| /* |
| * Copyright(c) 2015 - 2018 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| #include <linux/topology.h> |
| #include <linux/cpumask.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| |
| #include "hfi.h" |
| #include "affinity.h" |
| #include "sdma.h" |
| #include "trace.h" |
| |
| struct hfi1_affinity_node_list node_affinity = { |
| .list = LIST_HEAD_INIT(node_affinity.list), |
| .lock = __MUTEX_INITIALIZER(node_affinity.lock) |
| }; |
| |
| /* Name of IRQ types, indexed by enum irq_type */ |
| static const char * const irq_type_names[] = { |
| "SDMA", |
| "RCVCTXT", |
| "GENERAL", |
| "OTHER", |
| }; |
| |
| /* Per NUMA node count of HFI devices */ |
| static unsigned int *hfi1_per_node_cntr; |
| |
| static inline void init_cpu_mask_set(struct cpu_mask_set *set) |
| { |
| cpumask_clear(&set->mask); |
| cpumask_clear(&set->used); |
| set->gen = 0; |
| } |
| |
| /* Increment generation of CPU set if needed */ |
| static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) |
| { |
| if (cpumask_equal(&set->mask, &set->used)) { |
| /* |
| * We've used up all the CPUs, bump up the generation |
| * and reset the 'used' map |
| */ |
| set->gen++; |
| cpumask_clear(&set->used); |
| } |
| } |
| |
| static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) |
| { |
| if (cpumask_empty(&set->used) && set->gen) { |
| set->gen--; |
| cpumask_copy(&set->used, &set->mask); |
| } |
| } |
| |
| /* Get the first CPU from the list of unused CPUs in a CPU set data structure */ |
| static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) |
| { |
| int cpu; |
| |
| if (!diff || !set) |
| return -EINVAL; |
| |
| _cpu_mask_set_gen_inc(set); |
| |
| /* Find out CPUs left in CPU mask */ |
| cpumask_andnot(diff, &set->mask, &set->used); |
| |
| cpu = cpumask_first(diff); |
| if (cpu >= nr_cpu_ids) /* empty */ |
| cpu = -EINVAL; |
| else |
| cpumask_set_cpu(cpu, &set->used); |
| |
| return cpu; |
| } |
| |
| static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) |
| { |
| if (!set) |
| return; |
| |
| cpumask_clear_cpu(cpu, &set->used); |
| _cpu_mask_set_gen_dec(set); |
| } |
| |
| /* Initialize non-HT cpu cores mask */ |
| void init_real_cpu_mask(void) |
| { |
| int possible, curr_cpu, i, ht; |
| |
| cpumask_clear(&node_affinity.real_cpu_mask); |
| |
| /* Start with cpu online mask as the real cpu mask */ |
| cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); |
| |
| /* |
| * Remove HT cores from the real cpu mask. Do this in two steps below. |
| */ |
| possible = cpumask_weight(&node_affinity.real_cpu_mask); |
| ht = cpumask_weight(topology_sibling_cpumask( |
| cpumask_first(&node_affinity.real_cpu_mask))); |
| /* |
| * Step 1. Skip over the first N HT siblings and use them as the |
| * "real" cores. Assumes that HT cores are not enumerated in |
| * succession (except in the single core case). |
| */ |
| curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); |
| for (i = 0; i < possible / ht; i++) |
| curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); |
| /* |
| * Step 2. Remove the remaining HT siblings. Use cpumask_next() to |
| * skip any gaps. |
| */ |
| for (; i < possible; i++) { |
| cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); |
| curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); |
| } |
| } |
| |
| int node_affinity_init(void) |
| { |
| int node; |
| struct pci_dev *dev = NULL; |
| const struct pci_device_id *ids = hfi1_pci_tbl; |
| |
| cpumask_clear(&node_affinity.proc.used); |
| cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); |
| |
| node_affinity.proc.gen = 0; |
| node_affinity.num_core_siblings = |
| cpumask_weight(topology_sibling_cpumask( |
| cpumask_first(&node_affinity.proc.mask) |
| )); |
| node_affinity.num_possible_nodes = num_possible_nodes(); |
| node_affinity.num_online_nodes = num_online_nodes(); |
| node_affinity.num_online_cpus = num_online_cpus(); |
| |
| /* |
| * The real cpu mask is part of the affinity struct but it has to be |
| * initialized early. It is needed to calculate the number of user |
| * contexts in set_up_context_variables(). |
| */ |
| init_real_cpu_mask(); |
| |
| hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, |
