blob: 38bb1cfe4e8c566153c138b61babb7b59bc58059 [file] [log] [blame]
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/* Copyright (c) 2019 Mellanox Technologies. All rights reserved */
#include <linux/ptp_clock_kernel.h>
#include <linux/clocksource.h>
#include <linux/timecounter.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/rhashtable.h>
#include <linux/ptp_classify.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/net_tstamp.h>
#include "spectrum.h"
#include "spectrum_ptp.h"
#include "core.h"
#define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT 29
#define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ 156257 /* 6.4nSec */
#define MLXSW_SP1_PTP_CLOCK_MASK 64
#define MLXSW_SP1_PTP_HT_GC_INTERVAL 500 /* ms */
/* How long, approximately, should the unmatched entries stay in the hash table
* before they are collected. Should be evenly divisible by the GC interval.
*/
#define MLXSW_SP1_PTP_HT_GC_TIMEOUT 1000 /* ms */
struct mlxsw_sp_ptp_state {
struct mlxsw_sp *mlxsw_sp;
struct rhltable unmatched_ht;
spinlock_t unmatched_lock; /* protects the HT */
struct delayed_work ht_gc_dw;
u32 gc_cycle;
};
struct mlxsw_sp1_ptp_key {
u8 local_port;
u8 message_type;
u16 sequence_id;
u8 domain_number;
bool ingress;
};
struct mlxsw_sp1_ptp_unmatched {
struct mlxsw_sp1_ptp_key key;
struct rhlist_head ht_node;
struct rcu_head rcu;
struct sk_buff *skb;
u64 timestamp;
u32 gc_cycle;
};
static const struct rhashtable_params mlxsw_sp1_ptp_unmatched_ht_params = {
.key_len = sizeof_field(struct mlxsw_sp1_ptp_unmatched, key),
.key_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, key),
.head_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, ht_node),
};
struct mlxsw_sp_ptp_clock {
struct mlxsw_core *core;
spinlock_t lock; /* protect this structure */
struct cyclecounter cycles;
struct timecounter tc;
u32 nominal_c_mult;
struct ptp_clock *ptp;
struct ptp_clock_info ptp_info;
unsigned long overflow_period;
struct delayed_work overflow_work;
};
static u64 __mlxsw_sp1_ptp_read_frc(struct mlxsw_sp_ptp_clock *clock,
struct ptp_system_timestamp *sts)
{
struct mlxsw_core *mlxsw_core = clock->core;
u32 frc_h1, frc_h2, frc_l;
frc_h1 = mlxsw_core_read_frc_h(mlxsw_core);
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
frc_h2 = mlxsw_core_read_frc_h(mlxsw_core);
if (frc_h1 != frc_h2) {
/* wrap around */
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
}
return (u64) frc_l | (u64) frc_h2 << 32;
}
static u64 mlxsw_sp1_ptp_read_frc(const struct cyclecounter *cc)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(cc, struct mlxsw_sp_ptp_clock, cycles);
return __mlxsw_sp1_ptp_read_frc(clock, NULL) & cc->mask;
}
static int
mlxsw_sp1_ptp_phc_adjfreq(struct mlxsw_sp_ptp_clock *clock, int freq_adj)
{
struct mlxsw_core *mlxsw_core = clock->core;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ,
freq_adj, 0);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static u64 mlxsw_sp1_ptp_ns2cycles(const struct timecounter *tc, u64 nsec)
{
u64 cycles = (u64) nsec;
cycles <<= tc->cc->shift;
cycles = div_u64(cycles, tc->cc->mult);
return cycles;
}
static int
mlxsw_sp1_ptp_phc_settime(struct mlxsw_sp_ptp_clock *clock, u64 nsec)
{
struct mlxsw_core *mlxsw_core = clock->core;
u64 next_sec, next_sec_in_nsec, cycles;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
char mtpps_pl[MLXSW_REG_MTPPS_LEN];
int err;
next_sec = div_u64(nsec, NSEC_PER_SEC) + 1;
