uint32_t handle)
{
int r;
struct dma_fence *fence;
r = drm_syncobj_find_fence(p->filp, handle, &fence);
if (r)
return r;
r = amdgpu_sync_fence(p->adev, &p->job->sync, fence, true);
dma_fence_put(fence);
return r;
}
static int amdgpu_cs_process_syncobj_in_dep(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
unsigned num_deps;
int i, r;
struct drm_amdgpu_cs_chunk_sem *deps;
deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_sem);
for (i = 0; i < num_deps; ++i) {
r = amdgpu_syncobj_lookup_and_add_to_sync(p, deps[i].handle);
if (r)
return r;
}
return 0;
}
static int amdgpu_cs_process_syncobj_out_dep(struct amdgpu_cs_parser *p,
struct amdgpu_cs_chunk *chunk)
{
unsigned num_deps;
int i;
struct drm_amdgpu_cs_chunk_sem *deps;
deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_sem);
p->post_dep_syncobjs = kmalloc_array(num_deps,
sizeof(struct drm_syncobj *),
GFP_KERNEL);
p->num_post_dep_syncobjs = 0;
if (!p->post_dep_syncobjs)
return -ENOMEM;
for (i = 0; i < num_deps; ++i) {
p->post_dep_syncobjs[i] = drm_syncobj_find(p->filp, deps[i].handle);
if (!p->post_dep_syncobjs[i])
return -EINVAL;
p->num_post_dep_syncobjs++;
}
return 0;
}
static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
struct amdgpu_cs_parser *p)
{
int i, r;
for (i = 0; i < p->nchunks; ++i) {
struct amdgpu_cs_chunk *chunk;
chunk = &p->chunks[i];
if (chunk->chunk_id == AMDGPU_CHUNK_ID_DEPENDENCIES) {
r = amdgpu_cs_process_fence_dep(p, chunk);
if (r)
return r;
} else if (chunk->chunk_id == AMDGPU_CHUNK_ID_SYNCOBJ_IN) {
r = amdgpu_cs_process_syncobj_in_dep(p, chunk);
if (r)
return r;
} else if (chunk->chunk_id == AMDGPU_CHUNK_ID_SYNCOBJ_OUT) {
r = amdgpu_cs_process_syncobj_out_dep(p, chunk);
if (r)
return r;
}
}
return 0;
}
static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
{
int i;
for (i = 0; i < p->num_post_dep_syncobjs; ++i)
drm_syncobj_replace_fence(p->post_dep_syncobjs[i], p->fence);
}
static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_ring *ring = p->ring;
struct drm_sched_entity *entity = &p->ctx->rings[ring->idx].entity;
enum drm_sched_priority priority;
struct amdgpu_bo_list_entry *e;
struct amdgpu_job *job;
uint64_t seq;
int r;
job = p->job;
p->job = NULL;
r = drm_sched_job_init(&job->base, entity, p->filp);
if (r)
goto error_unlock;
/* No memory allocation is allowed while holding the mn lock */
amdgpu_mn_lock(p->mn);
amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
struct amdgpu_bo *bo = e->robj;
if (amdgpu_ttm_tt_userptr_needs_pages(bo->tbo.ttm)) {
r = -ERESTARTSYS;
goto error_abort;
}
}
job->owner = p->filp;
p->fence = dma_fence_get(&job->base.s_fence->finished);
r = amdgpu_ctx_add_fence(p->ctx, ring, p->fence, &seq);
if (r) {
dma_fence_put(p->fence);
dma_fence_put(&job->base.s_fence->finished);
amdgpu_job_free(job);
amdgpu_mn_unlock(p->mn);
return r;
}
amdgpu_cs_post_dependencies(p);
if ((job->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
!p->ctx->preamble_presented) {
job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
p->ctx->preamble_presented = true;
}
cs->out.handle = seq;
job->uf_sequence = seq;
amdgpu_job_free_resources(job);
trace_amdgpu_cs_ioctl(job);
amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket);
priority = job->base.s_priority;
drm_sched_entity_push_job(&job->base, entity);
ring = to_amdgpu_ring(entity->rq->sched);
amdgpu_ring_priority_get(ring, priority);
ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence);
amdgpu_mn_unlock(p->mn);
return 0;
error_abort:
dma_fence_put(&job->base.s_fence->finished);
job->base.s_fence = NULL;
amdgpu_mn_unlock(p->mn);
error_unlock:
amdgpu_job_free(job);
return r;
}
int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
struct amdgpu_device *adev = dev->dev_private;
union drm_amdgpu_cs *cs = data;
struct amdgpu_cs_parser parser = {};
bool reserved_buffers = false;
int i, r;
if (!adev->accel_working)
return -EBUSY;
