| /* |
| * linux/drivers/mmc/core/core.c |
| * |
| * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
| * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
| * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
| * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/pagemap.h> |
| #include <linux/err.h> |
| #include <linux/leds.h> |
| #include <linux/scatterlist.h> |
| #include <linux/log2.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/suspend.h> |
| |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| |
| #include "core.h" |
| #include "bus.h" |
| #include "host.h" |
| #include "sdio_bus.h" |
| |
| #include "mmc_ops.h" |
| #include "sd_ops.h" |
| #include "sdio_ops.h" |
| |
| static struct workqueue_struct *workqueue; |
| |
| /* |
| * Enabling software CRCs on the data blocks can be a significant (30%) |
| * performance cost, and for other reasons may not always be desired. |
| * So we allow it it to be disabled. |
| */ |
| int use_spi_crc = 1; |
| module_param(use_spi_crc, bool, 0); |
| |
| /* |
| * We normally treat cards as removed during suspend if they are not |
| * known to be on a non-removable bus, to avoid the risk of writing |
| * back data to a different card after resume. Allow this to be |
| * overridden if necessary. |
| */ |
| #ifdef CONFIG_MMC_UNSAFE_RESUME |
| int mmc_assume_removable; |
| #else |
| int mmc_assume_removable = 1; |
| #endif |
| EXPORT_SYMBOL(mmc_assume_removable); |
| module_param_named(removable, mmc_assume_removable, bool, 0644); |
| MODULE_PARM_DESC( |
| removable, |
| "MMC/SD cards are removable and may be removed during suspend"); |
| |
| /* |
| * Internal function. Schedule delayed work in the MMC work queue. |
| */ |
| static int mmc_schedule_delayed_work(struct delayed_work *work, |
| unsigned long delay) |
| { |
| return queue_delayed_work(workqueue, work, delay); |
| } |
| |
| /* |
| * Internal function. Flush all scheduled work from the MMC work queue. |
| */ |
| static void mmc_flush_scheduled_work(void) |
| { |
| flush_workqueue(workqueue); |
| } |
| |
| /** |
| * mmc_request_done - finish processing an MMC request |
| * @host: MMC host which completed request |
| * @mrq: MMC request which request |
| * |
| * MMC drivers should call this function when they have completed |
| * their processing of a request. |
| */ |
| void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| int err = cmd->error; |
| |
| if (err && cmd->retries && mmc_host_is_spi(host)) { |
| if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
| cmd->retries = 0; |
| } |
| |
| if (err && cmd->retries) { |
| pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), cmd->opcode, err); |
| |
| cmd->retries--; |
| cmd->error = 0; |
| host->ops->request(host, mrq); |
| } else { |
| led_trigger_event(host->led, LED_OFF); |
| |
| pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), cmd->opcode, err, |
| cmd->resp[0], cmd->resp[1], |
| cmd->resp[2], cmd->resp[3]); |
| |
| if (mrq->data) { |
| pr_debug("%s: %d bytes transferred: %d\n", |
| mmc_hostname(host), |
| mrq->data->bytes_xfered, mrq->data->error); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->error, |
| mrq->stop->resp[0], mrq->stop->resp[1], |
| mrq->stop->resp[2], mrq->stop->resp[3]); |
| } |
| |
| if (mrq->done) |
| mrq->done(mrq); |
| |
| mmc_host_clk_release(host); |
| } |
| } |
| |
| EXPORT_SYMBOL(mmc_request_done); |
| |
| static void |
| mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned int i, sz; |
| struct scatterlist *sg; |
| #endif |
| |
| pr_debug("%s: starting CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->cmd->opcode, |
| mrq->cmd->arg, mrq->cmd->flags); |
| |
| if (mrq->data) { |
| pr_debug("%s: blksz %d blocks %d flags %08x " |
| "tsac %d ms nsac %d\n", |
| mmc_hostname(host), mrq->data->blksz, |
| mrq->data->blocks, mrq->data->flags, |
| mrq->data->timeout_ns / 1000000, |
| mrq->data->timeout_clks); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->arg, mrq->stop->flags); |
| } |
| |
| WARN_ON(!host->claimed); |
| |
| mrq->cmd->error = 0; |
| mrq->cmd->mrq = mrq; |
| if (mrq->data) { |
| BUG_ON(mrq->data->blksz > host->max_blk_size); |
| BUG_ON(mrq->data->blocks > host->max_blk_count); |
| BUG_ON(mrq->data->blocks * mrq->data->blksz > |
| host->max_req_size); |
| |
| #ifdef CONFIG_MMC_DEBUG |
| sz = 0; |
| for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
| sz += sg->length; |
| BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); |
| #endif |
| |
| mrq->cmd->data = mrq->data; |
| mrq->data->error = 0; |
| mrq->data->mrq = mrq; |
| if (mrq->stop) { |
| mrq->data->stop = mrq->stop; |
| mrq->stop->error = 0; |
| mrq->stop->mrq = mrq; |
| } |
| } |
| mmc_host_clk_hold(host); |
| led_trigger_event(host->led, LED_FULL); |
| host->ops->request(host, mrq); |
| } |
| |
| static void mmc_wait_done(struct mmc_request *mrq) |
| { |
| complete(&mrq->completion); |
| } |
| |
| static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| init_completion(&mrq->completion); |
| mrq->done = mmc_wait_done; |
| mmc_start_request(host, mrq); |
| } |
| |
| static void mmc_wait_for_req_done(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| wait_for_completion(&mrq->completion); |
| } |
| |
| /** |
| * mmc_pre_req - Prepare for a new request |
| * @host: MMC host to prepare command |
| * @mrq: MMC request to prepare for |
| * @is_first_req: true if there is no previous started request |
| * that may run in parellel to this call, otherwise false |
| * |
| * mmc_pre_req() is called in prior to mmc_start_req() to let |
| * host prepare for the new request. Preparation of a request may be |
| * performed while another request is running on the host. |
| */ |
| static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, |
| bool is_first_req) |
| { |
| if (host->ops->pre_req) |
| host->ops->pre_req(host, mrq, is_first_req); |
| } |
| |
| /** |
| * mmc_post_req - Post process a completed request |
| * @host: MMC host to post process command |
| * @mrq: MMC request to post process for |
| * @err: Error, if non zero, clean up any resources made in pre_req |
| * |
| * Let the host post process a completed request. Post processing of |
| * a request may be performed while another reuqest is running. |
| */ |
| static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, |
| int err) |
| { |
| if (host->ops->post_req) |
| host->ops->post_req(host, mrq, err); |
| } |
| |
| /** |
| * mmc_start_req - start a non-blocking request |
| * @host: MMC host to start command |
| * @areq: async request to start |
