blob: 382bb93cb0900f7e83e0cc34277379c3b36468bd [file] [log] [blame]
/*
* Copyright (C) 2017 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/etherdevice.h>
#include <linux/inetdevice.h>
#include <net/netevent.h>
#include <linux/idr.h>
#include <net/dst_metadata.h>
#include <net/arp.h>
#include "cmsg.h"
#include "main.h"
#include "../nfp_net_repr.h"
#include "../nfp_net.h"
#define NFP_FL_MAX_ROUTES 32
/**
* struct nfp_tun_active_tuns - periodic message of active tunnels
* @seq: sequence number of the message
* @count: number of tunnels report in message
* @flags: options part of the request
* @tun_info.ipv4: dest IPv4 address of active route
* @tun_info.egress_port: port the encapsulated packet egressed
* @tun_info.extra: reserved for future use
* @tun_info: tunnels that have sent traffic in reported period
*/
struct nfp_tun_active_tuns {
__be32 seq;
__be32 count;
__be32 flags;
struct route_ip_info {
__be32 ipv4;
__be32 egress_port;
__be32 extra[2];
} tun_info[];
};
/**
* struct nfp_tun_neigh - neighbour/route entry on the NFP
* @dst_ipv4: destination IPv4 address
* @src_ipv4: source IPv4 address
* @dst_addr: destination MAC address
* @src_addr: source MAC address
* @port_id: NFP port to output packet on - associated with source IPv4
*/
struct nfp_tun_neigh {
__be32 dst_ipv4;
__be32 src_ipv4;
u8 dst_addr[ETH_ALEN];
u8 src_addr[ETH_ALEN];
__be32 port_id;
};
/**
* struct nfp_tun_req_route_ipv4 - NFP requests a route/neighbour lookup
* @ingress_port: ingress port of packet that signalled request
* @ipv4_addr: destination ipv4 address for route
* @reserved: reserved for future use
*/
struct nfp_tun_req_route_ipv4 {
__be32 ingress_port;
__be32 ipv4_addr;
__be32 reserved[2];
};
/**
* struct nfp_ipv4_route_entry - routes that are offloaded to the NFP
* @ipv4_addr: destination of route
* @list: list pointer
*/
struct nfp_ipv4_route_entry {
__be32 ipv4_addr;
struct list_head list;
};
#define NFP_FL_IPV4_ADDRS_MAX 32
/**
* struct nfp_tun_ipv4_addr - set the IP address list on the NFP
* @count: number of IPs populated in the array
* @ipv4_addr: array of IPV4_ADDRS_MAX 32 bit IPv4 addresses
*/
struct nfp_tun_ipv4_addr {
__be32 count;
__be32 ipv4_addr[NFP_FL_IPV4_ADDRS_MAX];
};
/**
* struct nfp_ipv4_addr_entry - cached IPv4 addresses
* @ipv4_addr: IP address
* @ref_count: number of rules currently using this IP
* @list: list pointer
*/
struct nfp_ipv4_addr_entry {
__be32 ipv4_addr;
int ref_count;
struct list_head list;
};
/**
* struct nfp_tun_mac_addr - configure MAC address of tunnel EP on NFP
* @reserved: reserved for future use
* @count: number of MAC addresses in the message
* @addresses.index: index of MAC address in the lookup table
* @addresses.addr: interface MAC address
* @addresses: series of MACs to offload
*/
struct nfp_tun_mac_addr {
__be16 reserved;
__be16 count;
struct index_mac_addr {
__be16 index;
u8 addr[ETH_ALEN];
} addresses[];
};
/**
* struct nfp_tun_mac_offload_entry - list of MACs to offload
* @index: index of MAC address for offloading
* @addr: interface MAC address
* @list: list pointer
*/
struct nfp_tun_mac_offload_entry {
__be16 index;
u8 addr[ETH_ALEN];
struct list_head list;
};
#define NFP_MAX_MAC_INDEX 0xff
/**
* struct nfp_tun_mac_non_nfp_idx - converts non NFP netdev ifindex to 8-bit id
* @ifindex: netdev ifindex of the device