next_sec_in_nsec = next_sec * NSEC_PER_SEC;
spin_lock_bh(&clock->lock);
cycles = mlxsw_sp1_ptp_ns2cycles(&clock->tc, next_sec_in_nsec);
spin_unlock_bh(&clock->lock);
mlxsw_reg_mtpps_vpin_pack(mtpps_pl, cycles);
err = mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtpps), mtpps_pl);
if (err)
return err;
mlxsw_reg_mtutc_pack(mtutc_pl,
MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC,
0, next_sec);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static int mlxsw_sp1_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
int neg_adj = 0;
u32 diff;
u64 adj;
s32 ppb;
ppb = scaled_ppm_to_ppb(scaled_ppm);
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
adj = clock->nominal_c_mult;
adj *= ppb;
diff = div_u64(adj, NSEC_PER_SEC);
spin_lock_bh(&clock->lock);
timecounter_read(&clock->tc);
clock->cycles.mult = neg_adj ? clock->nominal_c_mult - diff :
clock->nominal_c_mult + diff;
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_adjfreq(clock, neg_adj ? -ppb : ppb);
}
static int mlxsw_sp1_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec;
spin_lock_bh(&clock->lock);
timecounter_adjtime(&clock->tc, delta);
nsec = timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static int mlxsw_sp1_ptp_gettimex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 cycles, nsec;
spin_lock_bh(&clock->lock);
cycles = __mlxsw_sp1_ptp_read_frc(clock, sts);
nsec = timecounter_cyc2time(&clock->tc, cycles);
spin_unlock_bh(&clock->lock);
*ts = ns_to_timespec64(nsec);
return 0;
}
static int mlxsw_sp1_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec = timespec64_to_ns(ts);
spin_lock_bh(&clock->lock);
timecounter_init(&clock->tc, &clock->cycles, nsec);
nsec = timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static const struct ptp_clock_info mlxsw_sp1_ptp_clock_info = {
.owner = THIS_MODULE,
.name = "mlxsw_sp_clock",
.max_adj = 100000000,
.adjfine = mlxsw_sp1_ptp_adjfine,
.adjtime = mlxsw_sp1_ptp_adjtime,
.gettimex64 = mlxsw_sp1_ptp_gettimex,
.settime64 = mlxsw_sp1_ptp_settime,
};
static void mlxsw_sp1_ptp_clock_overflow(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp_ptp_clock *clock;
clock = container_of(dwork, struct mlxsw_sp_ptp_clock, overflow_work);
spin_lock_bh(&clock->lock);
timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
mlxsw_core_schedule_dw(&clock->overflow_work, clock->overflow_period);
}
struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
u64 overflow_cycles, nsec, frac = 0;
struct mlxsw_sp_ptp_clock *clock;
int err;
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock)
return ERR_PTR(-ENOMEM);
spin_lock_init(&clock->lock);
clock->cycles.read = mlxsw_sp1_ptp_read_frc;
clock->cycles.shift = MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT;
clock->cycles.mult = clocksource_khz2mult(MLXSW_SP1_PTP_CLOCK_FREQ_KHZ,
clock->cycles.shift);
clock->nominal_c_mult = clock->cycles.mult;
clock->cycles.mask = CLOCKSOURCE_MASK(MLXSW_SP1_PTP_CLOCK_MASK);
clock->core = mlxsw_sp->core;
timecounter_init(&clock->tc, &clock->cycles,
ktime_to_ns(ktime_get_real()));
/* Calculate period in seconds to call the overflow watchdog - to make
* sure counter is checked at least twice every wrap around.
* The period is calculated as the minimum between max HW cycles count
* (The clock source mask) and max amount of cycles that can be
* multiplied by clock multiplier where the result doesn't exceed
* 64bits.