| * @error: out parameter returns 0 for success, otherwise non zero |
| * |
| * Start a new MMC custom command request for a host. |
| * If there is on ongoing async request wait for completion |
| * of that request and start the new one and return. |
| * Does not wait for the new request to complete. |
| * |
| * Returns the completed request, NULL in case of none completed. |
| * Wait for the an ongoing request (previoulsy started) to complete and |
| * return the completed request. If there is no ongoing request, NULL |
| * is returned without waiting. NULL is not an error condition. |
| */ |
| struct mmc_async_req *mmc_start_req(struct mmc_host *host, |
| struct mmc_async_req *areq, int *error) |
| { |
| int err = 0; |
| struct mmc_async_req *data = host->areq; |
| |
| /* Prepare a new request */ |
| if (areq) |
| mmc_pre_req(host, areq->mrq, !host->areq); |
| |
| if (host->areq) { |
| mmc_wait_for_req_done(host, host->areq->mrq); |
| err = host->areq->err_check(host->card, host->areq); |
| if (err) { |
| mmc_post_req(host, host->areq->mrq, 0); |
| if (areq) |
| mmc_post_req(host, areq->mrq, -EINVAL); |
| |
| host->areq = NULL; |
| goto out; |
| } |
| } |
| |
| if (areq) |
| __mmc_start_req(host, areq->mrq); |
| |
| if (host->areq) |
| mmc_post_req(host, host->areq->mrq, 0); |
| |
| host->areq = areq; |
| out: |
| if (error) |
| *error = err; |
| return data; |
| } |
| EXPORT_SYMBOL(mmc_start_req); |
| |
| /** |
| * mmc_wait_for_req - start a request and wait for completion |
| * @host: MMC host to start command |
| * @mrq: MMC request to start |
| * |
| * Start a new MMC custom command request for a host, and wait |
| * for the command to complete. Does not attempt to parse the |
| * response. |
| */ |
| void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| __mmc_start_req(host, mrq); |
| mmc_wait_for_req_done(host, mrq); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req); |
| |
| /** |
| * mmc_wait_for_cmd - start a command and wait for completion |
| * @host: MMC host to start command |
| * @cmd: MMC command to start |
| * @retries: maximum number of retries |
| * |
| * Start a new MMC command for a host, and wait for the command |
| * to complete. Return any error that occurred while the command |
| * was executing. Do not attempt to parse the response. |
| */ |
| int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
| { |
| struct mmc_request mrq = {0}; |
| |
| WARN_ON(!host->claimed); |
| |
| memset(cmd->resp, 0, sizeof(cmd->resp)); |
| cmd->retries = retries; |
| |
| mrq.cmd = cmd; |
| cmd->data = NULL; |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| return cmd->error; |
| } |
| |
| EXPORT_SYMBOL(mmc_wait_for_cmd); |
| |
| /** |
| * mmc_set_data_timeout - set the timeout for a data command |
| * @data: data phase for command |
| * @card: the MMC card associated with the data transfer |
| * |
| * Computes the data timeout parameters according to the |
| * correct algorithm given the card type. |
| */ |
| void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
| { |
| unsigned int mult; |
| |
| /* |
| * SDIO cards only define an upper 1 s limit on access. |
| */ |
| if (mmc_card_sdio(card)) { |
| data->timeout_ns = 1000000000; |
| data->timeout_clks = 0; |
| return; |
| } |
| |
| /* |
| * SD cards use a 100 multiplier rather than 10 |
| */ |
| mult = mmc_card_sd(card) ? 100 : 10; |
| |
| /* |
| * Scale up the multiplier (and therefore the timeout) by |
| * the r2w factor for writes. |
| */ |
| if (data->flags & MMC_DATA_WRITE) |
| mult <<= card->csd.r2w_factor; |
| |
| data->timeout_ns = card->csd.tacc_ns * mult; |
| data->timeout_clks = card->csd.tacc_clks * mult; |
| |
| /* |
| * SD cards also have an upper limit on the timeout. |
| */ |
| if (mmc_card_sd(card)) { |
| unsigned int timeout_us, limit_us; |
| |
| timeout_us = data->timeout_ns / 1000; |
| if (mmc_host_clk_rate(card->host)) |
| timeout_us += data->timeout_clks * 1000 / |
| (mmc_host_clk_rate(card->host) / 1000); |
| |
| if (data->flags & MMC_DATA_WRITE) |
| /* |
| * The limit is really 250 ms, but that is |
| * insufficient for some crappy cards. |
| */ |
| limit_us = 300000; |
| else |
| limit_us = 100000; |
| |
| /* |
| * SDHC cards always use these fixed values. |
| */ |
| if (timeout_us > limit_us || mmc_card_blockaddr(card)) { |
| data->timeout_ns = limit_us * 1000; |
| data->timeout_clks = 0; |
| } |
| } |
| /* |
| * Some cards need very high timeouts if driven in SPI mode. |
| * The worst observed timeout was 900ms after writing a |
| * continuous stream of data until the internal logic |
| * overflowed. |
| */ |
| if (mmc_host_is_spi(card->host)) { |
| if (data->flags & MMC_DATA_WRITE) { |
| if (data->timeout_ns < 1000000000) |
| data->timeout_ns = 1000000000; /* 1s */ |
| } else { |
| if (data->timeout_ns < 100000000) |
| data->timeout_ns = 100000000; /* 100ms */ |
| } |
| } |
| } |
| EXPORT_SYMBOL(mmc_set_data_timeout); |
| |
| /** |
| * mmc_align_data_size - pads a transfer size to a more optimal value |
| * @card: the MMC card associated with the data transfer |
| * @sz: original transfer size |
| * |
| * Pads the original data size with a number of extra bytes in |
| * order to avoid controller bugs and/or performance hits |
| * (e.g. some controllers revert to PIO for certain sizes). |
| * |
| * Returns the improved size, which might be unmodified. |
| * |
| * Note that this function is only relevant when issuing a |
| * single scatter gather entry. |
| */ |
| unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) |
| { |
| /* |
| * FIXME: We don't have a system for the controller to tell |
| * the core about its problems yet, so for now we just 32-bit |
| * align the size. |
| */ |
| sz = ((sz + 3) / 4) * 4; |
| |
| return sz; |
| } |
| EXPORT_SYMBOL(mmc_align_data_size); |
| |
| /** |
| * mmc_host_enable - enable a host. |
| * @host: mmc host to enable |
| * |
| * Hosts that support power saving can use the 'enable' and 'disable' |
| * methods to exit and enter power saving states. For more information |
| * see comments for struct mmc_host_ops. |
| */ |
| int mmc_host_enable(struct mmc_host *host) |
| { |
| if (!(host->caps & MMC_CAP_DISABLE)) |
| return 0; |
| |
| if (host->en_dis_recurs) |
| return 0; |
| |
| if (host->nesting_cnt++) |
| return 0; |
| |
| cancel_delayed_work_sync(&host->disable); |
| |
| if (host->enabled) |
| return 0; |
| |
| if (host->ops->enable) { |
| int err; |
| |
| host->en_dis_recurs = 1; |
| err = host->ops->enable(host); |
| host->en_dis_recurs = 0; |
| |
| if (err) { |
| pr_debug("%s: enable error %d\n", |
