| /* |
| * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #ifndef __XFS_LOG_PRIV_H__ |
| #define __XFS_LOG_PRIV_H__ |
| |
| struct xfs_buf; |
| struct log; |
| struct xlog_ticket; |
| struct xfs_mount; |
| |
| /* |
| * Macros, structures, prototypes for internal log manager use. |
| */ |
| |
| #define XLOG_MIN_ICLOGS 2 |
| #define XLOG_MAX_ICLOGS 8 |
| #define XLOG_HEADER_MAGIC_NUM 0xFEEDbabe /* Invalid cycle number */ |
| #define XLOG_VERSION_1 1 |
| #define XLOG_VERSION_2 2 /* Large IClogs, Log sunit */ |
| #define XLOG_VERSION_OKBITS (XLOG_VERSION_1 | XLOG_VERSION_2) |
| #define XLOG_MIN_RECORD_BSIZE (16*1024) /* eventually 32k */ |
| #define XLOG_BIG_RECORD_BSIZE (32*1024) /* 32k buffers */ |
| #define XLOG_MAX_RECORD_BSIZE (256*1024) |
| #define XLOG_HEADER_CYCLE_SIZE (32*1024) /* cycle data in header */ |
| #define XLOG_MIN_RECORD_BSHIFT 14 /* 16384 == 1 << 14 */ |
| #define XLOG_BIG_RECORD_BSHIFT 15 /* 32k == 1 << 15 */ |
| #define XLOG_MAX_RECORD_BSHIFT 18 /* 256k == 1 << 18 */ |
| #define XLOG_BTOLSUNIT(log, b) (((b)+(log)->l_mp->m_sb.sb_logsunit-1) / \ |
| (log)->l_mp->m_sb.sb_logsunit) |
| #define XLOG_LSUNITTOB(log, su) ((su) * (log)->l_mp->m_sb.sb_logsunit) |
| |
| #define XLOG_HEADER_SIZE 512 |
| |
| #define XLOG_REC_SHIFT(log) \ |
| BTOBB(1 << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ |
| XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) |
| #define XLOG_TOTAL_REC_SHIFT(log) \ |
| BTOBB(XLOG_MAX_ICLOGS << (xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? \ |
| XLOG_MAX_RECORD_BSHIFT : XLOG_BIG_RECORD_BSHIFT)) |
| |
| static inline xfs_lsn_t xlog_assign_lsn(uint cycle, uint block) |
| { |
| return ((xfs_lsn_t)cycle << 32) | block; |
| } |
| |
| static inline uint xlog_get_cycle(char *ptr) |
| { |
| if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) |
| return be32_to_cpu(*((__be32 *)ptr + 1)); |
| else |
| return be32_to_cpu(*(__be32 *)ptr); |
| } |
| |
| #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * get client id from packed copy. |
| * |
| * this hack is here because the xlog_pack code copies four bytes |
| * of xlog_op_header containing the fields oh_clientid, oh_flags |
| * and oh_res2 into the packed copy. |
| * |
| * later on this four byte chunk is treated as an int and the |
| * client id is pulled out. |
| * |
| * this has endian issues, of course. |
| */ |
| static inline uint xlog_get_client_id(__be32 i) |
| { |
| return be32_to_cpu(i) >> 24; |
| } |
| |
| #define xlog_panic(args...) cmn_err(CE_PANIC, ## args) |
| #define xlog_exit(args...) cmn_err(CE_PANIC, ## args) |
| #define xlog_warn(args...) cmn_err(CE_WARN, ## args) |
| |
| /* |
| * In core log state |
| */ |
| #define XLOG_STATE_ACTIVE 0x0001 /* Current IC log being written to */ |
| #define XLOG_STATE_WANT_SYNC 0x0002 /* Want to sync this iclog; no more writes */ |
| #define XLOG_STATE_SYNCING 0x0004 /* This IC log is syncing */ |
| #define XLOG_STATE_DONE_SYNC 0x0008 /* Done syncing to disk */ |
| #define XLOG_STATE_DO_CALLBACK \ |
| 0x0010 /* Process callback functions */ |
| #define XLOG_STATE_CALLBACK 0x0020 /* Callback functions now */ |
| #define XLOG_STATE_DIRTY 0x0040 /* Dirty IC log, not ready for ACTIVE status*/ |
| #define XLOG_STATE_IOERROR 0x0080 /* IO error happened in sync'ing log */ |
| #define XLOG_STATE_ALL 0x7FFF /* All possible valid flags */ |
| #define XLOG_STATE_NOTUSED 0x8000 /* This IC log not being used */ |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * Flags to log operation header |
| * |
| * The first write of a new transaction will be preceded with a start |
| * record, XLOG_START_TRANS. Once a transaction is committed, a commit |
| * record is written, XLOG_COMMIT_TRANS. If a single region can not fit into |