*/
overflow_cycles = div64_u64(~0ULL >> 1, clock->cycles.mult);
overflow_cycles = min(overflow_cycles, div_u64(clock->cycles.mask, 3));
nsec = cyclecounter_cyc2ns(&clock->cycles, overflow_cycles, 0, &frac);
clock->overflow_period = nsecs_to_jiffies(nsec);
INIT_DELAYED_WORK(&clock->overflow_work, mlxsw_sp1_ptp_clock_overflow);
mlxsw_core_schedule_dw(&clock->overflow_work, 0);
clock->ptp_info = mlxsw_sp1_ptp_clock_info;
clock->ptp = ptp_clock_register(&clock->ptp_info, dev);
if (IS_ERR(clock->ptp)) {
err = PTR_ERR(clock->ptp);
dev_err(dev, "ptp_clock_register failed %d\n", err);
goto err_ptp_clock_register;
}
return clock;
err_ptp_clock_register:
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
return ERR_PTR(err);
}
void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
ptp_clock_unregister(clock->ptp);
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
}
static int mlxsw_sp_ptp_parse(struct sk_buff *skb,
u8 *p_domain_number,
u8 *p_message_type,
u16 *p_sequence_id)
{
unsigned int offset = 0;
unsigned int ptp_class;
u8 *data;
data = skb_mac_header(skb);
ptp_class = ptp_classify_raw(skb);
switch (ptp_class & PTP_CLASS_VMASK) {
case PTP_CLASS_V1:
case PTP_CLASS_V2:
break;
default:
return -ERANGE;
}
if (ptp_class & PTP_CLASS_VLAN)
offset += VLAN_HLEN;
switch (ptp_class & PTP_CLASS_PMASK) {
case PTP_CLASS_IPV4:
offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
break;
case PTP_CLASS_IPV6:
offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
break;
case PTP_CLASS_L2:
offset += ETH_HLEN;
break;
default:
return -ERANGE;
}
/* PTP header is 34 bytes. */
if (skb->len < offset + 34)
return -EINVAL;
*p_message_type = data[offset] & 0x0f;
*p_domain_number = data[offset + 4];
*p_sequence_id = (u16)(data[offset + 30]) << 8 | data[offset + 31];
return 0;
}
/* Returns NULL on successful insertion, a pointer on conflict, or an ERR_PTR on
* error.
*/
static int
mlxsw_sp1_ptp_unmatched_save(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb,
u64 timestamp)
{
int cycles = MLXSW_SP1_PTP_HT_GC_TIMEOUT / MLXSW_SP1_PTP_HT_GC_INTERVAL;
struct mlxsw_sp_ptp_state *ptp_state = mlxsw_sp->ptp_state;
struct mlxsw_sp1_ptp_unmatched *unmatched;
int err;
unmatched = kzalloc(sizeof(*unmatched), GFP_ATOMIC);
if (!unmatched)
return -ENOMEM;
unmatched->key = key;
unmatched->skb = skb;
unmatched->timestamp = timestamp;
unmatched->gc_cycle = mlxsw_sp->ptp_state->gc_cycle + cycles;
err = rhltable_insert(&ptp_state->unmatched_ht, &unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
if (err)
kfree(unmatched);
return err;
}
static struct mlxsw_sp1_ptp_unmatched *
mlxsw_sp1_ptp_unmatched_lookup(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key, int *p_length)
{
struct mlxsw_sp1_ptp_unmatched *unmatched, *last = NULL;
struct rhlist_head *tmp, *list;
int length = 0;
list = rhltable_lookup(&mlxsw_sp->ptp_state->unmatched_ht, &key,
mlxsw_sp1_ptp_unmatched_ht_params);
rhl_for_each_entry_rcu(unmatched, tmp, list, ht_node) {
last = unmatched;
length++;
}
*p_length = length;
return last;
}
static int
mlxsw_sp1_ptp_unmatched_remove(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
return rhltable_remove(&mlxsw_sp->ptp_state->unmatched_ht,
&unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
}
/* This function is called in the following scenarios:
*
* 1) When a packet is matched with its timestamp.
* 2) In several situation when it is necessary to immediately pass on
* an SKB without a timestamp.
* 3) From GC indirectly through mlxsw_sp1_ptp_unmatched_finish().
* This case is similar to 2) above.
*/
static void mlxsw_sp1_ptp_packet_finish(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port,
bool ingress,
struct skb_shared_hwtstamps *hwtstamps)
{
struct mlxsw_sp_port *mlxsw_sp_port;
/* Between capturing the packet and finishing it, there is a window of
* opportunity for the originating port to go away (e.g. due to a
* split). Also make sure the SKB device reference is still valid.
