blob: bedd5fba33b080a075405c9a01fa8006f5b0a3f2 [file] [log] [blame]
/*
* Copyright(c) 2015 - 2018 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/topology.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include "hfi.h"
#include "affinity.h"
#include "sdma.h"
#include "trace.h"
struct hfi1_affinity_node_list node_affinity = {
.list = LIST_HEAD_INIT(node_affinity.list),
.lock = __MUTEX_INITIALIZER(node_affinity.lock)
};
/* Name of IRQ types, indexed by enum irq_type */
static const char * const irq_type_names[] = {
"SDMA",
"RCVCTXT",
"GENERAL",
"OTHER",
};
/* Per NUMA node count of HFI devices */
static unsigned int *hfi1_per_node_cntr;
static inline void init_cpu_mask_set(struct cpu_mask_set *set)
{
cpumask_clear(&set->mask);
cpumask_clear(&set->used);
set->gen = 0;
}
/* Increment generation of CPU set if needed */
static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
{
if (cpumask_equal(&set->mask, &set->used)) {
/*
* We've used up all the CPUs, bump up the generation
* and reset the 'used' map
*/
set->gen++;
cpumask_clear(&set->used);
}
}
static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
{
if (cpumask_empty(&set->used) && set->gen) {
set->gen--;
cpumask_copy(&set->used, &set->mask);
}
}
/* Get the first CPU from the list of unused CPUs in a CPU set data structure */
static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
{
int cpu;
if (!diff || !set)
return -EINVAL;
_cpu_mask_set_gen_inc(set);
/* Find out CPUs left in CPU mask */
cpumask_andnot(diff, &set->mask, &set->used);
cpu = cpumask_first(diff);
if (cpu >= nr_cpu_ids) /* empty */
cpu = -EINVAL;
else
cpumask_set_cpu(cpu, &set->used);
return cpu;
}
static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
{
if (!set)
return;
cpumask_clear_cpu(cpu, &set->used);
_cpu_mask_set_gen_dec(set);
}
/* Initialize non-HT cpu cores mask */
void init_real_cpu_mask(void)
{
int possible, curr_cpu, i, ht;
cpumask_clear(&node_affinity.real_cpu_mask);
/* Start with cpu online mask as the real cpu mask */
cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
/*
* Remove HT cores from the real cpu mask. Do this in two steps below.
*/
possible = cpumask_weight(&node_affinity.real_cpu_mask);
ht = cpumask_weight(topology_sibling_cpumask(
cpumask_first(&node_affinity.real_cpu_mask)));
/*
* Step 1. Skip over the first N HT siblings and use them as the
* "real" cores. Assumes that HT cores are not enumerated in
* succession (except in the single core case).
*/
curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
for (i = 0; i < possible / ht; i++)
curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
/*
* Step 2. Remove the remaining HT siblings. Use cpumask_next() to
* skip any gaps.
*/
for (; i < possible; i++) {
cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
}
}
int node_affinity_init(void)
{
int node;
struct pci_dev *dev = NULL;
const struct pci_device_id *ids = hfi1_pci_tbl;
cpumask_clear(&node_affinity.proc.used);
cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
node_affinity.proc.gen = 0;
node_affinity.num_core_siblings =
cpumask_weight(topology_sibling_cpumask(
cpumask_first(&node_affinity.proc.mask)
));
node_affinity.num_possible_nodes = num_possible_nodes();
node_affinity.num_online_nodes = num_online_nodes();
node_affinity.num_online_cpus = num_online_cpus();
/*
* The real cpu mask is part of the affinity struct but it has to be
* initialized early. It is needed to calculate the number of user
* contexts in set_up_context_variables().
*/
init_real_cpu_mask();
hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
if (!hfi1_per_node_cntr)
return -ENOMEM;
while (ids->vendor) {
dev = NULL;
while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
node = pcibus_to_node(dev->bus);
if (node < 0)
goto out;
hfi1_per_node_cntr[node]++;
}
ids++;
}
return 0;
out:
/*
* Invalid PCI NUMA node information found, note it, and populate
* our database 1:1.
