| /* | 
 |  * Copyright © 2010 Daniel Vetter | 
 |  * Copyright © 2011-2014 Intel Corporation | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a | 
 |  * copy of this software and associated documentation files (the "Software"), | 
 |  * to deal in the Software without restriction, including without limitation | 
 |  * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
 |  * and/or sell copies of the Software, and to permit persons to whom the | 
 |  * Software is furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice (including the next | 
 |  * paragraph) shall be included in all copies or substantial portions of the | 
 |  * Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
 |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
 |  * IN THE SOFTWARE. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> /* fault-inject.h is not standalone! */ | 
 |  | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/random.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/stop_machine.h> | 
 |  | 
 | #include <asm/set_memory.h> | 
 |  | 
 | #include <drm/drmP.h> | 
 | #include <drm/i915_drm.h> | 
 |  | 
 | #include "i915_drv.h" | 
 | #include "i915_vgpu.h" | 
 | #include "i915_trace.h" | 
 | #include "intel_drv.h" | 
 | #include "intel_frontbuffer.h" | 
 |  | 
 | #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) | 
 |  | 
 | /** | 
 |  * DOC: Global GTT views | 
 |  * | 
 |  * Background and previous state | 
 |  * | 
 |  * Historically objects could exists (be bound) in global GTT space only as | 
 |  * singular instances with a view representing all of the object's backing pages | 
 |  * in a linear fashion. This view will be called a normal view. | 
 |  * | 
 |  * To support multiple views of the same object, where the number of mapped | 
 |  * pages is not equal to the backing store, or where the layout of the pages | 
 |  * is not linear, concept of a GGTT view was added. | 
 |  * | 
 |  * One example of an alternative view is a stereo display driven by a single | 
 |  * image. In this case we would have a framebuffer looking like this | 
 |  * (2x2 pages): | 
 |  * | 
 |  *    12 | 
 |  *    34 | 
 |  * | 
 |  * Above would represent a normal GGTT view as normally mapped for GPU or CPU | 
 |  * rendering. In contrast, fed to the display engine would be an alternative | 
 |  * view which could look something like this: | 
 |  * | 
 |  *   1212 | 
 |  *   3434 | 
 |  * | 
 |  * In this example both the size and layout of pages in the alternative view is | 
 |  * different from the normal view. | 
 |  * | 
 |  * Implementation and usage | 
 |  * | 
 |  * GGTT views are implemented using VMAs and are distinguished via enum | 
 |  * i915_ggtt_view_type and struct i915_ggtt_view. | 
 |  * | 
 |  * A new flavour of core GEM functions which work with GGTT bound objects were | 
 |  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid | 
 |  * renaming  in large amounts of code. They take the struct i915_ggtt_view | 
 |  * parameter encapsulating all metadata required to implement a view. | 
 |  * | 
 |  * As a helper for callers which are only interested in the normal view, | 
 |  * globally const i915_ggtt_view_normal singleton instance exists. All old core | 
 |  * GEM API functions, the ones not taking the view parameter, are operating on, | 
 |  * or with the normal GGTT view. | 
 |  * | 
 |  * Code wanting to add or use a new GGTT view needs to: | 
 |  * | 
 |  * 1. Add a new enum with a suitable name. | 
 |  * 2. Extend the metadata in the i915_ggtt_view structure if required. | 
 |  * 3. Add support to i915_get_vma_pages(). | 
 |  * | 
 |  * New views are required to build a scatter-gather table from within the | 
 |  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and | 
 |  * exists for the lifetime of an VMA. | 
 |  * | 
 |  * Core API is designed to have copy semantics which means that passed in | 
 |  * struct i915_ggtt_view does not need to be persistent (left around after | 
 |  * calling the core API functions). | 
 |  * | 
 |  */ | 
 |  | 
 | static int | 
 | i915_get_ggtt_vma_pages(struct i915_vma *vma); | 
 |  | 
 | static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* | 
 | 	 * Note that as an uncached mmio write, this will flush the | 
 | 	 * WCB of the writes into the GGTT before it triggers the invalidate. | 
 | 	 */ | 
 | 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); | 
 | } | 
 |  | 
 | static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gen6_ggtt_invalidate(dev_priv); | 
 | 	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); | 
 | } | 
 |  | 
 | static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	intel_gtt_chipset_flush(); | 
 | } | 
 |  | 
 | static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) | 
 | { | 
 | 	i915->ggtt.invalidate(i915); | 
 | } | 
 |  | 
 | int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, | 
 | 			       	int enable_ppgtt) | 
 | { | 
 | 	bool has_full_ppgtt; | 
 | 	bool has_full_48bit_ppgtt; | 
 |  | 
 | 	if (!dev_priv->info.has_aliasing_ppgtt) | 
 | 		return 0; | 
 |  | 
 | 	has_full_ppgtt = dev_priv->info.has_full_ppgtt; | 
 | 	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; | 
 |  | 
 | 	if (intel_vgpu_active(dev_priv)) { | 
 | 		/* GVT-g has no support for 32bit ppgtt */ | 
 | 		has_full_ppgtt = false; | 
 | 		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for | 
 | 	 * execlists, the sole mechanism available to submit work. | 
 | 	 */ | 
 | 	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) | 
 | 		return 0; | 
 |  | 
 | 	if (enable_ppgtt == 1) | 
 | 		return 1; | 
 |  | 
 | 	if (enable_ppgtt == 2 && has_full_ppgtt) | 
 | 		return 2; | 
 |  | 
 | 	if (enable_ppgtt == 3 && has_full_48bit_ppgtt) | 
 | 		return 3; | 
 |  | 
 | 	/* Disable ppgtt on SNB if VT-d is on. */ | 
 | 	if (IS_GEN6(dev_priv) && intel_vtd_active()) { | 
 | 		DRM_INFO("Disabling PPGTT because VT-d is on\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Early VLV doesn't have this */ | 
 | 	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { | 
 | 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { | 
 | 		if (has_full_48bit_ppgtt) | 
 | 			return 3; | 
 |  | 
 | 		if (has_full_ppgtt) | 
 | 			return 2; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int ppgtt_bind_vma(struct i915_vma *vma, | 
 | 			  enum i915_cache_level cache_level, | 
 | 			  u32 unused) | 
 | { | 
 | 	u32 pte_flags; | 
 | 	int ret; | 
 |  | 
 | 	if (!(vma->flags & I915_VMA_LOCAL_BIND)) { | 
 | 		ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, | 
 | 						 vma->size); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* Currently applicable only to VLV */ | 
 | 	pte_flags = 0; | 
 | 	if (vma->obj->gt_ro) | 
 | 		pte_flags |= PTE_READ_ONLY; | 
 |  | 
 | 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ppgtt_unbind_vma(struct i915_vma *vma) | 
 | { | 
 | 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size); | 
 | } | 
 |  | 
 | static int ppgtt_set_pages(struct i915_vma *vma) | 
 | { | 
 | 	GEM_BUG_ON(vma->pages); | 
 |  | 
 | 	vma->pages = vma->obj->mm.pages; | 
 |  | 
 | 	vma->page_sizes = vma->obj->mm.page_sizes; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void clear_pages(struct i915_vma *vma) | 
 | { | 
 | 	GEM_BUG_ON(!vma->pages); | 
 |  | 
 | 	if (vma->pages != vma->obj->mm.pages) { | 
 | 		sg_free_table(vma->pages); | 
 | 		kfree(vma->pages); | 
 | 	} | 
 | 	vma->pages = NULL; | 
 |  | 
 | 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); | 
 | } | 
 |  | 
 | static gen8_pte_t gen8_pte_encode(dma_addr_t addr, | 
 | 				  enum i915_cache_level level) | 
 | { | 
 | 	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; | 
 | 	pte |= addr; | 
 |  | 
 | 	switch (level) { | 
 | 	case I915_CACHE_NONE: | 
 | 		pte |= PPAT_UNCACHED; | 
 | 		break; | 
 | 	case I915_CACHE_WT: | 
 | 		pte |= PPAT_DISPLAY_ELLC; | 
 | 		break; | 
 | 	default: | 
 | 		pte |= PPAT_CACHED; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, | 
 | 				  const enum i915_cache_level level) | 
 | { | 
 | 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; | 
 | 	pde |= addr; | 
 | 	if (level != I915_CACHE_NONE) | 
 | 		pde |= PPAT_CACHED_PDE; | 
 | 	else | 
 | 		pde |= PPAT_UNCACHED; | 
 | 	return pde; | 
 | } | 
 |  | 
 | #define gen8_pdpe_encode gen8_pde_encode | 
 | #define gen8_pml4e_encode gen8_pde_encode | 
 |  | 
 | static gen6_pte_t snb_pte_encode(dma_addr_t addr, | 
 | 				 enum i915_cache_level level, | 
 | 				 u32 unused) | 
 | { | 
 | 	gen6_pte_t pte = GEN6_PTE_VALID; | 
 | 	pte |= GEN6_PTE_ADDR_ENCODE(addr); | 
 |  | 
 | 	switch (level) { | 
 | 	case I915_CACHE_L3_LLC: | 
 | 	case I915_CACHE_LLC: | 
 | 		pte |= GEN6_PTE_CACHE_LLC; | 
 | 		break; | 
 | 	case I915_CACHE_NONE: | 
 | 		pte |= GEN6_PTE_UNCACHED; | 
 | 		break; | 
 | 	default: | 
 | 		MISSING_CASE(level); | 
 | 	} | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static gen6_pte_t ivb_pte_encode(dma_addr_t addr, | 
 | 				 enum i915_cache_level level, | 
 | 				 u32 unused) | 
 | { | 
 | 	gen6_pte_t pte = GEN6_PTE_VALID; | 
 | 	pte |= GEN6_PTE_ADDR_ENCODE(addr); | 
 |  | 
 | 	switch (level) { | 
 | 	case I915_CACHE_L3_LLC: | 
 | 		pte |= GEN7_PTE_CACHE_L3_LLC; | 
 | 		break; | 
 | 	case I915_CACHE_LLC: | 
 | 		pte |= GEN6_PTE_CACHE_LLC; | 
 | 		break; | 
 | 	case I915_CACHE_NONE: | 
 | 		pte |= GEN6_PTE_UNCACHED; | 
 | 		break; | 
 | 	default: | 
 | 		MISSING_CASE(level); | 
 | 	} | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static gen6_pte_t byt_pte_encode(dma_addr_t addr, | 
 | 				 enum i915_cache_level level, | 
 | 				 u32 flags) | 
 | { | 
 | 	gen6_pte_t pte = GEN6_PTE_VALID; | 
 | 	pte |= GEN6_PTE_ADDR_ENCODE(addr); | 
 |  | 
 | 	if (!(flags & PTE_READ_ONLY)) | 
 | 		pte |= BYT_PTE_WRITEABLE; | 
 |  | 
 | 	if (level != I915_CACHE_NONE) | 
 | 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static gen6_pte_t hsw_pte_encode(dma_addr_t addr, | 
 | 				 enum i915_cache_level level, | 
 | 				 u32 unused) | 
 | { | 
 | 	gen6_pte_t pte = GEN6_PTE_VALID; | 
 | 	pte |= HSW_PTE_ADDR_ENCODE(addr); | 
 |  | 
 | 	if (level != I915_CACHE_NONE) | 
 | 		pte |= HSW_WB_LLC_AGE3; | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static gen6_pte_t iris_pte_encode(dma_addr_t addr, | 
 | 				  enum i915_cache_level level, | 
 | 				  u32 unused) | 
 | { | 
 | 	gen6_pte_t pte = GEN6_PTE_VALID; | 
 | 	pte |= HSW_PTE_ADDR_ENCODE(addr); | 
 |  | 
 | 	switch (level) { | 
 | 	case I915_CACHE_NONE: | 
 | 		break; | 
 | 	case I915_CACHE_WT: | 
 | 		pte |= HSW_WT_ELLC_LLC_AGE3; | 
 | 		break; | 
 | 	default: | 
 | 		pte |= HSW_WB_ELLC_LLC_AGE3; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) | 
 | { | 
 | 	struct pagevec *pvec = &vm->free_pages; | 
 | 	struct pagevec stash; | 
 |  | 
 | 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) | 
 | 		i915_gem_shrink_all(vm->i915); | 
 |  | 
 | 	if (likely(pvec->nr)) | 
 | 		return pvec->pages[--pvec->nr]; | 
 |  | 
 | 	if (!vm->pt_kmap_wc) | 
 | 		return alloc_page(gfp); | 
 |  | 
 | 	/* A placeholder for a specific mutex to guard the WC stash */ | 
 | 	lockdep_assert_held(&vm->i915->drm.struct_mutex); | 
 |  | 
 | 	/* Look in our global stash of WC pages... */ | 
 | 	pvec = &vm->i915->mm.wc_stash; | 
 | 	if (likely(pvec->nr)) | 
 | 		return pvec->pages[--pvec->nr]; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise batch allocate pages to amoritize cost of set_pages_wc. | 
 | 	 * | 
 | 	 * We have to be careful as page allocation may trigger the shrinker | 
 | 	 * (via direct reclaim) which will fill up the WC stash underneath us. | 
 | 	 * So we add our WB pages into a temporary pvec on the stack and merge | 
 | 	 * them into the WC stash after all the allocations are complete. | 
 | 	 */ | 
 | 	pagevec_init(&stash); | 
 | 	do { | 
 | 		struct page *page; | 
 |  | 
 | 		page = alloc_page(gfp); | 
 | 		if (unlikely(!page)) | 
 | 			break; | 
 |  | 
 | 		stash.pages[stash.nr++] = page; | 
 | 	} while (stash.nr < pagevec_space(pvec)); | 
 |  | 
 | 	if (stash.nr) { | 
 | 		int nr = min_t(int, stash.nr, pagevec_space(pvec)); | 
 | 		struct page **pages = stash.pages + stash.nr - nr; | 
 |  | 
 | 		if (nr && !set_pages_array_wc(pages, nr)) { | 
 | 			memcpy(pvec->pages + pvec->nr, | 
 | 			       pages, sizeof(pages[0]) * nr); | 
 | 			pvec->nr += nr; | 
 | 			stash.nr -= nr; | 
 | 		} | 
 |  | 
 | 		pagevec_release(&stash); | 
 | 	} | 
 |  | 
 | 	return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL; | 
 | } | 
 |  | 
 | static void vm_free_pages_release(struct i915_address_space *vm, | 
 | 				  bool immediate) | 
 | { | 
 | 	struct pagevec *pvec = &vm->free_pages; | 
 |  | 
 | 	GEM_BUG_ON(!pagevec_count(pvec)); | 
 |  | 
 | 	if (vm->pt_kmap_wc) { | 
 | 		struct pagevec *stash = &vm->i915->mm.wc_stash; | 
 |  | 
 | 		/* When we use WC, first fill up the global stash and then | 
 | 		 * only if full immediately free the overflow. | 
 | 		 */ | 
 |  | 
 | 		lockdep_assert_held(&vm->i915->drm.struct_mutex); | 
 | 		if (pagevec_space(stash)) { | 
 | 			do { | 
 | 				stash->pages[stash->nr++] = | 
 | 					pvec->pages[--pvec->nr]; | 
 | 				if (!pvec->nr) | 
 | 					return; | 
 | 			} while (pagevec_space(stash)); | 
 |  | 
 | 			/* As we have made some room in the VM's free_pages, | 
 | 			 * we can wait for it to fill again. Unless we are | 
 | 			 * inside i915_address_space_fini() and must | 
 | 			 * immediately release the pages! | 
 | 			 */ | 
 | 			if (!immediate) | 
 | 				return; | 
 | 		} | 
 |  | 
 | 		set_pages_array_wb(pvec->pages, pvec->nr); | 
 | 	} | 
 |  | 
 | 	__pagevec_release(pvec); | 
 | } | 
 |  | 
 | static void vm_free_page(struct i915_address_space *vm, struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * On !llc, we need to change the pages back to WB. We only do so | 
 | 	 * in bulk, so we rarely need to change the page attributes here, | 
