| /* |
| * Copyright (C) 2017 Free Electrons |
| * Copyright (C) 2017 NextThing Co |
| * |
| * Author: Boris Brezillon <boris.brezillon@free-electrons.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/mtd/rawnand.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| |
| #define NAND_HYNIX_CMD_SET_PARAMS 0x36 |
| #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 |
| |
| #define NAND_HYNIX_1XNM_RR_REPEAT 8 |
| |
| /** |
| * struct hynix_read_retry - read-retry data |
| * @nregs: number of register to set when applying a new read-retry mode |
| * @regs: register offsets (NAND chip dependent) |
| * @values: array of values to set in registers. The array size is equal to |
| * (nregs * nmodes) |
| */ |
| struct hynix_read_retry { |
| int nregs; |
| const u8 *regs; |
| u8 values[0]; |
| }; |
| |
| /** |
| * struct hynix_nand - private Hynix NAND struct |
| * @nand_technology: manufacturing process expressed in picometer |
| * @read_retry: read-retry information |
| */ |
| struct hynix_nand { |
| const struct hynix_read_retry *read_retry; |
| }; |
| |
| /** |
| * struct hynix_read_retry_otp - structure describing how the read-retry OTP |
| * area |
| * @nregs: number of hynix private registers to set before reading the reading |
| * the OTP area |
| * @regs: registers that should be configured |
| * @values: values that should be set in regs |
| * @page: the address to pass to the READ_PAGE command. Depends on the NAND |
| * chip |
| * @size: size of the read-retry OTP section |
| */ |
| struct hynix_read_retry_otp { |
| int nregs; |
| const u8 *regs; |
| const u8 *values; |
| int page; |
| int size; |
| }; |
| |
| static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) |
| { |
| u8 jedecid[5] = { }; |
| int ret; |
| |
| ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); |
| if (ret) |
| return false; |
| |
| return !strncmp("JEDEC", jedecid, sizeof(jedecid)); |
| } |
| |
| static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| if (chip->exec_op) { |
| struct nand_op_instr instrs[] = { |
| NAND_OP_CMD(cmd, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->cmdfunc(mtd, cmd, -1, -1); |
| |
| return 0; |
| } |
| |
| static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u16 column = ((u16)addr << 8) | addr; |
| |
| if (chip->exec_op) { |
| struct nand_op_instr instrs[] = { |
| NAND_OP_ADDR(1, &addr, 0), |
| NAND_OP_8BIT_DATA_OUT(1, &val, 0), |
| }; |
| struct nand_operation op = NAND_OPERATION(instrs); |
| |
| return nand_exec_op(chip, &op); |
| } |
| |
| chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); |
| chip->write_byte(mtd, val); |
| |
| return 0; |
| } |
| |
| static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct hynix_nand *hynix = nand_get_manufacturer_data(chip); |
| const u8 *values; |
| int i, ret; |
| |
| values = hynix->read_retry->values + |
| (retry_mode * hynix->read_retry->nregs); |
| |
| /* Enter 'Set Hynix Parameters' mode */ |
| ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); |
| if (ret) |
| return ret; |
| |
| /* |
| * Configure the NAND in the requested read-retry mode. |
| * This is done by setting pre-defined values in internal NAND |
| * registers. |
| * |
| * The set of registers is NAND specific, and the values are either |
| * predefined or extracted from an OTP area on the NAND (values are |
| * probably tweaked at production in this case). |
| */ |
| for (i = 0; i < hynix->read_retry->nregs; i++) { |
| ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], |
| values[i]); |
| if (ret) |
| return ret; |
| } |
| |
| /* Apply the new settings. */ |
| return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); |
| } |
| |
| /** |
| * hynix_get_majority - get the value that is occurring the most in a given |
| * set of values |
| * @in: the array of values to test |
| * @repeat: the size of the in array |
| * @out: pointer used to store the output value |
| * |
| * This function implements the 'majority check' logic that is supposed to |
| * overcome the unreliability of MLC NANDs when reading the OTP area storing |
| * the read-retry parameters. |
| * |
| * It's based on a pretty simple assumption: if we repeat the same value |
| * several times and then take the one that is occurring the most, we should |
| * find the correct value. |
| * Let's hope this dummy algorithm prevents us from losing the read-retry |
