blob: 8c65aacda9c81851ba0bad49c22e3bdfb6b7dcc4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Copyright 2017 IBM Corp.
#include <asm/pnv-ocxl.h>
#include <asm/opal.h>
#include <asm/xive.h>
#include <misc/ocxl-config.h>
#include "pci.h"
#define PNV_OCXL_TL_P9_RECV_CAP 0x000000000000000Full
#define PNV_OCXL_ACTAG_MAX 64
/* PASIDs are 20-bit, but on P9, NPU can only handle 15 bits */
#define PNV_OCXL_PASID_BITS 15
#define PNV_OCXL_PASID_MAX ((1 << PNV_OCXL_PASID_BITS) - 1)
#define AFU_PRESENT (1 << 31)
#define AFU_INDEX_MASK 0x3F000000
#define AFU_INDEX_SHIFT 24
#define ACTAG_MASK 0xFFF
struct actag_range {
u16 start;
u16 count;
};
struct npu_link {
struct list_head list;
int domain;
int bus;
int dev;
u16 fn_desired_actags[8];
struct actag_range fn_actags[8];
bool assignment_done;
};
static struct list_head links_list = LIST_HEAD_INIT(links_list);
static DEFINE_MUTEX(links_list_lock);
/*
* opencapi actags handling:
*
* When sending commands, the opencapi device references the memory
* context it's targeting with an 'actag', which is really an alias
* for a (BDF, pasid) combination. When it receives a command, the NPU
* must do a lookup of the actag to identify the memory context. The
* hardware supports a finite number of actags per link (64 for
* POWER9).
*
* The device can carry multiple functions, and each function can have
* multiple AFUs. Each AFU advertises in its config space the number
* of desired actags. The host must configure in the config space of
* the AFU how many actags the AFU is really allowed to use (which can
* be less than what the AFU desires).
*
* When a PCI function is probed by the driver, it has no visibility
* about the other PCI functions and how many actags they'd like,
* which makes it impossible to distribute actags fairly among AFUs.
*
* Unfortunately, the only way to know how many actags a function
* desires is by looking at the data for each AFU in the config space
* and add them up. Similarly, the only way to know how many actags
* all the functions of the physical device desire is by adding the
* previously computed function counts. Then we can match that against
* what the hardware supports.
*
* To get a comprehensive view, we use a 'pci fixup': at the end of
* PCI enumeration, each function counts how many actags its AFUs
* desire and we save it in a 'npu_link' structure, shared between all
* the PCI functions of a same device. Therefore, when the first
* function is probed by the driver, we can get an idea of the total
* count of desired actags for the device, and assign the actags to
* the AFUs, by pro-rating if needed.
*/
static int find_dvsec_from_pos(struct pci_dev *dev, int dvsec_id, int pos)
{
int vsec = pos;
u16 vendor, id;
while ((vsec = pci_find_next_ext_capability(dev, vsec,
OCXL_EXT_CAP_ID_DVSEC))) {
pci_read_config_word(dev, vsec + OCXL_DVSEC_VENDOR_OFFSET,
&vendor);
pci_read_config_word(dev, vsec + OCXL_DVSEC_ID_OFFSET, &id);
if (vendor == PCI_VENDOR_ID_IBM && id == dvsec_id)
return vsec;
}
return 0;
}
static int find_dvsec_afu_ctrl(struct pci_dev *dev, u8 afu_idx)
{
int vsec = 0;
u8 idx;
while ((vsec = find_dvsec_from_pos(dev, OCXL_DVSEC_AFU_CTRL_ID,
vsec))) {
pci_read_config_byte(dev, vsec + OCXL_DVSEC_AFU_CTRL_AFU_IDX,
&idx);
if (idx == afu_idx)
return vsec;
}
return 0;
}
static int get_max_afu_index(struct pci_dev *dev, int *afu_idx)
{
int pos;
u32 val;
pos = find_dvsec_from_pos(dev, OCXL_DVSEC_FUNC_ID, 0);
if (!pos)
return -ESRCH;
pci_read_config_dword(dev, pos + OCXL_DVSEC_FUNC_OFF_INDEX, &val);
if (val & AFU_PRESENT)
