|  | /* | 
|  | *  linux/arch/i386/kernel/setup.c | 
|  | * | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | * | 
|  | *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
|  | * | 
|  | *  Memory region support | 
|  | *	David Parsons <orc@pell.chi.il.us>, July-August 1999 | 
|  | * | 
|  | *  Added E820 sanitization routine (removes overlapping memory regions); | 
|  | *  Brian Moyle <bmoyle@mvista.com>, February 2001 | 
|  | * | 
|  | * Moved CPU detection code to cpu/${cpu}.c | 
|  | *    Patrick Mochel <mochel@osdl.org>, March 2002 | 
|  | * | 
|  | *  Provisions for empty E820 memory regions (reported by certain BIOSes). | 
|  | *  Alex Achenbach <xela@slit.de>, December 2002. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the architecture-dependent parts of initialization | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/apm_bios.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/mca.h> | 
|  | #include <linux/root_dev.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/edd.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/pfn.h> | 
|  |  | 
|  | #include <video/edid.h> | 
|  |  | 
|  | #include <asm/apic.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/mpspec.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/arch_hooks.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/io_apic.h> | 
|  | #include <asm/ist.h> | 
|  | #include <asm/io.h> | 
|  | #include "setup_arch_pre.h" | 
|  | #include <bios_ebda.h> | 
|  |  | 
|  | /* Forward Declaration. */ | 
|  | void __init find_max_pfn(void); | 
|  |  | 
|  | /* This value is set up by the early boot code to point to the value | 
|  | immediately after the boot time page tables.  It contains a *physical* | 
|  | address, and must not be in the .bss segment! */ | 
|  | unsigned long init_pg_tables_end __initdata = ~0UL; | 
|  |  | 
|  | int disable_pse __devinitdata = 0; | 
|  |  | 
|  | /* | 
|  | * Machine setup.. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_EFI | 
|  | int efi_enabled = 0; | 
|  | EXPORT_SYMBOL(efi_enabled); | 
|  | #endif | 
|  |  | 
|  | /* cpu data as detected by the assembly code in head.S */ | 
|  | struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; | 
|  | /* common cpu data for all cpus */ | 
|  | struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 }; | 
|  | EXPORT_SYMBOL(boot_cpu_data); | 
|  |  | 
|  | unsigned long mmu_cr4_features; | 
|  |  | 
|  | #ifdef	CONFIG_ACPI | 
|  | int acpi_disabled = 0; | 
|  | #else | 
|  | int acpi_disabled = 1; | 
|  | #endif | 
|  | EXPORT_SYMBOL(acpi_disabled); | 
|  |  | 
|  | #ifdef	CONFIG_ACPI | 
|  | int __initdata acpi_force = 0; | 
|  | extern acpi_interrupt_flags	acpi_sci_flags; | 
|  | #endif | 
|  |  | 
|  | /* for MCA, but anyone else can use it if they want */ | 
|  | unsigned int machine_id; | 
|  | #ifdef CONFIG_MCA | 
|  | EXPORT_SYMBOL(machine_id); | 
|  | #endif | 
|  | unsigned int machine_submodel_id; | 
|  | unsigned int BIOS_revision; | 
|  | unsigned int mca_pentium_flag; | 
|  |  | 
|  | /* For PCI or other memory-mapped resources */ | 
|  | unsigned long pci_mem_start = 0x10000000; | 
|  | #ifdef CONFIG_PCI | 
|  | EXPORT_SYMBOL(pci_mem_start); | 
|  | #endif | 
|  |  | 
|  | /* Boot loader ID as an integer, for the benefit of proc_dointvec */ | 
|  | int bootloader_type; | 
|  |  | 
|  | /* user-defined highmem size */ | 
|  | static unsigned int highmem_pages = -1; | 
|  |  | 
|  | /* | 
|  | * Setup options | 
|  | */ | 
|  | struct drive_info_struct { char dummy[32]; } drive_info; | 
|  | #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \ | 
|  | defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE) | 
|  | EXPORT_SYMBOL(drive_info); | 
|  | #endif | 
|  | struct screen_info screen_info; | 
|  | EXPORT_SYMBOL(screen_info); | 
|  | struct apm_info apm_info; | 
|  | EXPORT_SYMBOL(apm_info); | 
|  | struct sys_desc_table_struct { | 
|  | unsigned short length; | 
|  | unsigned char table[0]; | 
|  | }; | 
|  | struct edid_info edid_info; | 
|  | EXPORT_SYMBOL_GPL(edid_info); | 
|  | struct ist_info ist_info; | 
|  | #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ | 
|  | defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) | 
|  | EXPORT_SYMBOL(ist_info); | 
|  | #endif | 
|  | struct e820map e820; | 
|  |  | 
|  | extern void early_cpu_init(void); | 
|  | extern void generic_apic_probe(char *); | 
|  | extern int root_mountflags; | 
|  |  | 
|  | unsigned long saved_videomode; | 
|  |  | 
|  | #define RAMDISK_IMAGE_START_MASK  	0x07FF | 
|  | #define RAMDISK_PROMPT_FLAG		0x8000 | 
|  | #define RAMDISK_LOAD_FLAG		0x4000 | 
|  |  | 
|  | static char command_line[COMMAND_LINE_SIZE]; | 
|  |  | 
|  | unsigned char __initdata boot_params[PARAM_SIZE]; | 
|  |  | 
|  | static struct resource data_resource = { | 
|  | .name	= "Kernel data", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource code_resource = { | 
|  | .name	= "Kernel code", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource system_rom_resource = { | 
|  | .name	= "System ROM", | 
|  | .start	= 0xf0000, | 
|  | .end	= 0xfffff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource extension_rom_resource = { | 
|  | .name	= "Extension ROM", | 
|  | .start	= 0xe0000, | 
|  | .end	= 0xeffff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource adapter_rom_resources[] = { { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0xc8000, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }, { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }, { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }, { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }, { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }, { | 
|  | .name 	= "Adapter ROM", | 
|  | .start	= 0, | 
|  | .end	= 0, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | } }; | 
|  |  | 
|  | #define ADAPTER_ROM_RESOURCES \ | 
|  | (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0]) | 
|  |  | 
|  | static struct resource video_rom_resource = { | 
|  | .name 	= "Video ROM", | 
|  | .start	= 0xc0000, | 