| sizeof(*hfi1_per_node_cntr), GFP_KERNEL); |
| if (!hfi1_per_node_cntr) |
| return -ENOMEM; |
| |
| while (ids->vendor) { |
| dev = NULL; |
| while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { |
| node = pcibus_to_node(dev->bus); |
| if (node < 0) |
| goto out; |
| |
| hfi1_per_node_cntr[node]++; |
| } |
| ids++; |
| } |
| |
| return 0; |
| |
| out: |
| /* |
| * Invalid PCI NUMA node information found, note it, and populate |
| * our database 1:1. |
| */ |
| pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n"); |
| pr_err("HFI: System BIOS may need to be upgraded\n"); |
| for (node = 0; node < node_affinity.num_possible_nodes; node++) |
| hfi1_per_node_cntr[node] = 1; |
| |
| return 0; |
| } |
| |
| static void node_affinity_destroy(struct hfi1_affinity_node *entry) |
| { |
| free_percpu(entry->comp_vect_affinity); |
| kfree(entry); |
| } |
| |
| void node_affinity_destroy_all(void) |
| { |
| struct list_head *pos, *q; |
| struct hfi1_affinity_node *entry; |
| |
| mutex_lock(&node_affinity.lock); |
| list_for_each_safe(pos, q, &node_affinity.list) { |
| entry = list_entry(pos, struct hfi1_affinity_node, |
| list); |
| list_del(pos); |
| node_affinity_destroy(entry); |
| } |
| mutex_unlock(&node_affinity.lock); |
| kfree(hfi1_per_node_cntr); |
| } |
| |
| static struct hfi1_affinity_node *node_affinity_allocate(int node) |
| { |
| struct hfi1_affinity_node *entry; |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return NULL; |
| entry->node = node; |
| entry->comp_vect_affinity = alloc_percpu(u16); |
| INIT_LIST_HEAD(&entry->list); |
| |
| return entry; |
| } |
| |
| /* |
| * It appends an entry to the list. |
| * It *must* be called with node_affinity.lock held. |
| */ |
| static void node_affinity_add_tail(struct hfi1_affinity_node *entry) |
| { |
| list_add_tail(&entry->list, &node_affinity.list); |
| } |
| |
| /* It must be called with node_affinity.lock held */ |
| static struct hfi1_affinity_node *node_affinity_lookup(int node) |
| { |
| struct list_head *pos; |
| struct hfi1_affinity_node *entry; |
| |
| list_for_each(pos, &node_affinity.list) { |
| entry = list_entry(pos, struct hfi1_affinity_node, list); |
| if (entry->node == node) |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, |
| u16 __percpu *comp_vect_affinity) |
| { |
| int curr_cpu; |
| u16 cntr; |
| u16 prev_cntr; |
| int ret_cpu; |
| |
| if (!possible_cpumask) { |
| ret_cpu = -EINVAL; |
| goto fail; |
| } |
| |
| if (!comp_vect_affinity) { |
| ret_cpu = -EINVAL; |
| goto fail; |
| } |
| |
| ret_cpu = cpumask_first(possible_cpumask); |
| if (ret_cpu >= nr_cpu_ids) { |
| ret_cpu = -EINVAL; |
| goto fail; |
| } |
| |
| prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); |
| for_each_cpu(curr_cpu, possible_cpumask) { |
| cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); |
| |
| if (cntr < prev_cntr) { |
| ret_cpu = curr_cpu; |
| prev_cntr = cntr; |
| } |
| } |
| |
| *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; |
| |
| fail: |
| return ret_cpu; |
| } |
| |
| static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, |
| u16 __percpu *comp_vect_affinity) |
| { |
| int curr_cpu; |
| int max_cpu; |
| u16 cntr; |
| u16 prev_cntr; |
| |
| if (!possible_cpumask) |
| return -EINVAL; |
| |
| if (!comp_vect_affinity) |
| return -EINVAL; |
| |
| max_cpu = cpumask_first(possible_cpumask); |
| if (max_cpu >= nr_cpu_ids) |
| return -EINVAL; |
| |
| prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); |
| for_each_cpu(curr_cpu, possible_cpumask) { |
| cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); |
| |
| if (cntr > prev_cntr) { |
| max_cpu = curr_cpu; |
| prev_cntr = cntr; |
| } |
| } |
| |
| *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; |
| |
| return max_cpu; |
| } |
| |
| /* |
| * Non-interrupt CPUs are used first, then interrupt CPUs. |
| * Two already allocated cpu masks must be passed. |
| */ |
| static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, |
| struct hfi1_affinity_node *entry, |
| cpumask_var_t non_intr_cpus, |
| cpumask_var_t available_cpus) |
| __must_hold(&node_affinity.lock) |
| { |
| int cpu; |
| struct cpu_mask_set *set = dd->comp_vect; |
