|  | /* | 
|  | *		INETPEER - A storage for permanent information about peers | 
|  | * | 
|  | *  This source is covered by the GNU GPL, the same as all kernel sources. | 
|  | * | 
|  | *  Authors:	Andrey V. Savochkin <saw@msu.ru> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/inetpeer.h> | 
|  | #include <net/secure_seq.h> | 
|  |  | 
|  | /* | 
|  | *  Theory of operations. | 
|  | *  We keep one entry for each peer IP address.  The nodes contains long-living | 
|  | *  information about the peer which doesn't depend on routes. | 
|  | *  At this moment this information consists only of ID field for the next | 
|  | *  outgoing IP packet.  This field is incremented with each packet as encoded | 
|  | *  in inet_getid() function (include/net/inetpeer.h). | 
|  | *  At the moment of writing this notes identifier of IP packets is generated | 
|  | *  to be unpredictable using this code only for packets subjected | 
|  | *  (actually or potentially) to defragmentation.  I.e. DF packets less than | 
|  | *  PMTU in size uses a constant ID and do not use this code (see | 
|  | *  ip_select_ident() in include/net/ip.h). | 
|  | * | 
|  | *  Route cache entries hold references to our nodes. | 
|  | *  New cache entries get references via lookup by destination IP address in | 
|  | *  the avl tree.  The reference is grabbed only when it's needed i.e. only | 
|  | *  when we try to output IP packet which needs an unpredictable ID (see | 
|  | *  __ip_select_ident() in net/ipv4/route.c). | 
|  | *  Nodes are removed only when reference counter goes to 0. | 
|  | *  When it's happened the node may be removed when a sufficient amount of | 
|  | *  time has been passed since its last use.  The less-recently-used entry can | 
|  | *  also be removed if the pool is overloaded i.e. if the total amount of | 
|  | *  entries is greater-or-equal than the threshold. | 
|  | * | 
|  | *  Node pool is organised as an AVL tree. | 
|  | *  Such an implementation has been chosen not just for fun.  It's a way to | 
|  | *  prevent easy and efficient DoS attacks by creating hash collisions.  A huge | 
|  | *  amount of long living nodes in a single hash slot would significantly delay | 
|  | *  lookups performed with disabled BHs. | 
|  | * | 
|  | *  Serialisation issues. | 
|  | *  1.  Nodes may appear in the tree only with the pool lock held. | 
|  | *  2.  Nodes may disappear from the tree only with the pool lock held | 
|  | *      AND reference count being 0. | 
|  | *  3.  Global variable peer_total is modified under the pool lock. | 
|  | *  4.  struct inet_peer fields modification: | 
|  | *		avl_left, avl_right, avl_parent, avl_height: pool lock | 
|  | *		refcnt: atomically against modifications on other CPU; | 
|  | *		   usually under some other lock to prevent node disappearing | 
|  | *		daddr: unchangeable | 
|  | *		ip_id_count: atomic value (no lock needed) | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *peer_cachep __read_mostly; | 
|  |  | 
|  | static LIST_HEAD(gc_list); | 
|  | static const int gc_delay = 60 * HZ; | 
|  | static struct delayed_work gc_work; | 
|  | static DEFINE_SPINLOCK(gc_lock); | 
|  |  | 
|  | #define node_height(x) x->avl_height | 
|  |  | 
|  | #define peer_avl_empty ((struct inet_peer *)&peer_fake_node) | 
|  | #define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node) | 
|  | static const struct inet_peer peer_fake_node = { | 
|  | .avl_left	= peer_avl_empty_rcu, | 
|  | .avl_right	= peer_avl_empty_rcu, | 
|  | .avl_height	= 0 | 