| mmc_hostname(host), err); |
| return err; |
| } |
| } |
| host->enabled = 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_host_enable); |
| |
| static int mmc_host_do_disable(struct mmc_host *host, int lazy) |
| { |
| if (host->ops->disable) { |
| int err; |
| |
| host->en_dis_recurs = 1; |
| err = host->ops->disable(host, lazy); |
| host->en_dis_recurs = 0; |
| |
| if (err < 0) { |
| pr_debug("%s: disable error %d\n", |
| mmc_hostname(host), err); |
| return err; |
| } |
| if (err > 0) { |
| unsigned long delay = msecs_to_jiffies(err); |
| |
| mmc_schedule_delayed_work(&host->disable, delay); |
| } |
| } |
| host->enabled = 0; |
| return 0; |
| } |
| |
| /** |
| * mmc_host_disable - disable a host. |
| * @host: mmc host to disable |
| * |
| * Hosts that support power saving can use the 'enable' and 'disable' |
| * methods to exit and enter power saving states. For more information |
| * see comments for struct mmc_host_ops. |
| */ |
| int mmc_host_disable(struct mmc_host *host) |
| { |
| int err; |
| |
| if (!(host->caps & MMC_CAP_DISABLE)) |
| return 0; |
| |
| if (host->en_dis_recurs) |
| return 0; |
| |
| if (--host->nesting_cnt) |
| return 0; |
| |
| if (!host->enabled) |
| return 0; |
| |
| err = mmc_host_do_disable(host, 0); |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_host_disable); |
| |
| /** |
| * __mmc_claim_host - exclusively claim a host |
| * @host: mmc host to claim |
| * @abort: whether or not the operation should be aborted |
| * |
| * Claim a host for a set of operations. If @abort is non null and |
| * dereference a non-zero value then this will return prematurely with |
| * that non-zero value without acquiring the lock. Returns zero |
| * with the lock held otherwise. |
| */ |
| int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long flags; |
| int stop; |
| |
| might_sleep(); |
| |
| add_wait_queue(&host->wq, &wait); |
| spin_lock_irqsave(&host->lock, flags); |
| while (1) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| stop = abort ? atomic_read(abort) : 0; |
| if (stop || !host->claimed || host->claimer == current) |
| break; |
| spin_unlock_irqrestore(&host->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&host->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| if (!stop) { |
| host->claimed = 1; |
| host->claimer = current; |
| host->claim_cnt += 1; |
| } else |
| wake_up(&host->wq); |
| spin_unlock_irqrestore(&host->lock, flags); |
| remove_wait_queue(&host->wq, &wait); |
| if (!stop) |
| mmc_host_enable(host); |
| return stop; |
| } |
| |
| EXPORT_SYMBOL(__mmc_claim_host); |
| |
| /** |
| * mmc_try_claim_host - try exclusively to claim a host |
| * @host: mmc host to claim |
| * |
| * Returns %1 if the host is claimed, %0 otherwise. |
| */ |
| int mmc_try_claim_host(struct mmc_host *host) |
| { |
| int claimed_host = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (!host->claimed || host->claimer == current) { |
| host->claimed = 1; |
| host->claimer = current; |
| host->claim_cnt += 1; |
| claimed_host = 1; |
| } |
| spin_unlock_irqrestore(&host->lock, flags); |
| return claimed_host; |
| } |
| EXPORT_SYMBOL(mmc_try_claim_host); |
| |
| /** |
| * mmc_do_release_host - release a claimed host |
| * @host: mmc host to release |
| * |
| * If you successfully claimed a host, this function will |
| * release it again. |
| */ |
| void mmc_do_release_host(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (--host->claim_cnt) { |
| /* Release for nested claim */ |
| spin_unlock_irqrestore(&host->lock, flags); |
| } else { |
| host->claimed = 0; |
| host->claimer = NULL; |
| spin_unlock_irqrestore(&host->lock, flags); |
| wake_up(&host->wq); |
| } |
| } |
| EXPORT_SYMBOL(mmc_do_release_host); |
| |
| void mmc_host_deeper_disable(struct work_struct *work) |
| { |
| struct mmc_host *host = |
| container_of(work, struct mmc_host, disable.work); |
| |
| /* If the host is claimed then we do not want to disable it anymore */ |
| if (!mmc_try_claim_host(host)) |
| return; |
| mmc_host_do_disable(host, 1); |
| mmc_do_release_host(host); |
| } |
| |
| /** |
| * mmc_host_lazy_disable - lazily disable a host. |
| * @host: mmc host to disable |
| * |
| * Hosts that support power saving can use the 'enable' and 'disable' |
| * methods to exit and enter power saving states. For more information |
| * see comments for struct mmc_host_ops. |
| */ |
| int mmc_host_lazy_disable(struct mmc_host *host) |
| { |
| if (!(host->caps & MMC_CAP_DISABLE)) |
| return 0; |
| |
| if (host->en_dis_recurs) |
| return 0; |
| |
| if (--host->nesting_cnt) |
| return 0; |
| |
| if (!host->enabled) |
| return 0; |
| |
| if (host->disable_delay) { |
| mmc_schedule_delayed_work(&host->disable, |
| msecs_to_jiffies(host->disable_delay)); |
| return 0; |
| } else |
| return mmc_host_do_disable(host, 1); |
| } |
| EXPORT_SYMBOL(mmc_host_lazy_disable); |
| |
| /** |
| * mmc_release_host - release a host |
| * @host: mmc host to release |
| * |
| * Release a MMC host, allowing others to claim the host |
| * for their operations. |
| */ |
| void mmc_release_host(struct mmc_host *host) |
| { |
| WARN_ON(!host->claimed); |
| |
| mmc_host_lazy_disable(host); |
| |
| mmc_do_release_host(host); |
| } |
| |
| EXPORT_SYMBOL(mmc_release_host); |
| |
| /* |
| * Internal function that does the actual ios call to the host driver, |
| * optionally printing some debug output. |
| */ |
| static inline void mmc_set_ios(struct mmc_host *host) |
| { |
| struct mmc_ios *ios = &host->ios; |
| |
| pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
| "width %u timing %u\n", |
| mmc_hostname(host), ios->clock, ios->bus_mode, |
| ios->power_mode, ios->chip_select, ios->vdd, |
| ios->bus_width, ios->timing); |
| |
| if (ios->clock > 0) |
| mmc_set_ungated(host); |
| host->ops->set_ios(host, ios); |
| } |
| |
| /* |
| * Control chip select pin on a host. |
| */ |
| void mmc_set_chip_select(struct mmc_host *host, int mode) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.chip_select = mode; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Sets the host clock to the highest possible frequency that |
| * is below "hz". |
| */ |
| static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| WARN_ON(hz < host->f_min); |
| |
| if (hz > host->f_max) |
| hz = host->f_max; |
| |
| host->ios.clock = hz; |
| mmc_set_ios(host); |
| } |
| |
| void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| mmc_host_clk_hold(host); |
| __mmc_set_clock(host, hz); |
| mmc_host_clk_release(host); |
| } |
| |
| #ifdef CONFIG_MMC_CLKGATE |
| /* |