*/
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!(mlxsw_sp_port && (!skb->dev || skb->dev == mlxsw_sp_port->dev))) {
dev_kfree_skb_any(skb);
return;
}
if (ingress) {
if (hwtstamps)
*skb_hwtstamps(skb) = *hwtstamps;
mlxsw_sp_rx_listener_no_mark_func(skb, local_port, mlxsw_sp);
} else {
/* skb_tstamp_tx() allows hwtstamps to be NULL. */
skb_tstamp_tx(skb, hwtstamps);
dev_kfree_skb_any(skb);
}
}
static void mlxsw_sp1_packet_timestamp(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb,
u64 timestamp)
{
struct skb_shared_hwtstamps hwtstamps;
u64 nsec;
spin_lock_bh(&mlxsw_sp->clock->lock);
nsec = timecounter_cyc2time(&mlxsw_sp->clock->tc, timestamp);
spin_unlock_bh(&mlxsw_sp->clock->lock);
hwtstamps.hwtstamp = ns_to_ktime(nsec);
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb,
key.local_port, key.ingress, &hwtstamps);
}
static void
mlxsw_sp1_ptp_unmatched_finish(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
if (unmatched->skb && unmatched->timestamp)
mlxsw_sp1_packet_timestamp(mlxsw_sp, unmatched->key,
unmatched->skb,
unmatched->timestamp);
else if (unmatched->skb)
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, unmatched->skb,
unmatched->key.local_port,
unmatched->key.ingress, NULL);
kfree_rcu(unmatched, rcu);
}
static void mlxsw_sp1_ptp_unmatched_free_fn(void *ptr, void *arg)
{
struct mlxsw_sp1_ptp_unmatched *unmatched = ptr;
/* This is invoked at a point where the ports are gone already. Nothing
* to do with whatever is left in the HT but to free it.
*/
if (unmatched->skb)
dev_kfree_skb_any(unmatched->skb);
kfree_rcu(unmatched, rcu);
}
static void mlxsw_sp1_ptp_got_piece(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb, u64 timestamp)
{
struct mlxsw_sp1_ptp_unmatched *unmatched;
int length;
int err;
rcu_read_lock();
spin_lock(&mlxsw_sp->ptp_state->unmatched_lock);
unmatched = mlxsw_sp1_ptp_unmatched_lookup(mlxsw_sp, key, &length);
if (skb && unmatched && unmatched->timestamp) {
unmatched->skb = skb;
} else if (timestamp && unmatched && unmatched->skb) {
unmatched->timestamp = timestamp;
} else {
/* Either there is no entry to match, or one that is there is
* incompatible.
*/
if (length < 100)
err = mlxsw_sp1_ptp_unmatched_save(mlxsw_sp, key,
skb, timestamp);
else
err = -E2BIG;
if (err && skb)
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb,
key.local_port,
key.ingress, NULL);
unmatched = NULL;
}
if (unmatched) {
err = mlxsw_sp1_ptp_unmatched_remove(mlxsw_sp, unmatched);
WARN_ON_ONCE(err);
}
spin_unlock(&mlxsw_sp->ptp_state->unmatched_lock);
if (unmatched)
mlxsw_sp1_ptp_unmatched_finish(mlxsw_sp, unmatched);
rcu_read_unlock();
}
static void mlxsw_sp1_ptp_got_packet(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port,
bool ingress)
{
struct mlxsw_sp_port *mlxsw_sp_port;
struct mlxsw_sp1_ptp_key key;
u8 types;
int err;
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!mlxsw_sp_port)
goto immediate;
types = ingress ? mlxsw_sp_port->ptp.ing_types :
mlxsw_sp_port->ptp.egr_types;
if (!types)
goto immediate;
memset(&key, 0, sizeof(key));
key.local_port = local_port;
key.ingress = ingress;
err = mlxsw_sp_ptp_parse(skb, &key.domain_number, &key.message_type,
&key.sequence_id);
if (err)
goto immediate;
/* For packets whose timestamping was not enabled on this port, don't
* bother trying to match the timestamp.