*afu_idx = (val & AFU_INDEX_MASK) >> AFU_INDEX_SHIFT;
else
*afu_idx = -1;
return 0;
}
static int get_actag_count(struct pci_dev *dev, int afu_idx, int *actag)
{
int pos;
u16 actag_sup;
pos = find_dvsec_afu_ctrl(dev, afu_idx);
if (!pos)
return -ESRCH;
pci_read_config_word(dev, pos + OCXL_DVSEC_AFU_CTRL_ACTAG_SUP,
&actag_sup);
*actag = actag_sup & ACTAG_MASK;
return 0;
}
static struct npu_link *find_link(struct pci_dev *dev)
{
struct npu_link *link;
list_for_each_entry(link, &links_list, list) {
/* The functions of a device all share the same link */
if (link->domain == pci_domain_nr(dev->bus) &&
link->bus == dev->bus->number &&
link->dev == PCI_SLOT(dev->devfn)) {
return link;
}
}
/* link doesn't exist yet. Allocate one */
link = kzalloc(sizeof(struct npu_link), GFP_KERNEL);
if (!link)
return NULL;
link->domain = pci_domain_nr(dev->bus);
link->bus = dev->bus->number;
link->dev = PCI_SLOT(dev->devfn);
list_add(&link->list, &links_list);
return link;
}
static void pnv_ocxl_fixup_actag(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct npu_link *link;
int rc, afu_idx = -1, i, actag;
if (!machine_is(powernv))
return;
if (phb->type != PNV_PHB_NPU_OCAPI)
return;
mutex_lock(&links_list_lock);
link = find_link(dev);
if (!link) {
dev_warn(&dev->dev, "couldn't update actag information\n");
mutex_unlock(&links_list_lock);
return;
}
/*
* Check how many actags are desired for the AFUs under that
* function and add it to the count for the link
*/
rc = get_max_afu_index(dev, &afu_idx);
if (rc) {
/* Most likely an invalid config space */
dev_dbg(&dev->dev, "couldn't find AFU information\n");
afu_idx = -1;
}
link->fn_desired_actags[PCI_FUNC(dev->devfn)] = 0;
for (i = 0; i <= afu_idx; i++) {
/*
* AFU index 'holes' are allowed. So don't fail if we
* can't read the actag info for an index
*/
rc = get_actag_count(dev, i, &actag);
if (rc)
continue;
link->fn_desired_actags[PCI_FUNC(dev->devfn)] += actag;
}
dev_dbg(&dev->dev, "total actags for function: %d\n",
link->fn_desired_actags[PCI_FUNC(dev->devfn)]);
mutex_unlock(&links_list_lock);
}
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_ocxl_fixup_actag);
static u16 assign_fn_actags(u16 desired, u16 total)
{
u16 count;
if (total <= PNV_OCXL_ACTAG_MAX)
count = desired;
else
count = PNV_OCXL_ACTAG_MAX * desired / total;
return count;
}
static void assign_actags(struct npu_link *link)
{
u16 actag_count, range_start = 0, total_desired = 0;
int i;
for (i = 0; i < 8; i++)
total_desired += link->fn_desired_actags[i];
for (i = 0; i < 8; i++) {
if (link->fn_desired_actags[i]) {
actag_count = assign_fn_actags(
link->fn_desired_actags[i],
total_desired);
link->fn_actags[i].start = range_start;
link->fn_actags[i].count = actag_count;
range_start += actag_count;
WARN_ON(range_start >= PNV_OCXL_ACTAG_MAX);
}
pr_debug("link %x:%x:%x fct %d actags: start=%d count=%d (desired=%d)\n",
link->domain, link->bus, link->dev, i,
link->fn_actags[i].start, link->fn_actags[i].count,
link->fn_desired_actags[i]);
}
link->assignment_done = true;
}
int pnv_ocxl_get_actag(struct pci_dev *dev, u16 *base, u16 *enabled,
u16 *supported)
{
struct npu_link *link;
mutex_lock(&links_list_lock);
link = find_link(dev);
if (!link) {
dev_err(&dev->dev, "actag information not found\n");
mutex_unlock(&links_list_lock);
return -ENODEV;
}
/*
* On p9, we only have 64 actags per link, so they must be
* shared by all the functions of the same adapter. We counted
* the desired actag counts during PCI enumeration, so that we
* can allocate a pro-rated number of actags to each function.