| * This gates the clock by setting it to 0 Hz. |
| */ |
| void mmc_gate_clock(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->clk_lock, flags); |
| host->clk_old = host->ios.clock; |
| host->ios.clock = 0; |
| host->clk_gated = true; |
| spin_unlock_irqrestore(&host->clk_lock, flags); |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * This restores the clock from gating by using the cached |
| * clock value. |
| */ |
| void mmc_ungate_clock(struct mmc_host *host) |
| { |
| /* |
| * We should previously have gated the clock, so the clock shall |
| * be 0 here! The clock may however be 0 during initialization, |
| * when some request operations are performed before setting |
| * the frequency. When ungate is requested in that situation |
| * we just ignore the call. |
| */ |
| if (host->clk_old) { |
| BUG_ON(host->ios.clock); |
| /* This call will also set host->clk_gated to false */ |
| __mmc_set_clock(host, host->clk_old); |
| } |
| } |
| |
| void mmc_set_ungated(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| /* |
| * We've been given a new frequency while the clock is gated, |
| * so make sure we regard this as ungating it. |
| */ |
| spin_lock_irqsave(&host->clk_lock, flags); |
| host->clk_gated = false; |
| spin_unlock_irqrestore(&host->clk_lock, flags); |
| } |
| |
| #else |
| void mmc_set_ungated(struct mmc_host *host) |
| { |
| } |
| #endif |
| |
| /* |
| * Change the bus mode (open drain/push-pull) of a host. |
| */ |
| void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.bus_mode = mode; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Change data bus width of a host. |
| */ |
| void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.bus_width = width; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /** |
| * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
| * @vdd: voltage (mV) |
| * @low_bits: prefer low bits in boundary cases |
| * |
| * This function returns the OCR bit number according to the provided @vdd |
| * value. If conversion is not possible a negative errno value returned. |
| * |
| * Depending on the @low_bits flag the function prefers low or high OCR bits |
| * on boundary voltages. For example, |
| * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
| * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
| * |
| * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
| */ |
| static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
| { |
| const int max_bit = ilog2(MMC_VDD_35_36); |
| int bit; |
| |
| if (vdd < 1650 || vdd > 3600) |
| return -EINVAL; |
| |
| if (vdd >= 1650 && vdd <= 1950) |
| return ilog2(MMC_VDD_165_195); |
| |
| if (low_bits) |
| vdd -= 1; |
| |
| /* Base 2000 mV, step 100 mV, bit's base 8. */ |
| bit = (vdd - 2000) / 100 + 8; |
| if (bit > max_bit) |
| return max_bit; |
| return bit; |
| } |
| |
| /** |
| * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
| * @vdd_min: minimum voltage value (mV) |
| * @vdd_max: maximum voltage value (mV) |
| * |
| * This function returns the OCR mask bits according to the provided @vdd_min |
| * and @vdd_max values. If conversion is not possible the function returns 0. |
| * |
| * Notes wrt boundary cases: |
| * This function sets the OCR bits for all boundary voltages, for example |
| * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
| * MMC_VDD_34_35 mask. |
| */ |
| u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
| { |
| u32 mask = 0; |
| |
| if (vdd_max < vdd_min) |
| return 0; |
| |
| /* Prefer high bits for the boundary vdd_max values. */ |
| vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); |
| if (vdd_max < 0) |
| return 0; |
| |
| /* Prefer low bits for the boundary vdd_min values. */ |
| vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); |
| if (vdd_min < 0) |
| return 0; |
| |
| /* Fill the mask, from max bit to min bit. */ |
| while (vdd_max >= vdd_min) |
| mask |= 1 << vdd_max--; |
| |
| return mask; |
| } |
| EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); |
| |
| #ifdef CONFIG_REGULATOR |
| |
| /** |
| * mmc_regulator_get_ocrmask - return mask of supported voltages |
| * @supply: regulator to use |
| * |
| * This returns either a negative errno, or a mask of voltages that |
| * can be provided to MMC/SD/SDIO devices using the specified voltage |
| * regulator. This would normally be called before registering the |
| * MMC host adapter. |
| */ |
| int mmc_regulator_get_ocrmask(struct regulator *supply) |
| { |
| int result = 0; |
| int count; |
| int i; |
| |
| count = regulator_count_voltages(supply); |
| if (count < 0) |
| return count; |
| |
| for (i = 0; i < count; i++) { |
| int vdd_uV; |
| int vdd_mV; |
| |
| vdd_uV = regulator_list_voltage(supply, i); |
| if (vdd_uV <= 0) |
| continue; |
| |
| vdd_mV = vdd_uV / 1000; |
| result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); |
| } |
| |
| return result; |
| } |
| EXPORT_SYMBOL(mmc_regulator_get_ocrmask); |
| |
| /** |
| * mmc_regulator_set_ocr - set regulator to match host->ios voltage |
| * @mmc: the host to regulate |
| * @supply: regulator to use |
| * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) |
| * |
| * Returns zero on success, else negative errno. |
| * |
| * MMC host drivers may use this to enable or disable a regulator using |
| * a particular supply voltage. This would normally be called from the |
| * set_ios() method. |
| */ |
| int mmc_regulator_set_ocr(struct mmc_host *mmc, |
| struct regulator *supply, |
| unsigned short vdd_bit) |
| { |
| int result = 0; |
| int min_uV, max_uV; |
| |
| if (vdd_bit) { |
| int tmp; |
| int voltage; |
| |
| /* REVISIT mmc_vddrange_to_ocrmask() may have set some |
| * bits this regulator doesn't quite support ... don't |
| * be too picky, most cards and regulators are OK with |
| * a 0.1V range goof (it's a small error percentage). |
| */ |
| tmp = vdd_bit - ilog2(MMC_VDD_165_195); |
| if (tmp == 0) { |
| min_uV = 1650 * 1000; |
| max_uV = 1950 * 1000; |
| } else { |
| min_uV = 1900 * 1000 + tmp * 100 * 1000; |
| max_uV = min_uV + 100 * 1000; |
| } |
| |
| /* avoid needless changes to this voltage; the regulator |
| * might not allow this operation |
| */ |
| voltage = regulator_get_voltage(supply); |
| if (voltage < 0) |
| result = voltage; |
| else if (voltage < min_uV || voltage > max_uV) |
| result = regulator_set_voltage(supply, min_uV, max_uV); |
| else |
| result = 0; |
| |
| if (result == 0 && !mmc->regulator_enabled) { |
| result = regulator_enable(supply); |
| if (!result) |
| mmc->regulator_enabled = true; |
| } |