| * the remainder of the current active in-core log, it is split up into |
| * multiple regions. Each partial region will be marked with a |
| * XLOG_CONTINUE_TRANS until the last one, which gets marked with XLOG_END_TRANS. |
| * |
| */ |
| #define XLOG_START_TRANS 0x01 /* Start a new transaction */ |
| #define XLOG_COMMIT_TRANS 0x02 /* Commit this transaction */ |
| #define XLOG_CONTINUE_TRANS 0x04 /* Cont this trans into new region */ |
| #define XLOG_WAS_CONT_TRANS 0x08 /* Cont this trans into new region */ |
| #define XLOG_END_TRANS 0x10 /* End a continued transaction */ |
| #define XLOG_UNMOUNT_TRANS 0x20 /* Unmount a filesystem transaction */ |
| |
| #ifdef __KERNEL__ |
| /* |
| * Flags to log ticket |
| */ |
| #define XLOG_TIC_INITED 0x1 /* has been initialized */ |
| #define XLOG_TIC_PERM_RESERV 0x2 /* permanent reservation */ |
| |
| #define XLOG_TIC_FLAGS \ |
| { XLOG_TIC_INITED, "XLOG_TIC_INITED" }, \ |
| { XLOG_TIC_PERM_RESERV, "XLOG_TIC_PERM_RESERV" } |
| |
| #endif /* __KERNEL__ */ |
| |
| #define XLOG_UNMOUNT_TYPE 0x556e /* Un for Unmount */ |
| |
| /* |
| * Flags for log structure |
| */ |
| #define XLOG_CHKSUM_MISMATCH 0x1 /* used only during recovery */ |
| #define XLOG_ACTIVE_RECOVERY 0x2 /* in the middle of recovery */ |
| #define XLOG_RECOVERY_NEEDED 0x4 /* log was recovered */ |
| #define XLOG_IO_ERROR 0x8 /* log hit an I/O error, and being |
| shutdown */ |
| |
| #ifdef __KERNEL__ |
| /* |
| * Below are states for covering allocation transactions. |
| * By covering, we mean changing the h_tail_lsn in the last on-disk |
| * log write such that no allocation transactions will be re-done during |
| * recovery after a system crash. Recovery starts at the last on-disk |
| * log write. |
| * |
| * These states are used to insert dummy log entries to cover |
| * space allocation transactions which can undo non-transactional changes |
| * after a crash. Writes to a file with space |
| * already allocated do not result in any transactions. Allocations |
| * might include space beyond the EOF. So if we just push the EOF a |
| * little, the last transaction for the file could contain the wrong |
| * size. If there is no file system activity, after an allocation |
| * transaction, and the system crashes, the allocation transaction |
| * will get replayed and the file will be truncated. This could |
| * be hours/days/... after the allocation occurred. |
| * |
| * The fix for this is to do two dummy transactions when the |
| * system is idle. We need two dummy transaction because the h_tail_lsn |
| * in the log record header needs to point beyond the last possible |
| * non-dummy transaction. The first dummy changes the h_tail_lsn to |
| * the first transaction before the dummy. The second dummy causes |
| * h_tail_lsn to point to the first dummy. Recovery starts at h_tail_lsn. |
| * |
| * These dummy transactions get committed when everything |
| * is idle (after there has been some activity). |
| * |
| * There are 5 states used to control this. |
| * |
| * IDLE -- no logging has been done on the file system or |
| * we are done covering previous transactions. |
| * NEED -- logging has occurred and we need a dummy transaction |
| * when the log becomes idle. |
| * DONE -- we were in the NEED state and have committed a dummy |
| * transaction. |
| * NEED2 -- we detected that a dummy transaction has gone to the |
| * on disk log with no other transactions. |
| * DONE2 -- we committed a dummy transaction when in the NEED2 state. |
| * |
| * There are two places where we switch states: |
| * |
| * 1.) In xfs_sync, when we detect an idle log and are in NEED or NEED2. |
| * We commit the dummy transaction and switch to DONE or DONE2, |
| * respectively. In all other states, we don't do anything. |