*/
if (!link->assignment_done)
assign_actags(link);
*base = link->fn_actags[PCI_FUNC(dev->devfn)].start;
*enabled = link->fn_actags[PCI_FUNC(dev->devfn)].count;
*supported = link->fn_desired_actags[PCI_FUNC(dev->devfn)];
mutex_unlock(&links_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_get_actag);
int pnv_ocxl_get_pasid_count(struct pci_dev *dev, int *count)
{
struct npu_link *link;
int i, rc = -EINVAL;
/*
* The number of PASIDs (process address space ID) which can
* be used by a function depends on how many functions exist
* on the device. The NPU needs to be configured to know how
* many bits are available to PASIDs and how many are to be
* used by the function BDF indentifier.
*
* We only support one AFU-carrying function for now.
*/
mutex_lock(&links_list_lock);
link = find_link(dev);
if (!link) {
dev_err(&dev->dev, "actag information not found\n");
mutex_unlock(&links_list_lock);
return -ENODEV;
}
for (i = 0; i < 8; i++)
if (link->fn_desired_actags[i] && (i == PCI_FUNC(dev->devfn))) {
*count = PNV_OCXL_PASID_MAX;
rc = 0;
break;
}
mutex_unlock(&links_list_lock);
dev_dbg(&dev->dev, "%d PASIDs available for function\n",
rc ? 0 : *count);
return rc;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_get_pasid_count);
static void set_templ_rate(unsigned int templ, unsigned int rate, char *buf)
{
int shift, idx;
WARN_ON(templ > PNV_OCXL_TL_MAX_TEMPLATE);
idx = (PNV_OCXL_TL_MAX_TEMPLATE - templ) / 2;
shift = 4 * (1 - ((PNV_OCXL_TL_MAX_TEMPLATE - templ) % 2));
buf[idx] |= rate << shift;
}
int pnv_ocxl_get_tl_cap(struct pci_dev *dev, long *cap,
char *rate_buf, int rate_buf_size)
{
if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE)
return -EINVAL;
/*
* The TL capabilities are a characteristic of the NPU, so
* we go with hard-coded values.
*
* The receiving rate of each template is encoded on 4 bits.