| } else if (mmc->regulator_enabled) { |
| result = regulator_disable(supply); |
| if (result == 0) |
| mmc->regulator_enabled = false; |
| } |
| |
| if (result) |
| dev_err(mmc_dev(mmc), |
| "could not set regulator OCR (%d)\n", result); |
| return result; |
| } |
| EXPORT_SYMBOL(mmc_regulator_set_ocr); |
| |
| #endif /* CONFIG_REGULATOR */ |
| |
| /* |
| * Mask off any voltages we don't support and select |
| * the lowest voltage |
| */ |
| u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
| { |
| int bit; |
| |
| ocr &= host->ocr_avail; |
| |
| bit = ffs(ocr); |
| if (bit) { |
| bit -= 1; |
| |
| ocr &= 3 << bit; |
| |
| mmc_host_clk_hold(host); |
| host->ios.vdd = bit; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } else { |
| pr_warning("%s: host doesn't support card's voltages\n", |
| mmc_hostname(host)); |
| ocr = 0; |
| } |
| |
| return ocr; |
| } |
| |
| int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) |
| { |
| struct mmc_command cmd = {0}; |
| int err = 0; |
| |
| BUG_ON(!host); |
| |
| /* |
| * Send CMD11 only if the request is to switch the card to |
| * 1.8V signalling. |
| */ |
| if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { |
| cmd.opcode = SD_SWITCH_VOLTAGE; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) |
| return err; |
| |
| if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
| return -EIO; |
| } |
| |
| host->ios.signal_voltage = signal_voltage; |
| |
| if (host->ops->start_signal_voltage_switch) |
| err = host->ops->start_signal_voltage_switch(host, &host->ios); |
| |
| return err; |
| } |
| |
| /* |
| * Select timing parameters for host. |
| */ |
| void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.timing = timing; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Select appropriate driver type for host. |
| */ |
| void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
| { |
| mmc_host_clk_hold(host); |
| host->ios.drv_type = drv_type; |
| mmc_set_ios(host); |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Apply power to the MMC stack. This is a two-stage process. |
| * First, we enable power to the card without the clock running. |
| * We then wait a bit for the power to stabilise. Finally, |
| * enable the bus drivers and clock to the card. |
| * |
| * We must _NOT_ enable the clock prior to power stablising. |
| * |
| * If a host does all the power sequencing itself, ignore the |
| * initial MMC_POWER_UP stage. |
| */ |
| static void mmc_power_up(struct mmc_host *host) |
| { |
| int bit; |
| |
| mmc_host_clk_hold(host); |
| |
| /* If ocr is set, we use it */ |
| if (host->ocr) |
| bit = ffs(host->ocr) - 1; |
| else |
| bit = fls(host->ocr_avail) - 1; |
| |
| host->ios.vdd = bit; |
| if (mmc_host_is_spi(host)) { |
| host->ios.chip_select = MMC_CS_HIGH; |
| host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| } else { |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; |
| } |
| host->ios.power_mode = MMC_POWER_UP; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| mmc_set_ios(host); |
| |
| /* |
| * This delay should be sufficient to allow the power supply |
| * to reach the minimum voltage. |
| */ |
| mmc_delay(10); |
| |
| host->ios.clock = host->f_init; |
| |
| host->ios.power_mode = MMC_POWER_ON; |
| mmc_set_ios(host); |
| |
| /* |
| * This delay must be at least 74 clock sizes, or 1 ms, or the |
| * time required to reach a stable voltage. |
| */ |
| mmc_delay(10); |
| |
| mmc_host_clk_release(host); |
| } |
| |
| static void mmc_power_off(struct mmc_host *host) |
| { |
| mmc_host_clk_hold(host); |
| |
| host->ios.clock = 0; |
| host->ios.vdd = 0; |
| |
| /* |
| * Reset ocr mask to be the highest possible voltage supported for |
| * this mmc host. This value will be used at next power up. |
| */ |
| host->ocr = 1 << (fls(host->ocr_avail) - 1); |
| |
| if (!mmc_host_is_spi(host)) { |
| host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| } |
| host->ios.power_mode = MMC_POWER_OFF; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| mmc_set_ios(host); |
| |
| mmc_host_clk_release(host); |
| } |
| |
| /* |
| * Cleanup when the last reference to the bus operator is dropped. |
| */ |
| static void __mmc_release_bus(struct mmc_host *host) |
| { |
| BUG_ON(!host); |
| BUG_ON(host->bus_refs); |
| BUG_ON(!host->bus_dead); |
| |
| host->bus_ops = NULL; |
| } |
| |
| /* |
| * Increase reference count of bus operator |
| */ |
| static inline void mmc_bus_get(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs++; |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Decrease reference count of bus operator and free it if |
| * it is the last reference. |
| */ |
| static inline void mmc_bus_put(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs--; |
| if ((host->bus_refs == 0) && host->bus_ops) |
| __mmc_release_bus(host); |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Assign a mmc bus handler to a host. Only one bus handler may control a |
| * host at any given time. |
| */ |
| void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
| { |
| unsigned long flags; |
| |
| BUG_ON(!host); |
| BUG_ON(!ops); |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| BUG_ON(host->bus_ops); |
| BUG_ON(host->bus_refs); |
| |
| host->bus_ops = ops; |
| host->bus_refs = 1; |
| host->bus_dead = 0; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Remove the current bus handler from a host. Assumes that there are |
| * no interesting cards left, so the bus is powered down. |
| */ |
| void mmc_detach_bus(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| BUG_ON(!host); |
| |
| WARN_ON(!host->claimed); |
| WARN_ON(!host->bus_ops); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->bus_dead = 1; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| mmc_power_off(host); |
| |
| mmc_bus_put(host); |
| } |
| |
| /** |
| * mmc_detect_change - process change of state on a MMC socket |
| * @host: host which changed state. |
| * @delay: optional delay to wait before detection (jiffies) |
| * |
| * MMC drivers should call this when they detect a card has been |
| * inserted or removed. The MMC layer will confirm that any |
| * present card is still functional, and initialize any newly |
| * inserted. |
| */ |
| void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| WARN_ON(host->removed); |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| |
| mmc_schedule_delayed_work(&host->detect, delay); |
| } |
| |
| EXPORT_SYMBOL(mmc_detect_change); |
| |
| void mmc_init_erase(struct mmc_card *card) |
| { |
| unsigned int sz; |
| |
| if (is_power_of_2(card->erase_size)) |