| |
| lockdep_assert_held(&node_affinity.lock); |
| if (!non_intr_cpus) { |
| cpu = -1; |
| goto fail; |
| } |
| |
| if (!available_cpus) { |
| cpu = -1; |
| goto fail; |
| } |
| |
| /* Available CPUs for pinning completion vectors */ |
| _cpu_mask_set_gen_inc(set); |
| cpumask_andnot(available_cpus, &set->mask, &set->used); |
| |
| /* Available CPUs without SDMA engine interrupts */ |
| cpumask_andnot(non_intr_cpus, available_cpus, |
| &entry->def_intr.used); |
| |
| /* If there are non-interrupt CPUs available, use them first */ |
| if (!cpumask_empty(non_intr_cpus)) |
| cpu = cpumask_first(non_intr_cpus); |
| else /* Otherwise, use interrupt CPUs */ |
| cpu = cpumask_first(available_cpus); |
| |
| if (cpu >= nr_cpu_ids) { /* empty */ |
| cpu = -1; |
| goto fail; |
| } |
| cpumask_set_cpu(cpu, &set->used); |
| |
| fail: |
| return cpu; |
| } |
| |
| static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) |
| { |
| struct cpu_mask_set *set = dd->comp_vect; |
| |
| if (cpu < 0) |
| return; |
| |
| cpu_mask_set_put(set, cpu); |
| } |
| |
| /* _dev_comp_vect_mappings_destroy() is reentrant */ |
| static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) |
| { |
| int i, cpu; |
| |
| if (!dd->comp_vect_mappings) |
| return; |
| |
| for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| cpu = dd->comp_vect_mappings[i]; |
| _dev_comp_vect_cpu_put(dd, cpu); |
| dd->comp_vect_mappings[i] = -1; |
| hfi1_cdbg(AFFINITY, |
| "[%s] Release CPU %d from completion vector %d", |
| rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); |
| } |
| |
| kfree(dd->comp_vect_mappings); |
| dd->comp_vect_mappings = NULL; |
| } |
| |
| /* |
| * This function creates the table for looking up CPUs for completion vectors. |
| * num_comp_vectors needs to have been initilized before calling this function. |
| */ |
| static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, |
| struct hfi1_affinity_node *entry) |
| __must_hold(&node_affinity.lock) |
| { |
| int i, cpu, ret; |
| cpumask_var_t non_intr_cpus; |
| cpumask_var_t available_cpus; |
| |
| lockdep_assert_held(&node_affinity.lock); |
| |
| if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { |
| free_cpumask_var(non_intr_cpus); |
| return -ENOMEM; |
| } |
| |
| dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, |
| sizeof(*dd->comp_vect_mappings), |
| GFP_KERNEL); |
| if (!dd->comp_vect_mappings) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| for (i = 0; i < dd->comp_vect_possible_cpus; i++) |
| dd->comp_vect_mappings[i] = -1; |
| |
| for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, |
| available_cpus); |
| if (cpu < 0) { |
| ret = -EINVAL; |
| goto fail; |
| } |
| |
| dd->comp_vect_mappings[i] = cpu; |
| hfi1_cdbg(AFFINITY, |
| "[%s] Completion Vector %d -> CPU %d", |
| rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); |
| } |
| |
| return 0; |
| |
| fail: |
| free_cpumask_var(available_cpus); |
| free_cpumask_var(non_intr_cpus); |
| _dev_comp_vect_mappings_destroy(dd); |
| |
| return ret; |
| } |
| |
| int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) |
| { |
| int ret; |
| struct hfi1_affinity_node *entry; |
| |
| mutex_lock(&node_affinity.lock); |
| entry = node_affinity_lookup(dd->node); |
| if (!entry) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| ret = _dev_comp_vect_mappings_create(dd, entry); |
| unlock: |
| mutex_unlock(&node_affinity.lock); |
| |
| return ret; |
| } |
| |
| void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) |
| { |
| _dev_comp_vect_mappings_destroy(dd); |
| } |
| |
| int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) |
| { |
| struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); |
| struct hfi1_devdata *dd = dd_from_dev(verbs_dev); |
| |
| if (!dd->comp_vect_mappings) |
| return -EINVAL; |
| if (comp_vect >= dd->comp_vect_possible_cpus) |
| return -EINVAL; |
| |
| return dd->comp_vect_mappings[comp_vect]; |
| } |
| |
| /* |
| * It assumes dd->comp_vect_possible_cpus is available. |
| */ |
| static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, |
| struct hfi1_affinity_node *entry, |
| bool first_dev_init) |
| __must_hold(&node_affinity.lock) |