 | 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm. | 
 | 	 * To make detection of the possible sleep more likely, use an | 
 | 	 * unconditional might_sleep() for everybody. | 
 | 	 */ | 
 | 	might_sleep(); | 
 | 	if (!pagevec_add(&vm->free_pages, page)) | 
 | 		vm_free_pages_release(vm, false); | 
 | } | 
 |  | 
 | static int __setup_page_dma(struct i915_address_space *vm, | 
 | 			    struct i915_page_dma *p, | 
 | 			    gfp_t gfp) | 
 | { | 
 | 	p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY); | 
 | 	if (unlikely(!p->page)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE, | 
 | 				PCI_DMA_BIDIRECTIONAL); | 
 | 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { | 
 | 		vm_free_page(vm, p->page); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int setup_page_dma(struct i915_address_space *vm, | 
 | 			  struct i915_page_dma *p) | 
 | { | 
 | 	return __setup_page_dma(vm, p, I915_GFP_DMA); | 
 | } | 
 |  | 
 | static void cleanup_page_dma(struct i915_address_space *vm, | 
 | 			     struct i915_page_dma *p) | 
 | { | 
 | 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); | 
 | 	vm_free_page(vm, p->page); | 
 | } | 
 |  | 
 | #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) | 
 |  | 
 | #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) | 
 | #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) | 
 | #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v)) | 
 | #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v)) | 
 |  | 
 | static void fill_page_dma(struct i915_address_space *vm, | 
 | 			  struct i915_page_dma *p, | 
 | 			  const u64 val) | 
 | { | 
 | 	u64 * const vaddr = kmap_atomic(p->page); | 
 |  | 
 | 	memset64(vaddr, val, PAGE_SIZE / sizeof(val)); | 
 |  | 
 | 	kunmap_atomic(vaddr); | 
 | } | 
 |  | 
 | static void fill_page_dma_32(struct i915_address_space *vm, | 
 | 			     struct i915_page_dma *p, | 
 | 			     const u32 v) | 
 | { | 
 | 	fill_page_dma(vm, p, (u64)v << 32 | v); | 
 | } | 
 |  | 
 | static int | 
 | setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) | 
 | { | 
 | 	unsigned long size; | 
 |  | 
 | 	/* | 
 | 	 * In order to utilize 64K pages for an object with a size < 2M, we will | 
 | 	 * need to support a 64K scratch page, given that every 16th entry for a | 
 | 	 * page-table operating in 64K mode must point to a properly aligned 64K | 
 | 	 * region, including any PTEs which happen to point to scratch. | 
 | 	 * | 
 | 	 * This is only relevant for the 48b PPGTT where we support | 
 | 	 * huge-gtt-pages, see also i915_vma_insert(). | 
 | 	 * | 
 | 	 * TODO: we should really consider write-protecting the scratch-page and | 
 | 	 * sharing between ppgtt | 
 | 	 */ | 
 | 	size = I915_GTT_PAGE_SIZE_4K; | 
 | 	if (i915_vm_is_48bit(vm) && | 
 | 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { | 
 | 		size = I915_GTT_PAGE_SIZE_64K; | 
 | 		gfp |= __GFP_NOWARN; | 
 | 	} | 
 | 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; | 
 |  | 
 | 	do { | 
 | 		int order = get_order(size); | 
 | 		struct page *page; | 
 | 		dma_addr_t addr; | 
 |  | 
 | 		page = alloc_pages(gfp, order); | 
 | 		if (unlikely(!page)) | 
 | 			goto skip; | 
 |  | 
 | 		addr = dma_map_page(vm->dma, page, 0, size, | 
 | 				    PCI_DMA_BIDIRECTIONAL); | 
 | 		if (unlikely(dma_mapping_error(vm->dma, addr))) | 
 | 			goto free_page; | 
 |  | 
 | 		if (unlikely(!IS_ALIGNED(addr, size))) | 
 | 			goto unmap_page; | 
 |  | 
 | 		vm->scratch_page.page = page; | 
 | 		vm->scratch_page.daddr = addr; | 
 | 		vm->scratch_page.order = order; | 
 | 		return 0; | 
 |  | 
 | unmap_page: | 
 | 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); | 
 | free_page: | 
 | 		__free_pages(page, order); | 
 | skip: | 
 | 		if (size == I915_GTT_PAGE_SIZE_4K) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		size = I915_GTT_PAGE_SIZE_4K; | 
 | 		gfp &= ~__GFP_NOWARN; | 
 | 	} while (1); | 
 | } | 
 |  | 
 | static void cleanup_scratch_page(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_page_dma *p = &vm->scratch_page; | 
 |  | 
 | 	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT, | 
 | 		       PCI_DMA_BIDIRECTIONAL); | 
 | 	__free_pages(p->page, p->order); | 
 | } | 
 |  | 
 | static struct i915_page_table *alloc_pt(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_page_table *pt; | 
 |  | 
 | 	pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (unlikely(!pt)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (unlikely(setup_px(vm, pt))) { | 
 | 		kfree(pt); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	pt->used_ptes = 0; | 
 | 	return pt; | 
 | } | 
 |  | 
 | static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) | 
 | { | 
 | 	cleanup_px(vm, pt); | 
 | 	kfree(pt); | 
 | } | 
 |  | 
 | static void gen8_initialize_pt(struct i915_address_space *vm, | 
 | 			       struct i915_page_table *pt) | 
 | { | 
 | 	fill_px(vm, pt, | 
 | 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC)); | 
 | } | 
 |  | 
 | static void gen6_initialize_pt(struct i915_address_space *vm, | 
 | 			       struct i915_page_table *pt) | 
 | { | 
 | 	fill32_px(vm, pt, | 
 | 		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); | 
 | } | 
 |  | 
 | static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_page_directory *pd; | 
 |  | 
 | 	pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (unlikely(!pd)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (unlikely(setup_px(vm, pd))) { | 
 | 		kfree(pd); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	pd->used_pdes = 0; | 
 | 	return pd; | 
 | } | 
 |  | 
 | static void free_pd(struct i915_address_space *vm, | 
 | 		    struct i915_page_directory *pd) | 
 | { | 
 | 	cleanup_px(vm, pd); | 
 | 	kfree(pd); | 
 | } | 
 |  | 
 | static void gen8_initialize_pd(struct i915_address_space *vm, | 
 | 			       struct i915_page_directory *pd) | 
 | { | 
 | 	fill_px(vm, pd, | 
 | 		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); | 
 | 	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); | 
 | } | 
 |  | 
 | static int __pdp_init(struct i915_address_space *vm, | 
 | 		      struct i915_page_directory_pointer *pdp) | 
 | { | 
 | 	const unsigned int pdpes = i915_pdpes_per_pdp(vm); | 
 |  | 
 | 	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), | 
 | 					    GFP_KERNEL | __GFP_NOWARN); | 
 | 	if (unlikely(!pdp->page_directory)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __pdp_fini(struct i915_page_directory_pointer *pdp) | 
 | { | 
 | 	kfree(pdp->page_directory); | 
 | 	pdp->page_directory = NULL; | 
 | } | 
 |  | 
 | static inline bool use_4lvl(const struct i915_address_space *vm) | 
 | { | 
 | 	return i915_vm_is_48bit(vm); | 
 | } | 
 |  | 
 | static struct i915_page_directory_pointer * | 
 | alloc_pdp(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_page_directory_pointer *pdp; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	GEM_BUG_ON(!use_4lvl(vm)); | 
 |  | 
 | 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); | 
 | 	if (!pdp) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = __pdp_init(vm, pdp); | 
 | 	if (ret) | 
 | 		goto fail_bitmap; | 
 |  | 
 | 	ret = setup_px(vm, pdp); | 
 | 	if (ret) | 
 | 		goto fail_page_m; | 
 |  | 
 | 	return pdp; | 
 |  | 
 | fail_page_m: | 
 | 	__pdp_fini(pdp); | 
 | fail_bitmap: | 
 | 	kfree(pdp); | 
 |  | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static void free_pdp(struct i915_address_space *vm, | 
 | 		     struct i915_page_directory_pointer *pdp) | 
 | { | 
 | 	__pdp_fini(pdp); | 
 |  | 
 | 	if (!use_4lvl(vm)) | 
 | 		return; | 
 |  | 
 | 	cleanup_px(vm, pdp); | 
 | 	kfree(pdp); | 
 | } | 
 |  | 
 | static void gen8_initialize_pdp(struct i915_address_space *vm, | 
 | 				struct i915_page_directory_pointer *pdp) | 
 | { | 
 | 	gen8_ppgtt_pdpe_t scratch_pdpe; | 
 |  | 
 | 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); | 
 |  | 
 | 	fill_px(vm, pdp, scratch_pdpe); | 
 | } | 
 |  | 
 | static void gen8_initialize_pml4(struct i915_address_space *vm, | 
 | 				 struct i915_pml4 *pml4) | 
 | { | 
 | 	fill_px(vm, pml4, | 
 | 		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); | 
 | 	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); | 
 | } | 
 |  | 
 | /* Broadwell Page Directory Pointer Descriptors */ | 
 | static int gen8_write_pdp(struct i915_request *rq, | 
 | 			  unsigned entry, | 
 | 			  dma_addr_t addr) | 
 | { | 
 | 	struct intel_engine_cs *engine = rq->engine; | 
 | 	u32 *cs; | 
 |  | 
 | 	BUG_ON(entry >= 4); | 
 |  | 
 | 	cs = intel_ring_begin(rq, 6); | 
 | 	if (IS_ERR(cs)) | 
 | 		return PTR_ERR(cs); | 
 |  | 
 | 	*cs++ = MI_LOAD_REGISTER_IMM(1); | 
 | 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry)); | 
 | 	*cs++ = upper_32_bits(addr); | 
 | 	*cs++ = MI_LOAD_REGISTER_IMM(1); | 
 | 	*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry)); | 
 | 	*cs++ = lower_32_bits(addr); | 
 | 	intel_ring_advance(rq, cs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt, | 
 | 			       struct i915_request *rq) | 
 | { | 
 | 	int i, ret; | 
 |  | 
 | 	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) { | 
 | 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); | 
 |  | 
 | 		ret = gen8_write_pdp(rq, i, pd_daddr); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt, | 
 | 			       struct i915_request *rq) | 
 | { | 
 | 	return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4)); | 
 | } | 
 |  | 
 | /* PDE TLBs are a pain to invalidate on GEN8+. When we modify | 
 |  * the page table structures, we mark them dirty so that | 
 |  * context switching/execlist queuing code takes extra steps | 
 |  * to ensure that tlbs are flushed. | 
 |  */ | 
 | static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; | 
 | } | 
 |  | 
 | /* Removes entries from a single page table, releasing it if it's empty. | 
 |  * Caller can use the return value to update higher-level entries. | 
 |  */ | 
 | static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, | 
 | 				struct i915_page_table *pt, | 
 | 				u64 start, u64 length) | 
 | { | 
 | 	unsigned int num_entries = gen8_pte_count(start, length); | 
 | 	unsigned int pte = gen8_pte_index(start); | 
 | 	unsigned int pte_end = pte + num_entries; | 
 | 	const gen8_pte_t scratch_pte = | 
 | 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); | 
 | 	gen8_pte_t *vaddr; | 
 |  | 
 | 	GEM_BUG_ON(num_entries > pt->used_ptes); | 
 |  | 
 | 	pt->used_ptes -= num_entries; | 
 | 	if (!pt->used_ptes) | 
 | 		return true; | 
 |  | 
 | 	vaddr = kmap_atomic_px(pt); | 
 | 	while (pte < pte_end) | 
 | 		vaddr[pte++] = scratch_pte; | 
 | 	kunmap_atomic(vaddr); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_set_pde(struct i915_address_space *vm, | 
 | 			       struct i915_page_directory *pd, | 
 | 			       struct i915_page_table *pt, | 
 | 			       unsigned int pde) | 
 | { | 
 | 	gen8_pde_t *vaddr; | 
 |  | 
 | 	pd->page_table[pde] = pt; | 
 |  | 
 | 	vaddr = kmap_atomic_px(pd); | 
 | 	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); | 
 | 	kunmap_atomic(vaddr); | 
 | } | 
 |  | 
 | static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, | 
 | 				struct i915_page_directory *pd, | 
 | 				u64 start, u64 length) | 
 | { | 
 | 	struct i915_page_table *pt; | 
 | 	u32 pde; | 
 |  | 
 | 	gen8_for_each_pde(pt, pd, start, length, pde) { | 
 | 		GEM_BUG_ON(pt == vm->scratch_pt); | 
 |  | 
 | 		if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) | 
 | 			continue; | 
 |  | 
 | 		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); | 
 | 		GEM_BUG_ON(!pd->used_pdes); | 
 | 		pd->used_pdes--; | 
 |  | 
 | 		free_pt(vm, pt); | 
 | 	} | 
 |  | 
 | 	return !pd->used_pdes; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, | 
 | 				struct i915_page_directory_pointer *pdp, | 
 | 				struct i915_page_directory *pd, | 
 | 				unsigned int pdpe) | 
 | { | 
 | 	gen8_ppgtt_pdpe_t *vaddr; | 
 |  | 
 | 	pdp->page_directory[pdpe] = pd; | 
 | 	if (!use_4lvl(vm)) | 
 | 		return; | 
 |  | 
 | 	vaddr = kmap_atomic_px(pdp); | 
 | 	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); | 
 | 	kunmap_atomic(vaddr); | 
 | } | 
 |  | 
 | /* Removes entries from a single page dir pointer, releasing it if it's empty. | 
 |  * Caller can use the return value to update higher-level entries | 
 |  */ | 
 | static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, | 
 | 				 struct i915_page_directory_pointer *pdp, | 
 | 				 u64 start, u64 length) | 
 | { | 
 | 	struct i915_page_directory *pd; | 
 | 	unsigned int pdpe; | 
 |  | 
 | 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { | 
 | 		GEM_BUG_ON(pd == vm->scratch_pd); | 
 |  | 
 | 		if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) | 
 | 			continue; | 
 |  | 
 | 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); | 
 | 		GEM_BUG_ON(!pdp->used_pdpes); | 
 | 		pdp->used_pdpes--; | 
 |  | 
 | 		free_pd(vm, pd); | 
 | 	} | 
 |  | 
 | 	return !pdp->used_pdpes; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); | 
 | } | 
 |  | 
 | static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, | 
 | 				 struct i915_page_directory_pointer *pdp, | 
 | 				 unsigned int pml4e) | 
 | { | 
 | 	gen8_ppgtt_pml4e_t *vaddr; | 
 |  | 
 | 	pml4->pdps[pml4e] = pdp; | 
 |  | 
 | 	vaddr = kmap_atomic_px(pml4); | 
 | 	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); | 
 | 	kunmap_atomic(vaddr); | 
 | } | 
 |  | 
 | /* Removes entries from a single pml4. | 
 |  * This is the top-level structure in 4-level page tables used on gen8+. | 
 |  * Empty entries are always scratch pml4e. | 
 |  */ | 
 | static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct i915_pml4 *pml4 = &ppgtt->pml4; | 
 | 	struct i915_page_directory_pointer *pdp; | 
 | 	unsigned int pml4e; | 
 |  | 
 | 	GEM_BUG_ON(!use_4lvl(vm)); | 
 |  | 