*/
if (!((1 << key.message_type) & types))
goto immediate;
mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, skb, 0);
return;
immediate:
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, local_port, ingress, NULL);
}
void mlxsw_sp1_ptp_got_timestamp(struct mlxsw_sp *mlxsw_sp, bool ingress,
u8 local_port, u8 message_type,
u8 domain_number, u16 sequence_id,
u64 timestamp)
{
struct mlxsw_sp_port *mlxsw_sp_port;
struct mlxsw_sp1_ptp_key key;
u8 types;
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!mlxsw_sp_port)
return;
types = ingress ? mlxsw_sp_port->ptp.ing_types :
mlxsw_sp_port->ptp.egr_types;
/* For message types whose timestamping was not enabled on this port,
* don't bother with the timestamp.
*/
if (!((1 << message_type) & types))
return;
memset(&key, 0, sizeof(key));
key.local_port = local_port;
key.domain_number = domain_number;
key.message_type = message_type;
key.sequence_id = sequence_id;
key.ingress = ingress;
mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, NULL, timestamp);
}
void mlxsw_sp1_ptp_receive(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb,
u8 local_port)
{
skb_reset_mac_header(skb);
mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, true);
}
void mlxsw_sp1_ptp_transmitted(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port)
{
mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, false);
}
static void
mlxsw_sp1_ptp_ht_gc_collect(struct mlxsw_sp_ptp_state *ptp_state,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
int err;
/* If an unmatched entry has an SKB, it has to be handed over to the
* networking stack. This is usually done from a trap handler, which is
* invoked in a softirq context. Here we are going to do it in process
* context. If that were to be interrupted by a softirq, it could cause
* a deadlock when an attempt is made to take an already-taken lock
* somewhere along the sending path. Disable softirqs to prevent this.
*/
local_bh_disable();
spin_lock(&ptp_state->unmatched_lock);
err = rhltable_remove(&ptp_state->unmatched_ht, &unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
spin_unlock(&ptp_state->unmatched_lock);
if (err)
/* The packet was matched with timestamp during the walk. */
goto out;
/* mlxsw_sp1_ptp_unmatched_finish() invokes netif_receive_skb(). While
* the comment at that function states that it can only be called in
* soft IRQ context, this pattern of local_bh_disable() +
* netif_receive_skb(), in process context, is seen elsewhere in the
* kernel, notably in pktgen.
*/
mlxsw_sp1_ptp_unmatched_finish(ptp_state->mlxsw_sp, unmatched);
out:
local_bh_enable();
}
static void mlxsw_sp1_ptp_ht_gc(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp1_ptp_unmatched *unmatched;
struct mlxsw_sp_ptp_state *ptp_state;
struct rhashtable_iter iter;
u32 gc_cycle;
void *obj;
ptp_state = container_of(dwork, struct mlxsw_sp_ptp_state, ht_gc_dw);
gc_cycle = ptp_state->gc_cycle++;
rhltable_walk_enter(&ptp_state->unmatched_ht, &iter);
rhashtable_walk_start(&iter);
while ((obj = rhashtable_walk_next(&iter))) {
if (IS_ERR(obj))
continue;
unmatched = obj;
if (unmatched->gc_cycle <= gc_cycle)
mlxsw_sp1_ptp_ht_gc_collect(ptp_state, unmatched);
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw,
MLXSW_SP1_PTP_HT_GC_INTERVAL);
}