| { |
| int i, j, curr_cpu; |
| int possible_cpus_comp_vect = 0; |
| struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; |
| |
| lockdep_assert_held(&node_affinity.lock); |
| /* |
| * If there's only one CPU available for completion vectors, then |
| * there will only be one completion vector available. Othewise, |
| * the number of completion vector available will be the number of |
| * available CPUs divide it by the number of devices in the |
| * local NUMA node. |
| */ |
| if (cpumask_weight(&entry->comp_vect_mask) == 1) { |
| possible_cpus_comp_vect = 1; |
| dd_dev_warn(dd, |
| "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); |
| } else { |
| possible_cpus_comp_vect += |
| cpumask_weight(&entry->comp_vect_mask) / |
| hfi1_per_node_cntr[dd->node]; |
| |
| /* |
| * If the completion vector CPUs available doesn't divide |
| * evenly among devices, then the first device device to be |
| * initialized gets an extra CPU. |
| */ |
| if (first_dev_init && |
| cpumask_weight(&entry->comp_vect_mask) % |
| hfi1_per_node_cntr[dd->node] != 0) |
| possible_cpus_comp_vect++; |
| } |
| |
| dd->comp_vect_possible_cpus = possible_cpus_comp_vect; |
| |
| /* Reserving CPUs for device completion vector */ |
| for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, |
| entry->comp_vect_affinity); |
| if (curr_cpu < 0) |
| goto fail; |
| |
| cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); |
| } |
| |
| hfi1_cdbg(AFFINITY, |
| "[%s] Completion vector affinity CPU set(s) %*pbl", |
| rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), |
| cpumask_pr_args(dev_comp_vect_mask)); |
| |
| return 0; |
| |
| fail: |
| for (j = 0; j < i; j++) |
| per_cpu_affinity_put_max(&entry->comp_vect_mask, |
| entry->comp_vect_affinity); |
| |
| return curr_cpu; |
| } |
| |
| /* |
| * It assumes dd->comp_vect_possible_cpus is available. |
| */ |
| static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, |
| struct hfi1_affinity_node *entry) |
| __must_hold(&node_affinity.lock) |
| { |
| int i, cpu; |
| |
| lockdep_assert_held(&node_affinity.lock); |
| if (!dd->comp_vect_possible_cpus) |
| return; |
| |
| for (i = 0; i < dd->comp_vect_possible_cpus; i++) { |
| cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, |
| entry->comp_vect_affinity); |
| /* Clearing CPU in device completion vector cpu mask */ |
| if (cpu >= 0) |
| cpumask_clear_cpu(cpu, &dd->comp_vect->mask); |
| } |
| |
| dd->comp_vect_possible_cpus = 0; |
| } |
| |
| /* |
| * Interrupt affinity. |
| * |
| * non-rcv avail gets a default mask that |
| * starts as possible cpus with threads reset |
| * and each rcv avail reset. |
| * |
| * rcv avail gets node relative 1 wrapping back |
| * to the node relative 1 as necessary. |
| * |
| */ |
| int hfi1_dev_affinity_init(struct hfi1_devdata *dd) |
| { |
| int node = pcibus_to_node(dd->pcidev->bus); |
| struct hfi1_affinity_node *entry; |
| const struct cpumask *local_mask; |
| int curr_cpu, possible, i, ret; |
| bool new_entry = false; |
| |
| /* |
| * If the BIOS does not have the NUMA node information set, select |
| * NUMA 0 so we get consistent performance. |
| */ |
| if (node < 0) { |
| dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); |
| node = 0; |
| } |
| dd->node = node; |
| |
| local_mask = cpumask_of_node(dd->node); |
| if (cpumask_first(local_mask) >= nr_cpu_ids) |
| local_mask = topology_core_cpumask(0); |
| |
| mutex_lock(&node_affinity.lock); |
| entry = node_affinity_lookup(dd->node); |
| |
| /* |
| * If this is the first time this NUMA node's affinity is used, |
| * create an entry in the global affinity structure and initialize it. |
| */ |
| if (!entry) { |
| entry = node_affinity_allocate(node); |
| if (!entry) { |
| dd_dev_err(dd, |
| "Unable to allocate global affinity node\n"); |
| ret = -ENOMEM; |
| goto fail; |
| } |
| new_entry = true; |
| |
| init_cpu_mask_set(&entry->def_intr); |
| init_cpu_mask_set(&entry->rcv_intr); |
| cpumask_clear(&entry->comp_vect_mask); |
| cpumask_clear(&entry->general_intr_mask); |
| /* Use the "real" cpu mask of this node as the default */ |
| cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, |
| local_mask); |