|  | .end	= 0xc7fff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource video_ram_resource = { | 
|  | .name	= "Video RAM area", | 
|  | .start	= 0xa0000, | 
|  | .end	= 0xbffff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource standard_io_resources[] = { { | 
|  | .name	= "dma1", | 
|  | .start	= 0x0000, | 
|  | .end	= 0x001f, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "pic1", | 
|  | .start	= 0x0020, | 
|  | .end	= 0x0021, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name   = "timer0", | 
|  | .start	= 0x0040, | 
|  | .end    = 0x0043, | 
|  | .flags  = IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name   = "timer1", | 
|  | .start  = 0x0050, | 
|  | .end    = 0x0053, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "keyboard", | 
|  | .start	= 0x0060, | 
|  | .end	= 0x006f, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "dma page reg", | 
|  | .start	= 0x0080, | 
|  | .end	= 0x008f, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "pic2", | 
|  | .start	= 0x00a0, | 
|  | .end	= 0x00a1, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "dma2", | 
|  | .start	= 0x00c0, | 
|  | .end	= 0x00df, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | }, { | 
|  | .name	= "fpu", | 
|  | .start	= 0x00f0, | 
|  | .end	= 0x00ff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_IO | 
|  | } }; | 
|  |  | 
|  | #define STANDARD_IO_RESOURCES \ | 
|  | (sizeof standard_io_resources / sizeof standard_io_resources[0]) | 
|  |  | 
|  | #define romsignature(x) (*(unsigned short *)(x) == 0xaa55) | 
|  |  | 
|  | static int __init romchecksum(unsigned char *rom, unsigned long length) | 
|  | { | 
|  | unsigned char *p, sum = 0; | 
|  |  | 
|  | for (p = rom; p < rom + length; p++) | 
|  | sum += *p; | 
|  | return sum == 0; | 
|  | } | 
|  |  | 
|  | static void __init probe_roms(void) | 
|  | { | 
|  | unsigned long start, length, upper; | 
|  | unsigned char *rom; | 
|  | int	      i; | 
|  |  | 
|  | /* video rom */ | 
|  | upper = adapter_rom_resources[0].start; | 
|  | for (start = video_rom_resource.start; start < upper; start += 2048) { | 
|  | rom = isa_bus_to_virt(start); | 
|  | if (!romsignature(rom)) | 
|  | continue; | 
|  |  | 
|  | video_rom_resource.start = start; | 
|  |  | 
|  | /* 0 < length <= 0x7f * 512, historically */ | 
|  | length = rom[2] * 512; | 
|  |  | 
|  | /* if checksum okay, trust length byte */ | 
|  | if (length && romchecksum(rom, length)) | 
|  | video_rom_resource.end = start + length - 1; | 
|  |  | 
|  | request_resource(&iomem_resource, &video_rom_resource); | 
|  | break; | 
|  | } | 
|  |  | 
|  | start = (video_rom_resource.end + 1 + 2047) & ~2047UL; | 
|  | if (start < upper) | 
|  | start = upper; | 
|  |  | 
|  | /* system rom */ | 
|  | request_resource(&iomem_resource, &system_rom_resource); | 
|  | upper = system_rom_resource.start; | 
|  |  | 
|  | /* check for extension rom (ignore length byte!) */ | 
|  | rom = isa_bus_to_virt(extension_rom_resource.start); | 
|  | if (romsignature(rom)) { | 
|  | length = extension_rom_resource.end - extension_rom_resource.start + 1; | 
|  | if (romchecksum(rom, length)) { | 
|  | request_resource(&iomem_resource, &extension_rom_resource); | 
|  | upper = extension_rom_resource.start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check for adapter roms on 2k boundaries */ | 
|  | for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) { | 
|  | rom = isa_bus_to_virt(start); | 
|  | if (!romsignature(rom)) | 
|  | continue; | 
|  |  | 
|  | /* 0 < length <= 0x7f * 512, historically */ | 
|  | length = rom[2] * 512; | 
|  |  | 
|  | /* but accept any length that fits if checksum okay */ | 
|  | if (!length || start + length > upper || !romchecksum(rom, length)) | 
|  | continue; | 
|  |  | 
|  | adapter_rom_resources[i].start = start; | 
|  | adapter_rom_resources[i].end = start + length - 1; | 
|  | request_resource(&iomem_resource, &adapter_rom_resources[i]); | 
|  |  | 
|  | start = adapter_rom_resources[i++].end & ~2047UL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init limit_regions(unsigned long long size) | 
|  | { | 
|  | unsigned long long current_addr = 0; | 
|  | int i; | 
|  |  | 
|  | if (efi_enabled) { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map, i = 0; p < memmap.map_end; | 
|  | p += memmap.desc_size, i++) { | 
|  | md = p; | 
|  | current_addr = md->phys_addr + (md->num_pages << 12); | 
|  | if (md->type == EFI_CONVENTIONAL_MEMORY) { | 
|  | if (current_addr >= size) { | 
|  | md->num_pages -= | 
|  | (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT); | 
|  | memmap.nr_map = i + 1; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (i = 0; i < e820.nr_map; i++) { | 
|  | current_addr = e820.map[i].addr + e820.map[i].size; | 
|  | if (current_addr < size) | 
|  | continue; | 
|  |  | 
|  | if (e820.map[i].type != E820_RAM) | 
|  | continue; | 
|  |  | 
|  | if (e820.map[i].addr >= size) { | 
|  | /* | 
|  | * This region starts past the end of the | 
|  | * requested size, skip it completely. | 
|  | */ | 
|  | e820.nr_map = i; | 
|  | } else { | 
|  | e820.nr_map = i + 1; | 
|  | e820.map[i].size -= current_addr - size; | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init add_memory_region(unsigned long long start, | 
|  | unsigned long long size, int type) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | if (!efi_enabled) { | 
|  | x = e820.nr_map; | 
|  |  | 
|  | if (x == E820MAX) { | 
|  | printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | e820.map[x].addr = start; | 
|  | e820.map[x].size = size; | 
|  | e820.map[x].type = type; | 
|  | e820.nr_map++; | 
|  | } | 
|  | } /* add_memory_region */ | 
|  |  | 
|  | #define E820_DEBUG	1 | 
|  |  | 
|  | static void __init print_memory_map(char *who) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < e820.nr_map; i++) { | 
|  | printk(" %s: %016Lx - %016Lx ", who, | 
|  | e820.map[i].addr, | 
|  | e820.map[i].addr + e820.map[i].size); | 
|  | switch (e820.map[i].type) { | 
|  | case E820_RAM:	printk("(usable)\n"); | 
|  | break; | 
|  | case E820_RESERVED: | 