*
* On P9:
* - templates 0 -> 3 are supported
* - templates 0, 1 and 3 have a 0 receiving rate
* - template 2 has receiving rate of 1 (extra cycle)
*/
memset(rate_buf, 0, rate_buf_size);
set_templ_rate(2, 1, rate_buf);
*cap = PNV_OCXL_TL_P9_RECV_CAP;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_get_tl_cap);
int pnv_ocxl_set_tl_conf(struct pci_dev *dev, long cap,
uint64_t rate_buf_phys, int rate_buf_size)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
int rc;
if (rate_buf_size != PNV_OCXL_TL_RATE_BUF_SIZE)
return -EINVAL;
rc = opal_npu_tl_set(phb->opal_id, dev->devfn, cap,
rate_buf_phys, rate_buf_size);
if (rc) {
dev_err(&dev->dev, "Can't configure host TL: %d\n", rc);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_set_tl_conf);
int pnv_ocxl_get_xsl_irq(struct pci_dev *dev, int *hwirq)
{
int rc;
rc = of_property_read_u32(dev->dev.of_node, "ibm,opal-xsl-irq", hwirq);
if (rc) {
dev_err(&dev->dev,
"Can't get translation interrupt for device\n");
return rc;
}
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_get_xsl_irq);
void pnv_ocxl_unmap_xsl_regs(void __iomem *dsisr, void __iomem *dar,
void __iomem *tfc, void __iomem *pe_handle)
{
iounmap(dsisr);
iounmap(dar);
iounmap(tfc);
iounmap(pe_handle);
}
EXPORT_SYMBOL_GPL(pnv_ocxl_unmap_xsl_regs);
int pnv_ocxl_map_xsl_regs(struct pci_dev *dev, void __iomem **dsisr,
void __iomem **dar, void __iomem **tfc,
void __iomem **pe_handle)
{
u64 reg;
int i, j, rc = 0;
void __iomem *regs[4];
/*
* opal stores the mmio addresses of the DSISR, DAR, TFC and
* PE_HANDLE registers in a device tree property, in that
* order
*/
for (i = 0; i < 4; i++) {
rc = of_property_read_u64_index(dev->dev.of_node,
"ibm,opal-xsl-mmio", i, &reg);
if (rc)
break;
regs[i] = ioremap(reg, 8);
if (!regs[i]) {
rc = -EINVAL;
break;
}
}
if (rc) {
dev_err(&dev->dev, "Can't map translation mmio registers\n");
for (j = i - 1; j >= 0; j--)
iounmap(regs[j]);
} else {
*dsisr = regs[0];
*dar = regs[1];
*tfc = regs[2];
*pe_handle = regs[3];
}
return rc;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_map_xsl_regs);
struct spa_data {
u64 phb_opal_id;
u32 bdfn;
};
int pnv_ocxl_spa_setup(struct pci_dev *dev, void *spa_mem, int PE_mask,
void **platform_data)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
struct pnv_phb *phb = hose->private_data;
struct spa_data *data;
u32 bdfn;
int rc;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
bdfn = (dev->bus->number << 8) | dev->devfn;
rc = opal_npu_spa_setup(phb->opal_id, bdfn, virt_to_phys(spa_mem),
PE_mask);
if (rc) {
dev_err(&dev->dev, "Can't setup Shared Process Area: %d\n", rc);
kfree(data);
return rc;
}
data->phb_opal_id = phb->opal_id;
data->bdfn = bdfn;
*platform_data = (void *) data;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_spa_setup);
void pnv_ocxl_spa_release(void *platform_data)
{
struct spa_data *data = (struct spa_data *) platform_data;
int rc;
rc = opal_npu_spa_setup(data->phb_opal_id, data->bdfn, 0, 0);
WARN_ON(rc);
kfree(data);
}
EXPORT_SYMBOL_GPL(pnv_ocxl_spa_release);
int pnv_ocxl_spa_remove_pe_from_cache(void *platform_data, int pe_handle)
{
struct spa_data *data = (struct spa_data *) platform_data;
int rc;
rc = opal_npu_spa_clear_cache(data->phb_opal_id, data->bdfn, pe_handle);
return rc;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_spa_remove_pe_from_cache);
int pnv_ocxl_alloc_xive_irq(u32 *irq, u64 *trigger_addr)
{
__be64 flags, trigger_page;
s64 rc;
u32 hwirq;
hwirq = xive_native_alloc_irq();
if (!hwirq)
return -ENOENT;
rc = opal_xive_get_irq_info(hwirq, &flags, NULL, &trigger_page, NULL,
NULL);
if (rc || !trigger_page) {
xive_native_free_irq(hwirq);
return -ENOENT;
}
*irq = hwirq;
*trigger_addr = be64_to_cpu(trigger_page);
return 0;
}
EXPORT_SYMBOL_GPL(pnv_ocxl_alloc_xive_irq);
void pnv_ocxl_free_xive_irq(u32 irq)
{
xive_native_free_irq(irq);
}
EXPORT_SYMBOL_GPL(pnv_ocxl_free_xive_irq);