| * parameters. |
| */ |
| static int hynix_get_majority(const u8 *in, int repeat, u8 *out) |
| { |
| int i, j, half = repeat / 2; |
| |
| /* |
| * We only test the first half of the in array because we must ensure |
| * that the value is at least occurring repeat / 2 times. |
| * |
| * This loop is suboptimal since we may count the occurrences of the |
| * same value several time, but we are doing that on small sets, which |
| * makes it acceptable. |
| */ |
| for (i = 0; i < half; i++) { |
| int cnt = 0; |
| u8 val = in[i]; |
| |
| /* Count all values that are matching the one at index i. */ |
| for (j = i + 1; j < repeat; j++) { |
| if (in[j] == val) |
| cnt++; |
| } |
| |
| /* We found a value occurring more than repeat / 2. */ |
| if (cnt > half) { |
| *out = val; |
| return 0; |
| } |
| } |
| |
| return -EIO; |
| } |
| |
| static int hynix_read_rr_otp(struct nand_chip *chip, |
| const struct hynix_read_retry_otp *info, |
| void *buf) |
| { |
| int i, ret; |
| |
| ret = nand_reset_op(chip); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < info->nregs; i++) { |
| ret = hynix_nand_reg_write_op(chip, info->regs[i], |
| info->values[i]); |
| if (ret) |
| return ret; |
| } |
| |
| ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); |
| if (ret) |
| return ret; |
| |
| /* Sequence to enter OTP mode? */ |
| ret = hynix_nand_cmd_op(chip, 0x17); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_cmd_op(chip, 0x4); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_cmd_op(chip, 0x19); |
| if (ret) |
| return ret; |
| |
| /* Now read the page */ |
| ret = nand_read_page_op(chip, info->page, 0, buf, info->size); |
| if (ret) |
| return ret; |
| |
| /* Put everything back to normal */ |
| ret = nand_reset_op(chip); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_reg_write_op(chip, 0x38, 0); |
| if (ret) |
| return ret; |
| |
| ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); |
| if (ret) |
| return ret; |
| |
| return nand_read_page_op(chip, 0, 0, NULL, 0); |
| } |
| |
| #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 |
| #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 |
| #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ |
| (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) |
| |
| static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, |
| int mode, int reg, bool inv, u8 *val) |
| { |
| u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; |
| int val_offs = (mode * nregs) + reg; |
| int set_size = nmodes * nregs; |
| int i, ret; |
| |
| for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { |
| int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); |
| |
| tmp[i] = buf[val_offs + set_offs]; |
| } |
| |
| ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); |
| if (ret) |
| return ret; |
| |
| if (inv) |
| *val = ~*val; |
| |
| return 0; |
| } |
| |
| static u8 hynix_1xnm_mlc_read_retry_regs[] = { |
| 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf |
| }; |
| |
| static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, |
| const struct hynix_read_retry_otp *info) |
| { |
| struct hynix_nand *hynix = nand_get_manufacturer_data(chip); |
| struct hynix_read_retry *rr = NULL; |
| int ret, i, j; |
| u8 nregs, nmodes; |
| u8 *buf; |
| |
| buf = kmalloc(info->size, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| ret = hynix_read_rr_otp(chip, info, buf); |
| if (ret) |
| goto out; |
| |
| ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, |
| &nmodes); |
| if (ret) |
| goto out; |
| |
| ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, |
| NAND_HYNIX_1XNM_RR_REPEAT, |
| &nregs); |
| if (ret) |
| goto out; |
| |
| rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); |
| if (!rr) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < nmodes; i++) { |
| for (j = 0; j < nregs; j++) { |
| u8 *val = rr->values + (i * nregs); |
| |
| ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, |
| false, val); |
| if (!ret) |
| continue; |
| |
| ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, |
| true, val); |
| if (ret) |
| goto out; |
| } |
| } |
| |
| rr->nregs = nregs; |
| rr->regs = hynix_1xnm_mlc_read_retry_regs; |
| hynix->read_retry = rr; |
| chip->setup_read_retry = hynix_nand_setup_read_retry; |
| chip->read_retries = nmodes; |
| |
| out: |