*/
pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
pr_err("HFI: System BIOS may need to be upgraded\n");
for (node = 0; node < node_affinity.num_possible_nodes; node++)
hfi1_per_node_cntr[node] = 1;
return 0;
}
static void node_affinity_destroy(struct hfi1_affinity_node *entry)
{
free_percpu(entry->comp_vect_affinity);
kfree(entry);
}
void node_affinity_destroy_all(void)
{
struct list_head *pos, *q;
struct hfi1_affinity_node *entry;
mutex_lock(&node_affinity.lock);
list_for_each_safe(pos, q, &node_affinity.list) {
entry = list_entry(pos, struct hfi1_affinity_node,
list);
list_del(pos);
node_affinity_destroy(entry);
}
mutex_unlock(&node_affinity.lock);
kfree(hfi1_per_node_cntr);
}
static struct hfi1_affinity_node *node_affinity_allocate(int node)
{
struct hfi1_affinity_node *entry;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return NULL;
entry->node = node;
entry->comp_vect_affinity = alloc_percpu(u16);
INIT_LIST_HEAD(&entry->list);
return entry;
}
/*
* It appends an entry to the list.
* It *must* be called with node_affinity.lock held.
*/
static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
{
list_add_tail(&entry->list, &node_affinity.list);
}
/* It must be called with node_affinity.lock held */
static struct hfi1_affinity_node *node_affinity_lookup(int node)
{
struct list_head *pos;
struct hfi1_affinity_node *entry;
list_for_each(pos, &node_affinity.list) {
entry = list_entry(pos, struct hfi1_affinity_node, list);
if (entry->node == node)
return entry;
}
return NULL;
}
static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
u16 __percpu *comp_vect_affinity)
{
int curr_cpu;
u16 cntr;
u16 prev_cntr;
int ret_cpu;
if (!possible_cpumask) {
ret_cpu = -EINVAL;
goto fail;
}
if (!comp_vect_affinity) {
ret_cpu = -EINVAL;
goto fail;
}
ret_cpu = cpumask_first(possible_cpumask);
if (ret_cpu >= nr_cpu_ids) {
ret_cpu = -EINVAL;
goto fail;
}
prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
for_each_cpu(curr_cpu, possible_cpumask) {
cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
if (cntr < prev_cntr) {
ret_cpu = curr_cpu;
prev_cntr = cntr;
}
}
*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
fail:
return ret_cpu;
}
static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
u16 __percpu *comp_vect_affinity)
{
int curr_cpu;
int max_cpu;
u16 cntr;
u16 prev_cntr;
if (!possible_cpumask)
return -EINVAL;
if (!comp_vect_affinity)
return -EINVAL;
max_cpu = cpumask_first(possible_cpumask);
if (max_cpu >= nr_cpu_ids)
return -EINVAL;
prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
for_each_cpu(curr_cpu, possible_cpumask) {
cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
if (cntr > prev_cntr) {
max_cpu = curr_cpu;
prev_cntr = cntr;
}
}
*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
return max_cpu;
}
/*
* Non-interrupt CPUs are used first, then interrupt CPUs.
* Two already allocated cpu masks must be passed.
*/
static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
struct hfi1_affinity_node *entry,
cpumask_var_t non_intr_cpus,
cpumask_var_t available_cpus)
__must_hold(&node_affinity.lock)
{
int cpu;
struct cpu_mask_set *set = dd->comp_vect;
lockdep_assert_held(&node_affinity.lock);
if (!non_intr_cpus) {
cpu = -1;
goto fail;
}
if (!available_cpus) {
cpu = -1;
goto fail;
}
/* Available CPUs for pinning completion vectors */
_cpu_mask_set_gen_inc(set);
cpumask_andnot(available_cpus, &set->mask, &set->used);
/* Available CPUs without SDMA engine interrupts */
cpumask_andnot(non_intr_cpus, available_cpus,
&entry->def_intr.used);
/* If there are non-interrupt CPUs available, use them first */
if (!cpumask_empty(non_intr_cpus))
cpu = cpumask_first(non_intr_cpus);
else /* Otherwise, use interrupt CPUs */
cpu = cpumask_first(available_cpus);
if (cpu >= nr_cpu_ids) { /* empty */
cpu = -1;
goto fail;
}
cpumask_set_cpu(cpu, &set->used);
fail:
return cpu;
}
static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
{
struct cpu_mask_set *set = dd->comp_vect;
if (cpu < 0)
return;
cpu_mask_set_put(set, cpu);
}
/* _dev_comp_vect_mappings_destroy() is reentrant */
static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
{
int i, cpu;
if (!dd->comp_vect_mappings)
return;
for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
cpu = dd->comp_vect_mappings[i];
_dev_comp_vect_cpu_put(dd, cpu);
dd->comp_vect_mappings[i] = -1;
hfi1_cdbg(AFFINITY,
"[%s] Release CPU %d from completion vector %d",
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
}
kfree(dd->comp_vect_mappings);
dd->comp_vect_mappings = NULL;
}
/*
* This function creates the table for looking up CPUs for completion vectors.