static int mlxsw_sp_ptp_mtptpt_set(struct mlxsw_sp *mlxsw_sp,
enum mlxsw_reg_mtptpt_trap_id trap_id,
u16 message_type)
{
char mtptpt_pl[MLXSW_REG_MTPTPT_LEN];
mlxsw_reg_mtptptp_pack(mtptpt_pl, trap_id, message_type);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtptpt), mtptpt_pl);
}
static int mlxsw_sp1_ptp_set_fifo_clr_on_trap(struct mlxsw_sp *mlxsw_sp,
bool clr)
{
char mogcr_pl[MLXSW_REG_MOGCR_LEN] = {0};
int err;
err = mlxsw_reg_query(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl);
if (err)
return err;
mlxsw_reg_mogcr_ptp_iftc_set(mogcr_pl, clr);
mlxsw_reg_mogcr_ptp_eftc_set(mogcr_pl, clr);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl);
}
static int mlxsw_sp1_ptp_mtpppc_set(struct mlxsw_sp *mlxsw_sp,
u16 ing_types, u16 egr_types)
{
char mtpppc_pl[MLXSW_REG_MTPPPC_LEN];
mlxsw_reg_mtpppc_pack(mtpppc_pl, ing_types, egr_types);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtpppc), mtpppc_pl);
}
struct mlxsw_sp1_ptp_shaper_params {
u32 ethtool_speed;
enum mlxsw_reg_qpsc_port_speed port_speed;
u8 shaper_time_exp;
u8 shaper_time_mantissa;
u8 shaper_inc;
u8 shaper_bs;
u8 port_to_shaper_credits;
int ing_timestamp_inc;
int egr_timestamp_inc;
};
static const struct mlxsw_sp1_ptp_shaper_params
mlxsw_sp1_ptp_shaper_params[] = {
{
.ethtool_speed = SPEED_100,
.port_speed = MLXSW_REG_QPSC_PORT_SPEED_100M,
.shaper_time_exp = 4,
.shaper_time_mantissa = 12,
.shaper_inc = 9,
.shaper_bs = 1,
.port_to_shaper_credits = 1,
.ing_timestamp_inc = -313,
.egr_timestamp_inc = 313,
},
{
.ethtool_speed = SPEED_1000,
.port_speed = MLXSW_REG_QPSC_PORT_SPEED_1G,
.shaper_time_exp = 0,
.shaper_time_mantissa = 12,
.shaper_inc = 6,
.shaper_bs = 0,
.port_to_shaper_credits = 1,
.ing_timestamp_inc = -35,
.egr_timestamp_inc = 35,
},
{
.ethtool_speed = SPEED_10000,
.port_speed = MLXSW_REG_QPSC_PORT_SPEED_10G,
.shaper_time_exp = 0,
.shaper_time_mantissa = 2,
.shaper_inc = 14,
.shaper_bs = 1,
.port_to_shaper_credits = 1,
.ing_timestamp_inc = -11,
.egr_timestamp_inc = 11,
},
{
.ethtool_speed = SPEED_25000,
.port_speed = MLXSW_REG_QPSC_PORT_SPEED_25G,
.shaper_time_exp = 0,
.shaper_time_mantissa = 0,
.shaper_inc = 11,
.shaper_bs = 1,
.port_to_shaper_credits = 1,
.ing_timestamp_inc = -14,
.egr_timestamp_inc = 14,
},
};
#define MLXSW_SP1_PTP_SHAPER_PARAMS_LEN ARRAY_SIZE(mlxsw_sp1_ptp_shaper_params)
static int mlxsw_sp1_ptp_shaper_params_set(struct mlxsw_sp *mlxsw_sp)
{
const struct mlxsw_sp1_ptp_shaper_params *params;
char qpsc_pl[MLXSW_REG_QPSC_LEN];
int i, err;
for (i = 0; i < MLXSW_SP1_PTP_SHAPER_PARAMS_LEN; i++) {
params = &mlxsw_sp1_ptp_shaper_params[i];
mlxsw_reg_qpsc_pack(qpsc_pl, params->port_speed,
params->shaper_time_exp,
params->shaper_time_mantissa,
params->shaper_inc, params->shaper_bs,
params->port_to_shaper_credits,
params->ing_timestamp_inc,
params->egr_timestamp_inc);
err = mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(qpsc), qpsc_pl);
if (err)
return err;
}
return 0;
}
struct mlxsw_sp_ptp_state *mlxsw_sp1_ptp_init(struct mlxsw_sp *mlxsw_sp)
{
struct mlxsw_sp_ptp_state *ptp_state;
u16 message_type;
int err;
err = mlxsw_sp1_ptp_shaper_params_set(mlxsw_sp);
if (err)
return ERR_PTR(err);
ptp_state = kzalloc(sizeof(*ptp_state), GFP_KERNEL);
if (!ptp_state)
return ERR_PTR(-ENOMEM);
ptp_state->mlxsw_sp = mlxsw_sp;