|  | printk("(reserved)\n"); | 
|  | break; | 
|  | case E820_ACPI: | 
|  | printk("(ACPI data)\n"); | 
|  | break; | 
|  | case E820_NVS: | 
|  | printk("(ACPI NVS)\n"); | 
|  | break; | 
|  | default:	printk("type %lu\n", e820.map[i].type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanitize the BIOS e820 map. | 
|  | * | 
|  | * Some e820 responses include overlapping entries.  The following | 
|  | * replaces the original e820 map with a new one, removing overlaps. | 
|  | * | 
|  | */ | 
|  | struct change_member { | 
|  | struct e820entry *pbios; /* pointer to original bios entry */ | 
|  | unsigned long long addr; /* address for this change point */ | 
|  | }; | 
|  | static struct change_member change_point_list[2*E820MAX] __initdata; | 
|  | static struct change_member *change_point[2*E820MAX] __initdata; | 
|  | static struct e820entry *overlap_list[E820MAX] __initdata; | 
|  | static struct e820entry new_bios[E820MAX] __initdata; | 
|  |  | 
|  | static int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map) | 
|  | { | 
|  | struct change_member *change_tmp; | 
|  | unsigned long current_type, last_type; | 
|  | unsigned long long last_addr; | 
|  | int chgidx, still_changing; | 
|  | int overlap_entries; | 
|  | int new_bios_entry; | 
|  | int old_nr, new_nr, chg_nr; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | Visually we're performing the following (1,2,3,4 = memory types)... | 
|  |  | 
|  | Sample memory map (w/overlaps): | 
|  | ____22__________________ | 
|  | ______________________4_ | 
|  | ____1111________________ | 
|  | _44_____________________ | 
|  | 11111111________________ | 
|  | ____________________33__ | 
|  | ___________44___________ | 
|  | __________33333_________ | 
|  | ______________22________ | 
|  | ___________________2222_ | 
|  | _________111111111______ | 
|  | _____________________11_ | 
|  | _________________4______ | 
|  |  | 
|  | Sanitized equivalent (no overlap): | 
|  | 1_______________________ | 
|  | _44_____________________ | 
|  | ___1____________________ | 
|  | ____22__________________ | 
|  | ______11________________ | 
|  | _________1______________ | 
|  | __________3_____________ | 
|  | ___________44___________ | 
|  | _____________33_________ | 
|  | _______________2________ | 
|  | ________________1_______ | 
|  | _________________4______ | 
|  | ___________________2____ | 
|  | ____________________33__ | 
|  | ______________________4_ | 
|  | */ | 
|  |  | 
|  | /* if there's only one memory region, don't bother */ | 
|  | if (*pnr_map < 2) | 
|  | return -1; | 
|  |  | 
|  | old_nr = *pnr_map; | 
|  |  | 
|  | /* bail out if we find any unreasonable addresses in bios map */ | 
|  | for (i=0; i<old_nr; i++) | 
|  | if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) | 
|  | return -1; | 
|  |  | 
|  | /* create pointers for initial change-point information (for sorting) */ | 
|  | for (i=0; i < 2*old_nr; i++) | 
|  | change_point[i] = &change_point_list[i]; | 
|  |  | 
|  | /* record all known change-points (starting and ending addresses), | 
|  | omitting those that are for empty memory regions */ | 
|  | chgidx = 0; | 
|  | for (i=0; i < old_nr; i++)	{ | 
|  | if (biosmap[i].size != 0) { | 
|  | change_point[chgidx]->addr = biosmap[i].addr; | 
|  | change_point[chgidx++]->pbios = &biosmap[i]; | 
|  | change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size; | 
|  | change_point[chgidx++]->pbios = &biosmap[i]; | 
|  | } | 
|  | } | 
|  | chg_nr = chgidx;    	/* true number of change-points */ | 
|  |  | 
|  | /* sort change-point list by memory addresses (low -> high) */ | 
|  | still_changing = 1; | 
|  | while (still_changing)	{ | 
|  | still_changing = 0; | 
|  | for (i=1; i < chg_nr; i++)  { | 
|  | /* if <current_addr> > <last_addr>, swap */ | 
|  | /* or, if current=<start_addr> & last=<end_addr>, swap */ | 
|  | if ((change_point[i]->addr < change_point[i-1]->addr) || | 
|  | ((change_point[i]->addr == change_point[i-1]->addr) && | 
|  | (change_point[i]->addr == change_point[i]->pbios->addr) && | 
|  | (change_point[i-1]->addr != change_point[i-1]->pbios->addr)) | 
|  | ) | 
|  | { | 
|  | change_tmp = change_point[i]; | 
|  | change_point[i] = change_point[i-1]; | 
|  | change_point[i-1] = change_tmp; | 
|  | still_changing=1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* create a new bios memory map, removing overlaps */ | 
|  | overlap_entries=0;	 /* number of entries in the overlap table */ | 
|  | new_bios_entry=0;	 /* index for creating new bios map entries */ | 
|  | last_type = 0;		 /* start with undefined memory type */ | 
|  | last_addr = 0;		 /* start with 0 as last starting address */ | 
|  | /* loop through change-points, determining affect on the new bios map */ | 
|  | for (chgidx=0; chgidx < chg_nr; chgidx++) | 
|  | { | 
|  | /* keep track of all overlapping bios entries */ | 
|  | if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr) | 
|  | { | 
|  | /* add map entry to overlap list (> 1 entry implies an overlap) */ | 
|  | overlap_list[overlap_entries++]=change_point[chgidx]->pbios; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* remove entry from list (order independent, so swap with last) */ | 
|  | for (i=0; i<overlap_entries; i++) | 
|  | { | 
|  | if (overlap_list[i] == change_point[chgidx]->pbios) | 
|  | overlap_list[i] = overlap_list[overlap_entries-1]; | 
|  | } | 
|  | overlap_entries--; | 
|  | } | 
|  | /* if there are overlapping entries, decide which "type" to use */ | 
|  | /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */ | 
|  | current_type = 0; | 
|  | for (i=0; i<overlap_entries; i++) | 
|  | if (overlap_list[i]->type > current_type) | 
|  | current_type = overlap_list[i]->type; | 
|  | /* continue building up new bios map based on this information */ | 
|  | if (current_type != last_type)	{ | 
|  | if (last_type != 0)	 { | 
|  | new_bios[new_bios_entry].size = | 
|  | change_point[chgidx]->addr - last_addr; | 
|  | /* move forward only if the new size was non-zero */ | 
|  | if (new_bios[new_bios_entry].size != 0) | 