parser.adev = adev;
parser.filp = filp;
r = amdgpu_cs_parser_init(&parser, data);
if (r) {
DRM_ERROR("Failed to initialize parser !\n");
goto out;
}
r = amdgpu_cs_ib_fill(adev, &parser);
if (r)
goto out;
r = amdgpu_cs_parser_bos(&parser, data);
if (r) {
if (r == -ENOMEM)
DRM_ERROR("Not enough memory for command submission!\n");
else if (r != -ERESTARTSYS)
DRM_ERROR("Failed to process the buffer list %d!\n", r);
goto out;
}
reserved_buffers = true;
r = amdgpu_cs_dependencies(adev, &parser);
if (r) {
DRM_ERROR("Failed in the dependencies handling %d!\n", r);
goto out;
}
for (i = 0; i < parser.job->num_ibs; i++)
trace_amdgpu_cs(&parser, i);
r = amdgpu_cs_ib_vm_chunk(adev, &parser);
if (r)
goto out;
r = amdgpu_cs_submit(&parser, cs);
out:
amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
return r;
}
/**
* amdgpu_cs_wait_ioctl - wait for a command submission to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*
* Wait for the command submission identified by handle to finish.
*/
int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
union drm_amdgpu_wait_cs *wait = data;
struct amdgpu_device *adev = dev->dev_private;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
struct amdgpu_ring *ring = NULL;
struct amdgpu_ctx *ctx;
struct dma_fence *fence;
long r;
ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
if (ctx == NULL)
return -EINVAL;
r = amdgpu_queue_mgr_map(adev, &ctx->queue_mgr,
wait->in.ip_type, wait->in.ip_instance,
wait->in.ring, &ring);
if (r) {
amdgpu_ctx_put(ctx);
return r;
}
fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
if (IS_ERR(fence))
r = PTR_ERR(fence);
else if (fence) {
r = dma_fence_wait_timeout(fence, true, timeout);
if (r > 0 && fence->error)
r = fence->error;
dma_fence_put(fence);
} else
r = 1;
amdgpu_ctx_put(ctx);
if (r < 0)
return r;
memset(wait, 0, sizeof(*wait));
wait->out.status = (r == 0);
return 0;
}
/**
* amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
*
* @adev: amdgpu device
* @filp: file private
* @user: drm_amdgpu_fence copied from user space
*/
static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
struct drm_file *filp,
struct drm_amdgpu_fence *user)
{
struct amdgpu_ring *ring;
struct amdgpu_ctx *ctx;
struct dma_fence *fence;
int r;
ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
if (ctx == NULL)
return ERR_PTR(-EINVAL);
r = amdgpu_queue_mgr_map(adev, &ctx->queue_mgr, user->ip_type,
user->ip_instance, user->ring, &ring);
if (r) {
amdgpu_ctx_put(ctx);
return ERR_PTR(r);
}
fence = amdgpu_ctx_get_fence(ctx, ring, user->seq_no);
amdgpu_ctx_put(ctx);
return fence;
}
int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct amdgpu_device *adev = dev->dev_private;
union drm_amdgpu_fence_to_handle *info = data;
struct dma_fence *fence;
struct drm_syncobj *syncobj;
struct sync_file *sync_file;
int fd, r;
fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
if (IS_ERR(fence))
return PTR_ERR(fence);
switch (info->in.what) {
case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
r = drm_syncobj_create(&syncobj, 0, fence);
dma_fence_put(fence);
if (r)
return r;
r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
drm_syncobj_put(syncobj);
return r;
case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
r = drm_syncobj_create(&syncobj, 0, fence);
dma_fence_put(fence);
if (r)
return r;
r = drm_syncobj_get_fd(syncobj, (int*)&info->out.handle);
drm_syncobj_put(syncobj);
return r;
case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
fd = get_unused_fd_flags(O_CLOEXEC);
if (fd < 0) {
dma_fence_put(fence);
return fd;
}
sync_file = sync_file_create(fence);
dma_fence_put(fence);
if (!sync_file) {
put_unused_fd(fd);
return -ENOMEM;
}
fd_install(fd, sync_file->file);
info->out.handle = fd;
return 0;
default:
return -EINVAL;
}
}
/**
* amdgpu_cs_wait_all_fence - wait on all fences to signal
*
* @adev: amdgpu device
* @filp: file private