* @index: index of netdevs mac on NFP
* @list: list pointer
*/
struct nfp_tun_mac_non_nfp_idx {
int ifindex;
u8 index;
struct list_head list;
};
void nfp_tunnel_keep_alive(struct nfp_app *app, struct sk_buff *skb)
{
struct nfp_tun_active_tuns *payload;
struct net_device *netdev;
int count, i, pay_len;
struct neighbour *n;
__be32 ipv4_addr;
u32 port;
payload = nfp_flower_cmsg_get_data(skb);
count = be32_to_cpu(payload->count);
if (count > NFP_FL_MAX_ROUTES) {
nfp_flower_cmsg_warn(app, "Tunnel keep-alive request exceeds max routes.\n");
return;
}
pay_len = nfp_flower_cmsg_get_data_len(skb);
if (pay_len != sizeof(struct nfp_tun_active_tuns) +
sizeof(struct route_ip_info) * count) {
nfp_flower_cmsg_warn(app, "Corruption in tunnel keep-alive message.\n");
return;
}
for (i = 0; i < count; i++) {
ipv4_addr = payload->tun_info[i].ipv4;
port = be32_to_cpu(payload->tun_info[i].egress_port);
netdev = nfp_app_repr_get(app, port);
if (!netdev)
continue;
n = neigh_lookup(&arp_tbl, &ipv4_addr, netdev);
if (!n)
continue;
/* Update the used timestamp of neighbour */
neigh_event_send(n, NULL);
neigh_release(n);
}
}
static bool nfp_tun_is_netdev_to_offload(struct net_device *netdev)
{
if (!netdev->rtnl_link_ops)
return false;
if (!strcmp(netdev->rtnl_link_ops->kind, "openvswitch"))
return true;
if (!strcmp(netdev->rtnl_link_ops->kind, "vxlan"))
return true;
return false;
}
static int
nfp_flower_xmit_tun_conf(struct nfp_app *app, u8 mtype, u16 plen, void *pdata,
gfp_t flag)
{
struct sk_buff *skb;
unsigned char *msg;
skb = nfp_flower_cmsg_alloc(app, plen, mtype, flag);
if (!skb)
return -ENOMEM;
msg = nfp_flower_cmsg_get_data(skb);
memcpy(msg, pdata, nfp_flower_cmsg_get_data_len(skb));
nfp_ctrl_tx(app->ctrl, skb);
return 0;
}
static bool nfp_tun_has_route(struct nfp_app *app, __be32 ipv4_addr)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_route_entry *entry;
struct list_head *ptr, *storage;
spin_lock_bh(&priv->nfp_neigh_off_lock);
list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) {
entry = list_entry(ptr, struct nfp_ipv4_route_entry, list);
if (entry->ipv4_addr == ipv4_addr) {
spin_unlock_bh(&priv->nfp_neigh_off_lock);
return true;
}
}
spin_unlock_bh(&priv->nfp_neigh_off_lock);
return false;
}
static void nfp_tun_add_route_to_cache(struct nfp_app *app, __be32 ipv4_addr)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_route_entry *entry;
struct list_head *ptr, *storage;
spin_lock_bh(&priv->nfp_neigh_off_lock);
list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) {
entry = list_entry(ptr, struct nfp_ipv4_route_entry, list);
if (entry->ipv4_addr == ipv4_addr) {
spin_unlock_bh(&priv->nfp_neigh_off_lock);
return;
}
}
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry) {
spin_unlock_bh(&priv->nfp_neigh_off_lock);
nfp_flower_cmsg_warn(app, "Mem error when storing new route.\n");
return;
}
entry->ipv4_addr = ipv4_addr;
list_add_tail(&entry->list, &priv->nfp_neigh_off_list);
spin_unlock_bh(&priv->nfp_neigh_off_lock);
}
static void nfp_tun_del_route_from_cache(struct nfp_app *app, __be32 ipv4_addr)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_route_entry *entry;
struct list_head *ptr, *storage;
spin_lock_bh(&priv->nfp_neigh_off_lock);
list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) {
entry = list_entry(ptr, struct nfp_ipv4_route_entry, list);
if (entry->ipv4_addr == ipv4_addr) {