| * |
| * 2.) When we finish writing the on-disk log (xlog_state_clean_log). |
| * |
| * No matter what state we are in, if this isn't the dummy |
| * transaction going out, the next state is NEED. |
| * So, if we aren't in the DONE or DONE2 states, the next state |
| * is NEED. We can't be finishing a write of the dummy record |
| * unless it was committed and the state switched to DONE or DONE2. |
| * |
| * If we are in the DONE state and this was a write of the |
| * dummy transaction, we move to NEED2. |
| * |
| * If we are in the DONE2 state and this was a write of the |
| * dummy transaction, we move to IDLE. |
| * |
| * |
| * Writing only one dummy transaction can get appended to |
| * one file space allocation. When this happens, the log recovery |
| * code replays the space allocation and a file could be truncated. |
| * This is why we have the NEED2 and DONE2 states before going idle. |
| */ |
| |
| #define XLOG_STATE_COVER_IDLE 0 |
| #define XLOG_STATE_COVER_NEED 1 |
| #define XLOG_STATE_COVER_DONE 2 |
| #define XLOG_STATE_COVER_NEED2 3 |
| #define XLOG_STATE_COVER_DONE2 4 |
| |
| #define XLOG_COVER_OPS 5 |
| |
| |
| /* Ticket reservation region accounting */ |
| #define XLOG_TIC_LEN_MAX 15 |
| |
| /* |
| * Reservation region |
| * As would be stored in xfs_log_iovec but without the i_addr which |
| * we don't care about. |
| */ |
| typedef struct xlog_res { |
| uint r_len; /* region length :4 */ |
| uint r_type; /* region's transaction type :4 */ |
| } xlog_res_t; |
| |
| typedef struct xlog_ticket { |
| wait_queue_head_t t_wait; /* ticket wait queue */ |
| struct list_head t_queue; /* reserve/write queue */ |
| xlog_tid_t t_tid; /* transaction identifier : 4 */ |
| atomic_t t_ref; /* ticket reference count : 4 */ |
| int t_curr_res; /* current reservation in bytes : 4 */ |
| int t_unit_res; /* unit reservation in bytes : 4 */ |
| char t_ocnt; /* original count : 1 */ |
| char t_cnt; /* current count : 1 */ |
| char t_clientid; /* who does this belong to; : 1 */ |
| char t_flags; /* properties of reservation : 1 */ |
| uint t_trans_type; /* transaction type : 4 */ |
| |
| /* reservation array fields */ |
| uint t_res_num; /* num in array : 4 */ |
| uint t_res_num_ophdrs; /* num op hdrs : 4 */ |
| uint t_res_arr_sum; /* array sum : 4 */ |
| uint t_res_o_flow; /* sum overflow : 4 */ |
| xlog_res_t t_res_arr[XLOG_TIC_LEN_MAX]; /* array of res : 8 * 15 */ |
| } xlog_ticket_t; |
| |
| #endif |
| |
| |
| typedef struct xlog_op_header { |
| __be32 oh_tid; /* transaction id of operation : 4 b */ |
| __be32 oh_len; /* bytes in data region : 4 b */ |
| __u8 oh_clientid; /* who sent me this : 1 b */ |
| __u8 oh_flags; /* : 1 b */ |
| __u16 oh_res2; /* 32 bit align : 2 b */ |
| } xlog_op_header_t; |
| |
| |
| /* valid values for h_fmt */ |
| #define XLOG_FMT_UNKNOWN 0 |
| #define XLOG_FMT_LINUX_LE 1 |
| #define XLOG_FMT_LINUX_BE 2 |
| #define XLOG_FMT_IRIX_BE 3 |
| |
| /* our fmt */ |
| #ifdef XFS_NATIVE_HOST |
| #define XLOG_FMT XLOG_FMT_LINUX_BE |
| #else |
| #define XLOG_FMT XLOG_FMT_LINUX_LE |
| #endif |
| |
| typedef struct xlog_rec_header { |
| __be32 h_magicno; /* log record (LR) identifier : 4 */ |
| __be32 h_cycle; /* write cycle of log : 4 */ |
| __be32 h_version; /* LR version : 4 */ |
| __be32 h_len; /* len in bytes; should be 64-bit aligned: 4 */ |
| __be64 h_lsn; /* lsn of this LR : 8 */ |
| __be64 h_tail_lsn; /* lsn of 1st LR w/ buffers not committed: 8 */ |
| __be32 h_chksum; /* may not be used; non-zero if used : 4 */ |
| __be32 h_prev_block; /* block number to previous LR : 4 */ |
| __be32 h_num_logops; /* number of log operations in this LR : 4 */ |
| __be32 h_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; |
| /* new fields */ |