| card->erase_shift = ffs(card->erase_size) - 1; |
| else |
| card->erase_shift = 0; |
| |
| /* |
| * It is possible to erase an arbitrarily large area of an SD or MMC |
| * card. That is not desirable because it can take a long time |
| * (minutes) potentially delaying more important I/O, and also the |
| * timeout calculations become increasingly hugely over-estimated. |
| * Consequently, 'pref_erase' is defined as a guide to limit erases |
| * to that size and alignment. |
| * |
| * For SD cards that define Allocation Unit size, limit erases to one |
| * Allocation Unit at a time. For MMC cards that define High Capacity |
| * Erase Size, whether it is switched on or not, limit to that size. |
| * Otherwise just have a stab at a good value. For modern cards it |
| * will end up being 4MiB. Note that if the value is too small, it |
| * can end up taking longer to erase. |
| */ |
| if (mmc_card_sd(card) && card->ssr.au) { |
| card->pref_erase = card->ssr.au; |
| card->erase_shift = ffs(card->ssr.au) - 1; |
| } else if (card->ext_csd.hc_erase_size) { |
| card->pref_erase = card->ext_csd.hc_erase_size; |
| } else { |
| sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
| if (sz < 128) |
| card->pref_erase = 512 * 1024 / 512; |
| else if (sz < 512) |
| card->pref_erase = 1024 * 1024 / 512; |
| else if (sz < 1024) |
| card->pref_erase = 2 * 1024 * 1024 / 512; |
| else |
| card->pref_erase = 4 * 1024 * 1024 / 512; |
| if (card->pref_erase < card->erase_size) |
| card->pref_erase = card->erase_size; |
| else { |
| sz = card->pref_erase % card->erase_size; |
| if (sz) |
| card->pref_erase += card->erase_size - sz; |
| } |
| } |
| } |
| |
| static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (card->ext_csd.erase_group_def & 1) { |
| /* High Capacity Erase Group Size uses HC timeouts */ |
| if (arg == MMC_TRIM_ARG) |
| erase_timeout = card->ext_csd.trim_timeout; |
| else |
| erase_timeout = card->ext_csd.hc_erase_timeout; |
| } else { |
| /* CSD Erase Group Size uses write timeout */ |
| unsigned int mult = (10 << card->csd.r2w_factor); |
| unsigned int timeout_clks = card->csd.tacc_clks * mult; |
| unsigned int timeout_us; |
| |
| /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ |
| if (card->csd.tacc_ns < 1000000) |
| timeout_us = (card->csd.tacc_ns * mult) / 1000; |
| else |
| timeout_us = (card->csd.tacc_ns / 1000) * mult; |
| |
| /* |
| * ios.clock is only a target. The real clock rate might be |
| * less but not that much less, so fudge it by multiplying by 2. |
| */ |
| timeout_clks <<= 1; |
| timeout_us += (timeout_clks * 1000) / |
| (mmc_host_clk_rate(card->host) / 1000); |
| |
| erase_timeout = timeout_us / 1000; |
| |
| /* |
| * Theoretically, the calculation could underflow so round up |
| * to 1ms in that case. |
| */ |
| if (!erase_timeout) |
| erase_timeout = 1; |
| } |
| |
| /* Multiplier for secure operations */ |
| if (arg & MMC_SECURE_ARGS) { |
| if (arg == MMC_SECURE_ERASE_ARG) |
| erase_timeout *= card->ext_csd.sec_erase_mult; |
| else |
| erase_timeout *= card->ext_csd.sec_trim_mult; |
| } |
| |
| erase_timeout *= qty; |
| |
| /* |
| * Ensure at least a 1 second timeout for SPI as per |
| * 'mmc_set_data_timeout()' |
| */ |
| if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (card->ssr.erase_timeout) { |
| /* Erase timeout specified in SD Status Register (SSR) */ |
| erase_timeout = card->ssr.erase_timeout * qty + |
| card->ssr.erase_offset; |
| } else { |
| /* |
| * Erase timeout not specified in SD Status Register (SSR) so |
| * use 250ms per write block. |
| */ |
| erase_timeout = 250 * qty; |
| } |
| |
| /* Must not be less than 1 second */ |
| if (erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| if (mmc_card_sd(card)) |
| return mmc_sd_erase_timeout(card, arg, qty); |
| else |
| return mmc_mmc_erase_timeout(card, arg, qty); |
| } |
| |
| static int mmc_do_erase(struct mmc_card *card, unsigned int from, |
| unsigned int to, unsigned int arg) |
| { |
| struct mmc_command cmd = {0}; |
| unsigned int qty = 0; |
| int err; |
| |
| /* |
| * qty is used to calculate the erase timeout which depends on how many |
| * erase groups (or allocation units in SD terminology) are affected. |
| * We count erasing part of an erase group as one erase group. |
| * For SD, the allocation units are always a power of 2. For MMC, the |
| * erase group size is almost certainly also power of 2, but it does not |
| * seem to insist on that in the JEDEC standard, so we fall back to |
| * division in that case. SD may not specify an allocation unit size, |
| * in which case the timeout is based on the number of write blocks. |
| * |
| * Note that the timeout for secure trim 2 will only be correct if the |
| * number of erase groups specified is the same as the total of all |
| * preceding secure trim 1 commands. Since the power may have been |
| * lost since the secure trim 1 commands occurred, it is generally |
| * impossible to calculate the secure trim 2 timeout correctly. |
| */ |
| if (card->erase_shift) |
| qty += ((to >> card->erase_shift) - |
| (from >> card->erase_shift)) + 1; |
| else if (mmc_card_sd(card)) |
| qty += to - from + 1; |
| else |
| qty += ((to / card->erase_size) - |
| (from / card->erase_size)) + 1; |
| |
| if (!mmc_card_blockaddr(card)) { |
| from <<= 9; |
| to <<= 9; |
| } |
| |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_START; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_START; |
| cmd.arg = from; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| printk(KERN_ERR "mmc_erase: group start error %d, " |
| "status %#x\n", err, cmd.resp[0]); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_END; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_END; |
| cmd.arg = to; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EINVAL; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_ERASE; |
| cmd.arg = arg; |
| cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| if (mmc_host_is_spi(card->host)) |
| goto out; |
| |
| do { |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_SEND_STATUS; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| /* Do not retry else we can't see errors */ |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err || (cmd.resp[0] & 0xFDF92000)) { |
| printk(KERN_ERR "error %d requesting status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || |
| R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); |
| out: |
| return err; |
| } |
| |
| /** |
| * mmc_erase - erase sectors. |
| * @card: card to erase |
| * @from: first sector to erase |