| kfree(buf); |
| |
| if (ret) |
| kfree(rr); |
| |
| return ret; |
| } |
| |
| static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; |
| static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; |
| |
| static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { |
| { |
| .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), |
| .regs = hynix_mlc_1xnm_rr_otp_regs, |
| .values = hynix_mlc_1xnm_rr_otp_values, |
| .page = 0x21f, |
| .size = 784 |
| }, |
| { |
| .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), |
| .regs = hynix_mlc_1xnm_rr_otp_regs, |
| .values = hynix_mlc_1xnm_rr_otp_values, |
| .page = 0x200, |
| .size = 528, |
| }, |
| }; |
| |
| static int hynix_nand_rr_init(struct nand_chip *chip) |
| { |
| int i, ret = 0; |
| bool valid_jedecid; |
| |
| valid_jedecid = hynix_nand_has_valid_jedecid(chip); |
| |
| /* |
| * We only support read-retry for 1xnm NANDs, and those NANDs all |
| * expose a valid JEDEC ID. |
| */ |
| if (valid_jedecid) { |
| u8 nand_tech = chip->id.data[5] >> 4; |
| |
| /* 1xnm technology */ |
| if (nand_tech == 4) { |
| for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); |
| i++) { |
| /* |
| * FIXME: Hynix recommend to copy the |
| * read-retry OTP area into a normal page. |
| */ |
| ret = hynix_mlc_1xnm_rr_init(chip, |
| hynix_mlc_1xnm_rr_otps); |
| if (!ret) |
| break; |
| } |
| } |
| } |
| |
| if (ret) |
| pr_warn("failed to initialize read-retry infrastructure"); |
| |
| return 0; |
| } |
| |
| static void hynix_nand_extract_oobsize(struct nand_chip *chip, |
| bool valid_jedecid) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| u8 oobsize; |
| |
| oobsize = ((chip->id.data[3] >> 2) & 0x3) | |
| ((chip->id.data[3] >> 4) & 0x4); |
| |
| if (valid_jedecid) { |
| switch (oobsize) { |
| case 0: |
| mtd->oobsize = 2048; |
| break; |
| case 1: |
| mtd->oobsize = 1664; |
| break; |
| case 2: |
| mtd->oobsize = 1024; |
| break; |
| case 3: |
| mtd->oobsize = 640; |
| break; |
| default: |
| /* |
| * We should never reach this case, but if that |
| * happens, this probably means Hynix decided to use |
| * a different extended ID format, and we should find |
| * a way to support it. |
| */ |
| WARN(1, "Invalid OOB size"); |
| break; |
| } |
| } else { |
| switch (oobsize) { |
| case 0: |
| mtd->oobsize = 128; |
| break; |
| case 1: |
| mtd->oobsize = 224; |
| break; |
| case 2: |
| mtd->oobsize = 448; |
| break; |
| case 3: |
| mtd->oobsize = 64; |
| break; |
| case 4: |
| mtd->oobsize = 32; |
| break; |
| case 5: |
| mtd->oobsize = 16; |
| break; |
| case 6: |
| mtd->oobsize = 640; |
| break; |
| default: |
| /* |
| * We should never reach this case, but if that |
| * happens, this probably means Hynix decided to use |
| * a different extended ID format, and we should find |
| * a way to support it. |
| */ |
| WARN(1, "Invalid OOB size"); |
| break; |
| } |
| |
| /* |
| * The datasheet of H27UCG8T2BTR mentions that the "Redundant |
| * Area Size" is encoded "per 8KB" (page size). This chip uses |
| * a page size of 16KiB. The datasheet mentions an OOB size of |
| * 1.280 bytes, but the OOB size encoded in the ID bytes (using |
| * the existing logic above) is 640 bytes. |
| * Update the OOB size for this chip by taking the value |
| * determined above and scaling it to the actual page size (so |
| * the actual OOB size for this chip is: 640 * 16k / 8k). |
| */ |
| if (chip->id.data[1] == 0xde) |
| mtd->oobsize *= mtd->writesize / SZ_8K; |
| } |
| } |
| |
| static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, |
| bool valid_jedecid) |
| { |
| u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; |
| |
| if (valid_jedecid) { |
| /* Reference: H27UCG8T2E datasheet */ |
| chip->ecc_step_ds = 1024; |
| |
| switch (ecc_level) { |
| case 0: |
| chip->ecc_step_ds = 0; |
| chip->ecc_strength_ds = 0; |
| break; |
| case 1: |
| chip->ecc_strength_ds = 4; |
| break; |
| case 2: |
| chip->ecc_strength_ds = 24; |
| break; |
| case 3: |
| chip->ecc_strength_ds = 32; |
| break; |
| case 4: |
| chip->ecc_strength_ds = 40; |
| break; |
| case 5: |
| chip->ecc_strength_ds = 50; |
| break; |
| case 6: |
| chip->ecc_strength_ds = 60; |
| break; |
| default: |
| /* |
| * We should never reach this case, but if that |
| * happens, this probably means Hynix decided to use |
| * a different extended ID format, and we should find |