|  | }; | 
|  |  | 
|  | struct inet_peer_base { | 
|  | struct inet_peer __rcu *root; | 
|  | seqlock_t	lock; | 
|  | int		total; | 
|  | }; | 
|  |  | 
|  | static struct inet_peer_base v4_peers = { | 
|  | .root		= peer_avl_empty_rcu, | 
|  | .lock		= __SEQLOCK_UNLOCKED(v4_peers.lock), | 
|  | .total		= 0, | 
|  | }; | 
|  |  | 
|  | static struct inet_peer_base v6_peers = { | 
|  | .root		= peer_avl_empty_rcu, | 
|  | .lock		= __SEQLOCK_UNLOCKED(v6_peers.lock), | 
|  | .total		= 0, | 
|  | }; | 
|  |  | 
|  | #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */ | 
|  |  | 
|  | /* Exported for sysctl_net_ipv4.  */ | 
|  | int inet_peer_threshold __read_mostly = 65536 + 128;	/* start to throw entries more | 
|  | * aggressively at this stage */ | 
|  | int inet_peer_minttl __read_mostly = 120 * HZ;	/* TTL under high load: 120 sec */ | 
|  | int inet_peer_maxttl __read_mostly = 10 * 60 * HZ;	/* usual time to live: 10 min */ | 
|  |  | 
|  | static void inetpeer_gc_worker(struct work_struct *work) | 
|  | { | 
|  | struct inet_peer *p, *n; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | spin_lock_bh(&gc_lock); | 
|  | list_replace_init(&gc_list, &list); | 
|  | spin_unlock_bh(&gc_lock); | 
|  |  | 
|  | if (list_empty(&list)) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry_safe(p, n, &list, gc_list) { | 
|  |  | 
|  | if(need_resched()) | 
|  | cond_resched(); | 
|  |  | 
|  | if (p->avl_left != peer_avl_empty) { | 
|  | list_add_tail(&p->avl_left->gc_list, &list); | 
|  | p->avl_left = peer_avl_empty; | 
|  | } | 
|  |  | 
|  | if (p->avl_right != peer_avl_empty) { | 
|  | list_add_tail(&p->avl_right->gc_list, &list); | 
|  | p->avl_right = peer_avl_empty; | 
|  | } | 
|  |  | 
|  | n = list_entry(p->gc_list.next, struct inet_peer, gc_list); | 
|  |  | 
|  | if (!atomic_read(&p->refcnt)) { | 
|  | list_del(&p->gc_list); | 
|  | kmem_cache_free(peer_cachep, p); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (list_empty(&list)) | 
|  | return; | 
|  |  | 
|  | spin_lock_bh(&gc_lock); | 
|  | list_splice(&list, &gc_list); | 
|  | spin_unlock_bh(&gc_lock); | 
|  |  | 
|  | schedule_delayed_work(&gc_work, gc_delay); | 
|  | } | 
|  |  | 
|  | /* Called from ip_output.c:ip_init  */ | 
|  | void __init inet_initpeers(void) | 
|  | { | 
|  | struct sysinfo si; | 
|  |  | 
|  | /* Use the straight interface to information about memory. */ | 
|  | si_meminfo(&si); | 
|  | /* The values below were suggested by Alexey Kuznetsov | 
|  | * <kuznet@ms2.inr.ac.ru>.  I don't have any opinion about the values | 
|  | * myself.  --SAW | 
|  | */ | 
|  | if (si.totalram <= (32768*1024)/PAGE_SIZE) | 
|  | inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */ | 
|  | if (si.totalram <= (16384*1024)/PAGE_SIZE) | 
|  | inet_peer_threshold >>= 1; /* about 512KB */ | 
|  | if (si.totalram <= (8192*1024)/PAGE_SIZE) | 
|  | inet_peer_threshold >>= 2; /* about 128KB */ | 
|  |  | 
|  | peer_cachep = kmem_cache_create("inet_peer_cache", | 
|  | sizeof(struct inet_peer), | 
|  | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, | 
|  | NULL); | 
|  |  | 
|  | INIT_DELAYED_WORK_DEFERRABLE(&gc_work, inetpeer_gc_worker); | 
|  | } | 
|  |  | 
|  | static int addr_compare(const struct inetpeer_addr *a, | 
|  | const struct inetpeer_addr *b) | 
|  | { | 
|  | int i, n = (a->family == AF_INET ? 1 : 4); | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (a->addr.a6[i] == b->addr.a6[i]) | 
|  | continue; | 
|  | if ((__force u32)a->addr.a6[i] < (__force u32)b->addr.a6[i]) | 