| __be32 h_fmt; /* format of log record : 4 */ |
| uuid_t h_fs_uuid; /* uuid of FS : 16 */ |
| __be32 h_size; /* iclog size : 4 */ |
| } xlog_rec_header_t; |
| |
| typedef struct xlog_rec_ext_header { |
| __be32 xh_cycle; /* write cycle of log : 4 */ |
| __be32 xh_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE]; /* : 256 */ |
| } xlog_rec_ext_header_t; |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Quite misnamed, because this union lays out the actual on-disk log buffer. |
| */ |
| typedef union xlog_in_core2 { |
| xlog_rec_header_t hic_header; |
| xlog_rec_ext_header_t hic_xheader; |
| char hic_sector[XLOG_HEADER_SIZE]; |
| } xlog_in_core_2_t; |
| |
| /* |
| * - A log record header is 512 bytes. There is plenty of room to grow the |
| * xlog_rec_header_t into the reserved space. |
| * - ic_data follows, so a write to disk can start at the beginning of |
| * the iclog. |
| * - ic_forcewait is used to implement synchronous forcing of the iclog to disk. |
| * - ic_next is the pointer to the next iclog in the ring. |
| * - ic_bp is a pointer to the buffer used to write this incore log to disk. |
| * - ic_log is a pointer back to the global log structure. |
| * - ic_callback is a linked list of callback function/argument pairs to be |
| * called after an iclog finishes writing. |
| * - ic_size is the full size of the header plus data. |
| * - ic_offset is the current number of bytes written to in this iclog. |
| * - ic_refcnt is bumped when someone is writing to the log. |
| * - ic_state is the state of the iclog. |
| * |
| * Because of cacheline contention on large machines, we need to separate |
| * various resources onto different cachelines. To start with, make the |
| * structure cacheline aligned. The following fields can be contended on |
| * by independent processes: |
| * |
| * - ic_callback_* |
| * - ic_refcnt |
| * - fields protected by the global l_icloglock |
| * |
| * so we need to ensure that these fields are located in separate cachelines. |
| * We'll put all the read-only and l_icloglock fields in the first cacheline, |
| * and move everything else out to subsequent cachelines. |
| */ |
| typedef struct xlog_in_core { |
| wait_queue_head_t ic_force_wait; |
| wait_queue_head_t ic_write_wait; |
| struct xlog_in_core *ic_next; |
| struct xlog_in_core *ic_prev; |
| struct xfs_buf *ic_bp; |
| struct log *ic_log; |
| int ic_size; |
| int ic_offset; |
| int ic_bwritecnt; |
| unsigned short ic_state; |
| char *ic_datap; /* pointer to iclog data */ |
| |
| /* Callback structures need their own cacheline */ |
| spinlock_t ic_callback_lock ____cacheline_aligned_in_smp; |
| xfs_log_callback_t *ic_callback; |
| xfs_log_callback_t **ic_callback_tail; |
| |
| /* reference counts need their own cacheline */ |
| atomic_t ic_refcnt ____cacheline_aligned_in_smp; |
| xlog_in_core_2_t *ic_data; |
| #define ic_header ic_data->hic_header |
| } xlog_in_core_t; |
| |
| /* |
| * The CIL context is used to aggregate per-transaction details as well be |
| * passed to the iclog for checkpoint post-commit processing. After being |
| * passed to the iclog, another context needs to be allocated for tracking the |
| * next set of transactions to be aggregated into a checkpoint. |
| */ |
| struct xfs_cil; |
| |
| struct xfs_cil_ctx { |
| struct xfs_cil *cil; |
| xfs_lsn_t sequence; /* chkpt sequence # */ |
| xfs_lsn_t start_lsn; /* first LSN of chkpt commit */ |
| xfs_lsn_t commit_lsn; /* chkpt commit record lsn */ |
| struct xlog_ticket *ticket; /* chkpt ticket */ |
| int nvecs; /* number of regions */ |
| int space_used; /* aggregate size of regions */ |
| struct list_head busy_extents; /* busy extents in chkpt */ |
| struct xfs_log_vec *lv_chain; /* logvecs being pushed */ |
| xfs_log_callback_t log_cb; /* completion callback hook. */ |