| * @nr: number of sectors to erase |
| * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) |
| * |
| * Caller must claim host before calling this function. |
| */ |
| int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, |
| unsigned int arg) |
| { |
| unsigned int rem, to = from + nr; |
| |
| if (!(card->host->caps & MMC_CAP_ERASE) || |
| !(card->csd.cmdclass & CCC_ERASE)) |
| return -EOPNOTSUPP; |
| |
| if (!card->erase_size) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_SECURE_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
| return -EOPNOTSUPP; |
| |
| if ((arg & MMC_TRIM_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
| return -EOPNOTSUPP; |
| |
| if (arg == MMC_SECURE_ERASE_ARG) { |
| if (from % card->erase_size || nr % card->erase_size) |
| return -EINVAL; |
| } |
| |
| if (arg == MMC_ERASE_ARG) { |
| rem = from % card->erase_size; |
| if (rem) { |
| rem = card->erase_size - rem; |
| from += rem; |
| if (nr > rem) |
| nr -= rem; |
| else |
| return 0; |
| } |
| rem = nr % card->erase_size; |
| if (rem) |
| nr -= rem; |
| } |
| |
| if (nr == 0) |
| return 0; |
| |
| to = from + nr; |
| |
| if (to <= from) |
| return -EINVAL; |
| |
| /* 'from' and 'to' are inclusive */ |
| to -= 1; |
| |
| return mmc_do_erase(card, from, to, arg); |
| } |
| EXPORT_SYMBOL(mmc_erase); |
| |
| int mmc_can_erase(struct mmc_card *card) |
| { |
| if ((card->host->caps & MMC_CAP_ERASE) && |
| (card->csd.cmdclass & CCC_ERASE) && card->erase_size) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_erase); |
| |
| int mmc_can_trim(struct mmc_card *card) |
| { |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_trim); |
| |
| int mmc_can_secure_erase_trim(struct mmc_card *card) |
| { |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_secure_erase_trim); |
| |
| int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, |
| unsigned int nr) |
| { |
| if (!card->erase_size) |
| return 0; |
| if (from % card->erase_size || nr % card->erase_size) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_erase_group_aligned); |
| |
| static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
| unsigned int arg) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, x, y, qty = 0, max_qty, timeout; |
| unsigned int last_timeout = 0; |
| |
| if (card->erase_shift) |
| max_qty = UINT_MAX >> card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_qty = UINT_MAX; |
| else |
| max_qty = UINT_MAX / card->erase_size; |
| |
| /* Find the largest qty with an OK timeout */ |
| do { |
| y = 0; |
| for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
| timeout = mmc_erase_timeout(card, arg, qty + x); |
| if (timeout > host->max_discard_to) |
| break; |
| if (timeout < last_timeout) |
| break; |
| last_timeout = timeout; |
| y = x; |
| } |
| qty += y; |
| } while (y); |
| |
| if (!qty) |
| return 0; |
| |
| if (qty == 1) |
| return 1; |
| |
| /* Convert qty to sectors */ |
| if (card->erase_shift) |
| max_discard = --qty << card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_discard = qty; |
| else |
| max_discard = --qty * card->erase_size; |
| |
| return max_discard; |
| } |
| |
| unsigned int mmc_calc_max_discard(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, max_trim; |
| |
| if (!host->max_discard_to) |
| return UINT_MAX; |
| |
| /* |
| * Without erase_group_def set, MMC erase timeout depends on clock |
| * frequence which can change. In that case, the best choice is |
| * just the preferred erase size. |
| */ |
| if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
| return card->pref_erase; |
| |
| max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
| if (mmc_can_trim(card)) { |
| max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
| if (max_trim < max_discard) |
| max_discard = max_trim; |
| } else if (max_discard < card->erase_size) { |
| max_discard = 0; |
| } |
| pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
| mmc_hostname(host), max_discard, host->max_discard_to); |
| return max_discard; |
| } |
| EXPORT_SYMBOL(mmc_calc_max_discard); |
| |
| int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
| { |
| struct mmc_command cmd = {0}; |
| |
| if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) |
| return 0; |
| |
| cmd.opcode = MMC_SET_BLOCKLEN; |
| cmd.arg = blocklen; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blocklen); |
| |
| static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
| { |
| host->f_init = freq; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: trying to init card at %u Hz\n", |
| mmc_hostname(host), __func__, host->f_init); |
| #endif |
| mmc_power_up(host); |
| |
| /* |
| * sdio_reset sends CMD52 to reset card. Since we do not know |
| * if the card is being re-initialized, just send it. CMD52 |
| * should be ignored by SD/eMMC cards. |
| */ |
| sdio_reset(host); |
| mmc_go_idle(host); |
| |
| mmc_send_if_cond(host, host->ocr_avail); |
| |
| /* Order's important: probe SDIO, then SD, then MMC */ |
| if (!mmc_attach_sdio(host)) |
| return 0; |
| if (!mmc_attach_sd(host)) |
| return 0; |
| if (!mmc_attach_mmc(host)) |
| return 0; |
| |
| mmc_power_off(host); |
| return -EIO; |
| } |
| |
| void mmc_rescan(struct work_struct *work) |
| { |
| static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
| struct mmc_host *host = |
| container_of(work, struct mmc_host, detect.work); |
| int i; |
| |
| if (host->rescan_disable) |
| return; |
| |
| mmc_bus_get(host); |
| |
| /* |
| * if there is a _removable_ card registered, check whether it is |
| * still present |
| */ |
| if (host->bus_ops && host->bus_ops->detect && !host->bus_dead |
| && !(host->caps & MMC_CAP_NONREMOVABLE)) |
| host->bus_ops->detect(host); |
| |
| /* |
| * Let mmc_bus_put() free the bus/bus_ops if we've found that |
| * the card is no longer present. |
| */ |
| mmc_bus_put(host); |
| mmc_bus_get(host); |
| |
| /* if there still is a card present, stop here */ |
| if (host->bus_ops != NULL) { |
| mmc_bus_put(host); |
| goto out; |
| } |
| |
| /* |
| * Only we can add a new handler, so it's safe to |
| * release the lock here. |
| */ |
| mmc_bus_put(host); |
| |
| if (host->ops->get_cd && host->ops->get_cd(host) == 0) |
| goto out; |
| |
| mmc_claim_host(host); |
| for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
| if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) |
| break; |
| if (freqs[i] <= host->f_min) |
| break; |
| } |
| mmc_release_host(host); |
| |
| out: |
| if (host->caps & MMC_CAP_NEEDS_POLL) |
| mmc_schedule_delayed_work(&host->detect, HZ); |
| } |
| |