list_del(&entry->list);
kfree(entry);
break;
}
}
spin_unlock_bh(&priv->nfp_neigh_off_lock);
}
static void
nfp_tun_write_neigh(struct net_device *netdev, struct nfp_app *app,
struct flowi4 *flow, struct neighbour *neigh, gfp_t flag)
{
struct nfp_tun_neigh payload;
/* Only offload representor IPv4s for now. */
if (!nfp_netdev_is_nfp_repr(netdev))
return;
memset(&payload, 0, sizeof(struct nfp_tun_neigh));
payload.dst_ipv4 = flow->daddr;
/* If entry has expired send dst IP with all other fields 0. */
if (!(neigh->nud_state & NUD_VALID) || neigh->dead) {
nfp_tun_del_route_from_cache(app, payload.dst_ipv4);
/* Trigger ARP to verify invalid neighbour state. */
neigh_event_send(neigh, NULL);
goto send_msg;
}
/* Have a valid neighbour so populate rest of entry. */
payload.src_ipv4 = flow->saddr;
ether_addr_copy(payload.src_addr, netdev->dev_addr);
neigh_ha_snapshot(payload.dst_addr, neigh, netdev);
payload.port_id = cpu_to_be32(nfp_repr_get_port_id(netdev));
/* Add destination of new route to NFP cache. */
nfp_tun_add_route_to_cache(app, payload.dst_ipv4);
send_msg:
nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_NEIGH,
sizeof(struct nfp_tun_neigh),
(unsigned char *)&payload, flag);
}
static int
nfp_tun_neigh_event_handler(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct nfp_flower_priv *app_priv;
struct netevent_redirect *redir;
struct flowi4 flow = {};
struct neighbour *n;
struct nfp_app *app;
struct rtable *rt;
int err;
switch (event) {
case NETEVENT_REDIRECT:
redir = (struct netevent_redirect *)ptr;
n = redir->neigh;
break;
case NETEVENT_NEIGH_UPDATE:
n = (struct neighbour *)ptr;
break;
default:
return NOTIFY_DONE;
}
flow.daddr = *(__be32 *)n->primary_key;
/* Only concerned with route changes for representors. */
if (!nfp_netdev_is_nfp_repr(n->dev))
return NOTIFY_DONE;
app_priv = container_of(nb, struct nfp_flower_priv, nfp_tun_neigh_nb);
app = app_priv->app;
/* Only concerned with changes to routes already added to NFP. */
if (!nfp_tun_has_route(app, flow.daddr))
return NOTIFY_DONE;
#if IS_ENABLED(CONFIG_INET)
/* Do a route lookup to populate flow data. */
rt = ip_route_output_key(dev_net(n->dev), &flow);
err = PTR_ERR_OR_ZERO(rt);
if (err)
return NOTIFY_DONE;
ip_rt_put(rt);
#else
return NOTIFY_DONE;
#endif
flow.flowi4_proto = IPPROTO_UDP;
nfp_tun_write_neigh(n->dev, app, &flow, n, GFP_ATOMIC);
return NOTIFY_OK;
}
void nfp_tunnel_request_route(struct nfp_app *app, struct sk_buff *skb)
{
struct nfp_tun_req_route_ipv4 *payload;
struct net_device *netdev;
struct flowi4 flow = {};
struct neighbour *n;
struct rtable *rt;
int err;
payload = nfp_flower_cmsg_get_data(skb);
netdev = nfp_app_repr_get(app, be32_to_cpu(payload->ingress_port));
if (!netdev)
goto route_fail_warning;
flow.daddr = payload->ipv4_addr;
flow.flowi4_proto = IPPROTO_UDP;
#if IS_ENABLED(CONFIG_INET)
/* Do a route lookup on same namespace as ingress port. */
rt = ip_route_output_key(dev_net(netdev), &flow);
err = PTR_ERR_OR_ZERO(rt);
if (err)
goto route_fail_warning;
#else
goto route_fail_warning;
#endif
/* Get the neighbour entry for the lookup */
n = dst_neigh_lookup(&rt->dst, &flow.daddr);
ip_rt_put(rt);
if (!n)
goto route_fail_warning;
nfp_tun_write_neigh(n->dev, app, &flow, n, GFP_KERNEL);
neigh_release(n);
return;
route_fail_warning:
nfp_flower_cmsg_warn(app, "Requested route not found.\n");