* @wait: wait parameters
* @fences: array of drm_amdgpu_fence
*/
static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
struct drm_file *filp,
union drm_amdgpu_wait_fences *wait,
struct drm_amdgpu_fence *fences)
{
uint32_t fence_count = wait->in.fence_count;
unsigned int i;
long r = 1;
for (i = 0; i < fence_count; i++) {
struct dma_fence *fence;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
if (IS_ERR(fence))
return PTR_ERR(fence);
else if (!fence)
continue;
r = dma_fence_wait_timeout(fence, true, timeout);
dma_fence_put(fence);
if (r < 0)
return r;
if (r == 0)
break;
if (fence->error)
return fence->error;
}
memset(wait, 0, sizeof(*wait));
wait->out.status = (r > 0);
return 0;
}
/**
* amdgpu_cs_wait_any_fence - wait on any fence to signal
*
* @adev: amdgpu device
* @filp: file private
* @wait: wait parameters
* @fences: array of drm_amdgpu_fence
*/
static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
struct drm_file *filp,
union drm_amdgpu_wait_fences *wait,
struct drm_amdgpu_fence *fences)
{
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
uint32_t fence_count = wait->in.fence_count;
uint32_t first = ~0;
struct dma_fence **array;
unsigned int i;
long r;
/* Prepare the fence array */
array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
if (array == NULL)
return -ENOMEM;
for (i = 0; i < fence_count; i++) {
struct dma_fence *fence;
fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
if (IS_ERR(fence)) {
r = PTR_ERR(fence);
goto err_free_fence_array;
} else if (fence) {
array[i] = fence;
} else { /* NULL, the fence has been already signaled */
r = 1;
first = i;
goto out;
}
}
r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
&first);
if (r < 0)
goto err_free_fence_array;
out:
memset(wait, 0, sizeof(*wait));
wait->out.status = (r > 0);
wait->out.first_signaled = first;
if (first < fence_count && array[first])
r = array[first]->error;
else
r = 0;
err_free_fence_array:
for (i = 0; i < fence_count; i++)
dma_fence_put(array[i]);
kfree(array);
return r;
}
/**
* amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*/
int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
struct amdgpu_device *adev = dev->dev_private;
union drm_amdgpu_wait_fences *wait = data;
uint32_t fence_count = wait->in.fence_count;
struct drm_amdgpu_fence *fences_user;
struct drm_amdgpu_fence *fences;
int r;
/* Get the fences from userspace */
fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
GFP_KERNEL);
if (fences == NULL)
return -ENOMEM;
fences_user = u64_to_user_ptr(wait->in.fences);
if (copy_from_user(fences, fences_user,
sizeof(struct drm_amdgpu_fence) * fence_count)) {
r = -EFAULT;
goto err_free_fences;
}
if (wait->in.wait_all)
r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
else
r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
err_free_fences:
kfree(fences);
return r;
}
/**
* amdgpu_cs_find_bo_va - find bo_va for VM address
*
* @parser: command submission parser context
* @addr: VM address
* @bo: resulting BO of the mapping found
*
* Search the buffer objects in the command submission context for a certain
* virtual memory address. Returns allocation structure when found, NULL
* otherwise.
*/
int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
uint64_t addr, struct amdgpu_bo **bo,
struct amdgpu_bo_va_mapping **map)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_bo_va_mapping *mapping;
int r;
addr /= AMDGPU_GPU_PAGE_SIZE;
mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
return -EINVAL;
*bo = mapping->bo_va->base.bo;
*map = mapping;
/* Double check that the BO is reserved by this CS */
if (READ_ONCE((*bo)->tbo.resv->lock.ctx) != &parser->ticket)
return -EINVAL;
if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) {
(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
if (r)
return r;
}
return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
}