| |
| /* fill in the receive list */ |
| possible = cpumask_weight(&entry->def_intr.mask); |
| curr_cpu = cpumask_first(&entry->def_intr.mask); |
| |
| if (possible == 1) { |
| /* only one CPU, everyone will use it */ |
| cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); |
| cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); |
| } else { |
| /* |
| * The general/control context will be the first CPU in |
| * the default list, so it is removed from the default |
| * list and added to the general interrupt list. |
| */ |
| cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); |
| cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); |
| curr_cpu = cpumask_next(curr_cpu, |
| &entry->def_intr.mask); |
| |
| /* |
| * Remove the remaining kernel receive queues from |
| * the default list and add them to the receive list. |
| */ |
| for (i = 0; |
| i < (dd->n_krcv_queues - 1) * |
| hfi1_per_node_cntr[dd->node]; |
| i++) { |
| cpumask_clear_cpu(curr_cpu, |
| &entry->def_intr.mask); |
| cpumask_set_cpu(curr_cpu, |
| &entry->rcv_intr.mask); |
| curr_cpu = cpumask_next(curr_cpu, |
| &entry->def_intr.mask); |
| if (curr_cpu >= nr_cpu_ids) |
| break; |
| } |
| |
| /* |
| * If there ends up being 0 CPU cores leftover for SDMA |
| * engines, use the same CPU cores as general/control |
| * context. |
| */ |
| if (cpumask_weight(&entry->def_intr.mask) == 0) |
| cpumask_copy(&entry->def_intr.mask, |
| &entry->general_intr_mask); |
| } |
| |
| /* Determine completion vector CPUs for the entire node */ |
| cpumask_and(&entry->comp_vect_mask, |
| &node_affinity.real_cpu_mask, local_mask); |
| cpumask_andnot(&entry->comp_vect_mask, |
| &entry->comp_vect_mask, |
| &entry->rcv_intr.mask); |
| cpumask_andnot(&entry->comp_vect_mask, |
| &entry->comp_vect_mask, |
| &entry->general_intr_mask); |
| |
| /* |
| * If there ends up being 0 CPU cores leftover for completion |
| * vectors, use the same CPU core as the general/control |
| * context. |
| */ |
| if (cpumask_weight(&entry->comp_vect_mask) == 0) |
| cpumask_copy(&entry->comp_vect_mask, |
| &entry->general_intr_mask); |
| } |
| |
| ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); |
| if (ret < 0) |
| goto fail; |
| |
| if (new_entry) |
| node_affinity_add_tail(entry); |
| |
| mutex_unlock(&node_affinity.lock); |
| |
| return 0; |
| |
| fail: |
| if (new_entry) |
| node_affinity_destroy(entry); |
| mutex_unlock(&node_affinity.lock); |
| return ret; |
| } |
| |
| void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) |
| { |
| struct hfi1_affinity_node *entry; |
| |
| if (dd->node < 0) |
| return; |
| |
| mutex_lock(&node_affinity.lock); |
| entry = node_affinity_lookup(dd->node); |
| if (!entry) |
| goto unlock; |
| |
| /* |
| * Free device completion vector CPUs to be used by future |
| * completion vectors |
| */ |
| _dev_comp_vect_cpu_mask_clean_up(dd, entry); |
| unlock: |
| mutex_unlock(&node_affinity.lock); |
| dd->node = -1; |
| } |
| |
| /* |
| * Function updates the irq affinity hint for msix after it has been changed |
| * by the user using the /proc/irq interface. This function only accepts |
| * one cpu in the mask. |
| */ |
| static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) |
| { |
| struct sdma_engine *sde = msix->arg; |
| struct hfi1_devdata *dd = sde->dd; |
| struct hfi1_affinity_node *entry; |
| struct cpu_mask_set *set; |
| int i, old_cpu; |
| |
| if (cpu > num_online_cpus() || cpu == sde->cpu) |
| return; |
| |
| mutex_lock(&node_affinity.lock); |
| entry = node_affinity_lookup(dd->node); |
| if (!entry) |
| goto unlock; |
| |
| old_cpu = sde->cpu; |
| sde->cpu = cpu; |
| cpumask_clear(&msix->mask); |
| cpumask_set_cpu(cpu, &msix->mask); |
| dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", |
| msix->irq, irq_type_names[msix->type], |
| sde->this_idx, cpu); |
| irq_set_affinity_hint(msix->irq, &msix->mask); |
| |
| /* |
| * Set the new cpu in the hfi1_affinity_node and clean |
| * the old cpu if it is not used by any other IRQ |
| */ |
| set = &entry->def_intr; |
| cpumask_set_cpu(cpu, &set->mask); |
| cpumask_set_cpu(cpu, &set->used); |
| for (i = 0; i < dd->num_msix_entries; i++) { |