}
static void nfp_tun_write_ipv4_list(struct nfp_app *app)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_addr_entry *entry;
struct nfp_tun_ipv4_addr payload;
struct list_head *ptr, *storage;
int count;
memset(&payload, 0, sizeof(struct nfp_tun_ipv4_addr));
mutex_lock(&priv->nfp_ipv4_off_lock);
count = 0;
list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) {
if (count >= NFP_FL_IPV4_ADDRS_MAX) {
mutex_unlock(&priv->nfp_ipv4_off_lock);
nfp_flower_cmsg_warn(app, "IPv4 offload exceeds limit.\n");
return;
}
entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list);
payload.ipv4_addr[count++] = entry->ipv4_addr;
}
payload.count = cpu_to_be32(count);
mutex_unlock(&priv->nfp_ipv4_off_lock);
nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_IPS,
sizeof(struct nfp_tun_ipv4_addr),
&payload, GFP_KERNEL);
}
void nfp_tunnel_add_ipv4_off(struct nfp_app *app, __be32 ipv4)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_addr_entry *entry;
struct list_head *ptr, *storage;
mutex_lock(&priv->nfp_ipv4_off_lock);
list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) {
entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list);
if (entry->ipv4_addr == ipv4) {
entry->ref_count++;
mutex_unlock(&priv->nfp_ipv4_off_lock);
return;
}
}
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
mutex_unlock(&priv->nfp_ipv4_off_lock);
nfp_flower_cmsg_warn(app, "Mem error when offloading IP address.\n");
return;
}
entry->ipv4_addr = ipv4;
entry->ref_count = 1;
list_add_tail(&entry->list, &priv->nfp_ipv4_off_list);
mutex_unlock(&priv->nfp_ipv4_off_lock);
nfp_tun_write_ipv4_list(app);
}
void nfp_tunnel_del_ipv4_off(struct nfp_app *app, __be32 ipv4)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_addr_entry *entry;
struct list_head *ptr, *storage;
mutex_lock(&priv->nfp_ipv4_off_lock);
list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) {
entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list);
if (entry->ipv4_addr == ipv4) {
entry->ref_count--;
if (!entry->ref_count) {
list_del(&entry->list);
kfree(entry);
}
break;
}
}
mutex_unlock(&priv->nfp_ipv4_off_lock);
nfp_tun_write_ipv4_list(app);
}
void nfp_tunnel_write_macs(struct nfp_app *app)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_tun_mac_offload_entry *entry;
struct nfp_tun_mac_addr *payload;
struct list_head *ptr, *storage;
int mac_count, err, pay_size;
mutex_lock(&priv->nfp_mac_off_lock);
if (!priv->nfp_mac_off_count) {
mutex_unlock(&priv->nfp_mac_off_lock);
return;
}
pay_size = sizeof(struct nfp_tun_mac_addr) +
sizeof(struct index_mac_addr) * priv->nfp_mac_off_count;
payload = kzalloc(pay_size, GFP_KERNEL);
if (!payload) {
mutex_unlock(&priv->nfp_mac_off_lock);
return;
}
payload->count = cpu_to_be16(priv->nfp_mac_off_count);
mac_count = 0;
list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) {
entry = list_entry(ptr, struct nfp_tun_mac_offload_entry,
list);
payload->addresses[mac_count].index = entry->index;
ether_addr_copy(payload->addresses[mac_count].addr,
entry->addr);
mac_count++;
}
err = nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_MAC,
pay_size, payload, GFP_KERNEL);
kfree(payload);
if (err) {
mutex_unlock(&priv->nfp_mac_off_lock);
/* Write failed so retain list for future retry. */
return;
}
/* If list was successfully offloaded, flush it. */