|  | if (++new_bios_entry >= E820MAX) | 
|  | break; 	/* no more space left for new bios entries */ | 
|  | } | 
|  | if (current_type != 0)	{ | 
|  | new_bios[new_bios_entry].addr = change_point[chgidx]->addr; | 
|  | new_bios[new_bios_entry].type = current_type; | 
|  | last_addr=change_point[chgidx]->addr; | 
|  | } | 
|  | last_type = current_type; | 
|  | } | 
|  | } | 
|  | new_nr = new_bios_entry;   /* retain count for new bios entries */ | 
|  |  | 
|  | /* copy new bios mapping into original location */ | 
|  | memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry)); | 
|  | *pnr_map = new_nr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the BIOS e820 map into a safe place. | 
|  | * | 
|  | * Sanity-check it while we're at it.. | 
|  | * | 
|  | * If we're lucky and live on a modern system, the setup code | 
|  | * will have given us a memory map that we can use to properly | 
|  | * set up memory.  If we aren't, we'll fake a memory map. | 
|  | * | 
|  | * We check to see that the memory map contains at least 2 elements | 
|  | * before we'll use it, because the detection code in setup.S may | 
|  | * not be perfect and most every PC known to man has two memory | 
|  | * regions: one from 0 to 640k, and one from 1mb up.  (The IBM | 
|  | * thinkpad 560x, for example, does not cooperate with the memory | 
|  | * detection code.) | 
|  | */ | 
|  | static int __init copy_e820_map(struct e820entry * biosmap, int nr_map) | 
|  | { | 
|  | /* Only one memory region (or negative)? Ignore it */ | 
|  | if (nr_map < 2) | 
|  | return -1; | 
|  |  | 
|  | do { | 
|  | unsigned long long start = biosmap->addr; | 
|  | unsigned long long size = biosmap->size; | 
|  | unsigned long long end = start + size; | 
|  | unsigned long type = biosmap->type; | 
|  |  | 
|  | /* Overflow in 64 bits? Ignore the memory map. */ | 
|  | if (start > end) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * Some BIOSes claim RAM in the 640k - 1M region. | 
|  | * Not right. Fix it up. | 
|  | */ | 
|  | if (type == E820_RAM) { | 
|  | if (start < 0x100000ULL && end > 0xA0000ULL) { | 
|  | if (start < 0xA0000ULL) | 
|  | add_memory_region(start, 0xA0000ULL-start, type); | 
|  | if (end <= 0x100000ULL) | 
|  | continue; | 
|  | start = 0x100000ULL; | 
|  | size = end - start; | 
|  | } | 
|  | } | 
|  | add_memory_region(start, size, type); | 
|  | } while (biosmap++,--nr_map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) | 
|  | struct edd edd; | 
|  | #ifdef CONFIG_EDD_MODULE | 
|  | EXPORT_SYMBOL(edd); | 
|  | #endif | 
|  | /** | 
|  | * copy_edd() - Copy the BIOS EDD information | 
|  | *              from boot_params into a safe place. | 
|  | * | 
|  | */ | 
|  | static inline void copy_edd(void) | 
|  | { | 
|  | memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature)); | 
|  | memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info)); | 
|  | edd.mbr_signature_nr = EDD_MBR_SIG_NR; | 
|  | edd.edd_info_nr = EDD_NR; | 
|  | } | 
|  | #else | 
|  | static inline void copy_edd(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Do NOT EVER look at the BIOS memory size location. | 
|  | * It does not work on many machines. | 
|  | */ | 
|  | #define LOWMEMSIZE()	(0x9f000) | 
|  |  | 
|  | static void __init parse_cmdline_early (char ** cmdline_p) | 
|  | { | 
|  | char c = ' ', *to = command_line, *from = saved_command_line; | 
|  | int len = 0; | 
|  | int userdef = 0; | 
|  |  | 
|  | /* Save unparsed command line copy for /proc/cmdline */ | 
|  | saved_command_line[COMMAND_LINE_SIZE-1] = '\0'; | 
|  |  | 
|  | for (;;) { | 
|  | if (c != ' ') | 
|  | goto next_char; | 
|  | /* | 
|  | * "mem=nopentium" disables the 4MB page tables. | 
|  | * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM | 
|  | * to <mem>, overriding the bios size. | 
|  | * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from | 
|  | * <start> to <start>+<mem>, overriding the bios size. | 
|  | * | 
|  | * HPA tells me bootloaders need to parse mem=, so no new | 
|  | * option should be mem=  [also see Documentation/i386/boot.txt] | 
|  | */ | 
|  | if (!memcmp(from, "mem=", 4)) { | 
|  | if (to != command_line) | 
|  | to--; | 
|  | if (!memcmp(from+4, "nopentium", 9)) { | 
|  | from += 9+4; | 
|  | clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability); | 
|  | disable_pse = 1; | 
|  | } else { | 
|  | /* If the user specifies memory size, we | 
|  | * limit the BIOS-provided memory map to | 
|  | * that size. exactmap can be used to specify | 
|  | * the exact map. mem=number can be used to | 
|  | * trim the existing memory map. | 
|  | */ | 
|  | unsigned long long mem_size; | 
|  |  | 
|  | mem_size = memparse(from+4, &from); | 
|  | limit_regions(mem_size); | 
|  | userdef=1; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (!memcmp(from, "memmap=", 7)) { | 
|  | if (to != command_line) | 
|  | to--; | 
|  | if (!memcmp(from+7, "exactmap", 8)) { | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | /* If we are doing a crash dump, we | 
|  | * still need to know the real mem | 
|  | * size before original memory map is | 
|  | * reset. | 
|  | */ | 
|  | find_max_pfn(); | 
|  | saved_max_pfn = max_pfn; | 
|  | #endif | 
|  | from += 8+7; | 
|  | e820.nr_map = 0; | 
|  | userdef = 1; | 
|  | } else { | 
|  | /* If the user specifies memory size, we | 
|  | * limit the BIOS-provided memory map to | 
|  | * that size. exactmap can be used to specify | 
|  | * the exact map. mem=number can be used to | 
|  | * trim the existing memory map. | 
|  | */ | 
|  | unsigned long long start_at, mem_size; | 
|  |  | 
|  | mem_size = memparse(from+7, &from); | 
|  | if (*from == '@') { | 
|  | start_at = memparse(from+1, &from); | 
|  | add_memory_region(start_at, mem_size, E820_RAM); | 
|  | } else if (*from == '#') { | 
|  | start_at = memparse(from+1, &from); | 
|  | add_memory_region(start_at, mem_size, E820_ACPI); | 
|  | } else if (*from == '$') { | 
|  | start_at = memparse(from+1, &from); | 
|  | add_memory_region(start_at, mem_size, E820_RESERVED); | 