| struct hfi1_msix_entry *other_msix; |
| |
| other_msix = &dd->msix_entries[i]; |
| if (other_msix->type != IRQ_SDMA || other_msix == msix) |
| continue; |
| |
| if (cpumask_test_cpu(old_cpu, &other_msix->mask)) |
| goto unlock; |
| } |
| cpumask_clear_cpu(old_cpu, &set->mask); |
| cpumask_clear_cpu(old_cpu, &set->used); |
| unlock: |
| mutex_unlock(&node_affinity.lock); |
| } |
| |
| static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, |
| const cpumask_t *mask) |
| { |
| int cpu = cpumask_first(mask); |
| struct hfi1_msix_entry *msix = container_of(notify, |
| struct hfi1_msix_entry, |
| notify); |
| |
| /* Only one CPU configuration supported currently */ |
| hfi1_update_sdma_affinity(msix, cpu); |
| } |
| |
| static void hfi1_irq_notifier_release(struct kref *ref) |
| { |
| /* |
| * This is required by affinity notifier. We don't have anything to |
| * free here. |
| */ |
| } |
| |
| static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) |
| { |
| struct irq_affinity_notify *notify = &msix->notify; |
| |
| notify->irq = msix->irq; |
| notify->notify = hfi1_irq_notifier_notify; |
| notify->release = hfi1_irq_notifier_release; |
| |
| if (irq_set_affinity_notifier(notify->irq, notify)) |
| pr_err("Failed to register sdma irq affinity notifier for irq %d\n", |
| notify->irq); |
| } |
| |
| static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) |
| { |
| struct irq_affinity_notify *notify = &msix->notify; |
| |
| if (irq_set_affinity_notifier(notify->irq, NULL)) |
| pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", |
| notify->irq); |
| } |
| |
| /* |
| * Function sets the irq affinity for msix. |
| * It *must* be called with node_affinity.lock held. |
| */ |
| static int get_irq_affinity(struct hfi1_devdata *dd, |
| struct hfi1_msix_entry *msix) |
| { |
| cpumask_var_t diff; |
| struct hfi1_affinity_node *entry; |
| struct cpu_mask_set *set = NULL; |
| struct sdma_engine *sde = NULL; |
| struct hfi1_ctxtdata *rcd = NULL; |
| char extra[64]; |
| int cpu = -1; |
| |
| extra[0] = '\0'; |
| cpumask_clear(&msix->mask); |
| |
| entry = node_affinity_lookup(dd->node); |
| |
| switch (msix->type) { |
| case IRQ_SDMA: |
| sde = (struct sdma_engine *)msix->arg; |
| scnprintf(extra, 64, "engine %u", sde->this_idx); |
| set = &entry->def_intr; |
| break; |
| case IRQ_GENERAL: |
| cpu = cpumask_first(&entry->general_intr_mask); |
| break; |
| case IRQ_RCVCTXT: |
| rcd = (struct hfi1_ctxtdata *)msix->arg; |
| if (rcd->ctxt == HFI1_CTRL_CTXT) |
| cpu = cpumask_first(&entry->general_intr_mask); |
| else |
| set = &entry->rcv_intr; |
| scnprintf(extra, 64, "ctxt %u", rcd->ctxt); |
| break; |
| default: |
| dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); |
| return -EINVAL; |
| } |
| |
| /* |
| * The general and control contexts are placed on a particular |
| * CPU, which is set above. Skip accounting for it. Everything else |
| * finds its CPU here. |
| */ |
| if (cpu == -1 && set) { |
| if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| cpu = cpu_mask_set_get_first(set, diff); |
| if (cpu < 0) { |
| free_cpumask_var(diff); |
| dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); |
| return cpu; |
| } |
| |
| free_cpumask_var(diff); |
| } |
| |
| cpumask_set_cpu(cpu, &msix->mask); |
| dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", |
| msix->irq, irq_type_names[msix->type], |
| extra, cpu); |
| irq_set_affinity_hint(msix->irq, &msix->mask); |
| |
| if (msix->type == IRQ_SDMA) { |
| sde->cpu = cpu; |
| hfi1_setup_sdma_notifier(msix); |
| } |
| |
| return 0; |
| } |
| |
| int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) |
| { |
| int ret; |
| |
| mutex_lock(&node_affinity.lock); |
| ret = get_irq_affinity(dd, msix); |
| mutex_unlock(&node_affinity.lock); |
| return ret; |
| } |
| |
| void hfi1_put_irq_affinity(struct hfi1_devdata *dd, |
| struct hfi1_msix_entry *msix) |
| { |
| struct cpu_mask_set *set = NULL; |
| struct hfi1_ctxtdata *rcd; |
| struct hfi1_affinity_node *entry; |
| |
| mutex_lock(&node_affinity.lock); |
| entry = node_affinity_lookup(dd->node); |
| |
| switch (msix->type) { |
| case IRQ_SDMA: |
| set = &entry->def_intr; |
| hfi1_cleanup_sdma_notifier(msix); |