spin_lock_init(&ptp_state->unmatched_lock);
err = rhltable_init(&ptp_state->unmatched_ht,
&mlxsw_sp1_ptp_unmatched_ht_params);
if (err)
goto err_hashtable_init;
/* Delive these message types as PTP0. */
message_type = BIT(MLXSW_SP_PTP_MESSAGE_TYPE_SYNC) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_DELAY_REQ) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_REQ) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_RESP);
err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
message_type);
if (err)
goto err_mtptpt_set;
/* Everything else is PTP1. */
message_type = ~message_type;
err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
message_type);
if (err)
goto err_mtptpt1_set;
err = mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, true);
if (err)
goto err_fifo_clr;
INIT_DELAYED_WORK(&ptp_state->ht_gc_dw, mlxsw_sp1_ptp_ht_gc);
mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw,
MLXSW_SP1_PTP_HT_GC_INTERVAL);
return ptp_state;
err_fifo_clr:
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0);
err_mtptpt1_set:
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0);
err_mtptpt_set:
rhltable_destroy(&ptp_state->unmatched_ht);
err_hashtable_init:
kfree(ptp_state);
return ERR_PTR(err);
}
void mlxsw_sp1_ptp_fini(struct mlxsw_sp_ptp_state *ptp_state)
{
struct mlxsw_sp *mlxsw_sp = ptp_state->mlxsw_sp;
cancel_delayed_work_sync(&ptp_state->ht_gc_dw);
mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp, 0, 0);
mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, false);
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0);
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0);
rhltable_free_and_destroy(&ptp_state->unmatched_ht,
&mlxsw_sp1_ptp_unmatched_free_fn, NULL);
kfree(ptp_state);
}
int mlxsw_sp1_ptp_hwtstamp_get(struct mlxsw_sp_port *mlxsw_sp_port,
struct hwtstamp_config *config)
{
*config = mlxsw_sp_port->ptp.hwtstamp_config;
return 0;
}
static int mlxsw_sp_ptp_get_message_types(const struct hwtstamp_config *config,
u16 *p_ing_types, u16 *p_egr_types,
enum hwtstamp_rx_filters *p_rx_filter)
{
enum hwtstamp_rx_filters rx_filter = config->rx_filter;
enum hwtstamp_tx_types tx_type = config->tx_type;
u16 ing_types = 0x00;
u16 egr_types = 0x00;
switch (tx_type) {
case HWTSTAMP_TX_OFF:
egr_types = 0x00;
break;
case HWTSTAMP_TX_ON:
egr_types = 0xff;
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
return -ERANGE;
}
switch (rx_filter) {
case HWTSTAMP_FILTER_NONE:
ing_types = 0x00;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
ing_types = 0x01;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ing_types = 0x02;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
ing_types = 0x0f;
break;
case HWTSTAMP_FILTER_ALL:
ing_types = 0xff;
break;
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_NTP_ALL:
return -ERANGE;
}
*p_ing_types = ing_types;
*p_egr_types = egr_types;
*p_rx_filter = rx_filter;
return 0;
}
static int mlxsw_sp1_ptp_mtpppc_update(struct mlxsw_sp_port *mlxsw_sp_port,
u16 ing_types, u16 egr_types)
{
struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp;
struct mlxsw_sp_port *tmp;
u16 orig_ing_types = 0;
u16 orig_egr_types = 0;
int err;
int i;
/* MTPPPC configures timestamping globally, not per port. Find the
* configuration that contains all configured timestamping requests.