list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) {
entry = list_entry(ptr, struct nfp_tun_mac_offload_entry,
list);
list_del(&entry->list);
kfree(entry);
}
priv->nfp_mac_off_count = 0;
mutex_unlock(&priv->nfp_mac_off_lock);
}
static int nfp_tun_get_mac_idx(struct nfp_app *app, int ifindex)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_tun_mac_non_nfp_idx *entry;
struct list_head *ptr, *storage;
int idx;
mutex_lock(&priv->nfp_mac_index_lock);
list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) {
entry = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx, list);
if (entry->ifindex == ifindex) {
idx = entry->index;
mutex_unlock(&priv->nfp_mac_index_lock);
return idx;
}
}
idx = ida_simple_get(&priv->nfp_mac_off_ids, 0,
NFP_MAX_MAC_INDEX, GFP_KERNEL);
if (idx < 0) {
mutex_unlock(&priv->nfp_mac_index_lock);
return idx;
}
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
mutex_unlock(&priv->nfp_mac_index_lock);
return -ENOMEM;
}
entry->ifindex = ifindex;
entry->index = idx;
list_add_tail(&entry->list, &priv->nfp_mac_index_list);
mutex_unlock(&priv->nfp_mac_index_lock);
return idx;
}
static void nfp_tun_del_mac_idx(struct nfp_app *app, int ifindex)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_tun_mac_non_nfp_idx *entry;
struct list_head *ptr, *storage;
mutex_lock(&priv->nfp_mac_index_lock);
list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) {
entry = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx, list);
if (entry->ifindex == ifindex) {
ida_simple_remove(&priv->nfp_mac_off_ids,
entry->index);
list_del(&entry->list);
kfree(entry);
break;
}
}
mutex_unlock(&priv->nfp_mac_index_lock);
}
static void nfp_tun_add_to_mac_offload_list(struct net_device *netdev,
struct nfp_app *app)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_tun_mac_offload_entry *entry;
u16 nfp_mac_idx;
int port = 0;
/* Check if MAC should be offloaded. */
if (!is_valid_ether_addr(netdev->dev_addr))
return;
if (nfp_netdev_is_nfp_repr(netdev))
port = nfp_repr_get_port_id(netdev);
else if (!nfp_tun_is_netdev_to_offload(netdev))
return;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
nfp_flower_cmsg_warn(app, "Mem fail when offloading MAC.\n");
return;
}
if (FIELD_GET(NFP_FLOWER_CMSG_PORT_TYPE, port) ==
NFP_FLOWER_CMSG_PORT_TYPE_PHYS_PORT) {
nfp_mac_idx = port << 8 | NFP_FLOWER_CMSG_PORT_TYPE_PHYS_PORT;
} else if (FIELD_GET(NFP_FLOWER_CMSG_PORT_TYPE, port) ==
NFP_FLOWER_CMSG_PORT_TYPE_PCIE_PORT) {
port = FIELD_GET(NFP_FLOWER_CMSG_PORT_VNIC, port);
nfp_mac_idx = port << 8 | NFP_FLOWER_CMSG_PORT_TYPE_PCIE_PORT;
} else {
/* Must assign our own unique 8-bit index. */
int idx = nfp_tun_get_mac_idx(app, netdev->ifindex);
if (idx < 0) {
nfp_flower_cmsg_warn(app, "Can't assign non-repr MAC index.\n");
kfree(entry);
return;
}
nfp_mac_idx = idx << 8 | NFP_FLOWER_CMSG_PORT_TYPE_OTHER_PORT;
}
entry->index = cpu_to_be16(nfp_mac_idx);
ether_addr_copy(entry->addr, netdev->dev_addr);
mutex_lock(&priv->nfp_mac_off_lock);
priv->nfp_mac_off_count++;
list_add_tail(&entry->list, &priv->nfp_mac_off_list);
mutex_unlock(&priv->nfp_mac_off_lock);
}
static int nfp_tun_mac_event_handler(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct nfp_flower_priv *app_priv;
struct net_device *netdev;
struct nfp_app *app;
if (event == NETDEV_DOWN || event == NETDEV_UNREGISTER) {