* num_comp_vectors needs to have been initilized before calling this function.
*/
static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
struct hfi1_affinity_node *entry)
__must_hold(&node_affinity.lock)
{
int i, cpu, ret;
cpumask_var_t non_intr_cpus;
cpumask_var_t available_cpus;
lockdep_assert_held(&node_affinity.lock);
if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
return -ENOMEM;
if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
free_cpumask_var(non_intr_cpus);
return -ENOMEM;
}
dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
sizeof(*dd->comp_vect_mappings),
GFP_KERNEL);
if (!dd->comp_vect_mappings) {
ret = -ENOMEM;
goto fail;
}
for (i = 0; i < dd->comp_vect_possible_cpus; i++)
dd->comp_vect_mappings[i] = -1;
for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
available_cpus);
if (cpu < 0) {
ret = -EINVAL;
goto fail;
}
dd->comp_vect_mappings[i] = cpu;
hfi1_cdbg(AFFINITY,
"[%s] Completion Vector %d -> CPU %d",
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
}
return 0;
fail:
free_cpumask_var(available_cpus);
free_cpumask_var(non_intr_cpus);
_dev_comp_vect_mappings_destroy(dd);
return ret;
}
int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
{
int ret;
struct hfi1_affinity_node *entry;
mutex_lock(&node_affinity.lock);
entry = node_affinity_lookup(dd->node);
if (!entry) {
ret = -EINVAL;
goto unlock;
}
ret = _dev_comp_vect_mappings_create(dd, entry);
unlock:
mutex_unlock(&node_affinity.lock);
return ret;
}
void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
{
_dev_comp_vect_mappings_destroy(dd);
}
int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
{
struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
if (!dd->comp_vect_mappings)
return -EINVAL;
if (comp_vect >= dd->comp_vect_possible_cpus)
return -EINVAL;
return dd->comp_vect_mappings[comp_vect];
}
/*
* It assumes dd->comp_vect_possible_cpus is available.
*/
static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
struct hfi1_affinity_node *entry,
bool first_dev_init)
__must_hold(&node_affinity.lock)
{
int i, j, curr_cpu;
int possible_cpus_comp_vect = 0;
struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
lockdep_assert_held(&node_affinity.lock);
/*
* If there's only one CPU available for completion vectors, then
* there will only be one completion vector available. Othewise,
* the number of completion vector available will be the number of
* available CPUs divide it by the number of devices in the
* local NUMA node.
*/
if (cpumask_weight(&entry->comp_vect_mask) == 1) {
possible_cpus_comp_vect = 1;
dd_dev_warn(dd,
"Number of kernel receive queues is too large for completion vector affinity to be effective\n");
} else {
possible_cpus_comp_vect +=
cpumask_weight(&entry->comp_vect_mask) /
hfi1_per_node_cntr[dd->node];
/*
* If the completion vector CPUs available doesn't divide
* evenly among devices, then the first device device to be
* initialized gets an extra CPU.
*/
if (first_dev_init &&
cpumask_weight(&entry->comp_vect_mask) %
hfi1_per_node_cntr[dd->node] != 0)
possible_cpus_comp_vect++;
}
dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
/* Reserving CPUs for device completion vector */
for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
entry->comp_vect_affinity);
if (curr_cpu < 0)
goto fail;
cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
}
hfi1_cdbg(AFFINITY,
"[%s] Completion vector affinity CPU set(s) %*pbl",
rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
cpumask_pr_args(dev_comp_vect_mask));
return 0;
fail:
for (j = 0; j < i; j++)
per_cpu_affinity_put_max(&entry->comp_vect_mask,
entry->comp_vect_affinity);
return curr_cpu;
}
/*
* It assumes dd->comp_vect_possible_cpus is available.