|  | return -1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define rcu_deref_locked(X, BASE)				\ | 
|  | rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock)) | 
|  |  | 
|  | /* | 
|  | * Called with local BH disabled and the pool lock held. | 
|  | */ | 
|  | #define lookup(_daddr, _stack, _base)				\ | 
|  | ({								\ | 
|  | struct inet_peer *u;					\ | 
|  | struct inet_peer __rcu **v;				\ | 
|  | \ | 
|  | stackptr = _stack;					\ | 
|  | *stackptr++ = &_base->root;				\ | 
|  | for (u = rcu_deref_locked(_base->root, _base);		\ | 
|  | u != peer_avl_empty; ) {				\ | 
|  | int cmp = addr_compare(_daddr, &u->daddr);	\ | 
|  | if (cmp == 0)					\ | 
|  | break;					\ | 
|  | if (cmp == -1)					\ | 
|  | v = &u->avl_left;			\ | 
|  | else						\ | 
|  | v = &u->avl_right;			\ | 
|  | *stackptr++ = v;				\ | 
|  | u = rcu_deref_locked(*v, _base);		\ | 
|  | }							\ | 
|  | u;							\ | 
|  | }) | 
|  |  | 
|  | /* | 
|  | * Called with rcu_read_lock() | 
|  | * Because we hold no lock against a writer, its quite possible we fall | 
|  | * in an endless loop. | 
|  | * But every pointer we follow is guaranteed to be valid thanks to RCU. | 
|  | * We exit from this function if number of links exceeds PEER_MAXDEPTH | 
|  | */ | 
|  | static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr, | 
|  | struct inet_peer_base *base) | 
|  | { | 
|  | struct inet_peer *u = rcu_dereference(base->root); | 
|  | int count = 0; | 
|  |  | 
|  | while (u != peer_avl_empty) { | 
|  | int cmp = addr_compare(daddr, &u->daddr); | 
|  | if (cmp == 0) { | 
|  | /* Before taking a reference, check if this entry was | 
|  | * deleted (refcnt=-1) | 
|  | */ | 
|  | if (!atomic_add_unless(&u->refcnt, 1, -1)) | 
|  | u = NULL; | 
|  | return u; | 
|  | } | 
|  | if (cmp == -1) | 
|  | u = rcu_dereference(u->avl_left); | 
|  | else | 
|  | u = rcu_dereference(u->avl_right); | 
|  | if (unlikely(++count == PEER_MAXDEPTH)) | 
|  | break; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Called with local BH disabled and the pool lock held. */ | 
|  | #define lookup_rightempty(start, base)				\ | 
|  | ({								\ | 
|  | struct inet_peer *u;					\ | 
|  | struct inet_peer __rcu **v;				\ | 
|  | *stackptr++ = &start->avl_left;				\ | 
|  | v = &start->avl_left;					\ | 
|  | for (u = rcu_deref_locked(*v, base);			\ | 
|  | u->avl_right != peer_avl_empty_rcu; ) {		\ | 
|  | v = &u->avl_right;				\ | 
|  | *stackptr++ = v;				\ | 
|  | u = rcu_deref_locked(*v, base);			\ | 
|  | }							\ | 
|  | u;							\ | 
|  | }) | 
|  |  | 
|  | /* Called with local BH disabled and the pool lock held. | 
|  | * Variable names are the proof of operation correctness. | 
|  | * Look into mm/map_avl.c for more detail description of the ideas. | 
|  | */ | 
|  | static void peer_avl_rebalance(struct inet_peer __rcu **stack[], | 
|  | struct inet_peer __rcu ***stackend, | 
|  | struct inet_peer_base *base) | 
|  | { | 
|  | struct inet_peer __rcu **nodep; | 
|  | struct inet_peer *node, *l, *r; | 
|  | int lh, rh; | 
|  |  | 
|  | while (stackend > stack) { | 
|  | nodep = *--stackend; | 
|  | node = rcu_deref_locked(*nodep, base); | 
|  | l = rcu_deref_locked(node->avl_left, base); | 
|  | r = rcu_deref_locked(node->avl_right, base); | 
|  | lh = node_height(l); | 
|  | rh = node_height(r); | 
|  | if (lh > rh + 1) { /* l: RH+2 */ | 
|  | struct inet_peer *ll, *lr, *lrl, *lrr; | 
|  | int lrh; | 
|  | ll = rcu_deref_locked(l->avl_left, base); | 
|  | lr = rcu_deref_locked(l->avl_right, base); | 