 | 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { | 
 | 		GEM_BUG_ON(pdp == vm->scratch_pdp); | 
 |  | 
 | 		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) | 
 | 			continue; | 
 |  | 
 | 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); | 
 |  | 
 | 		free_pdp(vm, pdp); | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct sgt_dma { | 
 | 	struct scatterlist *sg; | 
 | 	dma_addr_t dma, max; | 
 | } sgt_dma(struct i915_vma *vma) { | 
 | 	struct scatterlist *sg = vma->pages->sgl; | 
 | 	dma_addr_t addr = sg_dma_address(sg); | 
 | 	return (struct sgt_dma) { sg, addr, addr + sg->length }; | 
 | } | 
 |  | 
 | struct gen8_insert_pte { | 
 | 	u16 pml4e; | 
 | 	u16 pdpe; | 
 | 	u16 pde; | 
 | 	u16 pte; | 
 | }; | 
 |  | 
 | static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) | 
 | { | 
 | 	return (struct gen8_insert_pte) { | 
 | 		 gen8_pml4e_index(start), | 
 | 		 gen8_pdpe_index(start), | 
 | 		 gen8_pde_index(start), | 
 | 		 gen8_pte_index(start), | 
 | 	}; | 
 | } | 
 |  | 
 | static __always_inline bool | 
 | gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, | 
 | 			      struct i915_page_directory_pointer *pdp, | 
 | 			      struct sgt_dma *iter, | 
 | 			      struct gen8_insert_pte *idx, | 
 | 			      enum i915_cache_level cache_level) | 
 | { | 
 | 	struct i915_page_directory *pd; | 
 | 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); | 
 | 	gen8_pte_t *vaddr; | 
 | 	bool ret; | 
 |  | 
 | 	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); | 
 | 	pd = pdp->page_directory[idx->pdpe]; | 
 | 	vaddr = kmap_atomic_px(pd->page_table[idx->pde]); | 
 | 	do { | 
 | 		vaddr[idx->pte] = pte_encode | iter->dma; | 
 |  | 
 | 		iter->dma += PAGE_SIZE; | 
 | 		if (iter->dma >= iter->max) { | 
 | 			iter->sg = __sg_next(iter->sg); | 
 | 			if (!iter->sg) { | 
 | 				ret = false; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			iter->dma = sg_dma_address(iter->sg); | 
 | 			iter->max = iter->dma + iter->sg->length; | 
 | 		} | 
 |  | 
 | 		if (++idx->pte == GEN8_PTES) { | 
 | 			idx->pte = 0; | 
 |  | 
 | 			if (++idx->pde == I915_PDES) { | 
 | 				idx->pde = 0; | 
 |  | 
 | 				/* Limited by sg length for 3lvl */ | 
 | 				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { | 
 | 					idx->pdpe = 0; | 
 | 					ret = true; | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base)); | 
 | 				pd = pdp->page_directory[idx->pdpe]; | 
 | 			} | 
 |  | 
 | 			kunmap_atomic(vaddr); | 
 | 			vaddr = kmap_atomic_px(pd->page_table[idx->pde]); | 
 | 		} | 
 | 	} while (1); | 
 | 	kunmap_atomic(vaddr); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, | 
 | 				   struct i915_vma *vma, | 
 | 				   enum i915_cache_level cache_level, | 
 | 				   u32 unused) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct sgt_dma iter = sgt_dma(vma); | 
 | 	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); | 
 |  | 
 | 	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, | 
 | 				      cache_level); | 
 |  | 
 | 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, | 
 | 					   struct i915_page_directory_pointer **pdps, | 
 | 					   struct sgt_dma *iter, | 
 | 					   enum i915_cache_level cache_level) | 
 | { | 
 | 	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level); | 
 | 	u64 start = vma->node.start; | 
 | 	dma_addr_t rem = iter->sg->length; | 
 |  | 
 | 	do { | 
 | 		struct gen8_insert_pte idx = gen8_insert_pte(start); | 
 | 		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; | 
 | 		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; | 
 | 		unsigned int page_size; | 
 | 		bool maybe_64K = false; | 
 | 		gen8_pte_t encode = pte_encode; | 
 | 		gen8_pte_t *vaddr; | 
 | 		u16 index, max; | 
 |  | 
 | 		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && | 
 | 		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && | 
 | 		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { | 
 | 			index = idx.pde; | 
 | 			max = I915_PDES; | 
 | 			page_size = I915_GTT_PAGE_SIZE_2M; | 
 |  | 
 | 			encode |= GEN8_PDE_PS_2M; | 
 |  | 
 | 			vaddr = kmap_atomic_px(pd); | 
 | 		} else { | 
 | 			struct i915_page_table *pt = pd->page_table[idx.pde]; | 
 |  | 
 | 			index = idx.pte; | 
 | 			max = GEN8_PTES; | 
 | 			page_size = I915_GTT_PAGE_SIZE; | 
 |  | 
 | 			if (!index && | 
 | 			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && | 
 | 			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && | 
 | 			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || | 
 | 			     rem >= (max - index) << PAGE_SHIFT)) | 
 | 				maybe_64K = true; | 
 |  | 
 | 			vaddr = kmap_atomic_px(pt); | 
 | 		} | 
 |  | 
 | 		do { | 
 | 			GEM_BUG_ON(iter->sg->length < page_size); | 
 | 			vaddr[index++] = encode | iter->dma; | 
 |  | 
 | 			start += page_size; | 
 | 			iter->dma += page_size; | 
 | 			rem -= page_size; | 
 | 			if (iter->dma >= iter->max) { | 
 | 				iter->sg = __sg_next(iter->sg); | 
 | 				if (!iter->sg) | 
 | 					break; | 
 |  | 
 | 				rem = iter->sg->length; | 
 | 				iter->dma = sg_dma_address(iter->sg); | 
 | 				iter->max = iter->dma + rem; | 
 |  | 
 | 				if (maybe_64K && index < max && | 
 | 				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && | 
 | 				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || | 
 | 				       rem >= (max - index) << PAGE_SHIFT))) | 
 | 					maybe_64K = false; | 
 |  | 
 | 				if (unlikely(!IS_ALIGNED(iter->dma, page_size))) | 
 | 					break; | 
 | 			} | 
 | 		} while (rem >= page_size && index < max); | 
 |  | 
 | 		kunmap_atomic(vaddr); | 
 |  | 
 | 		/* | 
 | 		 * Is it safe to mark the 2M block as 64K? -- Either we have | 
 | 		 * filled whole page-table with 64K entries, or filled part of | 
 | 		 * it and have reached the end of the sg table and we have | 
 | 		 * enough padding. | 
 | 		 */ | 
 | 		if (maybe_64K && | 
 | 		    (index == max || | 
 | 		     (i915_vm_has_scratch_64K(vma->vm) && | 
 | 		      !iter->sg && IS_ALIGNED(vma->node.start + | 
 | 					      vma->node.size, | 
 | 					      I915_GTT_PAGE_SIZE_2M)))) { | 
 | 			vaddr = kmap_atomic_px(pd); | 
 | 			vaddr[idx.pde] |= GEN8_PDE_IPS_64K; | 
 | 			kunmap_atomic(vaddr); | 
 | 			page_size = I915_GTT_PAGE_SIZE_64K; | 
 |  | 
 | 			/* | 
 | 			 * We write all 4K page entries, even when using 64K | 
 | 			 * pages. In order to verify that the HW isn't cheating | 
 | 			 * by using the 4K PTE instead of the 64K PTE, we want | 
 | 			 * to remove all the surplus entries. If the HW skipped | 
 | 			 * the 64K PTE, it will read/write into the scratch page | 
 | 			 * instead - which we detect as missing results during | 
 | 			 * selftests. | 
 | 			 */ | 
 | 			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { | 
 | 				u16 i; | 
 |  | 
 | 				encode = pte_encode | vma->vm->scratch_page.daddr; | 
 | 				vaddr = kmap_atomic_px(pd->page_table[idx.pde]); | 
 |  | 
 | 				for (i = 1; i < index; i += 16) | 
 | 					memset64(vaddr + i, encode, 15); | 
 |  | 
 | 				kunmap_atomic(vaddr); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		vma->page_sizes.gtt |= page_size; | 
 | 	} while (iter->sg); | 
 | } | 
 |  | 
 | static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, | 
 | 				   struct i915_vma *vma, | 
 | 				   enum i915_cache_level cache_level, | 
 | 				   u32 unused) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct sgt_dma iter = sgt_dma(vma); | 
 | 	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; | 
 |  | 
 | 	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { | 
 | 		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level); | 
 | 	} else { | 
 | 		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); | 
 |  | 
 | 		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], | 
 | 						     &iter, &idx, cache_level)) | 
 | 			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); | 
 |  | 
 | 		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; | 
 | 	} | 
 | } | 
 |  | 
 | static void gen8_free_page_tables(struct i915_address_space *vm, | 
 | 				  struct i915_page_directory *pd) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!px_page(pd)) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < I915_PDES; i++) { | 
 | 		if (pd->page_table[i] != vm->scratch_pt) | 
 | 			free_pt(vm, pd->page_table[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static int gen8_init_scratch(struct i915_address_space *vm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = setup_scratch_page(vm, I915_GFP_DMA); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	vm->scratch_pt = alloc_pt(vm); | 
 | 	if (IS_ERR(vm->scratch_pt)) { | 
 | 		ret = PTR_ERR(vm->scratch_pt); | 
 | 		goto free_scratch_page; | 
 | 	} | 
 |  | 
 | 	vm->scratch_pd = alloc_pd(vm); | 
 | 	if (IS_ERR(vm->scratch_pd)) { | 
 | 		ret = PTR_ERR(vm->scratch_pd); | 
 | 		goto free_pt; | 
 | 	} | 
 |  | 
 | 	if (use_4lvl(vm)) { | 
 | 		vm->scratch_pdp = alloc_pdp(vm); | 
 | 		if (IS_ERR(vm->scratch_pdp)) { | 
 | 			ret = PTR_ERR(vm->scratch_pdp); | 
 | 			goto free_pd; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	gen8_initialize_pt(vm, vm->scratch_pt); | 
 | 	gen8_initialize_pd(vm, vm->scratch_pd); | 
 | 	if (use_4lvl(vm)) | 
 | 		gen8_initialize_pdp(vm, vm->scratch_pdp); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_pd: | 
 | 	free_pd(vm, vm->scratch_pd); | 
 | free_pt: | 
 | 	free_pt(vm, vm->scratch_pt); | 
 | free_scratch_page: | 
 | 	cleanup_scratch_page(vm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct drm_i915_private *dev_priv = vm->i915; | 
 | 	enum vgt_g2v_type msg; | 
 | 	int i; | 
 |  | 
 | 	if (use_4lvl(vm)) { | 
 | 		const u64 daddr = px_dma(&ppgtt->pml4); | 
 |  | 
 | 		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); | 
 | 		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); | 
 |  | 
 | 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : | 
 | 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); | 
 | 	} else { | 
 | 		for (i = 0; i < GEN8_3LVL_PDPES; i++) { | 
 | 			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); | 
 |  | 
 | 			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); | 
 | 			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); | 
 | 		} | 
 |  | 
 | 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : | 
 | 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); | 
 | 	} | 
 |  | 
 | 	I915_WRITE(vgtif_reg(g2v_notify), msg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gen8_free_scratch(struct i915_address_space *vm) | 
 | { | 
 | 	if (use_4lvl(vm)) | 
 | 		free_pdp(vm, vm->scratch_pdp); | 
 | 	free_pd(vm, vm->scratch_pd); | 
 | 	free_pt(vm, vm->scratch_pt); | 
 | 	cleanup_scratch_page(vm); | 
 | } | 
 |  | 
 | static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, | 
 | 				    struct i915_page_directory_pointer *pdp) | 
 | { | 
 | 	const unsigned int pdpes = i915_pdpes_per_pdp(vm); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < pdpes; i++) { | 
 | 		if (pdp->page_directory[i] == vm->scratch_pd) | 
 | 			continue; | 
 |  | 
 | 		gen8_free_page_tables(vm, pdp->page_directory[i]); | 
 | 		free_pd(vm, pdp->page_directory[i]); | 
 | 	} | 
 |  | 
 | 	free_pdp(vm, pdp); | 
 | } | 
 |  | 
 | static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { | 
 | 		if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp) | 
 | 			continue; | 
 |  | 
 | 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]); | 
 | 	} | 
 |  | 
 | 	cleanup_px(&ppgtt->base, &ppgtt->pml4); | 
 | } | 
 |  | 
 | static void gen8_ppgtt_cleanup(struct i915_address_space *vm) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = vm->i915; | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 |  | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		gen8_ppgtt_notify_vgt(ppgtt, false); | 
 |  | 
 | 	if (use_4lvl(vm)) | 
 | 		gen8_ppgtt_cleanup_4lvl(ppgtt); | 
 | 	else | 
 | 		gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp); | 
 |  | 
 | 	gen8_free_scratch(vm); | 
 | } | 
 |  | 
 | static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, | 
 | 			       struct i915_page_directory *pd, | 
 | 			       u64 start, u64 length) | 
 | { | 
 | 	struct i915_page_table *pt; | 
 | 	u64 from = start; | 
 | 	unsigned int pde; | 
 |  | 
 | 	gen8_for_each_pde(pt, pd, start, length, pde) { | 
 | 		int count = gen8_pte_count(start, length); | 
 |  | 
 | 		if (pt == vm->scratch_pt) { | 
 | 			pd->used_pdes++; | 
 |  | 
 | 			pt = alloc_pt(vm); | 
 | 			if (IS_ERR(pt)) { | 
 | 				pd->used_pdes--; | 
 | 				goto unwind; | 
 | 			} | 
 |  | 
 | 			if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) | 
 | 				gen8_initialize_pt(vm, pt); | 
 |  | 
 | 			gen8_ppgtt_set_pde(vm, pd, pt, pde); | 
 | 			GEM_BUG_ON(pd->used_pdes > I915_PDES); | 
 | 		} | 
 |  | 
 | 		pt->used_ptes += count; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | unwind: | 
 | 	gen8_ppgtt_clear_pd(vm, pd, from, start - from); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, | 
 | 				struct i915_page_directory_pointer *pdp, | 
 | 				u64 start, u64 length) | 
 | { | 
 | 	struct i915_page_directory *pd; | 
 | 	u64 from = start; | 
 | 	unsigned int pdpe; | 
 | 	int ret; | 
 |  | 
 | 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { | 
 | 		if (pd == vm->scratch_pd) { | 
 | 			pdp->used_pdpes++; | 
 |  | 
 | 			pd = alloc_pd(vm); | 
 | 			if (IS_ERR(pd)) { | 
 | 				pdp->used_pdpes--; | 
 | 				goto unwind; | 
 | 			} | 
 |  | 
 | 			gen8_initialize_pd(vm, pd); | 
 | 			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); | 
 | 			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); | 
 |  | 
 | 			mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); | 
 | 		} | 
 |  | 
 | 		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); | 
 | 		if (unlikely(ret)) | 
 | 			goto unwind_pd; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | unwind_pd: | 