*/
static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
struct hfi1_affinity_node *entry)
__must_hold(&node_affinity.lock)
{
int i, cpu;
lockdep_assert_held(&node_affinity.lock);
if (!dd->comp_vect_possible_cpus)
return;
for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
entry->comp_vect_affinity);
/* Clearing CPU in device completion vector cpu mask */
if (cpu >= 0)
cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
}
dd->comp_vect_possible_cpus = 0;
}
/*
* Interrupt affinity.
*
* non-rcv avail gets a default mask that
* starts as possible cpus with threads reset
* and each rcv avail reset.
*
* rcv avail gets node relative 1 wrapping back
* to the node relative 1 as necessary.
*
*/
int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
{
int node = pcibus_to_node(dd->pcidev->bus);
struct hfi1_affinity_node *entry;
const struct cpumask *local_mask;
int curr_cpu, possible, i, ret;
bool new_entry = false;
/*
* If the BIOS does not have the NUMA node information set, select
* NUMA 0 so we get consistent performance.
*/
if (node < 0) {
dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
node = 0;
}
dd->node = node;
local_mask = cpumask_of_node(dd->node);
if (cpumask_first(local_mask) >= nr_cpu_ids)
local_mask = topology_core_cpumask(0);
mutex_lock(&node_affinity.lock);
entry = node_affinity_lookup(dd->node);
/*
* If this is the first time this NUMA node's affinity is used,
* create an entry in the global affinity structure and initialize it.
*/
if (!entry) {
entry = node_affinity_allocate(node);
if (!entry) {
dd_dev_err(dd,
"Unable to allocate global affinity node\n");
ret = -ENOMEM;
goto fail;
}
new_entry = true;
init_cpu_mask_set(&entry->def_intr);
init_cpu_mask_set(&entry->rcv_intr);
cpumask_clear(&entry->comp_vect_mask);
cpumask_clear(&entry->general_intr_mask);
/* Use the "real" cpu mask of this node as the default */
cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
local_mask);
/* fill in the receive list */
possible = cpumask_weight(&entry->def_intr.mask);
curr_cpu = cpumask_first(&entry->def_intr.mask);
if (possible == 1) {
/* only one CPU, everyone will use it */
cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
} else {
/*
* The general/control context will be the first CPU in
* the default list, so it is removed from the default
* list and added to the general interrupt list.
*/
cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
curr_cpu = cpumask_next(curr_cpu,
&entry->def_intr.mask);
/*
* Remove the remaining kernel receive queues from
* the default list and add them to the receive list.
*/
for (i = 0;
i < (dd->n_krcv_queues - 1) *
hfi1_per_node_cntr[dd->node];
i++) {
cpumask_clear_cpu(curr_cpu,
&entry->def_intr.mask);
cpumask_set_cpu(curr_cpu,
&entry->rcv_intr.mask);
curr_cpu = cpumask_next(curr_cpu,
&entry->def_intr.mask);
if (curr_cpu >= nr_cpu_ids)
break;
}
/*
* If there ends up being 0 CPU cores leftover for SDMA
* engines, use the same CPU cores as general/control
* context.
*/
if (cpumask_weight(&entry->def_intr.mask) == 0)
cpumask_copy(&entry->def_intr.mask,
&entry->general_intr_mask);
}
/* Determine completion vector CPUs for the entire node */
cpumask_and(&entry->comp_vect_mask,
&node_affinity.real_cpu_mask, local_mask);
cpumask_andnot(&entry->comp_vect_mask,
&entry->comp_vect_mask,
&entry->rcv_intr.mask);
cpumask_andnot(&entry->comp_vect_mask,
&entry->comp_vect_mask,
&entry->general_intr_mask);
/*
* If there ends up being 0 CPU cores leftover for completion
* vectors, use the same CPU core as the general/control
* context.