app_priv = container_of(nb, struct nfp_flower_priv,
nfp_tun_mac_nb);
app = app_priv->app;
netdev = netdev_notifier_info_to_dev(ptr);
/* If non-nfp netdev then free its offload index. */
if (nfp_tun_is_netdev_to_offload(netdev))
nfp_tun_del_mac_idx(app, netdev->ifindex);
} else if (event == NETDEV_UP || event == NETDEV_CHANGEADDR ||
event == NETDEV_REGISTER) {
app_priv = container_of(nb, struct nfp_flower_priv,
nfp_tun_mac_nb);
app = app_priv->app;
netdev = netdev_notifier_info_to_dev(ptr);
nfp_tun_add_to_mac_offload_list(netdev, app);
/* Force a list write to keep NFP up to date. */
nfp_tunnel_write_macs(app);
}
return NOTIFY_OK;
}
int nfp_tunnel_config_start(struct nfp_app *app)
{
struct nfp_flower_priv *priv = app->priv;
struct net_device *netdev;
int err;
/* Initialise priv data for MAC offloading. */
priv->nfp_mac_off_count = 0;
mutex_init(&priv->nfp_mac_off_lock);
INIT_LIST_HEAD(&priv->nfp_mac_off_list);
priv->nfp_tun_mac_nb.notifier_call = nfp_tun_mac_event_handler;
mutex_init(&priv->nfp_mac_index_lock);
INIT_LIST_HEAD(&priv->nfp_mac_index_list);
ida_init(&priv->nfp_mac_off_ids);
/* Initialise priv data for IPv4 offloading. */
mutex_init(&priv->nfp_ipv4_off_lock);
INIT_LIST_HEAD(&priv->nfp_ipv4_off_list);
/* Initialise priv data for neighbour offloading. */
spin_lock_init(&priv->nfp_neigh_off_lock);
INIT_LIST_HEAD(&priv->nfp_neigh_off_list);
priv->nfp_tun_neigh_nb.notifier_call = nfp_tun_neigh_event_handler;
err = register_netdevice_notifier(&priv->nfp_tun_mac_nb);
if (err)
goto err_free_mac_ida;
err = register_netevent_notifier(&priv->nfp_tun_neigh_nb);
if (err)
goto err_unreg_mac_nb;
/* Parse netdevs already registered for MACs that need offloaded. */
rtnl_lock();
for_each_netdev(&init_net, netdev)
nfp_tun_add_to_mac_offload_list(netdev, app);
rtnl_unlock();
return 0;
err_unreg_mac_nb:
unregister_netdevice_notifier(&priv->nfp_tun_mac_nb);
err_free_mac_ida:
ida_destroy(&priv->nfp_mac_off_ids);
return err;
}
void nfp_tunnel_config_stop(struct nfp_app *app)
{
struct nfp_tun_mac_offload_entry *mac_entry;
struct nfp_flower_priv *priv = app->priv;
struct nfp_ipv4_route_entry *route_entry;
struct nfp_tun_mac_non_nfp_idx *mac_idx;
struct nfp_ipv4_addr_entry *ip_entry;
struct list_head *ptr, *storage;
unregister_netdevice_notifier(&priv->nfp_tun_mac_nb);
unregister_netevent_notifier(&priv->nfp_tun_neigh_nb);
/* Free any memory that may be occupied by MAC list. */
list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) {
mac_entry = list_entry(ptr, struct nfp_tun_mac_offload_entry,
list);
list_del(&mac_entry->list);
kfree(mac_entry);
}
/* Free any memory that may be occupied by MAC index list. */
list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) {
mac_idx = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx,
list);
list_del(&mac_idx->list);
kfree(mac_idx);
}
ida_destroy(&priv->nfp_mac_off_ids);
/* Free any memory that may be occupied by ipv4 list. */
list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) {
ip_entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list);
list_del(&ip_entry->list);
kfree(ip_entry);
}
/* Free any memory that may be occupied by the route list. */
list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) {
route_entry = list_entry(ptr, struct nfp_ipv4_route_entry,
list);
list_del(&route_entry->list);
kfree(route_entry);
}
}