 | 	if (!pd->used_pdes) { | 
 | 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); | 
 | 		GEM_BUG_ON(!pdp->used_pdpes); | 
 | 		pdp->used_pdpes--; | 
 | 		free_pd(vm, pd); | 
 | 	} | 
 | unwind: | 
 | 	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, | 
 | 				 u64 start, u64 length) | 
 | { | 
 | 	return gen8_ppgtt_alloc_pdp(vm, | 
 | 				    &i915_vm_to_ppgtt(vm)->pdp, start, length); | 
 | } | 
 |  | 
 | static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, | 
 | 				 u64 start, u64 length) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct i915_pml4 *pml4 = &ppgtt->pml4; | 
 | 	struct i915_page_directory_pointer *pdp; | 
 | 	u64 from = start; | 
 | 	u32 pml4e; | 
 | 	int ret; | 
 |  | 
 | 	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { | 
 | 		if (pml4->pdps[pml4e] == vm->scratch_pdp) { | 
 | 			pdp = alloc_pdp(vm); | 
 | 			if (IS_ERR(pdp)) | 
 | 				goto unwind; | 
 |  | 
 | 			gen8_initialize_pdp(vm, pdp); | 
 | 			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); | 
 | 		} | 
 |  | 
 | 		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); | 
 | 		if (unlikely(ret)) | 
 | 			goto unwind_pdp; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | unwind_pdp: | 
 | 	if (!pdp->used_pdpes) { | 
 | 		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); | 
 | 		free_pdp(vm, pdp); | 
 | 	} | 
 | unwind: | 
 | 	gen8_ppgtt_clear_4lvl(vm, from, start - from); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, | 
 | 			  struct i915_page_directory_pointer *pdp, | 
 | 			  u64 start, u64 length, | 
 | 			  gen8_pte_t scratch_pte, | 
 | 			  struct seq_file *m) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct i915_page_directory *pd; | 
 | 	u32 pdpe; | 
 |  | 
 | 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { | 
 | 		struct i915_page_table *pt; | 
 | 		u64 pd_len = length; | 
 | 		u64 pd_start = start; | 
 | 		u32 pde; | 
 |  | 
 | 		if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd) | 
 | 			continue; | 
 |  | 
 | 		seq_printf(m, "\tPDPE #%d\n", pdpe); | 
 | 		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { | 
 | 			u32 pte; | 
 | 			gen8_pte_t *pt_vaddr; | 
 |  | 
 | 			if (pd->page_table[pde] == ppgtt->base.scratch_pt) | 
 | 				continue; | 
 |  | 
 | 			pt_vaddr = kmap_atomic_px(pt); | 
 | 			for (pte = 0; pte < GEN8_PTES; pte += 4) { | 
 | 				u64 va = (pdpe << GEN8_PDPE_SHIFT | | 
 | 					  pde << GEN8_PDE_SHIFT | | 
 | 					  pte << GEN8_PTE_SHIFT); | 
 | 				int i; | 
 | 				bool found = false; | 
 |  | 
 | 				for (i = 0; i < 4; i++) | 
 | 					if (pt_vaddr[pte + i] != scratch_pte) | 
 | 						found = true; | 
 | 				if (!found) | 
 | 					continue; | 
 |  | 
 | 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); | 
 | 				for (i = 0; i < 4; i++) { | 
 | 					if (pt_vaddr[pte + i] != scratch_pte) | 
 | 						seq_printf(m, " %llx", pt_vaddr[pte + i]); | 
 | 					else | 
 | 						seq_puts(m, "  SCRATCH "); | 
 | 				} | 
 | 				seq_puts(m, "\n"); | 
 | 			} | 
 | 			kunmap_atomic(pt_vaddr); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	const gen8_pte_t scratch_pte = | 
 | 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); | 
 | 	u64 start = 0, length = ppgtt->base.total; | 
 |  | 
 | 	if (use_4lvl(vm)) { | 
 | 		u64 pml4e; | 
 | 		struct i915_pml4 *pml4 = &ppgtt->pml4; | 
 | 		struct i915_page_directory_pointer *pdp; | 
 |  | 
 | 		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { | 
 | 			if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp) | 
 | 				continue; | 
 |  | 
 | 			seq_printf(m, "    PML4E #%llu\n", pml4e); | 
 | 			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); | 
 | 		} | 
 | 	} else { | 
 | 		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); | 
 | 	} | 
 | } | 
 |  | 
 | static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct i915_page_directory_pointer *pdp = &ppgtt->pdp; | 
 | 	struct i915_page_directory *pd; | 
 | 	u64 start = 0, length = ppgtt->base.total; | 
 | 	u64 from = start; | 
 | 	unsigned int pdpe; | 
 |  | 
 | 	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { | 
 | 		pd = alloc_pd(vm); | 
 | 		if (IS_ERR(pd)) | 
 | 			goto unwind; | 
 |  | 
 | 		gen8_initialize_pd(vm, pd); | 
 | 		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); | 
 | 		pdp->used_pdpes++; | 
 | 	} | 
 |  | 
 | 	pdp->used_pdpes++; /* never remove */ | 
 | 	return 0; | 
 |  | 
 | unwind: | 
 | 	start -= from; | 
 | 	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { | 
 | 		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); | 
 | 		free_pd(vm, pd); | 
 | 	} | 
 | 	pdp->used_pdpes = 0; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers | 
 |  * with a net effect resembling a 2-level page table in normal x86 terms. Each | 
 |  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address | 
 |  * space. | 
 |  * | 
 |  */ | 
 | static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct drm_i915_private *dev_priv = vm->i915; | 
 | 	int ret; | 
 |  | 
 | 	ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ? | 
 | 		1ULL << 48 : | 
 | 		1ULL << 32; | 
 |  | 
 | 	/* There are only few exceptions for gen >=6. chv and bxt. | 
 | 	 * And we are not sure about the latter so play safe for now. | 
 | 	 */ | 
 | 	if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv)) | 
 | 		ppgtt->base.pt_kmap_wc = true; | 
 |  | 
 | 	ret = gen8_init_scratch(&ppgtt->base); | 
 | 	if (ret) { | 
 | 		ppgtt->base.total = 0; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (use_4lvl(vm)) { | 
 | 		ret = setup_px(&ppgtt->base, &ppgtt->pml4); | 
 | 		if (ret) | 
 | 			goto free_scratch; | 
 |  | 
 | 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); | 
 |  | 
 | 		ppgtt->switch_mm = gen8_mm_switch_4lvl; | 
 | 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl; | 
 | 		ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl; | 
 | 		ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl; | 
 | 	} else { | 
 | 		ret = __pdp_init(&ppgtt->base, &ppgtt->pdp); | 
 | 		if (ret) | 
 | 			goto free_scratch; | 
 |  | 
 | 		if (intel_vgpu_active(dev_priv)) { | 
 | 			ret = gen8_preallocate_top_level_pdp(ppgtt); | 
 | 			if (ret) { | 
 | 				__pdp_fini(&ppgtt->pdp); | 
 | 				goto free_scratch; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ppgtt->switch_mm = gen8_mm_switch_3lvl; | 
 | 		ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl; | 
 | 		ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl; | 
 | 		ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl; | 
 | 	} | 
 |  | 
 | 	if (intel_vgpu_active(dev_priv)) | 
 | 		gen8_ppgtt_notify_vgt(ppgtt, true); | 
 |  | 
 | 	ppgtt->base.cleanup = gen8_ppgtt_cleanup; | 
 | 	ppgtt->base.unbind_vma = ppgtt_unbind_vma; | 
 | 	ppgtt->base.bind_vma = ppgtt_bind_vma; | 
 | 	ppgtt->base.set_pages = ppgtt_set_pages; | 
 | 	ppgtt->base.clear_pages = clear_pages; | 
 | 	ppgtt->debug_dump = gen8_dump_ppgtt; | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_scratch: | 
 | 	gen8_free_scratch(&ppgtt->base); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct i915_page_table *unused; | 
 | 	gen6_pte_t scratch_pte; | 
 | 	u32 pd_entry, pte, pde; | 
 | 	u32 start = 0, length = ppgtt->base.total; | 
 |  | 
 | 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr, | 
 | 				     I915_CACHE_LLC, 0); | 
 |  | 
 | 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { | 
 | 		u32 expected; | 
 | 		gen6_pte_t *pt_vaddr; | 
 | 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); | 
 | 		pd_entry = readl(ppgtt->pd_addr + pde); | 
 | 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); | 
 |  | 
 | 		if (pd_entry != expected) | 
 | 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", | 
 | 				   pde, | 
 | 				   pd_entry, | 
 | 				   expected); | 
 | 		seq_printf(m, "\tPDE: %x\n", pd_entry); | 
 |  | 
 | 		pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]); | 
 |  | 
 | 		for (pte = 0; pte < GEN6_PTES; pte+=4) { | 
 | 			unsigned long va = | 
 | 				(pde * PAGE_SIZE * GEN6_PTES) + | 
 | 				(pte * PAGE_SIZE); | 
 | 			int i; | 
 | 			bool found = false; | 
 | 			for (i = 0; i < 4; i++) | 
 | 				if (pt_vaddr[pte + i] != scratch_pte) | 
 | 					found = true; | 
 | 			if (!found) | 
 | 				continue; | 
 |  | 
 | 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); | 
 | 			for (i = 0; i < 4; i++) { | 
 | 				if (pt_vaddr[pte + i] != scratch_pte) | 
 | 					seq_printf(m, " %08x", pt_vaddr[pte + i]); | 
 | 				else | 
 | 					seq_puts(m, "  SCRATCH "); | 
 | 			} | 
 | 			seq_puts(m, "\n"); | 
 | 		} | 
 | 		kunmap_atomic(pt_vaddr); | 
 | 	} | 
 | } | 
 |  | 
 | /* Write pde (index) from the page directory @pd to the page table @pt */ | 
 | static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt, | 
 | 				  const unsigned int pde, | 
 | 				  const struct i915_page_table *pt) | 
 | { | 
 | 	/* Caller needs to make sure the write completes if necessary */ | 
 | 	writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, | 
 | 		       ppgtt->pd_addr + pde); | 
 | } | 
 |  | 
 | /* Write all the page tables found in the ppgtt structure to incrementing page | 
 |  * directories. */ | 
 | static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt, | 
 | 				  u32 start, u32 length) | 
 | { | 
 | 	struct i915_page_table *pt; | 
 | 	unsigned int pde; | 
 |  | 
 | 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) | 
 | 		gen6_write_pde(ppgtt, pde, pt); | 
 |  | 
 | 	mark_tlbs_dirty(ppgtt); | 
 | 	wmb(); | 
 | } | 
 |  | 
 | static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); | 
 | 	return ppgtt->pd.base.ggtt_offset << 10; | 
 | } | 
 |  | 
 | static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, | 
 | 			 struct i915_request *rq) | 
 | { | 
 | 	struct intel_engine_cs *engine = rq->engine; | 
 | 	u32 *cs; | 
 |  | 
 | 	/* NB: TLBs must be flushed and invalidated before a switch */ | 
 | 	cs = intel_ring_begin(rq, 6); | 
 | 	if (IS_ERR(cs)) | 
 | 		return PTR_ERR(cs); | 
 |  | 
 | 	*cs++ = MI_LOAD_REGISTER_IMM(2); | 
 | 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); | 
 | 	*cs++ = PP_DIR_DCLV_2G; | 
 | 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); | 
 | 	*cs++ = get_pd_offset(ppgtt); | 
 | 	*cs++ = MI_NOOP; | 
 | 	intel_ring_advance(rq, cs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, | 
 | 			  struct i915_request *rq) | 
 | { | 
 | 	struct intel_engine_cs *engine = rq->engine; | 
 | 	u32 *cs; | 
 |  | 
 | 	/* NB: TLBs must be flushed and invalidated before a switch */ | 
 | 	cs = intel_ring_begin(rq, 6); | 
 | 	if (IS_ERR(cs)) | 
 | 		return PTR_ERR(cs); | 
 |  | 
 | 	*cs++ = MI_LOAD_REGISTER_IMM(2); | 
 | 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine)); | 
 | 	*cs++ = PP_DIR_DCLV_2G; | 
 | 	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine)); | 
 | 	*cs++ = get_pd_offset(ppgtt); | 
 | 	*cs++ = MI_NOOP; | 
 | 	intel_ring_advance(rq, cs); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, | 
 | 			  struct i915_request *rq) | 
 | { | 
 | 	struct intel_engine_cs *engine = rq->engine; | 
 | 	struct drm_i915_private *dev_priv = rq->i915; | 
 |  | 
 | 	I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); | 
 | 	I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? | 
 | 				 GEN8_GFX_PPGTT_48B : 0; | 
 | 		I915_WRITE(RING_MODE_GEN7(engine), | 
 | 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); | 
 | 	} | 
 | } | 
 |  | 
 | static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	u32 ecochk, ecobits; | 
 | 	enum intel_engine_id id; | 
 |  | 
 | 	ecobits = I915_READ(GAC_ECO_BITS); | 
 | 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); | 
 |  | 
 | 	ecochk = I915_READ(GAM_ECOCHK); | 
 | 	if (IS_HASWELL(dev_priv)) { | 
 | 		ecochk |= ECOCHK_PPGTT_WB_HSW; | 
 | 	} else { | 
 | 		ecochk |= ECOCHK_PPGTT_LLC_IVB; | 
 | 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; | 
 | 	} | 
 | 	I915_WRITE(GAM_ECOCHK, ecochk); | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		/* GFX_MODE is per-ring on gen7+ */ | 
 | 		I915_WRITE(RING_MODE_GEN7(engine), | 
 | 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); | 
 | 	} | 
 | } | 
 |  | 
 | static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 ecochk, gab_ctl, ecobits; | 
 |  | 
 | 	ecobits = I915_READ(GAC_ECO_BITS); | 
 | 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | | 
 | 		   ECOBITS_PPGTT_CACHE64B); | 
 |  | 
 | 	gab_ctl = I915_READ(GAB_CTL); | 
 | 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); | 
 |  | 
 | 	ecochk = I915_READ(GAM_ECOCHK); | 
 | 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); | 
 |  | 
 | 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); | 
 | } | 
 |  | 
 | /* PPGTT support for Sandybdrige/Gen6 and later */ | 
 | static void gen6_ppgtt_clear_range(struct i915_address_space *vm, | 
 | 				   u64 start, u64 length) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	unsigned int first_entry = start >> PAGE_SHIFT; | 
 | 	unsigned int pde = first_entry / GEN6_PTES; | 
 | 	unsigned int pte = first_entry % GEN6_PTES; | 
 | 	unsigned int num_entries = length >> PAGE_SHIFT; | 
 | 	gen6_pte_t scratch_pte = | 
 | 		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); | 
 |  | 
 | 	while (num_entries) { | 
 | 		struct i915_page_table *pt = ppgtt->pd.page_table[pde++]; | 
 | 		unsigned int end = min(pte + num_entries, GEN6_PTES); | 
 | 		gen6_pte_t *vaddr; | 
 |  | 
 | 		num_entries -= end - pte; | 
 |  | 
 | 		/* Note that the hw doesn't support removing PDE on the fly | 
 | 		 * (they are cached inside the context with no means to | 
 | 		 * invalidate the cache), so we can only reset the PTE | 
 | 		 * entries back to scratch. | 
 | 		 */ | 
 |  | 
 | 		vaddr = kmap_atomic_px(pt); | 
 | 		do { | 
 | 			vaddr[pte++] = scratch_pte; | 
 | 		} while (pte < end); | 
 | 		kunmap_atomic(vaddr); | 
 |  | 