| struct list_head committing; /* ctx committing list */ |
| }; |
| |
| /* |
| * Committed Item List structure |
| * |
| * This structure is used to track log items that have been committed but not |
| * yet written into the log. It is used only when the delayed logging mount |
| * option is enabled. |
| * |
| * This structure tracks the list of committing checkpoint contexts so |
| * we can avoid the problem of having to hold out new transactions during a |
| * flush until we have a the commit record LSN of the checkpoint. We can |
| * traverse the list of committing contexts in xlog_cil_push_lsn() to find a |
| * sequence match and extract the commit LSN directly from there. If the |
| * checkpoint is still in the process of committing, we can block waiting for |
| * the commit LSN to be determined as well. This should make synchronous |
| * operations almost as efficient as the old logging methods. |
| */ |
| struct xfs_cil { |
| struct log *xc_log; |
| struct list_head xc_cil; |
| spinlock_t xc_cil_lock; |
| struct xfs_cil_ctx *xc_ctx; |
| struct rw_semaphore xc_ctx_lock; |
| struct list_head xc_committing; |
| wait_queue_head_t xc_commit_wait; |
| xfs_lsn_t xc_current_sequence; |
| }; |
| |
| /* |
| * The amount of log space we allow the CIL to aggregate is difficult to size. |
| * Whatever we choose, we have to make sure we can get a reservation for the |
| * log space effectively, that it is large enough to capture sufficient |
| * relogging to reduce log buffer IO significantly, but it is not too large for |
| * the log or induces too much latency when writing out through the iclogs. We |
| * track both space consumed and the number of vectors in the checkpoint |
| * context, so we need to decide which to use for limiting. |
| * |
| * Every log buffer we write out during a push needs a header reserved, which |
| * is at least one sector and more for v2 logs. Hence we need a reservation of |
| * at least 512 bytes per 32k of log space just for the LR headers. That means |
| * 16KB of reservation per megabyte of delayed logging space we will consume, |
| * plus various headers. The number of headers will vary based on the num of |
| * io vectors, so limiting on a specific number of vectors is going to result |
| * in transactions of varying size. IOWs, it is more consistent to track and |
| * limit space consumed in the log rather than by the number of objects being |
| * logged in order to prevent checkpoint ticket overruns. |
| * |
| * Further, use of static reservations through the log grant mechanism is |
| * problematic. It introduces a lot of complexity (e.g. reserve grant vs write |
| * grant) and a significant deadlock potential because regranting write space |
| * can block on log pushes. Hence if we have to regrant log space during a log |
| * push, we can deadlock. |
| * |
| * However, we can avoid this by use of a dynamic "reservation stealing" |
| * technique during transaction commit whereby unused reservation space in the |
| * transaction ticket is transferred to the CIL ctx commit ticket to cover the |
| * space needed by the checkpoint transaction. This means that we never need to |
| * specifically reserve space for the CIL checkpoint transaction, nor do we |
| * need to regrant space once the checkpoint completes. This also means the |
| * checkpoint transaction ticket is specific to the checkpoint context, rather |
| * than the CIL itself. |
| * |
| * With dynamic reservations, we can effectively make up arbitrary limits for |
| * the checkpoint size so long as they don't violate any other size rules. |
| * Recovery imposes a rule that no transaction exceed half the log, so we are |
| * limited by that. Furthermore, the log transaction reservation subsystem |