|  | } else { | 
|  | limit_regions(mem_size); | 
|  | userdef=1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | else if (!memcmp(from, "noexec=", 7)) | 
|  | noexec_setup(from + 7); | 
|  |  | 
|  |  | 
|  | #ifdef  CONFIG_X86_SMP | 
|  | /* | 
|  | * If the BIOS enumerates physical processors before logical, | 
|  | * maxcpus=N at enumeration-time can be used to disable HT. | 
|  | */ | 
|  | else if (!memcmp(from, "maxcpus=", 8)) { | 
|  | extern unsigned int maxcpus; | 
|  |  | 
|  | maxcpus = simple_strtoul(from + 8, NULL, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* "acpi=off" disables both ACPI table parsing and interpreter */ | 
|  | else if (!memcmp(from, "acpi=off", 8)) { | 
|  | disable_acpi(); | 
|  | } | 
|  |  | 
|  | /* acpi=force to over-ride black-list */ | 
|  | else if (!memcmp(from, "acpi=force", 10)) { | 
|  | acpi_force = 1; | 
|  | acpi_ht = 1; | 
|  | acpi_disabled = 0; | 
|  | } | 
|  |  | 
|  | /* acpi=strict disables out-of-spec workarounds */ | 
|  | else if (!memcmp(from, "acpi=strict", 11)) { | 
|  | acpi_strict = 1; | 
|  | } | 
|  |  | 
|  | /* Limit ACPI just to boot-time to enable HT */ | 
|  | else if (!memcmp(from, "acpi=ht", 7)) { | 
|  | if (!acpi_force) | 
|  | disable_acpi(); | 
|  | acpi_ht = 1; | 
|  | } | 
|  |  | 
|  | /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */ | 
|  | else if (!memcmp(from, "pci=noacpi", 10)) { | 
|  | acpi_disable_pci(); | 
|  | } | 
|  | /* "acpi=noirq" disables ACPI interrupt routing */ | 
|  | else if (!memcmp(from, "acpi=noirq", 10)) { | 
|  | acpi_noirq_set(); | 
|  | } | 
|  |  | 
|  | else if (!memcmp(from, "acpi_sci=edge", 13)) | 
|  | acpi_sci_flags.trigger =  1; | 
|  |  | 
|  | else if (!memcmp(from, "acpi_sci=level", 14)) | 
|  | acpi_sci_flags.trigger = 3; | 
|  |  | 
|  | else if (!memcmp(from, "acpi_sci=high", 13)) | 
|  | acpi_sci_flags.polarity = 1; | 
|  |  | 
|  | else if (!memcmp(from, "acpi_sci=low", 12)) | 
|  | acpi_sci_flags.polarity = 3; | 
|  |  | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | else if (!memcmp(from, "acpi_skip_timer_override", 24)) | 
|  | acpi_skip_timer_override = 1; | 
|  |  | 
|  | if (!memcmp(from, "disable_timer_pin_1", 19)) | 
|  | disable_timer_pin_1 = 1; | 
|  | if (!memcmp(from, "enable_timer_pin_1", 18)) | 
|  | disable_timer_pin_1 = -1; | 
|  |  | 
|  | /* disable IO-APIC */ | 
|  | else if (!memcmp(from, "noapic", 6)) | 
|  | disable_ioapic_setup(); | 
|  | #endif /* CONFIG_X86_IO_APIC */ | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* enable local APIC */ | 
|  | else if (!memcmp(from, "lapic", 5)) | 
|  | lapic_enable(); | 
|  |  | 
|  | /* disable local APIC */ | 
|  | else if (!memcmp(from, "nolapic", 6)) | 
|  | lapic_disable(); | 
|  | #endif /* CONFIG_X86_LOCAL_APIC */ | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | /* crashkernel=size@addr specifies the location to reserve for | 
|  | * a crash kernel.  By reserving this memory we guarantee | 
|  | * that linux never set's it up as a DMA target. | 
|  | * Useful for holding code to do something appropriate | 
|  | * after a kernel panic. | 
|  | */ | 
|  | else if (!memcmp(from, "crashkernel=", 12)) { | 
|  | unsigned long size, base; | 
|  | size = memparse(from+12, &from); | 
|  | if (*from == '@') { | 
|  | base = memparse(from+1, &from); | 
|  | /* FIXME: Do I want a sanity check | 
|  | * to validate the memory range? | 
|  | */ | 
|  | crashk_res.start = base; | 
|  | crashk_res.end   = base + size - 1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_PROC_VMCORE | 
|  | /* elfcorehdr= specifies the location of elf core header | 
|  | * stored by the crashed kernel. | 
|  | */ | 
|  | else if (!memcmp(from, "elfcorehdr=", 11)) | 
|  | elfcorehdr_addr = memparse(from+11, &from); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * highmem=size forces highmem to be exactly 'size' bytes. | 
|  | * This works even on boxes that have no highmem otherwise. | 
|  | * This also works to reduce highmem size on bigger boxes. | 
|  | */ | 
|  | else if (!memcmp(from, "highmem=", 8)) | 
|  | highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * vmalloc=size forces the vmalloc area to be exactly 'size' | 
|  | * bytes. This can be used to increase (or decrease) the | 
|  | * vmalloc area - the default is 128m. | 
|  | */ | 
|  | else if (!memcmp(from, "vmalloc=", 8)) | 
|  | __VMALLOC_RESERVE = memparse(from+8, &from); | 
|  |  | 
|  | next_char: | 
|  | c = *(from++); | 
|  | if (!c) | 
|  | break; | 
|  | if (COMMAND_LINE_SIZE <= ++len) | 
|  | break; | 
|  | *(to++) = c; | 
|  | } | 
|  | *to = '\0'; | 
|  | *cmdline_p = command_line; | 
|  | if (userdef) { | 
|  | printk(KERN_INFO "user-defined physical RAM map:\n"); | 
|  | print_memory_map("user"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callback for efi_memory_walk. | 
|  | */ | 
|  | static int __init | 
|  | efi_find_max_pfn(unsigned long start, unsigned long end, void *arg) | 
|  | { | 
|  | unsigned long *max_pfn = arg, pfn; | 
|  |  | 
|  | if (start < end) { | 
|  | pfn = PFN_UP(end -1); | 
|  | if (pfn > *max_pfn) | 
|  | *max_pfn = pfn; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init | 
|  | efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg) | 
|  | { | 
|  | memory_present(0, start, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the highest page frame number we have available | 
|  | */ | 
|  | void __init find_max_pfn(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | max_pfn = 0; | 
|  | if (efi_enabled) { | 
|  | efi_memmap_walk(efi_find_max_pfn, &max_pfn); | 
|  | efi_memmap_walk(efi_memory_present_wrapper, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < e820.nr_map; i++) { | 
|  | unsigned long start, end; | 
|  | /* RAM? */ | 
|  | if (e820.map[i].type != E820_RAM) | 
|  | continue; | 
|  | start = PFN_UP(e820.map[i].addr); | 
|  | end = PFN_DOWN(e820.map[i].addr + e820.map[i].size); | 
|  | if (start >= end) | 
|  | continue; | 
|  | if (end > max_pfn) | 
|  | max_pfn = end; | 
|  | memory_present(0, start, end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine low and high memory ranges: | 