 | 		pte = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, | 
 | 				      struct i915_vma *vma, | 
 | 				      enum i915_cache_level cache_level, | 
 | 				      u32 flags) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	unsigned first_entry = vma->node.start >> PAGE_SHIFT; | 
 | 	unsigned act_pt = first_entry / GEN6_PTES; | 
 | 	unsigned act_pte = first_entry % GEN6_PTES; | 
 | 	const u32 pte_encode = vm->pte_encode(0, cache_level, flags); | 
 | 	struct sgt_dma iter = sgt_dma(vma); | 
 | 	gen6_pte_t *vaddr; | 
 |  | 
 | 	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); | 
 | 	do { | 
 | 		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); | 
 |  | 
 | 		iter.dma += PAGE_SIZE; | 
 | 		if (iter.dma == iter.max) { | 
 | 			iter.sg = __sg_next(iter.sg); | 
 | 			if (!iter.sg) | 
 | 				break; | 
 |  | 
 | 			iter.dma = sg_dma_address(iter.sg); | 
 | 			iter.max = iter.dma + iter.sg->length; | 
 | 		} | 
 |  | 
 | 		if (++act_pte == GEN6_PTES) { | 
 | 			kunmap_atomic(vaddr); | 
 | 			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); | 
 | 			act_pte = 0; | 
 | 		} | 
 | 	} while (1); | 
 | 	kunmap_atomic(vaddr); | 
 |  | 
 | 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; | 
 | } | 
 |  | 
 | static int gen6_alloc_va_range(struct i915_address_space *vm, | 
 | 			       u64 start, u64 length) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct i915_page_table *pt; | 
 | 	u64 from = start; | 
 | 	unsigned int pde; | 
 | 	bool flush = false; | 
 |  | 
 | 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { | 
 | 		if (pt == vm->scratch_pt) { | 
 | 			pt = alloc_pt(vm); | 
 | 			if (IS_ERR(pt)) | 
 | 				goto unwind_out; | 
 |  | 
 | 			gen6_initialize_pt(vm, pt); | 
 | 			ppgtt->pd.page_table[pde] = pt; | 
 | 			gen6_write_pde(ppgtt, pde, pt); | 
 | 			flush = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (flush) { | 
 | 		mark_tlbs_dirty(ppgtt); | 
 | 		wmb(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | unwind_out: | 
 | 	gen6_ppgtt_clear_range(vm, from, start); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int gen6_init_scratch(struct i915_address_space *vm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = setup_scratch_page(vm, I915_GFP_DMA); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	vm->scratch_pt = alloc_pt(vm); | 
 | 	if (IS_ERR(vm->scratch_pt)) { | 
 | 		cleanup_scratch_page(vm); | 
 | 		return PTR_ERR(vm->scratch_pt); | 
 | 	} | 
 |  | 
 | 	gen6_initialize_pt(vm, vm->scratch_pt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gen6_free_scratch(struct i915_address_space *vm) | 
 | { | 
 | 	free_pt(vm, vm->scratch_pt); | 
 | 	cleanup_scratch_page(vm); | 
 | } | 
 |  | 
 | static void gen6_ppgtt_cleanup(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); | 
 | 	struct i915_page_directory *pd = &ppgtt->pd; | 
 | 	struct i915_page_table *pt; | 
 | 	u32 pde; | 
 |  | 
 | 	drm_mm_remove_node(&ppgtt->node); | 
 |  | 
 | 	gen6_for_all_pdes(pt, pd, pde) | 
 | 		if (pt != vm->scratch_pt) | 
 | 			free_pt(vm, pt); | 
 |  | 
 | 	gen6_free_scratch(vm); | 
 | } | 
 |  | 
 | static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	struct i915_address_space *vm = &ppgtt->base; | 
 | 	struct drm_i915_private *dev_priv = ppgtt->base.i915; | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	int ret; | 
 |  | 
 | 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The | 
 | 	 * allocator works in address space sizes, so it's multiplied by page | 
 | 	 * size. We allocate at the top of the GTT to avoid fragmentation. | 
 | 	 */ | 
 | 	BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); | 
 |  | 
 | 	ret = gen6_init_scratch(vm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node, | 
 | 				  GEN6_PD_SIZE, GEN6_PD_ALIGN, | 
 | 				  I915_COLOR_UNEVICTABLE, | 
 | 				  0, ggtt->base.total, | 
 | 				  PIN_HIGH); | 
 | 	if (ret) | 
 | 		goto err_out; | 
 |  | 
 | 	if (ppgtt->node.start < ggtt->mappable_end) | 
 | 		DRM_DEBUG("Forced to use aperture for PDEs\n"); | 
 |  | 
 | 	ppgtt->pd.base.ggtt_offset = | 
 | 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); | 
 |  | 
 | 	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + | 
 | 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out: | 
 | 	gen6_free_scratch(vm); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	return gen6_ppgtt_allocate_page_directories(ppgtt); | 
 | } | 
 |  | 
 | static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	struct i915_page_table *unused; | 
 | 	u32 pde; | 
 |  | 
 | 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) | 
 | 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; | 
 | } | 
 |  | 
 | static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = ppgtt->base.i915; | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	int ret; | 
 |  | 
 | 	ppgtt->base.pte_encode = ggtt->base.pte_encode; | 
 | 	if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) | 
 | 		ppgtt->switch_mm = gen6_mm_switch; | 
 | 	else if (IS_HASWELL(dev_priv)) | 
 | 		ppgtt->switch_mm = hsw_mm_switch; | 
 | 	else if (IS_GEN7(dev_priv)) | 
 | 		ppgtt->switch_mm = gen7_mm_switch; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	ret = gen6_ppgtt_alloc(ppgtt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; | 
 |  | 
 | 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); | 
 | 	gen6_write_page_range(ppgtt, 0, ppgtt->base.total); | 
 |  | 
 | 	ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total); | 
 | 	if (ret) { | 
 | 		gen6_ppgtt_cleanup(&ppgtt->base); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ppgtt->base.clear_range = gen6_ppgtt_clear_range; | 
 | 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; | 
 | 	ppgtt->base.unbind_vma = ppgtt_unbind_vma; | 
 | 	ppgtt->base.bind_vma = ppgtt_bind_vma; | 
 | 	ppgtt->base.set_pages = ppgtt_set_pages; | 
 | 	ppgtt->base.clear_pages = clear_pages; | 
 | 	ppgtt->base.cleanup = gen6_ppgtt_cleanup; | 
 | 	ppgtt->debug_dump = gen6_dump_ppgtt; | 
 |  | 
 | 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", | 
 | 			 ppgtt->node.size >> 20, | 
 | 			 ppgtt->node.start / PAGE_SIZE); | 
 |  | 
 | 	DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n", | 
 | 			 ppgtt->pd.base.ggtt_offset << 10); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, | 
 | 			   struct drm_i915_private *dev_priv) | 
 | { | 
 | 	ppgtt->base.i915 = dev_priv; | 
 | 	ppgtt->base.dma = &dev_priv->drm.pdev->dev; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) < 8) | 
 | 		return gen6_ppgtt_init(ppgtt); | 
 | 	else | 
 | 		return gen8_ppgtt_init(ppgtt); | 
 | } | 
 |  | 
 | static void i915_address_space_init(struct i915_address_space *vm, | 
 | 				    struct drm_i915_private *dev_priv, | 
 | 				    const char *name) | 
 | { | 
 | 	drm_mm_init(&vm->mm, 0, vm->total); | 
 | 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; | 
 |  | 
 | 	INIT_LIST_HEAD(&vm->active_list); | 
 | 	INIT_LIST_HEAD(&vm->inactive_list); | 
 | 	INIT_LIST_HEAD(&vm->unbound_list); | 
 |  | 
 | 	list_add_tail(&vm->global_link, &dev_priv->vm_list); | 
 | 	pagevec_init(&vm->free_pages); | 
 | } | 
 |  | 
 | static void i915_address_space_fini(struct i915_address_space *vm) | 
 | { | 
 | 	if (pagevec_count(&vm->free_pages)) | 
 | 		vm_free_pages_release(vm, true); | 
 |  | 
 | 	drm_mm_takedown(&vm->mm); | 
 | 	list_del(&vm->global_link); | 
 | } | 
 |  | 
 | static void gtt_write_workarounds(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* This function is for gtt related workarounds. This function is | 
 | 	 * called on driver load and after a GPU reset, so you can place | 
 | 	 * workarounds here even if they get overwritten by GPU reset. | 
 | 	 */ | 
 | 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ | 
 | 	if (IS_BROADWELL(dev_priv)) | 
 | 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); | 
 | 	else if (IS_CHERRYVIEW(dev_priv)) | 
 | 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); | 
 | 	else if (IS_GEN9_LP(dev_priv)) | 
 | 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); | 
 | 	else if (INTEL_GEN(dev_priv) >= 9) | 
 | 		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); | 
 |  | 
 | 	/* | 
 | 	 * To support 64K PTEs we need to first enable the use of the | 
 | 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical | 
 | 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This | 
 | 	 * shouldn't be needed after GEN10. | 
 | 	 * | 
 | 	 * 64K pages were first introduced from BDW+, although technically they | 
 | 	 * only *work* from gen9+. For pre-BDW we instead have the option for | 
 | 	 * 32K pages, but we don't currently have any support for it in our | 
 | 	 * driver. | 
 | 	 */ | 
 | 	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && | 
 | 	    INTEL_GEN(dev_priv) <= 10) | 
 | 		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, | 
 | 			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | | 
 | 			   GAMW_ECO_ENABLE_64K_IPS_FIELD); | 
 | } | 
 |  | 
 | int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	gtt_write_workarounds(dev_priv); | 
 |  | 
 | 	/* In the case of execlists, PPGTT is enabled by the context descriptor | 
 | 	 * and the PDPs are contained within the context itself.  We don't | 
 | 	 * need to do anything here. */ | 
 | 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	if (!USES_PPGTT(dev_priv)) | 
 | 		return 0; | 
 |  | 
 | 	if (IS_GEN6(dev_priv)) | 
 | 		gen6_ppgtt_enable(dev_priv); | 
 | 	else if (IS_GEN7(dev_priv)) | 
 | 		gen7_ppgtt_enable(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 8) | 
 | 		gen8_ppgtt_enable(dev_priv); | 
 | 	else | 
 | 		MISSING_CASE(INTEL_GEN(dev_priv)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct i915_hw_ppgtt * | 
 | i915_ppgtt_create(struct drm_i915_private *dev_priv, | 
 | 		  struct drm_i915_file_private *fpriv, | 
 | 		  const char *name) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt; | 
 | 	int ret; | 
 |  | 
 | 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); | 
 | 	if (!ppgtt) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = __hw_ppgtt_init(ppgtt, dev_priv); | 
 | 	if (ret) { | 
 | 		kfree(ppgtt); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	kref_init(&ppgtt->ref); | 
 | 	i915_address_space_init(&ppgtt->base, dev_priv, name); | 
 | 	ppgtt->base.file = fpriv; | 
 |  | 
 | 	trace_i915_ppgtt_create(&ppgtt->base); | 
 |  | 
 | 	return ppgtt; | 
 | } | 
 |  | 
 | void i915_ppgtt_close(struct i915_address_space *vm) | 
 | { | 
 | 	GEM_BUG_ON(vm->closed); | 
 | 	vm->closed = true; | 
 | } | 
 |  | 
 | static void ppgtt_destroy_vma(struct i915_address_space *vm) | 
 | { | 
 | 	struct list_head *phases[] = { | 
 | 		&vm->active_list, | 
 | 		&vm->inactive_list, | 
 | 		&vm->unbound_list, | 
 | 		NULL, | 
 | 	}, **phase; | 
 |  | 
 | 	vm->closed = true; | 
 | 	for (phase = phases; *phase; phase++) { | 
 | 		struct i915_vma *vma, *vn; | 
 |  | 
 | 		list_for_each_entry_safe(vma, vn, *phase, vm_link) | 
 | 			i915_vma_destroy(vma); | 
 | 	} | 
 | } | 
 |  | 
 | void i915_ppgtt_release(struct kref *kref) | 
 | { | 
 | 	struct i915_hw_ppgtt *ppgtt = | 
 | 		container_of(kref, struct i915_hw_ppgtt, ref); | 
 |  | 
 | 	trace_i915_ppgtt_release(&ppgtt->base); | 
 |  | 
 | 	ppgtt_destroy_vma(&ppgtt->base); | 
 |  | 
 | 	GEM_BUG_ON(!list_empty(&ppgtt->base.active_list)); | 
 | 	GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list)); | 
 | 	GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list)); | 
 |  | 
 | 	ppgtt->base.cleanup(&ppgtt->base); | 
 | 	i915_address_space_fini(&ppgtt->base); | 
 | 	kfree(ppgtt); | 
 | } | 
 |  | 
 | /* Certain Gen5 chipsets require require idling the GPU before | 
 |  * unmapping anything from the GTT when VT-d is enabled. | 
 |  */ | 
 | static bool needs_idle_maps(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* Query intel_iommu to see if we need the workaround. Presumably that | 
 | 	 * was loaded first. | 
 | 	 */ | 
 | 	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active(); | 
 | } | 
 |  | 
 | static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_engine_cs *engine; | 
 | 	enum intel_engine_id id; | 
 | 	u32 fault; | 
 |  | 
 | 	for_each_engine(engine, dev_priv, id) { | 
 | 		fault = I915_READ(RING_FAULT_REG(engine)); | 
 | 		if (fault & RING_FAULT_VALID) { | 
 | 			DRM_DEBUG_DRIVER("Unexpected fault\n" | 
 | 					 "\tAddr: 0x%08lx\n" | 
 | 					 "\tAddress space: %s\n" | 
 | 					 "\tSource ID: %d\n" | 
 | 					 "\tType: %d\n", | 
 | 					 fault & PAGE_MASK, | 
 | 					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", | 
 | 					 RING_FAULT_SRCID(fault), | 
 | 					 RING_FAULT_FAULT_TYPE(fault)); | 
 | 			I915_WRITE(RING_FAULT_REG(engine), | 
 | 				   fault & ~RING_FAULT_VALID); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); | 
 | } | 
 |  | 
 | static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	u32 fault = I915_READ(GEN8_RING_FAULT_REG); | 
 |  | 
 | 	if (fault & RING_FAULT_VALID) { | 
 | 		u32 fault_data0, fault_data1; | 
 | 		u64 fault_addr; | 
 |  | 
 | 		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); | 
 | 		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); | 
 | 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | | 
 | 			     ((u64)fault_data0 << 12); | 
 |  | 
 | 		DRM_DEBUG_DRIVER("Unexpected fault\n" | 
 | 				 "\tAddr: 0x%08x_%08x\n" | 
 | 				 "\tAddress space: %s\n" | 
 | 				 "\tEngine ID: %d\n" | 
 | 				 "\tSource ID: %d\n" | 
 | 				 "\tType: %d\n", | 
 | 				 upper_32_bits(fault_addr), | 
 | 				 lower_32_bits(fault_addr), | 
 | 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", | 
 | 				 GEN8_RING_FAULT_ENGINE_ID(fault), | 
 | 				 RING_FAULT_SRCID(fault), | 
 | 				 RING_FAULT_FAULT_TYPE(fault)); | 
 | 		I915_WRITE(GEN8_RING_FAULT_REG, | 
 | 			   fault & ~RING_FAULT_VALID); | 
 | 	} | 
 |  | 
 | 	POSTING_READ(GEN8_RING_FAULT_REG); | 