*/
if (cpumask_weight(&entry->comp_vect_mask) == 0)
cpumask_copy(&entry->comp_vect_mask,
&entry->general_intr_mask);
}
ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
if (ret < 0)
goto fail;
if (new_entry)
node_affinity_add_tail(entry);
mutex_unlock(&node_affinity.lock);
return 0;
fail:
if (new_entry)
node_affinity_destroy(entry);
mutex_unlock(&node_affinity.lock);
return ret;
}
void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
{
struct hfi1_affinity_node *entry;
if (dd->node < 0)
return;
mutex_lock(&node_affinity.lock);
entry = node_affinity_lookup(dd->node);
if (!entry)
goto unlock;
/*
* Free device completion vector CPUs to be used by future
* completion vectors
*/
_dev_comp_vect_cpu_mask_clean_up(dd, entry);
unlock:
mutex_unlock(&node_affinity.lock);
dd->node = -1;
}
/*
* Function updates the irq affinity hint for msix after it has been changed
* by the user using the /proc/irq interface. This function only accepts
* one cpu in the mask.
*/
static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
{
struct sdma_engine *sde = msix->arg;
struct hfi1_devdata *dd = sde->dd;
struct hfi1_affinity_node *entry;
struct cpu_mask_set *set;
int i, old_cpu;
if (cpu > num_online_cpus() || cpu == sde->cpu)
return;
mutex_lock(&node_affinity.lock);
entry = node_affinity_lookup(dd->node);
if (!entry)
goto unlock;
old_cpu = sde->cpu;
sde->cpu = cpu;
cpumask_clear(&msix->mask);
cpumask_set_cpu(cpu, &msix->mask);
dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
msix->irq, irq_type_names[msix->type],
sde->this_idx, cpu);
irq_set_affinity_hint(msix->irq, &msix->mask);
/*
* Set the new cpu in the hfi1_affinity_node and clean
* the old cpu if it is not used by any other IRQ
*/
set = &entry->def_intr;
cpumask_set_cpu(cpu, &set->mask);
cpumask_set_cpu(cpu, &set->used);
for (i = 0; i < dd->num_msix_entries; i++) {
struct hfi1_msix_entry *other_msix;
other_msix = &dd->msix_entries[i];
if (other_msix->type != IRQ_SDMA || other_msix == msix)
continue;
if (cpumask_test_cpu(old_cpu, &other_msix->mask))
goto unlock;
}
cpumask_clear_cpu(old_cpu, &set->mask);
cpumask_clear_cpu(old_cpu, &set->used);
unlock:
mutex_unlock(&node_affinity.lock);
}
static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
int cpu = cpumask_first(mask);
struct hfi1_msix_entry *msix = container_of(notify,
struct hfi1_msix_entry,
notify);
/* Only one CPU configuration supported currently */
hfi1_update_sdma_affinity(msix, cpu);
}
static void hfi1_irq_notifier_release(struct kref *ref)
{
/*
* This is required by affinity notifier. We don't have anything to
* free here.
*/
}
static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
{
struct irq_affinity_notify *notify = &msix->notify;
notify->irq = msix->irq;
notify->notify = hfi1_irq_notifier_notify;
notify->release = hfi1_irq_notifier_release;
if (irq_set_affinity_notifier(notify->irq, notify))
pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
notify->irq);
}
static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
{
struct irq_affinity_notify *notify = &msix->notify;
if (irq_set_affinity_notifier(notify->irq, NULL))
pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
notify->irq);
}
/*
* Function sets the irq affinity for msix.
* It *must* be called with node_affinity.lock held.
*/
static int get_irq_affinity(struct hfi1_devdata *dd,
struct hfi1_msix_entry *msix)
{
cpumask_var_t diff;
struct hfi1_affinity_node *entry;
struct cpu_mask_set *set = NULL;
struct sdma_engine *sde = NULL;
struct hfi1_ctxtdata *rcd = NULL;
char extra[64];
int cpu = -1;
extra[0] = '\0';
cpumask_clear(&msix->mask);
entry = node_affinity_lookup(dd->node);
switch (msix->type) {
case IRQ_SDMA:
sde = (struct sdma_engine *)msix->arg;
scnprintf(extra, 64, "engine %u", sde->this_idx);
set = &entry->def_intr;
break;
case IRQ_GENERAL:
cpu = cpumask_first(&entry->general_intr_mask);
break;
case IRQ_RCVCTXT:
rcd = (struct hfi1_ctxtdata *)msix->arg;
if (rcd->ctxt == HFI1_CTRL_CTXT)
cpu = cpumask_first(&entry->general_intr_mask);
else
set = &entry->rcv_intr;
scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
break;
default:
dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
return -EINVAL;
}
/*
* The general and control contexts are placed on a particular
* CPU, which is set above. Skip accounting for it. Everything else
* finds its CPU here.