| * tries to keep 25% of the log free, so we need to keep below that limit or we |
| * risk running out of free log space to start any new transactions. |
| * |
| * In order to keep background CIL push efficient, we will set a lower |
| * threshold at which background pushing is attempted without blocking current |
| * transaction commits. A separate, higher bound defines when CIL pushes are |
| * enforced to ensure we stay within our maximum checkpoint size bounds. |
| * threshold, yet give us plenty of space for aggregation on large logs. |
| */ |
| #define XLOG_CIL_SPACE_LIMIT(log) (log->l_logsize >> 3) |
| #define XLOG_CIL_HARD_SPACE_LIMIT(log) (3 * (log->l_logsize >> 4)) |
| |
| /* |
| * The reservation head lsn is not made up of a cycle number and block number. |
| * Instead, it uses a cycle number and byte number. Logs don't expect to |
| * overflow 31 bits worth of byte offset, so using a byte number will mean |
| * that round off problems won't occur when releasing partial reservations. |
| */ |
| typedef struct log { |
| /* The following fields don't need locking */ |
| struct xfs_mount *l_mp; /* mount point */ |
| struct xfs_ail *l_ailp; /* AIL log is working with */ |
| struct xfs_cil *l_cilp; /* CIL log is working with */ |
| struct xfs_buf *l_xbuf; /* extra buffer for log |
| * wrapping */ |
| struct xfs_buftarg *l_targ; /* buftarg of log */ |
| uint l_flags; |
| uint l_quotaoffs_flag; /* XFS_DQ_*, for QUOTAOFFs */ |
| struct list_head *l_buf_cancel_table; |
| int l_iclog_hsize; /* size of iclog header */ |
| int l_iclog_heads; /* # of iclog header sectors */ |
| uint l_sectBBsize; /* sector size in BBs (2^n) */ |
| int l_iclog_size; /* size of log in bytes */ |
| int l_iclog_size_log; /* log power size of log */ |
| int l_iclog_bufs; /* number of iclog buffers */ |
| xfs_daddr_t l_logBBstart; /* start block of log */ |
| int l_logsize; /* size of log in bytes */ |
| int l_logBBsize; /* size of log in BB chunks */ |
| |
| /* The following block of fields are changed while holding icloglock */ |
| wait_queue_head_t l_flush_wait ____cacheline_aligned_in_smp; |
| /* waiting for iclog flush */ |
| int l_covered_state;/* state of "covering disk |
| * log entries" */ |
| xlog_in_core_t *l_iclog; /* head log queue */ |
| spinlock_t l_icloglock; /* grab to change iclog state */ |
| int l_curr_cycle; /* Cycle number of log writes */ |
| int l_prev_cycle; /* Cycle number before last |
| * block increment */ |
| int l_curr_block; /* current logical log block */ |
| int l_prev_block; /* previous logical log block */ |
| |
| /* The following block of fields are changed while holding grant_lock */ |
| spinlock_t l_grant_lock ____cacheline_aligned_in_smp; |
| |
| /* |
| * l_last_sync_lsn and l_tail_lsn are atomics so they can be set and |
| * read without needing to hold specific locks. To avoid operations |
| * contending with other hot objects, place each of them on a separate |
| * cacheline. |
| */ |
| /* lsn of last LR on disk */ |
| atomic64_t l_last_sync_lsn ____cacheline_aligned_in_smp; |
| /* lsn of 1st LR with unflushed * buffers */ |
| atomic64_t l_tail_lsn ____cacheline_aligned_in_smp; |
| |
| /* |
| * ticket grant locks, queues and accounting have their own cachlines |
| * as these are quite hot and can be operated on concurrently. |
| */ |
| spinlock_t l_grant_reserve_lock ____cacheline_aligned_in_smp; |
| struct list_head l_reserveq; |
| atomic64_t l_grant_reserve_head; |
| |
| spinlock_t l_grant_write_lock ____cacheline_aligned_in_smp; |
| struct list_head l_writeq; |
| atomic64_t l_grant_write_head; |
| |
| /* The following field are used for debugging; need to hold icloglock */ |
| #ifdef DEBUG |
| char *l_iclog_bak[XLOG_MAX_ICLOGS]; |