|  | */ | 
|  | unsigned long __init find_max_low_pfn(void) | 
|  | { | 
|  | unsigned long max_low_pfn; | 
|  |  | 
|  | max_low_pfn = max_pfn; | 
|  | if (max_low_pfn > MAXMEM_PFN) { | 
|  | if (highmem_pages == -1) | 
|  | highmem_pages = max_pfn - MAXMEM_PFN; | 
|  | if (highmem_pages + MAXMEM_PFN < max_pfn) | 
|  | max_pfn = MAXMEM_PFN + highmem_pages; | 
|  | if (highmem_pages + MAXMEM_PFN > max_pfn) { | 
|  | printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages)); | 
|  | highmem_pages = 0; | 
|  | } | 
|  | max_low_pfn = MAXMEM_PFN; | 
|  | #ifndef CONFIG_HIGHMEM | 
|  | /* Maximum memory usable is what is directly addressable */ | 
|  | printk(KERN_WARNING "Warning only %ldMB will be used.\n", | 
|  | MAXMEM>>20); | 
|  | if (max_pfn > MAX_NONPAE_PFN) | 
|  | printk(KERN_WARNING "Use a PAE enabled kernel.\n"); | 
|  | else | 
|  | printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); | 
|  | max_pfn = MAXMEM_PFN; | 
|  | #else /* !CONFIG_HIGHMEM */ | 
|  | #ifndef CONFIG_X86_PAE | 
|  | if (max_pfn > MAX_NONPAE_PFN) { | 
|  | max_pfn = MAX_NONPAE_PFN; | 
|  | printk(KERN_WARNING "Warning only 4GB will be used.\n"); | 
|  | printk(KERN_WARNING "Use a PAE enabled kernel.\n"); | 
|  | } | 
|  | #endif /* !CONFIG_X86_PAE */ | 
|  | #endif /* !CONFIG_HIGHMEM */ | 
|  | } else { | 
|  | if (highmem_pages == -1) | 
|  | highmem_pages = 0; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (highmem_pages >= max_pfn) { | 
|  | printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn)); | 
|  | highmem_pages = 0; | 
|  | } | 
|  | if (highmem_pages) { | 
|  | if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){ | 
|  | printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages)); | 
|  | highmem_pages = 0; | 
|  | } | 
|  | max_low_pfn -= highmem_pages; | 
|  | } | 
|  | #else | 
|  | if (highmem_pages) | 
|  | printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n"); | 
|  | #endif | 
|  | } | 
|  | return max_low_pfn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all available memory for boot time allocation.  Used | 
|  | * as a callback function by efi_memory_walk() | 
|  | */ | 
|  |  | 
|  | static int __init | 
|  | free_available_memory(unsigned long start, unsigned long end, void *arg) | 
|  | { | 
|  | /* check max_low_pfn */ | 
|  | if (start >= (max_low_pfn << PAGE_SHIFT)) | 
|  | return 0; | 
|  | if (end >= (max_low_pfn << PAGE_SHIFT)) | 
|  | end = max_low_pfn << PAGE_SHIFT; | 
|  | if (start < end) | 
|  | free_bootmem(start, end - start); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Register fully available low RAM pages with the bootmem allocator. | 
|  | */ | 
|  | static void __init register_bootmem_low_pages(unsigned long max_low_pfn) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (efi_enabled) { | 
|  | efi_memmap_walk(free_available_memory, NULL); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < e820.nr_map; i++) { | 
|  | unsigned long curr_pfn, last_pfn, size; | 
|  | /* | 
|  | * Reserve usable low memory | 
|  | */ | 
|  | if (e820.map[i].type != E820_RAM) | 
|  | continue; | 
|  | /* | 
|  | * We are rounding up the start address of usable memory: | 
|  | */ | 
|  | curr_pfn = PFN_UP(e820.map[i].addr); | 
|  | if (curr_pfn >= max_low_pfn) | 
|  | continue; | 
|  | /* | 
|  | * ... and at the end of the usable range downwards: | 
|  | */ | 
|  | last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size); | 
|  |  | 
|  | if (last_pfn > max_low_pfn) | 
|  | last_pfn = max_low_pfn; | 
|  |  | 
|  | /* | 
|  | * .. finally, did all the rounding and playing | 
|  | * around just make the area go away? | 
|  | */ | 
|  | if (last_pfn <= curr_pfn) | 
|  | continue; | 
|  |  | 
|  | size = last_pfn - curr_pfn; | 
|  | free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * workaround for Dell systems that neglect to reserve EBDA | 
|  | */ | 
|  | static void __init reserve_ebda_region(void) | 
|  | { | 
|  | unsigned int addr; | 
|  | addr = get_bios_ebda(); | 
|  | if (addr) | 
|  | reserve_bootmem(addr, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | void __init setup_bootmem_allocator(void); | 
|  | static unsigned long __init setup_memory(void) | 
|  | { | 
|  | /* | 
|  | * partially used pages are not usable - thus | 
|  | * we are rounding upwards: | 
|  | */ | 
|  | min_low_pfn = PFN_UP(init_pg_tables_end); | 
|  |  | 
|  | find_max_pfn(); | 
|  |  | 
|  | max_low_pfn = find_max_low_pfn(); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | highstart_pfn = highend_pfn = max_pfn; | 
|  | if (max_pfn > max_low_pfn) { | 
|  | highstart_pfn = max_low_pfn; | 
|  | } | 
|  | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
|  | pages_to_mb(highend_pfn - highstart_pfn)); | 
|  | #endif | 
|  | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
|  | pages_to_mb(max_low_pfn)); | 
|  |  | 
|  | setup_bootmem_allocator(); | 
|  |  | 
|  | return max_low_pfn; | 
|  | } | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; | 
|  | unsigned int max_dma, low; | 
|  |  | 
|  | max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  | low = max_low_pfn; | 
|  |  | 
|  | if (low < max_dma) | 
|  | zones_size[ZONE_DMA] = low; | 
|  | else { | 
|  | zones_size[ZONE_DMA] = max_dma; | 
|  | zones_size[ZONE_NORMAL] = low - max_dma; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | zones_size[ZONE_HIGHMEM] = highend_pfn - low; | 
|  | #endif | 
|  | } | 
|  | free_area_init(zones_size); | 
|  | } | 
|  | #else | 
|  | extern unsigned long __init setup_memory(void); | 
|  | extern void zone_sizes_init(void); | 
|  | #endif /* !CONFIG_NEED_MULTIPLE_NODES */ | 
|  |  | 
|  | void __init setup_bootmem_allocator(void) | 
|  | { | 
|  | unsigned long bootmap_size; | 
|  | /* | 
|  | * Initialize the boot-time allocator (with low memory only): | 
|  | */ | 
|  | bootmap_size = init_bootmem(min_low_pfn, max_low_pfn); | 
|  |  | 
|  | register_bootmem_low_pages(max_low_pfn); | 
|  |  | 
|  | /* | 
|  | * Reserve the bootmem bitmap itself as well. We do this in two | 