 | } | 
 |  | 
 | void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */ | 
 | 	if (INTEL_GEN(dev_priv) >= 8) | 
 | 		gen8_check_and_clear_faults(dev_priv); | 
 | 	else if (INTEL_GEN(dev_priv) >= 6) | 
 | 		gen6_check_and_clear_faults(dev_priv); | 
 | 	else | 
 | 		return; | 
 | } | 
 |  | 
 | void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 |  | 
 | 	/* Don't bother messing with faults pre GEN6 as we have little | 
 | 	 * documentation supporting that it's a good idea. | 
 | 	 */ | 
 | 	if (INTEL_GEN(dev_priv) < 6) | 
 | 		return; | 
 |  | 
 | 	i915_check_and_clear_faults(dev_priv); | 
 |  | 
 | 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); | 
 |  | 
 | 	i915_ggtt_invalidate(dev_priv); | 
 | } | 
 |  | 
 | int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, | 
 | 			       struct sg_table *pages) | 
 | { | 
 | 	do { | 
 | 		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, | 
 | 				     pages->sgl, pages->nents, | 
 | 				     PCI_DMA_BIDIRECTIONAL, | 
 | 				     DMA_ATTR_NO_WARN)) | 
 | 			return 0; | 
 |  | 
 | 		/* If the DMA remap fails, one cause can be that we have | 
 | 		 * too many objects pinned in a small remapping table, | 
 | 		 * such as swiotlb. Incrementally purge all other objects and | 
 | 		 * try again - if there are no more pages to remove from | 
 | 		 * the DMA remapper, i915_gem_shrink will return 0. | 
 | 		 */ | 
 | 		GEM_BUG_ON(obj->mm.pages == pages); | 
 | 	} while (i915_gem_shrink(to_i915(obj->base.dev), | 
 | 				 obj->base.size >> PAGE_SHIFT, NULL, | 
 | 				 I915_SHRINK_BOUND | | 
 | 				 I915_SHRINK_UNBOUND | | 
 | 				 I915_SHRINK_ACTIVE)); | 
 |  | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) | 
 | { | 
 | 	writeq(pte, addr); | 
 | } | 
 |  | 
 | static void gen8_ggtt_insert_page(struct i915_address_space *vm, | 
 | 				  dma_addr_t addr, | 
 | 				  u64 offset, | 
 | 				  enum i915_cache_level level, | 
 | 				  u32 unused) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	gen8_pte_t __iomem *pte = | 
 | 		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); | 
 |  | 
 | 	gen8_set_pte(pte, gen8_pte_encode(addr, level)); | 
 |  | 
 | 	ggtt->invalidate(vm->i915); | 
 | } | 
 |  | 
 | static void gen8_ggtt_insert_entries(struct i915_address_space *vm, | 
 | 				     struct i915_vma *vma, | 
 | 				     enum i915_cache_level level, | 
 | 				     u32 unused) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	struct sgt_iter sgt_iter; | 
 | 	gen8_pte_t __iomem *gtt_entries; | 
 | 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level); | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; | 
 | 	gtt_entries += vma->node.start >> PAGE_SHIFT; | 
 | 	for_each_sgt_dma(addr, sgt_iter, vma->pages) | 
 | 		gen8_set_pte(gtt_entries++, pte_encode | addr); | 
 |  | 
 | 	/* | 
 | 	 * We want to flush the TLBs only after we're certain all the PTE | 
 | 	 * updates have finished. | 
 | 	 */ | 
 | 	ggtt->invalidate(vm->i915); | 
 | } | 
 |  | 
 | static void gen6_ggtt_insert_page(struct i915_address_space *vm, | 
 | 				  dma_addr_t addr, | 
 | 				  u64 offset, | 
 | 				  enum i915_cache_level level, | 
 | 				  u32 flags) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	gen6_pte_t __iomem *pte = | 
 | 		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); | 
 |  | 
 | 	iowrite32(vm->pte_encode(addr, level, flags), pte); | 
 |  | 
 | 	ggtt->invalidate(vm->i915); | 
 | } | 
 |  | 
 | /* | 
 |  * Binds an object into the global gtt with the specified cache level. The object | 
 |  * will be accessible to the GPU via commands whose operands reference offsets | 
 |  * within the global GTT as well as accessible by the GPU through the GMADR | 
 |  * mapped BAR (dev_priv->mm.gtt->gtt). | 
 |  */ | 
 | static void gen6_ggtt_insert_entries(struct i915_address_space *vm, | 
 | 				     struct i915_vma *vma, | 
 | 				     enum i915_cache_level level, | 
 | 				     u32 flags) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; | 
 | 	unsigned int i = vma->node.start >> PAGE_SHIFT; | 
 | 	struct sgt_iter iter; | 
 | 	dma_addr_t addr; | 
 | 	for_each_sgt_dma(addr, iter, vma->pages) | 
 | 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); | 
 |  | 
 | 	/* | 
 | 	 * We want to flush the TLBs only after we're certain all the PTE | 
 | 	 * updates have finished. | 
 | 	 */ | 
 | 	ggtt->invalidate(vm->i915); | 
 | } | 
 |  | 
 | static void nop_clear_range(struct i915_address_space *vm, | 
 | 			    u64 start, u64 length) | 
 | { | 
 | } | 
 |  | 
 | static void gen8_ggtt_clear_range(struct i915_address_space *vm, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	unsigned first_entry = start >> PAGE_SHIFT; | 
 | 	unsigned num_entries = length >> PAGE_SHIFT; | 
 | 	const gen8_pte_t scratch_pte = | 
 | 		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); | 
 | 	gen8_pte_t __iomem *gtt_base = | 
 | 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry; | 
 | 	const int max_entries = ggtt_total_entries(ggtt) - first_entry; | 
 | 	int i; | 
 |  | 
 | 	if (WARN(num_entries > max_entries, | 
 | 		 "First entry = %d; Num entries = %d (max=%d)\n", | 
 | 		 first_entry, num_entries, max_entries)) | 
 | 		num_entries = max_entries; | 
 |  | 
 | 	for (i = 0; i < num_entries; i++) | 
 | 		gen8_set_pte(>t_base[i], scratch_pte); | 
 | } | 
 |  | 
 | static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = vm->i915; | 
 |  | 
 | 	/* | 
 | 	 * Make sure the internal GAM fifo has been cleared of all GTT | 
 | 	 * writes before exiting stop_machine(). This guarantees that | 
 | 	 * any aperture accesses waiting to start in another process | 
 | 	 * cannot back up behind the GTT writes causing a hang. | 
 | 	 * The register can be any arbitrary GAM register. | 
 | 	 */ | 
 | 	POSTING_READ(GFX_FLSH_CNTL_GEN6); | 
 | } | 
 |  | 
 | struct insert_page { | 
 | 	struct i915_address_space *vm; | 
 | 	dma_addr_t addr; | 
 | 	u64 offset; | 
 | 	enum i915_cache_level level; | 
 | }; | 
 |  | 
 | static int bxt_vtd_ggtt_insert_page__cb(void *_arg) | 
 | { | 
 | 	struct insert_page *arg = _arg; | 
 |  | 
 | 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); | 
 | 	bxt_vtd_ggtt_wa(arg->vm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, | 
 | 					  dma_addr_t addr, | 
 | 					  u64 offset, | 
 | 					  enum i915_cache_level level, | 
 | 					  u32 unused) | 
 | { | 
 | 	struct insert_page arg = { vm, addr, offset, level }; | 
 |  | 
 | 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); | 
 | } | 
 |  | 
 | struct insert_entries { | 
 | 	struct i915_address_space *vm; | 
 | 	struct i915_vma *vma; | 
 | 	enum i915_cache_level level; | 
 | }; | 
 |  | 
 | static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) | 
 | { | 
 | 	struct insert_entries *arg = _arg; | 
 |  | 
 | 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0); | 
 | 	bxt_vtd_ggtt_wa(arg->vm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, | 
 | 					     struct i915_vma *vma, | 
 | 					     enum i915_cache_level level, | 
 | 					     u32 unused) | 
 | { | 
 | 	struct insert_entries arg = { vm, vma, level }; | 
 |  | 
 | 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); | 
 | } | 
 |  | 
 | struct clear_range { | 
 | 	struct i915_address_space *vm; | 
 | 	u64 start; | 
 | 	u64 length; | 
 | }; | 
 |  | 
 | static int bxt_vtd_ggtt_clear_range__cb(void *_arg) | 
 | { | 
 | 	struct clear_range *arg = _arg; | 
 |  | 
 | 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); | 
 | 	bxt_vtd_ggtt_wa(arg->vm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, | 
 | 					  u64 start, | 
 | 					  u64 length) | 
 | { | 
 | 	struct clear_range arg = { vm, start, length }; | 
 |  | 
 | 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); | 
 | } | 
 |  | 
 | static void gen6_ggtt_clear_range(struct i915_address_space *vm, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 | 	unsigned first_entry = start >> PAGE_SHIFT; | 
 | 	unsigned num_entries = length >> PAGE_SHIFT; | 
 | 	gen6_pte_t scratch_pte, __iomem *gtt_base = | 
 | 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry; | 
 | 	const int max_entries = ggtt_total_entries(ggtt) - first_entry; | 
 | 	int i; | 
 |  | 
 | 	if (WARN(num_entries > max_entries, | 
 | 		 "First entry = %d; Num entries = %d (max=%d)\n", | 
 | 		 first_entry, num_entries, max_entries)) | 
 | 		num_entries = max_entries; | 
 |  | 
 | 	scratch_pte = vm->pte_encode(vm->scratch_page.daddr, | 
 | 				     I915_CACHE_LLC, 0); | 
 |  | 
 | 	for (i = 0; i < num_entries; i++) | 
 | 		iowrite32(scratch_pte, >t_base[i]); | 
 | } | 
 |  | 
 | static void i915_ggtt_insert_page(struct i915_address_space *vm, | 
 | 				  dma_addr_t addr, | 
 | 				  u64 offset, | 
 | 				  enum i915_cache_level cache_level, | 
 | 				  u32 unused) | 
 | { | 
 | 	unsigned int flags = (cache_level == I915_CACHE_NONE) ? | 
 | 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; | 
 |  | 
 | 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); | 
 | } | 
 |  | 
 | static void i915_ggtt_insert_entries(struct i915_address_space *vm, | 
 | 				     struct i915_vma *vma, | 
 | 				     enum i915_cache_level cache_level, | 
 | 				     u32 unused) | 
 | { | 
 | 	unsigned int flags = (cache_level == I915_CACHE_NONE) ? | 
 | 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; | 
 |  | 
 | 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, | 
 | 				    flags); | 
 | } | 
 |  | 
 | static void i915_ggtt_clear_range(struct i915_address_space *vm, | 
 | 				  u64 start, u64 length) | 
 | { | 
 | 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | static int ggtt_bind_vma(struct i915_vma *vma, | 
 | 			 enum i915_cache_level cache_level, | 
 | 			 u32 flags) | 
 | { | 
 | 	struct drm_i915_private *i915 = vma->vm->i915; | 
 | 	struct drm_i915_gem_object *obj = vma->obj; | 
 | 	u32 pte_flags; | 
 |  | 
 | 	/* Currently applicable only to VLV */ | 
 | 	pte_flags = 0; | 
 | 	if (obj->gt_ro) | 
 | 		pte_flags |= PTE_READ_ONLY; | 
 |  | 
 | 	intel_runtime_pm_get(i915); | 
 | 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); | 
 | 	intel_runtime_pm_put(i915); | 
 |  | 
 | 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * Without aliasing PPGTT there's no difference between | 
 | 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally | 
 | 	 * upgrade to both bound if we bind either to avoid double-binding. | 
 | 	 */ | 
 | 	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ggtt_unbind_vma(struct i915_vma *vma) | 
 | { | 
 | 	struct drm_i915_private *i915 = vma->vm->i915; | 
 |  | 
 | 	intel_runtime_pm_get(i915); | 
 | 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size); | 
 | 	intel_runtime_pm_put(i915); | 
 | } | 
 |  | 
 | static int aliasing_gtt_bind_vma(struct i915_vma *vma, | 
 | 				 enum i915_cache_level cache_level, | 
 | 				 u32 flags) | 
 | { | 
 | 	struct drm_i915_private *i915 = vma->vm->i915; | 
 | 	u32 pte_flags; | 
 | 	int ret; | 
 |  | 
 | 	/* Currently applicable only to VLV */ | 
 | 	pte_flags = 0; | 
 | 	if (vma->obj->gt_ro) | 
 | 		pte_flags |= PTE_READ_ONLY; | 
 |  | 
 | 	if (flags & I915_VMA_LOCAL_BIND) { | 
 | 		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; | 
 |  | 
 | 		if (!(vma->flags & I915_VMA_LOCAL_BIND) && | 
 | 		    appgtt->base.allocate_va_range) { | 
 | 			ret = appgtt->base.allocate_va_range(&appgtt->base, | 
 | 							     vma->node.start, | 
 | 							     vma->size); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 |  | 
 | 		appgtt->base.insert_entries(&appgtt->base, vma, cache_level, | 
 | 					    pte_flags); | 
 | 	} | 
 |  | 
 | 	if (flags & I915_VMA_GLOBAL_BIND) { | 
 | 		intel_runtime_pm_get(i915); | 
 | 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); | 
 | 		intel_runtime_pm_put(i915); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void aliasing_gtt_unbind_vma(struct i915_vma *vma) | 
 | { | 
 | 	struct drm_i915_private *i915 = vma->vm->i915; | 
 |  | 
 | 	if (vma->flags & I915_VMA_GLOBAL_BIND) { | 
 | 		intel_runtime_pm_get(i915); | 
 | 		vma->vm->clear_range(vma->vm, vma->node.start, vma->size); | 
 | 		intel_runtime_pm_put(i915); | 
 | 	} | 
 |  | 
 | 	if (vma->flags & I915_VMA_LOCAL_BIND) { | 
 | 		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base; | 
 |  | 
 | 		vm->clear_range(vm, vma->node.start, vma->size); | 
 | 	} | 
 | } | 
 |  | 
 | void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, | 
 | 			       struct sg_table *pages) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev); | 
 | 	struct device *kdev = &dev_priv->drm.pdev->dev; | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 |  | 
 | 	if (unlikely(ggtt->do_idle_maps)) { | 
 | 		if (i915_gem_wait_for_idle(dev_priv, 0)) { | 
 | 			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); | 
 | 			/* Wait a bit, in hopes it avoids the hang */ | 
 | 			udelay(10); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); | 
 | } | 
 |  | 
 | static int ggtt_set_pages(struct i915_vma *vma) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	GEM_BUG_ON(vma->pages); | 
 |  | 
 | 	ret = i915_get_ggtt_vma_pages(vma); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	vma->page_sizes = vma->obj->mm.page_sizes; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void i915_gtt_color_adjust(const struct drm_mm_node *node, | 
 | 				  unsigned long color, | 
 | 				  u64 *start, | 
 | 				  u64 *end) | 
 | { | 
 | 	if (node->allocated && node->color != color) | 
 | 		*start += I915_GTT_PAGE_SIZE; | 
 |  | 
 | 	/* Also leave a space between the unallocated reserved node after the | 
 | 	 * GTT and any objects within the GTT, i.e. we use the color adjustment | 
 | 	 * to insert a guard page to prevent prefetches crossing over the | 
 | 	 * GTT boundary. | 
 | 	 */ | 
 | 	node = list_next_entry(node, node_list); | 
 | 	if (node->color != color) | 