| #endif |
| |
| } xlog_t; |
| |
| #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \ |
| ((log)->l_buf_cancel_table + ((__uint64_t)blkno % XLOG_BC_TABLE_SIZE)) |
| |
| #define XLOG_FORCED_SHUTDOWN(log) ((log)->l_flags & XLOG_IO_ERROR) |
| |
| /* common routines */ |
| extern xfs_lsn_t xlog_assign_tail_lsn(struct xfs_mount *mp); |
| extern int xlog_recover(xlog_t *log); |
| extern int xlog_recover_finish(xlog_t *log); |
| extern void xlog_pack_data(xlog_t *log, xlog_in_core_t *iclog, int); |
| |
| extern kmem_zone_t *xfs_log_ticket_zone; |
| struct xlog_ticket *xlog_ticket_alloc(struct log *log, int unit_bytes, |
| int count, char client, uint xflags, |
| int alloc_flags); |
| |
| |
| static inline void |
| xlog_write_adv_cnt(void **ptr, int *len, int *off, size_t bytes) |
| { |
| *ptr += bytes; |
| *len -= bytes; |
| *off += bytes; |
| } |
| |
| void xlog_print_tic_res(struct xfs_mount *mp, struct xlog_ticket *ticket); |
| int xlog_write(struct log *log, struct xfs_log_vec *log_vector, |
| struct xlog_ticket *tic, xfs_lsn_t *start_lsn, |
| xlog_in_core_t **commit_iclog, uint flags); |
| |
| /* |
| * When we crack an atomic LSN, we sample it first so that the value will not |
| * change while we are cracking it into the component values. This means we |
| * will always get consistent component values to work from. This should always |
| * be used to smaple and crack LSNs taht are stored and updated in atomic |
| * variables. |
| */ |
| static inline void |
| xlog_crack_atomic_lsn(atomic64_t *lsn, uint *cycle, uint *block) |
| { |
| xfs_lsn_t val = atomic64_read(lsn); |
| |
| *cycle = CYCLE_LSN(val); |
| *block = BLOCK_LSN(val); |
| } |
| |
| /* |
| * Calculate and assign a value to an atomic LSN variable from component pieces. |
| */ |
| static inline void |
| xlog_assign_atomic_lsn(atomic64_t *lsn, uint cycle, uint block) |
| { |
| atomic64_set(lsn, xlog_assign_lsn(cycle, block)); |
| } |
| |
| /* |
| * When we crack the grrant head, we sample it first so that the value will not |
| * change while we are cracking it into the component values. This means we |
| * will always get consistent component values to work from. |
| */ |
| static inline void |
| xlog_crack_grant_head(atomic64_t *head, int *cycle, int *space) |
| { |
| int64_t val = atomic64_read(head); |
| |
| *cycle = val >> 32; |
| *space = val & 0xffffffff; |
| } |
| |
| static inline void |
| xlog_assign_grant_head(atomic64_t *head, int cycle, int space) |
| { |
| atomic64_set(head, ((int64_t)cycle << 32) | space); |
| } |
| |
| /* |
| * Committed Item List interfaces |
| */ |
| int xlog_cil_init(struct log *log); |
| void xlog_cil_init_post_recovery(struct log *log); |
| void xlog_cil_destroy(struct log *log); |
| |
| /* |
| * CIL force routines |
| */ |
| xfs_lsn_t xlog_cil_force_lsn(struct log *log, xfs_lsn_t sequence); |
| |
| static inline void |
| xlog_cil_force(struct log *log) |
| { |
| xlog_cil_force_lsn(log, log->l_cilp->xc_current_sequence); |
| } |
| |
| /* |
| * Unmount record type is used as a pseudo transaction type for the ticket. |
| * It's value must be outside the range of XFS_TRANS_* values. |
| */ |
| #define XLOG_UNMOUNT_REC_TYPE (-1U) |
| |
| /* |
| * Wrapper function for waiting on a wait queue serialised against wakeups |
| * by a spinlock. This matches the semantics of all the wait queues used in the |
| * log code. |
| */ |
| static inline void xlog_wait(wait_queue_head_t *wq, spinlock_t *lock) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| |
| add_wait_queue_exclusive(wq, &wait); |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| spin_unlock(lock); |
| schedule(); |
| remove_wait_queue(wq, &wait); |
| } |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __XFS_LOG_PRIV_H__ */ |