| * a way to support it. |
| */ |
| WARN(1, "Invalid ECC requirements"); |
| } |
| } else { |
| /* |
| * The ECC requirements field meaning depends on the |
| * NAND technology. |
| */ |
| u8 nand_tech = chip->id.data[5] & 0x7; |
| |
| if (nand_tech < 3) { |
| /* > 26nm, reference: H27UBG8T2A datasheet */ |
| if (ecc_level < 5) { |
| chip->ecc_step_ds = 512; |
| chip->ecc_strength_ds = 1 << ecc_level; |
| } else if (ecc_level < 7) { |
| if (ecc_level == 5) |
| chip->ecc_step_ds = 2048; |
| else |
| chip->ecc_step_ds = 1024; |
| chip->ecc_strength_ds = 24; |
| } else { |
| /* |
| * We should never reach this case, but if that |
| * happens, this probably means Hynix decided |
| * to use a different extended ID format, and |
| * we should find a way to support it. |
| */ |
| WARN(1, "Invalid ECC requirements"); |
| } |
| } else { |
| /* <= 26nm, reference: H27UBG8T2B datasheet */ |
| if (!ecc_level) { |
| chip->ecc_step_ds = 0; |
| chip->ecc_strength_ds = 0; |
| } else if (ecc_level < 5) { |
| chip->ecc_step_ds = 512; |
| chip->ecc_strength_ds = 1 << (ecc_level - 1); |
| } else { |
| chip->ecc_step_ds = 1024; |
| chip->ecc_strength_ds = 24 + |
| (8 * (ecc_level - 5)); |
| } |
| } |
| } |
| } |
| |
| static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, |
| bool valid_jedecid) |
| { |
| u8 nand_tech; |
| |
| /* We need scrambling on all TLC NANDs*/ |
| if (chip->bits_per_cell > 2) |
| chip->options |= NAND_NEED_SCRAMBLING; |
| |
| /* And on MLC NANDs with sub-3xnm process */ |
| if (valid_jedecid) { |
| nand_tech = chip->id.data[5] >> 4; |
| |
| /* < 3xnm */ |
| if (nand_tech > 0) |
| chip->options |= NAND_NEED_SCRAMBLING; |
| } else { |
| nand_tech = chip->id.data[5] & 0x7; |
| |
| /* < 32nm */ |
| if (nand_tech > 2) |
| chip->options |= NAND_NEED_SCRAMBLING; |
| } |
| } |
| |
| static void hynix_nand_decode_id(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| bool valid_jedecid; |
| u8 tmp; |
| |
| /* |
| * Exclude all SLC NANDs from this advanced detection scheme. |
| * According to the ranges defined in several datasheets, it might |
| * appear that even SLC NANDs could fall in this extended ID scheme. |
| * If that the case rework the test to let SLC NANDs go through the |
| * detection process. |
| */ |
| if (chip->id.len < 6 || nand_is_slc(chip)) { |
| nand_decode_ext_id(chip); |
| return; |
| } |
| |
| /* Extract pagesize */ |
| mtd->writesize = 2048 << (chip->id.data[3] & 0x03); |
| |
| tmp = (chip->id.data[3] >> 4) & 0x3; |
| /* |
| * When bit7 is set that means we start counting at 1MiB, otherwise |
| * we start counting at 128KiB and shift this value the content of |
| * ID[3][4:5]. |
| * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in |
| * this case the erasesize is set to 768KiB. |
| */ |
| if (chip->id.data[3] & 0x80) |
| mtd->erasesize = SZ_1M << tmp; |
| else if (tmp == 3) |
| mtd->erasesize = SZ_512K + SZ_256K; |
| else |
| mtd->erasesize = SZ_128K << tmp; |
| |
| /* |
| * Modern Toggle DDR NANDs have a valid JEDECID even though they are |
| * not exposing a valid JEDEC parameter table. |
| * These NANDs use a different NAND ID scheme. |
| */ |
| valid_jedecid = hynix_nand_has_valid_jedecid(chip); |
| |
| hynix_nand_extract_oobsize(chip, valid_jedecid); |
| hynix_nand_extract_ecc_requirements(chip, valid_jedecid); |
| hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); |
| } |
| |
| static void hynix_nand_cleanup(struct nand_chip *chip) |
| { |
| struct hynix_nand *hynix = nand_get_manufacturer_data(chip); |
| |
| if (!hynix) |
| return; |
| |
| kfree(hynix->read_retry); |
| kfree(hynix); |
| nand_set_manufacturer_data(chip, NULL); |
| } |
| |
| static int hynix_nand_init(struct nand_chip *chip) |
| { |
| struct hynix_nand *hynix; |
| int ret; |
| |
| if (!nand_is_slc(chip)) |
| chip->bbt_options |= NAND_BBT_SCANLASTPAGE; |
| else |
| chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; |
| |
| hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); |
| if (!hynix) |
| return -ENOMEM; |
| |
| nand_set_manufacturer_data(chip, hynix); |
| |
| ret = hynix_nand_rr_init(chip); |
| if (ret) |
| hynix_nand_cleanup(chip); |
| |
| return ret; |
| } |
| |
| const struct nand_manufacturer_ops hynix_nand_manuf_ops = { |
| .detect = hynix_nand_decode_id, |
| .init = hynix_nand_init, |
| .cleanup = hynix_nand_cleanup, |
| }; |