|  | * steps (first step was init_bootmem()) because this catches | 
|  | * the (very unlikely) case of us accidentally initializing the | 
|  | * bootmem allocator with an invalid RAM area. | 
|  | */ | 
|  | reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) + | 
|  | bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START)); | 
|  |  | 
|  | /* | 
|  | * reserve physical page 0 - it's a special BIOS page on many boxes, | 
|  | * enabling clean reboots, SMP operation, laptop functions. | 
|  | */ | 
|  | reserve_bootmem(0, PAGE_SIZE); | 
|  |  | 
|  | /* reserve EBDA region, it's a 4K region */ | 
|  | reserve_ebda_region(); | 
|  |  | 
|  | /* could be an AMD 768MPX chipset. Reserve a page  before VGA to prevent | 
|  | PCI prefetch into it (errata #56). Usually the page is reserved anyways, | 
|  | unless you have no PS/2 mouse plugged in. */ | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 
|  | boot_cpu_data.x86 == 6) | 
|  | reserve_bootmem(0xa0000 - 4096, 4096); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * But first pinch a few for the stack/trampoline stuff | 
|  | * FIXME: Don't need the extra page at 4K, but need to fix | 
|  | * trampoline before removing it. (see the GDT stuff) | 
|  | */ | 
|  | reserve_bootmem(PAGE_SIZE, PAGE_SIZE); | 
|  | #endif | 
|  | #ifdef CONFIG_ACPI_SLEEP | 
|  | /* | 
|  | * Reserve low memory region for sleep support. | 
|  | */ | 
|  | acpi_reserve_bootmem(); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_FIND_SMP_CONFIG | 
|  | /* | 
|  | * Find and reserve possible boot-time SMP configuration: | 
|  | */ | 
|  | find_smp_config(); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (LOADER_TYPE && INITRD_START) { | 
|  | if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) { | 
|  | reserve_bootmem(INITRD_START, INITRD_SIZE); | 
|  | initrd_start = | 
|  | INITRD_START ? INITRD_START + PAGE_OFFSET : 0; | 
|  | initrd_end = initrd_start+INITRD_SIZE; | 
|  | } | 
|  | else { | 
|  | printk(KERN_ERR "initrd extends beyond end of memory " | 
|  | "(0x%08lx > 0x%08lx)\ndisabling initrd\n", | 
|  | INITRD_START + INITRD_SIZE, | 
|  | max_low_pfn << PAGE_SHIFT); | 
|  | initrd_start = 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_KEXEC | 
|  | if (crashk_res.start != crashk_res.end) | 
|  | reserve_bootmem(crashk_res.start, | 
|  | crashk_res.end - crashk_res.start + 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The node 0 pgdat is initialized before all of these because | 
|  | * it's needed for bootmem.  node>0 pgdats have their virtual | 
|  | * space allocated before the pagetables are in place to access | 
|  | * them, so they can't be cleared then. | 
|  | * | 
|  | * This should all compile down to nothing when NUMA is off. | 
|  | */ | 
|  | void __init remapped_pgdat_init(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (nid != 0) | 
|  | memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Request address space for all standard RAM and ROM resources | 
|  | * and also for regions reported as reserved by the e820. | 
|  | */ | 
|  | static void __init | 
|  | legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | probe_roms(); | 
|  | for (i = 0; i < e820.nr_map; i++) { | 
|  | struct resource *res; | 
|  | res = kzalloc(sizeof(struct resource), GFP_ATOMIC); | 
|  | switch (e820.map[i].type) { | 
|  | case E820_RAM:	res->name = "System RAM"; break; | 
|  | case E820_ACPI:	res->name = "ACPI Tables"; break; | 
|  | case E820_NVS:	res->name = "ACPI Non-volatile Storage"; break; | 
|  | default:	res->name = "reserved"; | 
|  | } | 
|  | res->start = e820.map[i].addr; | 
|  | res->end = res->start + e820.map[i].size - 1; | 
|  | res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
|  | request_resource(&iomem_resource, res); | 
|  | if (e820.map[i].type == E820_RAM) { | 
|  | /* | 
|  | *  We don't know which RAM region contains kernel data, | 
|  | *  so we try it repeatedly and let the resource manager | 
|  | *  test it. | 
|  | */ | 
|  | request_resource(res, code_resource); | 
|  | request_resource(res, data_resource); | 
|  | #ifdef CONFIG_KEXEC | 
|  | request_resource(res, &crashk_res); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Request address space for all standard resources | 
|  | * | 
|  | * This is called just before pcibios_assign_resources(), which is also | 
|  | * an fs_initcall, but is linked in later (in arch/i386/pci/i386.c). | 
|  | */ | 
|  | static int __init request_standard_resources(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk("Setting up standard PCI resources\n"); | 
|  | if (efi_enabled) | 
|  | efi_initialize_iomem_resources(&code_resource, &data_resource); | 
|  | else | 
|  | legacy_init_iomem_resources(&code_resource, &data_resource); | 
|  |  | 
|  | /* EFI systems may still have VGA */ | 
|  | request_resource(&iomem_resource, &video_ram_resource); | 
|  |  | 
|  | /* request I/O space for devices used on all i[345]86 PCs */ | 
|  | for (i = 0; i < STANDARD_IO_RESOURCES; i++) | 
|  | request_resource(&ioport_resource, &standard_io_resources[i]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fs_initcall(request_standard_resources); | 
|  |  | 
|  | static void __init register_memory(void) | 
|  | { | 
|  | unsigned long gapstart, gapsize, round; | 
|  | unsigned long long last; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Search for the bigest gap in the low 32 bits of the e820 | 
|  | * memory space. | 
|  | */ | 
|  | last = 0x100000000ull; | 
|  | gapstart = 0x10000000; | 
|  | gapsize = 0x400000; | 
|  | i = e820.nr_map; | 
|  | while (--i >= 0) { | 
|  | unsigned long long start = e820.map[i].addr; | 
|  | unsigned long long end = start + e820.map[i].size; | 
|  |  | 
|  | /* | 
|  | * Since "last" is at most 4GB, we know we'll | 
|  | * fit in 32 bits if this condition is true | 
|  | */ | 
|  | if (last > end) { | 
|  | unsigned long gap = last - end; | 
|  |  | 
|  | if (gap > gapsize) { | 
|  | gapsize = gap; | 
|  | gapstart = end; | 
|  | } | 
|  | } | 
|  | if (start < last) | 