|  | lrh = node_height(lr); | 
|  | if (lrh <= node_height(ll)) {	/* ll: RH+1 */ | 
|  | RCU_INIT_POINTER(node->avl_left, lr);	/* lr: RH or RH+1 */ | 
|  | RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */ | 
|  | node->avl_height = lrh + 1; /* RH+1 or RH+2 */ | 
|  | RCU_INIT_POINTER(l->avl_left, ll);       /* ll: RH+1 */ | 
|  | RCU_INIT_POINTER(l->avl_right, node);	/* node: RH+1 or RH+2 */ | 
|  | l->avl_height = node->avl_height + 1; | 
|  | RCU_INIT_POINTER(*nodep, l); | 
|  | } else { /* ll: RH, lr: RH+1 */ | 
|  | lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */ | 
|  | lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */ | 
|  | RCU_INIT_POINTER(node->avl_left, lrr);	/* lrr: RH or RH-1 */ | 
|  | RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */ | 
|  | node->avl_height = rh + 1; /* node: RH+1 */ | 
|  | RCU_INIT_POINTER(l->avl_left, ll);	/* ll: RH */ | 
|  | RCU_INIT_POINTER(l->avl_right, lrl);	/* lrl: RH or RH-1 */ | 
|  | l->avl_height = rh + 1;	/* l: RH+1 */ | 
|  | RCU_INIT_POINTER(lr->avl_left, l);	/* l: RH+1 */ | 
|  | RCU_INIT_POINTER(lr->avl_right, node);	/* node: RH+1 */ | 
|  | lr->avl_height = rh + 2; | 
|  | RCU_INIT_POINTER(*nodep, lr); | 
|  | } | 
|  | } else if (rh > lh + 1) { /* r: LH+2 */ | 
|  | struct inet_peer *rr, *rl, *rlr, *rll; | 
|  | int rlh; | 
|  | rr = rcu_deref_locked(r->avl_right, base); | 
|  | rl = rcu_deref_locked(r->avl_left, base); | 
|  | rlh = node_height(rl); | 
|  | if (rlh <= node_height(rr)) {	/* rr: LH+1 */ | 
|  | RCU_INIT_POINTER(node->avl_right, rl);	/* rl: LH or LH+1 */ | 
|  | RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */ | 
|  | node->avl_height = rlh + 1; /* LH+1 or LH+2 */ | 
|  | RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH+1 */ | 
|  | RCU_INIT_POINTER(r->avl_left, node);	/* node: LH+1 or LH+2 */ | 
|  | r->avl_height = node->avl_height + 1; | 
|  | RCU_INIT_POINTER(*nodep, r); | 
|  | } else { /* rr: RH, rl: RH+1 */ | 
|  | rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */ | 
|  | rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */ | 
|  | RCU_INIT_POINTER(node->avl_right, rll);	/* rll: LH or LH-1 */ | 
|  | RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */ | 
|  | node->avl_height = lh + 1; /* node: LH+1 */ | 
|  | RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH */ | 
|  | RCU_INIT_POINTER(r->avl_left, rlr);	/* rlr: LH or LH-1 */ | 
|  | r->avl_height = lh + 1;	/* r: LH+1 */ | 
|  | RCU_INIT_POINTER(rl->avl_right, r);	/* r: LH+1 */ | 
|  | RCU_INIT_POINTER(rl->avl_left, node);	/* node: LH+1 */ | 
|  | rl->avl_height = lh + 2; | 
|  | RCU_INIT_POINTER(*nodep, rl); | 
|  | } | 
|  | } else { | 
|  | node->avl_height = (lh > rh ? lh : rh) + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called with local BH disabled and the pool lock held. */ | 
|  | #define link_to_pool(n, base)					\ | 
|  | do {								\ | 
|  | n->avl_height = 1;					\ | 
|  | n->avl_left = peer_avl_empty_rcu;			\ | 
|  | n->avl_right = peer_avl_empty_rcu;			\ | 
|  | /* lockless readers can catch us now */			\ | 
|  | rcu_assign_pointer(**--stackptr, n);			\ | 
|  | peer_avl_rebalance(stack, stackptr, base);		\ | 
|  | } while (0) | 
|  |  | 
|  | static void inetpeer_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu)); | 
|  | } | 
|  |  | 
|  | static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base, | 
|  | struct inet_peer __rcu **stack[PEER_MAXDEPTH]) | 
|  | { | 
|  | struct inet_peer __rcu ***stackptr, ***delp; | 