*/
if (cpu == -1 && set) {
if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
return -ENOMEM;
cpu = cpu_mask_set_get_first(set, diff);
if (cpu < 0) {
free_cpumask_var(diff);
dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
return cpu;
}
free_cpumask_var(diff);
}
cpumask_set_cpu(cpu, &msix->mask);
dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
msix->irq, irq_type_names[msix->type],
extra, cpu);
irq_set_affinity_hint(msix->irq, &msix->mask);
if (msix->type == IRQ_SDMA) {
sde->cpu = cpu;
hfi1_setup_sdma_notifier(msix);
}
return 0;
}
int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
{
int ret;
mutex_lock(&node_affinity.lock);
ret = get_irq_affinity(dd, msix);
mutex_unlock(&node_affinity.lock);
return ret;
}
void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
struct hfi1_msix_entry *msix)
{
struct cpu_mask_set *set = NULL;
struct hfi1_ctxtdata *rcd;
struct hfi1_affinity_node *entry;
mutex_lock(&node_affinity.lock);
entry = node_affinity_lookup(dd->node);
switch (msix->type) {
case IRQ_SDMA:
set = &entry->def_intr;
hfi1_cleanup_sdma_notifier(msix);
break;
case IRQ_GENERAL:
/* Don't do accounting for general contexts */
break;
case IRQ_RCVCTXT:
rcd = (struct hfi1_ctxtdata *)msix->arg;
/* Don't do accounting for control contexts */
if (rcd->ctxt != HFI1_CTRL_CTXT)
set = &entry->rcv_intr;
break;
default:
mutex_unlock(&node_affinity.lock);
return;
}
if (set) {
cpumask_andnot(&set->used, &set->used, &msix->mask);
_cpu_mask_set_gen_dec(set);
}
irq_set_affinity_hint(msix->irq, NULL);
cpumask_clear(&msix->mask);
mutex_unlock(&node_affinity.lock);
}
/* This should be called with node_affinity.lock held */
static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
struct hfi1_affinity_node_list *affinity)
{
int possible, curr_cpu, i;
uint num_cores_per_socket = node_affinity.num_online_cpus /
affinity->num_core_siblings /
node_affinity.num_online_nodes;
cpumask_copy(hw_thread_mask, &affinity->proc.mask);
if (affinity->num_core_siblings > 0) {
/* Removing other siblings not needed for now */
possible = cpumask_weight(hw_thread_mask);
curr_cpu = cpumask_first(hw_thread_mask);
for (i = 0;
i < num_cores_per_socket * node_affinity.num_online_nodes;
i++)
curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
for (; i < possible; i++) {
cpumask_clear_cpu(curr_cpu, hw_thread_mask);
curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
}
/* Identifying correct HW threads within physical cores */
cpumask_shift_left(hw_thread_mask, hw_thread_mask,
num_cores_per_socket *
node_affinity.num_online_nodes *
hw_thread_no);
}
}
int hfi1_get_proc_affinity(int node)
{
int cpu = -1, ret, i;
struct hfi1_affinity_node *entry;
cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
const struct cpumask *node_mask,
*proc_mask = &current->cpus_allowed;
struct hfi1_affinity_node_list *affinity = &node_affinity;
struct cpu_mask_set *set = &affinity->proc;
/*
* check whether process/context affinity has already
* been set
*/
if (cpumask_weight(proc_mask) == 1) {
hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
current->pid, current->comm,
cpumask_pr_args(proc_mask));
/*
* Mark the pre-set CPU as used. This is atomic so we don't
* need the lock
*/
cpu = cpumask_first(proc_mask);
cpumask_set_cpu(cpu, &set->used);
goto done;
} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
current->pid, current->comm,
cpumask_pr_args(proc_mask));
goto done;
}
/*
* The process does not have a preset CPU affinity so find one to
* recommend using the following algorithm:
*
* For each user process that is opening a context on HFI Y:
* a) If all cores are filled, reinitialize the bitmask
* b) Fill real cores first, then HT cores (First set of HT
* cores on all physical cores, then second set of HT core,
* and, so on) in the following order:
*
* 1. Same NUMA node as HFI Y and not running an IRQ
* handler
* 2. Same NUMA node as HFI Y and running an IRQ handler
* 3. Different NUMA node to HFI Y and not running an IRQ
* handler
* 4. Different NUMA node to HFI Y and running an IRQ
* handler
* c) Mark core as filled in the bitmask. As user processes are
* done, clear cores from the bitmask.