| break; |
| case IRQ_GENERAL: |
| /* Don't do accounting for general contexts */ |
| break; |
| case IRQ_RCVCTXT: |
| rcd = (struct hfi1_ctxtdata *)msix->arg; |
| /* Don't do accounting for control contexts */ |
| if (rcd->ctxt != HFI1_CTRL_CTXT) |
| set = &entry->rcv_intr; |
| break; |
| default: |
| mutex_unlock(&node_affinity.lock); |
| return; |
| } |
| |
| if (set) { |
| cpumask_andnot(&set->used, &set->used, &msix->mask); |
| _cpu_mask_set_gen_dec(set); |
| } |
| |
| irq_set_affinity_hint(msix->irq, NULL); |
| cpumask_clear(&msix->mask); |
| mutex_unlock(&node_affinity.lock); |
| } |
| |
| /* This should be called with node_affinity.lock held */ |
| static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, |
| struct hfi1_affinity_node_list *affinity) |
| { |
| int possible, curr_cpu, i; |
| uint num_cores_per_socket = node_affinity.num_online_cpus / |
| affinity->num_core_siblings / |
| node_affinity.num_online_nodes; |
| |
| cpumask_copy(hw_thread_mask, &affinity->proc.mask); |
| if (affinity->num_core_siblings > 0) { |
| /* Removing other siblings not needed for now */ |
| possible = cpumask_weight(hw_thread_mask); |
| curr_cpu = cpumask_first(hw_thread_mask); |
| for (i = 0; |
| i < num_cores_per_socket * node_affinity.num_online_nodes; |
| i++) |
| curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); |
| |
| for (; i < possible; i++) { |
| cpumask_clear_cpu(curr_cpu, hw_thread_mask); |
| curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); |
| } |
| |
| /* Identifying correct HW threads within physical cores */ |
| cpumask_shift_left(hw_thread_mask, hw_thread_mask, |
| num_cores_per_socket * |
| node_affinity.num_online_nodes * |
| hw_thread_no); |
| } |
| } |
| |
| int hfi1_get_proc_affinity(int node) |
| { |
| int cpu = -1, ret, i; |
| struct hfi1_affinity_node *entry; |
| cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; |
| const struct cpumask *node_mask, |
| *proc_mask = ¤t->cpus_allowed; |
| struct hfi1_affinity_node_list *affinity = &node_affinity; |
| struct cpu_mask_set *set = &affinity->proc; |
| |
| /* |
| * check whether process/context affinity has already |
| * been set |
| */ |
| if (cpumask_weight(proc_mask) == 1) { |
| hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", |
| current->pid, current->comm, |
| cpumask_pr_args(proc_mask)); |
| /* |
| * Mark the pre-set CPU as used. This is atomic so we don't |
| * need the lock |
| */ |
| cpu = cpumask_first(proc_mask); |
| cpumask_set_cpu(cpu, &set->used); |
| goto done; |
| } else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) { |
| hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", |
| current->pid, current->comm, |
| cpumask_pr_args(proc_mask)); |
| goto done; |
| } |
| |
| /* |
| * The process does not have a preset CPU affinity so find one to |
| * recommend using the following algorithm: |
| * |
| * For each user process that is opening a context on HFI Y: |
| * a) If all cores are filled, reinitialize the bitmask |
| * b) Fill real cores first, then HT cores (First set of HT |
| * cores on all physical cores, then second set of HT core, |
| * and, so on) in the following order: |
| * |
| * 1. Same NUMA node as HFI Y and not running an IRQ |
| * handler |
| * 2. Same NUMA node as HFI Y and running an IRQ handler |
| * 3. Different NUMA node to HFI Y and not running an IRQ |
| * handler |
| * 4. Different NUMA node to HFI Y and running an IRQ |
| * handler |
| * c) Mark core as filled in the bitmask. As user processes are |
| * done, clear cores from the bitmask. |
| */ |
| |
| ret = zalloc_cpumask_var(&diff, GFP_KERNEL); |
| if (!ret) |
| goto done; |
| ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); |
| if (!ret) |
| goto free_diff; |
| ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); |
| if (!ret) |
| goto free_hw_thread_mask; |
| ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); |
| if (!ret) |
| goto free_available_mask; |
| |
| mutex_lock(&affinity->lock); |
| /* |
| * If we've used all available HW threads, clear the mask and start |
| * overloading. |
| */ |
| _cpu_mask_set_gen_inc(set); |
| |
| /* |
| * If NUMA node has CPUs used by interrupt handlers, include them in the |