|  |  | 
|  | if (lookup(&p->daddr, stack, base) != p) | 
|  | BUG(); | 
|  | delp = stackptr - 1; /* *delp[0] == p */ | 
|  | if (p->avl_left == peer_avl_empty_rcu) { | 
|  | *delp[0] = p->avl_right; | 
|  | --stackptr; | 
|  | } else { | 
|  | /* look for a node to insert instead of p */ | 
|  | struct inet_peer *t; | 
|  | t = lookup_rightempty(p, base); | 
|  | BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t); | 
|  | **--stackptr = t->avl_left; | 
|  | /* t is removed, t->daddr > x->daddr for any | 
|  | * x in p->avl_left subtree. | 
|  | * Put t in the old place of p. */ | 
|  | RCU_INIT_POINTER(*delp[0], t); | 
|  | t->avl_left = p->avl_left; | 
|  | t->avl_right = p->avl_right; | 
|  | t->avl_height = p->avl_height; | 
|  | BUG_ON(delp[1] != &p->avl_left); | 
|  | delp[1] = &t->avl_left; /* was &p->avl_left */ | 
|  | } | 
|  | peer_avl_rebalance(stack, stackptr, base); | 
|  | base->total--; | 
|  | call_rcu(&p->rcu, inetpeer_free_rcu); | 
|  | } | 
|  |  | 
|  | static struct inet_peer_base *family_to_base(int family) | 
|  | { | 
|  | return family == AF_INET ? &v4_peers : &v6_peers; | 
|  | } | 
|  |  | 
|  | /* perform garbage collect on all items stacked during a lookup */ | 
|  | static int inet_peer_gc(struct inet_peer_base *base, | 
|  | struct inet_peer __rcu **stack[PEER_MAXDEPTH], | 
|  | struct inet_peer __rcu ***stackptr) | 
|  | { | 
|  | struct inet_peer *p, *gchead = NULL; | 
|  | __u32 delta, ttl; | 
|  | int cnt = 0; | 
|  |  | 
|  | if (base->total >= inet_peer_threshold) | 
|  | ttl = 0; /* be aggressive */ | 
|  | else | 
|  | ttl = inet_peer_maxttl | 
|  | - (inet_peer_maxttl - inet_peer_minttl) / HZ * | 
|  | base->total / inet_peer_threshold * HZ; | 
|  | stackptr--; /* last stack slot is peer_avl_empty */ | 
|  | while (stackptr > stack) { | 
|  | stackptr--; | 
|  | p = rcu_deref_locked(**stackptr, base); | 
|  | if (atomic_read(&p->refcnt) == 0) { | 
|  | smp_rmb(); | 
|  | delta = (__u32)jiffies - p->dtime; | 
|  | if (delta >= ttl && | 
|  | atomic_cmpxchg(&p->refcnt, 0, -1) == 0) { | 
|  | p->gc_next = gchead; | 
|  | gchead = p; | 
|  | } | 
|  | } | 
|  | } | 
|  | while ((p = gchead) != NULL) { | 
|  | gchead = p->gc_next; | 
|  | cnt++; | 
|  | unlink_from_pool(p, base, stack); | 
|  | } | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | struct inet_peer *inet_getpeer(const struct inetpeer_addr *daddr, int create) | 
|  | { | 
|  | struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr; | 
|  | struct inet_peer_base *base = family_to_base(daddr->family); | 
|  | struct inet_peer *p; | 
|  | unsigned int sequence; | 
|  | int invalidated, gccnt = 0; | 
|  |  | 
|  | /* Attempt a lockless lookup first. | 
|  | * Because of a concurrent writer, we might not find an existing entry. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | sequence = read_seqbegin(&base->lock); | 
|  | p = lookup_rcu(daddr, base); | 
|  | invalidated = read_seqretry(&base->lock, sequence); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (p) | 
|  | return p; | 
|  |  | 
|  | /* If no writer did a change during our lookup, we can return early. */ | 
|  | if (!create && !invalidated) | 
|  | return NULL; | 
|  |  | 
|  | /* retry an exact lookup, taking the lock before. | 
|  | * At least, nodes should be hot in our cache. | 
|  | */ | 
|  | write_seqlock_bh(&base->lock); | 
|  | relookup: | 
|  | p = lookup(daddr, stack, base); | 
|  | if (p != peer_avl_empty) { | 
|  | atomic_inc(&p->refcnt); | 
|  | write_sequnlock_bh(&base->lock); | 