*/
ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
if (!ret)
goto done;
ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
if (!ret)
goto free_diff;
ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
if (!ret)
goto free_hw_thread_mask;
ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
if (!ret)
goto free_available_mask;
mutex_lock(&affinity->lock);
/*
* If we've used all available HW threads, clear the mask and start
* overloading.
*/
_cpu_mask_set_gen_inc(set);
/*
* If NUMA node has CPUs used by interrupt handlers, include them in the
* interrupt handler mask.
*/
entry = node_affinity_lookup(node);
if (entry) {
cpumask_copy(intrs_mask, (entry->def_intr.gen ?
&entry->def_intr.mask :
&entry->def_intr.used));
cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
&entry->rcv_intr.mask :
&entry->rcv_intr.used));
cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
}
hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
cpumask_pr_args(intrs_mask));
cpumask_copy(hw_thread_mask, &set->mask);
/*
* If HT cores are enabled, identify which HW threads within the
* physical cores should be used.
*/
if (affinity->num_core_siblings > 0) {
for (i = 0; i < affinity->num_core_siblings; i++) {
find_hw_thread_mask(i, hw_thread_mask, affinity);
/*
* If there's at least one available core for this HW
* thread number, stop looking for a core.
*
* diff will always be not empty at least once in this
* loop as the used mask gets reset when
* (set->mask == set->used) before this loop.
*/
cpumask_andnot(diff, hw_thread_mask, &set->used);
if (!cpumask_empty(diff))
break;
}
}
hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
cpumask_pr_args(hw_thread_mask));
node_mask = cpumask_of_node(node);
hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
cpumask_pr_args(node_mask));
/* Get cpumask of available CPUs on preferred NUMA */
cpumask_and(available_mask, hw_thread_mask, node_mask);
cpumask_andnot(available_mask, available_mask, &set->used);
hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
cpumask_pr_args(available_mask));
/*
* At first, we don't want to place processes on the same
* CPUs as interrupt handlers. Then, CPUs running interrupt
* handlers are used.
*
* 1) If diff is not empty, then there are CPUs not running
* non-interrupt handlers available, so diff gets copied
* over to available_mask.
* 2) If diff is empty, then all CPUs not running interrupt
* handlers are taken, so available_mask contains all
* available CPUs running interrupt handlers.
* 3) If available_mask is empty, then all CPUs on the
* preferred NUMA node are taken, so other NUMA nodes are
* used for process assignments using the same method as
* the preferred NUMA node.
*/
cpumask_andnot(diff, available_mask, intrs_mask);
if (!cpumask_empty(diff))
cpumask_copy(available_mask, diff);
/* If we don't have CPUs on the preferred node, use other NUMA nodes */
if (cpumask_empty(available_mask)) {
cpumask_andnot(available_mask, hw_thread_mask, &set->used);
/* Excluding preferred NUMA cores */
cpumask_andnot(available_mask, available_mask, node_mask);
hfi1_cdbg(PROC,
"Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
cpumask_pr_args(available_mask));
/*
* At first, we don't want to place processes on the same
* CPUs as interrupt handlers.
*/
cpumask_andnot(diff, available_mask, intrs_mask);
if (!cpumask_empty(diff))
cpumask_copy(available_mask, diff);
}
hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
cpumask_pr_args(available_mask));
cpu = cpumask_first(available_mask);
if (cpu >= nr_cpu_ids) /* empty */
cpu = -1;
else
cpumask_set_cpu(cpu, &set->used);
mutex_unlock(&affinity->lock);
hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
free_cpumask_var(intrs_mask);
free_available_mask:
free_cpumask_var(available_mask);
free_hw_thread_mask:
free_cpumask_var(hw_thread_mask);
free_diff:
free_cpumask_var(diff);
done:
return cpu;
}
void hfi1_put_proc_affinity(int cpu)
{
struct hfi1_affinity_node_list *affinity = &node_affinity;
struct cpu_mask_set *set = &affinity->proc;
if (cpu < 0)
return;
mutex_lock(&affinity->lock);
cpu_mask_set_put(set, cpu);
hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
mutex_unlock(&affinity->lock);
}