| void mmc_start_host(struct mmc_host *host) |
| { |
| mmc_power_off(host); |
| mmc_detect_change(host, 0); |
| } |
| |
| void mmc_stop_host(struct mmc_host *host) |
| { |
| #ifdef CONFIG_MMC_DEBUG |
| unsigned long flags; |
| spin_lock_irqsave(&host->lock, flags); |
| host->removed = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| #endif |
| |
| if (host->caps & MMC_CAP_DISABLE) |
| cancel_delayed_work(&host->disable); |
| cancel_delayed_work_sync(&host->detect); |
| mmc_flush_scheduled_work(); |
| |
| /* clear pm flags now and let card drivers set them as needed */ |
| host->pm_flags = 0; |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| if (host->bus_ops->remove) |
| host->bus_ops->remove(host); |
| |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_release_host(host); |
| mmc_bus_put(host); |
| return; |
| } |
| mmc_bus_put(host); |
| |
| BUG_ON(host->card); |
| |
| mmc_power_off(host); |
| } |
| |
| int mmc_power_save_host(struct mmc_host *host) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| if (host->bus_ops->power_save) |
| ret = host->bus_ops->power_save(host); |
| |
| mmc_bus_put(host); |
| |
| mmc_power_off(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_save_host); |
| |
| int mmc_power_restore_host(struct mmc_host *host) |
| { |
| int ret; |
| |
| #ifdef CONFIG_MMC_DEBUG |
| pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); |
| #endif |
| |
| mmc_bus_get(host); |
| |
| if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { |
| mmc_bus_put(host); |
| return -EINVAL; |
| } |
| |
| mmc_power_up(host); |
| ret = host->bus_ops->power_restore(host); |
| |
| mmc_bus_put(host); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_power_restore_host); |
| |
| int mmc_card_awake(struct mmc_host *host) |
| { |
| int err = -ENOSYS; |
| |
| mmc_bus_get(host); |
| |
| if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) |
| err = host->bus_ops->awake(host); |
| |
| mmc_bus_put(host); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_card_awake); |
| |
| int mmc_card_sleep(struct mmc_host *host) |
| { |
| int err = -ENOSYS; |
| |
| mmc_bus_get(host); |
| |
| if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) |
| err = host->bus_ops->sleep(host); |
| |
| mmc_bus_put(host); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_card_sleep); |
| |
| int mmc_card_can_sleep(struct mmc_host *host) |
| { |
| struct mmc_card *card = host->card; |
| |
| if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_card_can_sleep); |
| |
| #ifdef CONFIG_PM |
| |
| /** |
| * mmc_suspend_host - suspend a host |
| * @host: mmc host |
| */ |
| int mmc_suspend_host(struct mmc_host *host) |
| { |
| int err = 0; |
| |
| if (host->caps & MMC_CAP_DISABLE) |
| cancel_delayed_work(&host->disable); |
| cancel_delayed_work(&host->detect); |
| mmc_flush_scheduled_work(); |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| if (host->bus_ops->suspend) |
| err = host->bus_ops->suspend(host); |
| if (err == -ENOSYS || !host->bus_ops->resume) { |
| /* |
| * We simply "remove" the card in this case. |
| * It will be redetected on resume. |
| */ |
| if (host->bus_ops->remove) |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_release_host(host); |
| host->pm_flags = 0; |
| err = 0; |
| } |
| } |
| mmc_bus_put(host); |
| |
| if (!err && !mmc_card_keep_power(host)) |
| mmc_power_off(host); |
| |
| return err; |
| } |
| |
| EXPORT_SYMBOL(mmc_suspend_host); |
| |
| /** |
| * mmc_resume_host - resume a previously suspended host |
| * @host: mmc host |
| */ |
| int mmc_resume_host(struct mmc_host *host) |
| { |
| int err = 0; |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| if (!mmc_card_keep_power(host)) { |
| mmc_power_up(host); |
| mmc_select_voltage(host, host->ocr); |
| /* |
| * Tell runtime PM core we just powered up the card, |
| * since it still believes the card is powered off. |
| * Note that currently runtime PM is only enabled |
| * for SDIO cards that are MMC_CAP_POWER_OFF_CARD |
| */ |
| if (mmc_card_sdio(host->card) && |
| (host->caps & MMC_CAP_POWER_OFF_CARD)) { |
| pm_runtime_disable(&host->card->dev); |
| pm_runtime_set_active(&host->card->dev); |
| pm_runtime_enable(&host->card->dev); |
| } |
| } |
| BUG_ON(!host->bus_ops->resume); |
| err = host->bus_ops->resume(host); |
| if (err) { |
| printk(KERN_WARNING "%s: error %d during resume " |
| "(card was removed?)\n", |
| mmc_hostname(host), err); |
| err = 0; |
| } |
| } |
| host->pm_flags &= ~MMC_PM_KEEP_POWER; |
| mmc_bus_put(host); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_resume_host); |
| |
| /* Do the card removal on suspend if card is assumed removeable |
| * Do that in pm notifier while userspace isn't yet frozen, so we will be able |
| to sync the card. |
| */ |
| int mmc_pm_notify(struct notifier_block *notify_block, |
| unsigned long mode, void *unused) |
| { |
| struct mmc_host *host = container_of( |
| notify_block, struct mmc_host, pm_notify); |
| unsigned long flags; |
| |
| |
| switch (mode) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 1; |
| spin_unlock_irqrestore(&host->lock, flags); |
| cancel_delayed_work_sync(&host->detect); |
| |
| if (!host->bus_ops || host->bus_ops->suspend) |
| break; |
| |
| mmc_claim_host(host); |
| |
| if (host->bus_ops->remove) |
| host->bus_ops->remove(host); |
| |
| mmc_detach_bus(host); |
| mmc_release_host(host); |
| host->pm_flags = 0; |
| break; |
| |
| case PM_POST_SUSPEND: |
| case PM_POST_HIBERNATION: |
| case PM_POST_RESTORE: |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->rescan_disable = 0; |
| spin_unlock_irqrestore(&host->lock, flags); |
| mmc_detect_change(host, 0); |
| |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int __init mmc_init(void) |
| { |
| int ret; |
| |
| workqueue = alloc_ordered_workqueue("kmmcd", 0); |
| if (!workqueue) |
| return -ENOMEM; |
| |
| ret = mmc_register_bus(); |
| if (ret) |
| goto destroy_workqueue; |
| |
| ret = mmc_register_host_class(); |
| if (ret) |
| goto unregister_bus; |
| |
| ret = sdio_register_bus(); |
| if (ret) |
| goto unregister_host_class; |
| |
| return 0; |
| |
| unregister_host_class: |
| mmc_unregister_host_class(); |
| unregister_bus: |
| mmc_unregister_bus(); |
| destroy_workqueue: |
| destroy_workqueue(workqueue); |
| |
| return ret; |
| } |
| |
| static void __exit mmc_exit(void) |
| { |
| sdio_unregister_bus(); |
| mmc_unregister_host_class(); |
| mmc_unregister_bus(); |
| destroy_workqueue(workqueue); |
| } |
| |
| subsys_initcall(mmc_init); |
| module_exit(mmc_exit); |
| |
| MODULE_LICENSE("GPL"); |