| * interrupt handler mask. |
| */ |
| entry = node_affinity_lookup(node); |
| if (entry) { |
| cpumask_copy(intrs_mask, (entry->def_intr.gen ? |
| &entry->def_intr.mask : |
| &entry->def_intr.used)); |
| cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? |
| &entry->rcv_intr.mask : |
| &entry->rcv_intr.used)); |
| cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); |
| } |
| hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", |
| cpumask_pr_args(intrs_mask)); |
| |
| cpumask_copy(hw_thread_mask, &set->mask); |
| |
| /* |
| * If HT cores are enabled, identify which HW threads within the |
| * physical cores should be used. |
| */ |
| if (affinity->num_core_siblings > 0) { |
| for (i = 0; i < affinity->num_core_siblings; i++) { |
| find_hw_thread_mask(i, hw_thread_mask, affinity); |
| |
| /* |
| * If there's at least one available core for this HW |
| * thread number, stop looking for a core. |
| * |
| * diff will always be not empty at least once in this |
| * loop as the used mask gets reset when |
| * (set->mask == set->used) before this loop. |
| */ |
| cpumask_andnot(diff, hw_thread_mask, &set->used); |
| if (!cpumask_empty(diff)) |
| break; |
| } |
| } |
| hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", |
| cpumask_pr_args(hw_thread_mask)); |
| |
| node_mask = cpumask_of_node(node); |
| hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, |
| cpumask_pr_args(node_mask)); |
| |
| /* Get cpumask of available CPUs on preferred NUMA */ |
| cpumask_and(available_mask, hw_thread_mask, node_mask); |
| cpumask_andnot(available_mask, available_mask, &set->used); |
| hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, |
| cpumask_pr_args(available_mask)); |
| |
| /* |
| * At first, we don't want to place processes on the same |
| * CPUs as interrupt handlers. Then, CPUs running interrupt |
| * handlers are used. |
| * |
| * 1) If diff is not empty, then there are CPUs not running |
| * non-interrupt handlers available, so diff gets copied |
| * over to available_mask. |
| * 2) If diff is empty, then all CPUs not running interrupt |
| * handlers are taken, so available_mask contains all |
| * available CPUs running interrupt handlers. |
| * 3) If available_mask is empty, then all CPUs on the |
| * preferred NUMA node are taken, so other NUMA nodes are |
| * used for process assignments using the same method as |
| * the preferred NUMA node. |
| */ |
| cpumask_andnot(diff, available_mask, intrs_mask); |
| if (!cpumask_empty(diff)) |
| cpumask_copy(available_mask, diff); |
| |
| /* If we don't have CPUs on the preferred node, use other NUMA nodes */ |
| if (cpumask_empty(available_mask)) { |
| cpumask_andnot(available_mask, hw_thread_mask, &set->used); |
| /* Excluding preferred NUMA cores */ |
| cpumask_andnot(available_mask, available_mask, node_mask); |
| hfi1_cdbg(PROC, |
| "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", |
| cpumask_pr_args(available_mask)); |
| |
| /* |
| * At first, we don't want to place processes on the same |
| * CPUs as interrupt handlers. |
| */ |
| cpumask_andnot(diff, available_mask, intrs_mask); |
| if (!cpumask_empty(diff)) |
| cpumask_copy(available_mask, diff); |
| } |
| hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", |
| cpumask_pr_args(available_mask)); |
| |
| cpu = cpumask_first(available_mask); |
| if (cpu >= nr_cpu_ids) /* empty */ |
| cpu = -1; |
| else |
| cpumask_set_cpu(cpu, &set->used); |
| |
| mutex_unlock(&affinity->lock); |
| hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); |
| |
| free_cpumask_var(intrs_mask); |
| free_available_mask: |
| free_cpumask_var(available_mask); |
| free_hw_thread_mask: |
| free_cpumask_var(hw_thread_mask); |
| free_diff: |
| free_cpumask_var(diff); |
| done: |
| return cpu; |
| } |
| |
| void hfi1_put_proc_affinity(int cpu) |
| { |
| struct hfi1_affinity_node_list *affinity = &node_affinity; |
| struct cpu_mask_set *set = &affinity->proc; |
| |
| if (cpu < 0) |
| return; |
| |
| mutex_lock(&affinity->lock); |
| cpu_mask_set_put(set, cpu); |
| hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); |
| mutex_unlock(&affinity->lock); |
| } |