*/
for (i = 1; i < mlxsw_core_max_ports(mlxsw_sp->core); i++) {
tmp = mlxsw_sp->ports[i];
if (tmp) {
orig_ing_types |= tmp->ptp.ing_types;
orig_egr_types |= tmp->ptp.egr_types;
}
if (tmp && tmp != mlxsw_sp_port) {
ing_types |= tmp->ptp.ing_types;
egr_types |= tmp->ptp.egr_types;
}
}
if ((ing_types || egr_types) && !(orig_ing_types || orig_egr_types)) {
err = mlxsw_sp_nve_inc_parsing_depth_get(mlxsw_sp);
if (err) {
netdev_err(mlxsw_sp_port->dev, "Failed to increase parsing depth");
return err;
}
}
if (!(ing_types || egr_types) && (orig_ing_types || orig_egr_types))
mlxsw_sp_nve_inc_parsing_depth_put(mlxsw_sp);
return mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp_port->mlxsw_sp,
ing_types, egr_types);
}
static bool mlxsw_sp1_ptp_hwtstamp_enabled(struct mlxsw_sp_port *mlxsw_sp_port)
{
return mlxsw_sp_port->ptp.ing_types || mlxsw_sp_port->ptp.egr_types;
}
static int
mlxsw_sp1_ptp_port_shaper_set(struct mlxsw_sp_port *mlxsw_sp_port, bool enable)
{
struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp;
char qeec_pl[MLXSW_REG_QEEC_LEN];
mlxsw_reg_qeec_ptps_pack(qeec_pl, mlxsw_sp_port->local_port, enable);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(qeec), qeec_pl);
}
static int mlxsw_sp1_ptp_port_shaper_check(struct mlxsw_sp_port *mlxsw_sp_port)
{
const struct mlxsw_sp_port_type_speed_ops *port_type_speed_ops;
struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp;
char ptys_pl[MLXSW_REG_PTYS_LEN];
u32 eth_proto_oper, speed;
bool ptps = false;
int err, i;
if (!mlxsw_sp1_ptp_hwtstamp_enabled(mlxsw_sp_port))
return mlxsw_sp1_ptp_port_shaper_set(mlxsw_sp_port, false);
port_type_speed_ops = mlxsw_sp->port_type_speed_ops;
port_type_speed_ops->reg_ptys_eth_pack(mlxsw_sp, ptys_pl,
mlxsw_sp_port->local_port, 0,
false);
err = mlxsw_reg_query(mlxsw_sp->core, MLXSW_REG(ptys), ptys_pl);
if (err)
return err;
port_type_speed_ops->reg_ptys_eth_unpack(mlxsw_sp, ptys_pl, NULL, NULL,
&eth_proto_oper);
speed = port_type_speed_ops->from_ptys_speed(mlxsw_sp, eth_proto_oper);
for (i = 0; i < MLXSW_SP1_PTP_SHAPER_PARAMS_LEN; i++) {
if (mlxsw_sp1_ptp_shaper_params[i].ethtool_speed == speed) {
ptps = true;
break;
}
}
return mlxsw_sp1_ptp_port_shaper_set(mlxsw_sp_port, ptps);
}
void mlxsw_sp1_ptp_shaper_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp_port *mlxsw_sp_port;
int err;
mlxsw_sp_port = container_of(dwork, struct mlxsw_sp_port,
ptp.shaper_dw);
if (!mlxsw_sp1_ptp_hwtstamp_enabled(mlxsw_sp_port))
return;
err = mlxsw_sp1_ptp_port_shaper_check(mlxsw_sp_port);
if (err)
netdev_err(mlxsw_sp_port->dev, "Failed to set up PTP shaper\n");
}
int mlxsw_sp1_ptp_hwtstamp_set(struct mlxsw_sp_port *mlxsw_sp_port,
struct hwtstamp_config *config)
{
enum hwtstamp_rx_filters rx_filter;
u16 ing_types;
u16 egr_types;
int err;
err = mlxsw_sp_ptp_get_message_types(config, &ing_types, &egr_types,
&rx_filter);
if (err)
return err;
err = mlxsw_sp1_ptp_mtpppc_update(mlxsw_sp_port, ing_types, egr_types);
if (err)
return err;
mlxsw_sp_port->ptp.hwtstamp_config = *config;
mlxsw_sp_port->ptp.ing_types = ing_types;
mlxsw_sp_port->ptp.egr_types = egr_types;
err = mlxsw_sp1_ptp_port_shaper_check(mlxsw_sp_port);
if (err)
return err;
/* Notify the ioctl caller what we are actually timestamping. */
config->rx_filter = rx_filter;
return 0;
}
int mlxsw_sp1_ptp_get_ts_info(struct mlxsw_sp *mlxsw_sp,
struct ethtool_ts_info *info)
{
info->phc_index = ptp_clock_index(mlxsw_sp->clock->ptp);
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = BIT(HWTSTAMP_TX_OFF) |
BIT(HWTSTAMP_TX_ON);
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_ALL);
return 0;
}