 | 		*end -= I915_GTT_PAGE_SIZE; | 
 | } | 
 |  | 
 | int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &i915->ggtt; | 
 | 	struct i915_hw_ppgtt *ppgtt; | 
 | 	int err; | 
 |  | 
 | 	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]"); | 
 | 	if (IS_ERR(ppgtt)) | 
 | 		return PTR_ERR(ppgtt); | 
 |  | 
 | 	if (WARN_ON(ppgtt->base.total < ggtt->base.total)) { | 
 | 		err = -ENODEV; | 
 | 		goto err_ppgtt; | 
 | 	} | 
 |  | 
 | 	if (ppgtt->base.allocate_va_range) { | 
 | 		/* Note we only pre-allocate as far as the end of the global | 
 | 		 * GTT. On 48b / 4-level page-tables, the difference is very, | 
 | 		 * very significant! We have to preallocate as GVT/vgpu does | 
 | 		 * not like the page directory disappearing. | 
 | 		 */ | 
 | 		err = ppgtt->base.allocate_va_range(&ppgtt->base, | 
 | 						    0, ggtt->base.total); | 
 | 		if (err) | 
 | 			goto err_ppgtt; | 
 | 	} | 
 |  | 
 | 	i915->mm.aliasing_ppgtt = ppgtt; | 
 |  | 
 | 	GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma); | 
 | 	ggtt->base.bind_vma = aliasing_gtt_bind_vma; | 
 |  | 
 | 	GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma); | 
 | 	ggtt->base.unbind_vma = aliasing_gtt_unbind_vma; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_ppgtt: | 
 | 	i915_ppgtt_put(ppgtt); | 
 | 	return err; | 
 | } | 
 |  | 
 | void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &i915->ggtt; | 
 | 	struct i915_hw_ppgtt *ppgtt; | 
 |  | 
 | 	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); | 
 | 	if (!ppgtt) | 
 | 		return; | 
 |  | 
 | 	i915_ppgtt_put(ppgtt); | 
 |  | 
 | 	ggtt->base.bind_vma = ggtt_bind_vma; | 
 | 	ggtt->base.unbind_vma = ggtt_unbind_vma; | 
 | } | 
 |  | 
 | int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	/* Let GEM Manage all of the aperture. | 
 | 	 * | 
 | 	 * However, leave one page at the end still bound to the scratch page. | 
 | 	 * There are a number of places where the hardware apparently prefetches | 
 | 	 * past the end of the object, and we've seen multiple hangs with the | 
 | 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the | 
 | 	 * aperture.  One page should be enough to keep any prefetching inside | 
 | 	 * of the aperture. | 
 | 	 */ | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	unsigned long hole_start, hole_end; | 
 | 	struct drm_mm_node *entry; | 
 | 	int ret; | 
 |  | 
 | 	ret = intel_vgt_balloon(dev_priv); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Reserve a mappable slot for our lockless error capture */ | 
 | 	ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture, | 
 | 					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, | 
 | 					  0, ggtt->mappable_end, | 
 | 					  DRM_MM_INSERT_LOW); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Clear any non-preallocated blocks */ | 
 | 	drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { | 
 | 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", | 
 | 			      hole_start, hole_end); | 
 | 		ggtt->base.clear_range(&ggtt->base, hole_start, | 
 | 				       hole_end - hole_start); | 
 | 	} | 
 |  | 
 | 	/* And finally clear the reserved guard page */ | 
 | 	ggtt->base.clear_range(&ggtt->base, | 
 | 			       ggtt->base.total - PAGE_SIZE, PAGE_SIZE); | 
 |  | 
 | 	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { | 
 | 		ret = i915_gem_init_aliasing_ppgtt(dev_priv); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	drm_mm_remove_node(&ggtt->error_capture); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization | 
 |  * @dev_priv: i915 device | 
 |  */ | 
 | void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	struct i915_vma *vma, *vn; | 
 | 	struct pagevec *pvec; | 
 |  | 
 | 	ggtt->base.closed = true; | 
 |  | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	GEM_BUG_ON(!list_empty(&ggtt->base.active_list)); | 
 | 	list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link) | 
 | 		WARN_ON(i915_vma_unbind(vma)); | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	i915_gem_cleanup_stolen(&dev_priv->drm); | 
 |  | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	i915_gem_fini_aliasing_ppgtt(dev_priv); | 
 |  | 
 | 	if (drm_mm_node_allocated(&ggtt->error_capture)) | 
 | 		drm_mm_remove_node(&ggtt->error_capture); | 
 |  | 
 | 	if (drm_mm_initialized(&ggtt->base.mm)) { | 
 | 		intel_vgt_deballoon(dev_priv); | 
 | 		i915_address_space_fini(&ggtt->base); | 
 | 	} | 
 |  | 
 | 	ggtt->base.cleanup(&ggtt->base); | 
 |  | 
 | 	pvec = &dev_priv->mm.wc_stash; | 
 | 	if (pvec->nr) { | 
 | 		set_pages_array_wb(pvec->pages, pvec->nr); | 
 | 		__pagevec_release(pvec); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	arch_phys_wc_del(ggtt->mtrr); | 
 | 	io_mapping_fini(&ggtt->iomap); | 
 | } | 
 |  | 
 | static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) | 
 | { | 
 | 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; | 
 | 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; | 
 | 	return snb_gmch_ctl << 20; | 
 | } | 
 |  | 
 | static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) | 
 | { | 
 | 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; | 
 | 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; | 
 | 	if (bdw_gmch_ctl) | 
 | 		bdw_gmch_ctl = 1 << bdw_gmch_ctl; | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ | 
 | 	if (bdw_gmch_ctl > 4) | 
 | 		bdw_gmch_ctl = 4; | 
 | #endif | 
 |  | 
 | 	return bdw_gmch_ctl << 20; | 
 | } | 
 |  | 
 | static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) | 
 | { | 
 | 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; | 
 | 	gmch_ctrl &= SNB_GMCH_GGMS_MASK; | 
 |  | 
 | 	if (gmch_ctrl) | 
 | 		return 1 << (20 + gmch_ctrl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = ggtt->base.i915; | 
 | 	struct pci_dev *pdev = dev_priv->drm.pdev; | 
 | 	phys_addr_t phys_addr; | 
 | 	int ret; | 
 |  | 
 | 	/* For Modern GENs the PTEs and register space are split in the BAR */ | 
 | 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; | 
 |  | 
 | 	/* | 
 | 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range | 
 | 	 * will be dropped. For WC mappings in general we have 64 byte burst | 
 | 	 * writes when the WC buffer is flushed, so we can't use it, but have to | 
 | 	 * resort to an uncached mapping. The WC issue is easily caught by the | 
 | 	 * readback check when writing GTT PTE entries. | 
 | 	 */ | 
 | 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) | 
 | 		ggtt->gsm = ioremap_nocache(phys_addr, size); | 
 | 	else | 
 | 		ggtt->gsm = ioremap_wc(phys_addr, size); | 
 | 	if (!ggtt->gsm) { | 
 | 		DRM_ERROR("Failed to map the ggtt page table\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ret = setup_scratch_page(&ggtt->base, GFP_DMA32); | 
 | 	if (ret) { | 
 | 		DRM_ERROR("Scratch setup failed\n"); | 
 | 		/* iounmap will also get called at remove, but meh */ | 
 | 		iounmap(ggtt->gsm); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct intel_ppat_entry * | 
 | __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) | 
 | { | 
 | 	struct intel_ppat_entry *entry = &ppat->entries[index]; | 
 |  | 
 | 	GEM_BUG_ON(index >= ppat->max_entries); | 
 | 	GEM_BUG_ON(test_bit(index, ppat->used)); | 
 |  | 
 | 	entry->ppat = ppat; | 
 | 	entry->value = value; | 
 | 	kref_init(&entry->ref); | 
 | 	set_bit(index, ppat->used); | 
 | 	set_bit(index, ppat->dirty); | 
 |  | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void __free_ppat_entry(struct intel_ppat_entry *entry) | 
 | { | 
 | 	struct intel_ppat *ppat = entry->ppat; | 
 | 	unsigned int index = entry - ppat->entries; | 
 |  | 
 | 	GEM_BUG_ON(index >= ppat->max_entries); | 
 | 	GEM_BUG_ON(!test_bit(index, ppat->used)); | 
 |  | 
 | 	entry->value = ppat->clear_value; | 
 | 	clear_bit(index, ppat->used); | 
 | 	set_bit(index, ppat->dirty); | 
 | } | 
 |  | 
 | /** | 
 |  * intel_ppat_get - get a usable PPAT entry | 
 |  * @i915: i915 device instance | 
 |  * @value: the PPAT value required by the caller | 
 |  * | 
 |  * The function tries to search if there is an existing PPAT entry which | 
 |  * matches with the required value. If perfectly matched, the existing PPAT | 
 |  * entry will be used. If only partially matched, it will try to check if | 
 |  * there is any available PPAT index. If yes, it will allocate a new PPAT | 
 |  * index for the required entry and update the HW. If not, the partially | 
 |  * matched entry will be used. | 
 |  */ | 
 | const struct intel_ppat_entry * | 
 | intel_ppat_get(struct drm_i915_private *i915, u8 value) | 
 | { | 
 | 	struct intel_ppat *ppat = &i915->ppat; | 
 | 	struct intel_ppat_entry *entry = NULL; | 
 | 	unsigned int scanned, best_score; | 
 | 	int i; | 
 |  | 
 | 	GEM_BUG_ON(!ppat->max_entries); | 
 |  | 
 | 	scanned = best_score = 0; | 
 | 	for_each_set_bit(i, ppat->used, ppat->max_entries) { | 
 | 		unsigned int score; | 
 |  | 
 | 		score = ppat->match(ppat->entries[i].value, value); | 
 | 		if (score > best_score) { | 
 | 			entry = &ppat->entries[i]; | 
 | 			if (score == INTEL_PPAT_PERFECT_MATCH) { | 
 | 				kref_get(&entry->ref); | 
 | 				return entry; | 
 | 			} | 
 | 			best_score = score; | 
 | 		} | 
 | 		scanned++; | 
 | 	} | 
 |  | 
 | 	if (scanned == ppat->max_entries) { | 
 | 		if (!entry) | 
 | 			return ERR_PTR(-ENOSPC); | 
 |  | 
 | 		kref_get(&entry->ref); | 
 | 		return entry; | 
 | 	} | 
 |  | 
 | 	i = find_first_zero_bit(ppat->used, ppat->max_entries); | 
 | 	entry = __alloc_ppat_entry(ppat, i, value); | 
 | 	ppat->update_hw(i915); | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void release_ppat(struct kref *kref) | 
 | { | 
 | 	struct intel_ppat_entry *entry = | 
 | 		container_of(kref, struct intel_ppat_entry, ref); | 
 | 	struct drm_i915_private *i915 = entry->ppat->i915; | 
 |  | 
 | 	__free_ppat_entry(entry); | 
 | 	entry->ppat->update_hw(i915); | 
 | } | 
 |  | 
 | /** | 
 |  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() | 
 |  * @entry: an intel PPAT entry | 
 |  * | 
 |  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the | 
 |  * entry is dynamically allocated, its reference count will be decreased. Once | 
 |  * the reference count becomes into zero, the PPAT index becomes free again. | 
 |  */ | 
 | void intel_ppat_put(const struct intel_ppat_entry *entry) | 
 | { | 
 | 	struct intel_ppat *ppat = entry->ppat; | 
 | 	unsigned int index = entry - ppat->entries; | 
 |  | 
 | 	GEM_BUG_ON(!ppat->max_entries); | 
 |  | 
 | 	kref_put(&ppat->entries[index].ref, release_ppat); | 
 | } | 
 |  | 
 | static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_ppat *ppat = &dev_priv->ppat; | 
 | 	int i; | 
 |  | 
 | 	for_each_set_bit(i, ppat->dirty, ppat->max_entries) { | 
 | 		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); | 
 | 		clear_bit(i, ppat->dirty); | 
 | 	} | 
 | } | 
 |  | 
 | static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_ppat *ppat = &dev_priv->ppat; | 
 | 	u64 pat = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ppat->max_entries; i++) | 
 | 		pat |= GEN8_PPAT(i, ppat->entries[i].value); | 
 |  | 
 | 	bitmap_clear(ppat->dirty, 0, ppat->max_entries); | 
 |  | 
 | 	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); | 
 | 	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); | 
 | } | 
 |  | 
 | static unsigned int bdw_private_pat_match(u8 src, u8 dst) | 
 | { | 
 | 	unsigned int score = 0; | 
 | 	enum { | 
 | 		AGE_MATCH = BIT(0), | 
 | 		TC_MATCH = BIT(1), | 
 | 		CA_MATCH = BIT(2), | 
 | 	}; | 
 |  | 
 | 	/* Cache attribute has to be matched. */ | 
 | 	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) | 
 | 		return 0; | 
 |  | 
 | 	score |= CA_MATCH; | 
 |  | 
 | 	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) | 
 | 		score |= TC_MATCH; | 
 |  | 
 | 	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) | 
 | 		score |= AGE_MATCH; | 
 |  | 
 | 	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) | 
 | 		return INTEL_PPAT_PERFECT_MATCH; | 
 |  | 
 | 	return score; | 
 | } | 
 |  | 
 | static unsigned int chv_private_pat_match(u8 src, u8 dst) | 
 | { | 
 | 	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? | 
 | 		INTEL_PPAT_PERFECT_MATCH : 0; | 
 | } | 
 |  | 
 | static void cnl_setup_private_ppat(struct intel_ppat *ppat) | 
 | { | 
 | 	ppat->max_entries = 8; | 
 | 	ppat->update_hw = cnl_private_pat_update_hw; | 
 | 	ppat->match = bdw_private_pat_match; | 
 | 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); | 
 |  | 
 | 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); | 
 | 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); | 
 | 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); | 
 | 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); | 
 | 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); | 
 | 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); | 
 | 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); | 
 | 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); | 
 | } | 
 |  | 
 | /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability | 
 |  * bits. When using advanced contexts each context stores its own PAT, but | 
 |  * writing this data shouldn't be harmful even in those cases. */ | 
 | static void bdw_setup_private_ppat(struct intel_ppat *ppat) | 
 | { | 
 | 	ppat->max_entries = 8; | 
 | 	ppat->update_hw = bdw_private_pat_update_hw; | 
 | 	ppat->match = bdw_private_pat_match; | 
 | 	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); | 
 |  | 
 | 	if (!USES_PPGTT(ppat->i915)) { | 
 | 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, | 
 | 		 * so RTL will always use the value corresponding to | 
 | 		 * pat_sel = 000". | 
 | 		 * So let's disable cache for GGTT to avoid screen corruptions. | 
 | 		 * MOCS still can be used though. | 
 | 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work | 
 | 		 * before this patch, i.e. the same uncached + snooping access | 