|  | last = start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See how much we want to round up: start off with | 
|  | * rounding to the next 1MB area. | 
|  | */ | 
|  | round = 0x100000; | 
|  | while ((gapsize >> 4) > round) | 
|  | round += round; | 
|  | /* Fun with two's complement */ | 
|  | pci_mem_start = (gapstart + round) & -round; | 
|  |  | 
|  | printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n", | 
|  | pci_mem_start, gapstart, gapsize); | 
|  | } | 
|  |  | 
|  | static char * __init machine_specific_memory_setup(void); | 
|  |  | 
|  | #ifdef CONFIG_MCA | 
|  | static void set_mca_bus(int x) | 
|  | { | 
|  | MCA_bus = x; | 
|  | } | 
|  | #else | 
|  | static void set_mca_bus(int x) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine if we were loaded by an EFI loader.  If so, then we have also been | 
|  | * passed the efi memmap, systab, etc., so we should use these data structures | 
|  | * for initialization.  Note, the efi init code path is determined by the | 
|  | * global efi_enabled. This allows the same kernel image to be used on existing | 
|  | * systems (with a traditional BIOS) as well as on EFI systems. | 
|  | */ | 
|  | void __init setup_arch(char **cmdline_p) | 
|  | { | 
|  | unsigned long max_low_pfn; | 
|  |  | 
|  | memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); | 
|  | pre_setup_arch_hook(); | 
|  | early_cpu_init(); | 
|  |  | 
|  | /* | 
|  | * FIXME: This isn't an official loader_type right | 
|  | * now but does currently work with elilo. | 
|  | * If we were configured as an EFI kernel, check to make | 
|  | * sure that we were loaded correctly from elilo and that | 
|  | * the system table is valid.  If not, then initialize normally. | 
|  | */ | 
|  | #ifdef CONFIG_EFI | 
|  | if ((LOADER_TYPE == 0x50) && EFI_SYSTAB) | 
|  | efi_enabled = 1; | 
|  | #endif | 
|  |  | 
|  | ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); | 
|  | drive_info = DRIVE_INFO; | 
|  | screen_info = SCREEN_INFO; | 
|  | edid_info = EDID_INFO; | 
|  | apm_info.bios = APM_BIOS_INFO; | 
|  | ist_info = IST_INFO; | 
|  | saved_videomode = VIDEO_MODE; | 
|  | if( SYS_DESC_TABLE.length != 0 ) { | 
|  | set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2); | 
|  | machine_id = SYS_DESC_TABLE.table[0]; | 
|  | machine_submodel_id = SYS_DESC_TABLE.table[1]; | 
|  | BIOS_revision = SYS_DESC_TABLE.table[2]; | 
|  | } | 
|  | bootloader_type = LOADER_TYPE; | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_RAM | 
|  | rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; | 
|  | rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); | 
|  | rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); | 
|  | #endif | 
|  | ARCH_SETUP | 
|  | if (efi_enabled) | 
|  | efi_init(); | 
|  | else { | 
|  | printk(KERN_INFO "BIOS-provided physical RAM map:\n"); | 
|  | print_memory_map(machine_specific_memory_setup()); | 
|  | } | 
|  |  | 
|  | copy_edd(); | 
|  |  | 
|  | if (!MOUNT_ROOT_RDONLY) | 
|  | root_mountflags &= ~MS_RDONLY; | 
|  | init_mm.start_code = (unsigned long) _text; | 
|  | init_mm.end_code = (unsigned long) _etext; | 
|  | init_mm.end_data = (unsigned long) _edata; | 
|  | init_mm.brk = init_pg_tables_end + PAGE_OFFSET; | 
|  |  | 
|  | code_resource.start = virt_to_phys(_text); | 
|  | code_resource.end = virt_to_phys(_etext)-1; | 
|  | data_resource.start = virt_to_phys(_etext); | 
|  | data_resource.end = virt_to_phys(_edata)-1; | 
|  |  | 
|  | parse_cmdline_early(cmdline_p); | 
|  |  | 
|  | #ifdef CONFIG_EARLY_PRINTK | 
|  | { | 
|  | char *s = strstr(*cmdline_p, "earlyprintk="); | 
|  | if (s) { | 
|  | setup_early_printk(strchr(s, '=') + 1); | 
|  | printk("early console enabled\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | max_low_pfn = setup_memory(); | 
|  |  | 
|  | /* | 
|  | * NOTE: before this point _nobody_ is allowed to allocate | 
|  | * any memory using the bootmem allocator.  Although the | 
|  | * alloctor is now initialised only the first 8Mb of the kernel | 
|  | * virtual address space has been mapped.  All allocations before | 
|  | * paging_init() has completed must use the alloc_bootmem_low_pages() | 
|  | * variant (which allocates DMA'able memory) and care must be taken | 
|  | * not to exceed the 8Mb limit. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | smp_alloc_memory(); /* AP processor realmode stacks in low memory*/ | 
|  | #endif | 
|  | paging_init(); | 
|  | remapped_pgdat_init(); | 
|  | sparse_init(); | 
|  | zone_sizes_init(); | 
|  |  | 
|  | /* | 
|  | * NOTE: at this point the bootmem allocator is fully available. | 
|  | */ | 
|  |  | 
|  | dmi_scan_machine(); | 
|  |  | 
|  | #ifdef CONFIG_X86_GENERICARCH | 
|  | generic_apic_probe(*cmdline_p); | 
|  | #endif | 
|  | if (efi_enabled) | 
|  | efi_map_memmap(); | 
|  |  | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | check_acpi_pci();	/* Checks more than just ACPI actually */ | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* | 
|  | * Parse the ACPI tables for possible boot-time SMP configuration. | 
|  | */ | 
|  | acpi_boot_table_init(); | 
|  | acpi_boot_init(); | 
|  |  | 
|  | #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC) | 
|  | if (def_to_bigsmp) | 
|  | printk(KERN_WARNING "More than 8 CPUs detected and " | 
|  | "CONFIG_X86_PC cannot handle it.\nUse " | 
|  | "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n"); | 
|  | #endif | 
|  | #endif | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | if (smp_found_config) | 
|  | get_smp_config(); | 
|  | #endif | 
|  |  | 
|  | register_memory(); | 
|  |  | 
|  | #ifdef CONFIG_VT | 
|  | #if defined(CONFIG_VGA_CONSOLE) | 
|  | if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) | 
|  | conswitchp = &vga_con; | 
|  | #elif defined(CONFIG_DUMMY_CONSOLE) | 
|  | conswitchp = &dummy_con; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #include "setup_arch_post.h" | 
|  | /* | 
|  | * Local Variables: | 
|  | * mode:c | 
|  | * c-file-style:"k&r" | 
|  | * c-basic-offset:8 | 
|  | * End: | 
|  | */ |