|  | return p; | 
|  | } | 
|  | if (!gccnt) { | 
|  | gccnt = inet_peer_gc(base, stack, stackptr); | 
|  | if (gccnt && create) | 
|  | goto relookup; | 
|  | } | 
|  | p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL; | 
|  | if (p) { | 
|  | p->daddr = *daddr; | 
|  | atomic_set(&p->refcnt, 1); | 
|  | atomic_set(&p->rid, 0); | 
|  | atomic_set(&p->ip_id_count, | 
|  | (daddr->family == AF_INET) ? | 
|  | secure_ip_id(daddr->addr.a4) : | 
|  | secure_ipv6_id(daddr->addr.a6)); | 
|  | p->tcp_ts_stamp = 0; | 
|  | p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW; | 
|  | p->rate_tokens = 0; | 
|  | p->rate_last = 0; | 
|  | p->pmtu_expires = 0; | 
|  | p->pmtu_orig = 0; | 
|  | memset(&p->redirect_learned, 0, sizeof(p->redirect_learned)); | 
|  | INIT_LIST_HEAD(&p->gc_list); | 
|  |  | 
|  | /* Link the node. */ | 
|  | link_to_pool(p, base); | 
|  | base->total++; | 
|  | } | 
|  | write_sequnlock_bh(&base->lock); | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_getpeer); | 
|  |  | 
|  | void inet_putpeer(struct inet_peer *p) | 
|  | { | 
|  | p->dtime = (__u32)jiffies; | 
|  | smp_mb__before_atomic_dec(); | 
|  | atomic_dec(&p->refcnt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inet_putpeer); | 
|  |  | 
|  | /* | 
|  | *	Check transmit rate limitation for given message. | 
|  | *	The rate information is held in the inet_peer entries now. | 
|  | *	This function is generic and could be used for other purposes | 
|  | *	too. It uses a Token bucket filter as suggested by Alexey Kuznetsov. | 
|  | * | 
|  | *	Note that the same inet_peer fields are modified by functions in | 
|  | *	route.c too, but these work for packet destinations while xrlim_allow | 
|  | *	works for icmp destinations. This means the rate limiting information | 
|  | *	for one "ip object" is shared - and these ICMPs are twice limited: | 
|  | *	by source and by destination. | 
|  | * | 
|  | *	RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate | 
|  | *			  SHOULD allow setting of rate limits | 
|  | * | 
|  | * 	Shared between ICMPv4 and ICMPv6. | 
|  | */ | 
|  | #define XRLIM_BURST_FACTOR 6 | 
|  | bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout) | 
|  | { | 
|  | unsigned long now, token; | 
|  | bool rc = false; | 
|  |  | 
|  | if (!peer) | 
|  | return true; | 
|  |  | 
|  | token = peer->rate_tokens; | 
|  | now = jiffies; | 
|  | token += now - peer->rate_last; | 
|  | peer->rate_last = now; | 
|  | if (token > XRLIM_BURST_FACTOR * timeout) | 
|  | token = XRLIM_BURST_FACTOR * timeout; | 
|  | if (token >= timeout) { | 
|  | token -= timeout; | 
|  | rc = true; | 
|  | } | 
|  | peer->rate_tokens = token; | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL(inet_peer_xrlim_allow); | 
|  |  | 
|  | void inetpeer_invalidate_tree(int family) | 
|  | { | 
|  | struct inet_peer *old, *new, *prev; | 
|  | struct inet_peer_base *base = family_to_base(family); | 
|  |  | 
|  | write_seqlock_bh(&base->lock); | 
|  |  | 
|  | old = base->root; | 
|  | if (old == peer_avl_empty_rcu) | 
|  | goto out; | 
|  |  | 
|  | new = peer_avl_empty_rcu; | 
|  |  | 
|  | prev = cmpxchg(&base->root, old, new); | 
|  | if (prev == old) { | 
|  | base->total = 0; | 
|  | spin_lock(&gc_lock); | 
|  | list_add_tail(&prev->gc_list, &gc_list); | 
|  | spin_unlock(&gc_lock); | 
|  | schedule_delayed_work(&gc_work, gc_delay); | 
|  | } | 
|  |  | 
|  | out: | 
|  | write_sequnlock_bh(&base->lock); | 
|  | } | 
|  | EXPORT_SYMBOL(inetpeer_invalidate_tree); |