 | 		 * like on gen6/7 seems to be in effect. | 
 | 		 * - So this just fixes blitter/render access. Again it looks | 
 | 		 * like it's not just uncached access, but uncached + snooping. | 
 | 		 * So we can still hold onto all our assumptions wrt cpu | 
 | 		 * clflushing on LLC machines. | 
 | 		 */ | 
 | 		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */ | 
 | 	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */ | 
 | 	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */ | 
 | 	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */ | 
 | 	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); | 
 | 	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); | 
 | 	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); | 
 | 	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); | 
 | } | 
 |  | 
 | static void chv_setup_private_ppat(struct intel_ppat *ppat) | 
 | { | 
 | 	ppat->max_entries = 8; | 
 | 	ppat->update_hw = bdw_private_pat_update_hw; | 
 | 	ppat->match = chv_private_pat_match; | 
 | 	ppat->clear_value = CHV_PPAT_SNOOP; | 
 |  | 
 | 	/* | 
 | 	 * Map WB on BDW to snooped on CHV. | 
 | 	 * | 
 | 	 * Only the snoop bit has meaning for CHV, the rest is | 
 | 	 * ignored. | 
 | 	 * | 
 | 	 * The hardware will never snoop for certain types of accesses: | 
 | 	 * - CPU GTT (GMADR->GGTT->no snoop->memory) | 
 | 	 * - PPGTT page tables | 
 | 	 * - some other special cycles | 
 | 	 * | 
 | 	 * As with BDW, we also need to consider the following for GT accesses: | 
 | 	 * "For GGTT, there is NO pat_sel[2:0] from the entry, | 
 | 	 * so RTL will always use the value corresponding to | 
 | 	 * pat_sel = 000". | 
 | 	 * Which means we must set the snoop bit in PAT entry 0 | 
 | 	 * in order to keep the global status page working. | 
 | 	 */ | 
 |  | 
 | 	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); | 
 | 	__alloc_ppat_entry(ppat, 1, 0); | 
 | 	__alloc_ppat_entry(ppat, 2, 0); | 
 | 	__alloc_ppat_entry(ppat, 3, 0); | 
 | 	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); | 
 | 	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); | 
 | 	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); | 
 | 	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); | 
 | } | 
 |  | 
 | static void gen6_gmch_remove(struct i915_address_space *vm) | 
 | { | 
 | 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); | 
 |  | 
 | 	iounmap(ggtt->gsm); | 
 | 	cleanup_scratch_page(vm); | 
 | } | 
 |  | 
 | static void setup_private_pat(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct intel_ppat *ppat = &dev_priv->ppat; | 
 | 	int i; | 
 |  | 
 | 	ppat->i915 = dev_priv; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 10) | 
 | 		cnl_setup_private_ppat(ppat); | 
 | 	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) | 
 | 		chv_setup_private_ppat(ppat); | 
 | 	else | 
 | 		bdw_setup_private_ppat(ppat); | 
 |  | 
 | 	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); | 
 |  | 
 | 	for_each_clear_bit(i, ppat->used, ppat->max_entries) { | 
 | 		ppat->entries[i].value = ppat->clear_value; | 
 | 		ppat->entries[i].ppat = ppat; | 
 | 		set_bit(i, ppat->dirty); | 
 | 	} | 
 |  | 
 | 	ppat->update_hw(dev_priv); | 
 | } | 
 |  | 
 | static int gen8_gmch_probe(struct i915_ggtt *ggtt) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = ggtt->base.i915; | 
 | 	struct pci_dev *pdev = dev_priv->drm.pdev; | 
 | 	unsigned int size; | 
 | 	u16 snb_gmch_ctl; | 
 | 	int err; | 
 |  | 
 | 	/* TODO: We're not aware of mappable constraints on gen8 yet */ | 
 | 	ggtt->gmadr = | 
 | 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), | 
 | 						 pci_resource_len(pdev, 2)); | 
 | 	ggtt->mappable_end = resource_size(&ggtt->gmadr); | 
 |  | 
 | 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); | 
 | 	if (!err) | 
 | 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); | 
 | 	if (err) | 
 | 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); | 
 |  | 
 | 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); | 
 | 	if (IS_CHERRYVIEW(dev_priv)) | 
 | 		size = chv_get_total_gtt_size(snb_gmch_ctl); | 
 | 	else | 
 | 		size = gen8_get_total_gtt_size(snb_gmch_ctl); | 
 |  | 
 | 	ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; | 
 | 	ggtt->base.cleanup = gen6_gmch_remove; | 
 | 	ggtt->base.bind_vma = ggtt_bind_vma; | 
 | 	ggtt->base.unbind_vma = ggtt_unbind_vma; | 
 | 	ggtt->base.set_pages = ggtt_set_pages; | 
 | 	ggtt->base.clear_pages = clear_pages; | 
 | 	ggtt->base.insert_page = gen8_ggtt_insert_page; | 
 | 	ggtt->base.clear_range = nop_clear_range; | 
 | 	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) | 
 | 		ggtt->base.clear_range = gen8_ggtt_clear_range; | 
 |  | 
 | 	ggtt->base.insert_entries = gen8_ggtt_insert_entries; | 
 |  | 
 | 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */ | 
 | 	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) { | 
 | 		ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; | 
 | 		ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL; | 
 | 		if (ggtt->base.clear_range != nop_clear_range) | 
 | 			ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL; | 
 | 	} | 
 |  | 
 | 	ggtt->invalidate = gen6_ggtt_invalidate; | 
 |  | 
 | 	setup_private_pat(dev_priv); | 
 |  | 
 | 	return ggtt_probe_common(ggtt, size); | 
 | } | 
 |  | 
 | static int gen6_gmch_probe(struct i915_ggtt *ggtt) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = ggtt->base.i915; | 
 | 	struct pci_dev *pdev = dev_priv->drm.pdev; | 
 | 	unsigned int size; | 
 | 	u16 snb_gmch_ctl; | 
 | 	int err; | 
 |  | 
 | 	ggtt->gmadr = | 
 | 		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), | 
 | 						 pci_resource_len(pdev, 2)); | 
 | 	ggtt->mappable_end = resource_size(&ggtt->gmadr); | 
 |  | 
 | 	/* 64/512MB is the current min/max we actually know of, but this is just | 
 | 	 * a coarse sanity check. | 
 | 	 */ | 
 | 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { | 
 | 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); | 
 | 	if (!err) | 
 | 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); | 
 | 	if (err) | 
 | 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); | 
 | 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); | 
 |  | 
 | 	size = gen6_get_total_gtt_size(snb_gmch_ctl); | 
 | 	ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; | 
 |  | 
 | 	ggtt->base.clear_range = gen6_ggtt_clear_range; | 
 | 	ggtt->base.insert_page = gen6_ggtt_insert_page; | 
 | 	ggtt->base.insert_entries = gen6_ggtt_insert_entries; | 
 | 	ggtt->base.bind_vma = ggtt_bind_vma; | 
 | 	ggtt->base.unbind_vma = ggtt_unbind_vma; | 
 | 	ggtt->base.set_pages = ggtt_set_pages; | 
 | 	ggtt->base.clear_pages = clear_pages; | 
 | 	ggtt->base.cleanup = gen6_gmch_remove; | 
 |  | 
 | 	ggtt->invalidate = gen6_ggtt_invalidate; | 
 |  | 
 | 	if (HAS_EDRAM(dev_priv)) | 
 | 		ggtt->base.pte_encode = iris_pte_encode; | 
 | 	else if (IS_HASWELL(dev_priv)) | 
 | 		ggtt->base.pte_encode = hsw_pte_encode; | 
 | 	else if (IS_VALLEYVIEW(dev_priv)) | 
 | 		ggtt->base.pte_encode = byt_pte_encode; | 
 | 	else if (INTEL_GEN(dev_priv) >= 7) | 
 | 		ggtt->base.pte_encode = ivb_pte_encode; | 
 | 	else | 
 | 		ggtt->base.pte_encode = snb_pte_encode; | 
 |  | 
 | 	return ggtt_probe_common(ggtt, size); | 
 | } | 
 |  | 
 | static void i915_gmch_remove(struct i915_address_space *vm) | 
 | { | 
 | 	intel_gmch_remove(); | 
 | } | 
 |  | 
 | static int i915_gmch_probe(struct i915_ggtt *ggtt) | 
 | { | 
 | 	struct drm_i915_private *dev_priv = ggtt->base.i915; | 
 | 	phys_addr_t gmadr_base; | 
 | 	int ret; | 
 |  | 
 | 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); | 
 | 	if (!ret) { | 
 | 		DRM_ERROR("failed to set up gmch\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	intel_gtt_get(&ggtt->base.total, | 
 | 		      &gmadr_base, | 
 | 		      &ggtt->mappable_end); | 
 |  | 
 | 	ggtt->gmadr = | 
 | 		(struct resource) DEFINE_RES_MEM(gmadr_base, | 
 | 						 ggtt->mappable_end); | 
 |  | 
 | 	ggtt->do_idle_maps = needs_idle_maps(dev_priv); | 
 | 	ggtt->base.insert_page = i915_ggtt_insert_page; | 
 | 	ggtt->base.insert_entries = i915_ggtt_insert_entries; | 
 | 	ggtt->base.clear_range = i915_ggtt_clear_range; | 
 | 	ggtt->base.bind_vma = ggtt_bind_vma; | 
 | 	ggtt->base.unbind_vma = ggtt_unbind_vma; | 
 | 	ggtt->base.set_pages = ggtt_set_pages; | 
 | 	ggtt->base.clear_pages = clear_pages; | 
 | 	ggtt->base.cleanup = i915_gmch_remove; | 
 |  | 
 | 	ggtt->invalidate = gmch_ggtt_invalidate; | 
 |  | 
 | 	if (unlikely(ggtt->do_idle_maps)) | 
 | 		DRM_INFO("applying Ironlake quirks for intel_iommu\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_ggtt_probe_hw - Probe GGTT hardware location | 
 |  * @dev_priv: i915 device | 
 |  */ | 
 | int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	int ret; | 
 |  | 
 | 	ggtt->base.i915 = dev_priv; | 
 | 	ggtt->base.dma = &dev_priv->drm.pdev->dev; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) <= 5) | 
 | 		ret = i915_gmch_probe(ggtt); | 
 | 	else if (INTEL_GEN(dev_priv) < 8) | 
 | 		ret = gen6_gmch_probe(ggtt); | 
 | 	else | 
 | 		ret = gen8_gmch_probe(ggtt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Trim the GGTT to fit the GuC mappable upper range (when enabled). | 
 | 	 * This is easier than doing range restriction on the fly, as we | 
 | 	 * currently don't have any bits spare to pass in this upper | 
 | 	 * restriction! | 
 | 	 */ | 
 | 	if (USES_GUC(dev_priv)) { | 
 | 		ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); | 
 | 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total); | 
 | 	} | 
 |  | 
 | 	if ((ggtt->base.total - 1) >> 32) { | 
 | 		DRM_ERROR("We never expected a Global GTT with more than 32bits" | 
 | 			  " of address space! Found %lldM!\n", | 
 | 			  ggtt->base.total >> 20); | 
 | 		ggtt->base.total = 1ULL << 32; | 
 | 		ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total); | 
 | 	} | 
 |  | 
 | 	if (ggtt->mappable_end > ggtt->base.total) { | 
 | 		DRM_ERROR("mappable aperture extends past end of GGTT," | 
 | 			  " aperture=%pa, total=%llx\n", | 
 | 			  &ggtt->mappable_end, ggtt->base.total); | 
 | 		ggtt->mappable_end = ggtt->base.total; | 
 | 	} | 
 |  | 
 | 	/* GMADR is the PCI mmio aperture into the global GTT. */ | 
 | 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20); | 
 | 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); | 
 | 	DRM_DEBUG_DRIVER("DSM size = %lluM\n", | 
 | 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20); | 
 | 	if (intel_vtd_active()) | 
 | 		DRM_INFO("VT-d active for gfx access\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_ggtt_init_hw - Initialize GGTT hardware | 
 |  * @dev_priv: i915 device | 
 |  */ | 
 | int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	int ret; | 
 |  | 
 | 	INIT_LIST_HEAD(&dev_priv->vm_list); | 
 |  | 
 | 	/* Note that we use page colouring to enforce a guard page at the | 
 | 	 * end of the address space. This is required as the CS may prefetch | 
 | 	 * beyond the end of the batch buffer, across the page boundary, | 
 | 	 * and beyond the end of the GTT if we do not provide a guard. | 
 | 	 */ | 
 | 	mutex_lock(&dev_priv->drm.struct_mutex); | 
 | 	i915_address_space_init(&ggtt->base, dev_priv, "[global]"); | 
 | 	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) | 
 | 		ggtt->base.mm.color_adjust = i915_gtt_color_adjust; | 
 | 	mutex_unlock(&dev_priv->drm.struct_mutex); | 
 |  | 
 | 	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, | 
 | 				dev_priv->ggtt.gmadr.start, | 
 | 				dev_priv->ggtt.mappable_end)) { | 
 | 		ret = -EIO; | 
 | 		goto out_gtt_cleanup; | 
 | 	} | 
 |  | 
 | 	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); | 
 |  | 
 | 	/* | 
 | 	 * Initialise stolen early so that we may reserve preallocated | 
 | 	 * objects for the BIOS to KMS transition. | 
 | 	 */ | 
 | 	ret = i915_gem_init_stolen(dev_priv); | 
 | 	if (ret) | 
 | 		goto out_gtt_cleanup; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_gtt_cleanup: | 
 | 	ggtt->base.cleanup(&ggtt->base); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void i915_ggtt_enable_guc(struct drm_i915_private *i915) | 
 | { | 
 | 	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); | 
 |  | 
 | 	i915->ggtt.invalidate = guc_ggtt_invalidate; | 
 |  | 
 | 	i915_ggtt_invalidate(i915); | 
 | } | 
 |  | 
 | void i915_ggtt_disable_guc(struct drm_i915_private *i915) | 
 | { | 
 | 	/* We should only be called after i915_ggtt_enable_guc() */ | 
 | 	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); | 
 |  | 
 | 	i915->ggtt.invalidate = gen6_ggtt_invalidate; | 
 |  | 
 | 	i915_ggtt_invalidate(i915); | 
 | } | 
 |  | 
 | void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) | 
 | { | 
 | 	struct i915_ggtt *ggtt = &dev_priv->ggtt; | 
 | 	struct drm_i915_gem_object *obj, *on; | 
 |  | 
 | 	i915_check_and_clear_faults(dev_priv); | 
 |  | 
 | 	/* First fill our portion of the GTT with scratch pages */ | 
 | 	ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total); | 
 |  | 
 | 	ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ | 
 |  | 
 | 	/* clflush objects bound into the GGTT and rebind them. */ | 
 | 	list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) { | 
 | 		bool ggtt_bound = false; | 
 | 		struct i915_vma *vma; | 
 |  | 
 | 		for_each_ggtt_vma(vma, obj) { | 
 | 			if (!i915_vma_unbind(vma)) | 
 | 				continue; | 
 |  | 
 | 			WARN_ON(i915_vma_bind(vma, obj->cache_level, | 
 | 					      PIN_UPDATE)); | 
 | 			ggtt_bound = true; | 
 | 		} | 
 |  | 
 | 		if (ggtt_bound) | 
 | 			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); | 
 | 	} | 
 |  | 
 | 	ggtt->base.closed = false; | 
 |  | 
 | 	if (INTEL_GEN(dev_priv) >= 8) { | 
 | 		struct intel_ppat *ppat = &dev_priv->ppat; | 
 |  | 
 | 		bitmap_set(ppat->dirty, 0, ppat->max_entries); | 
 | 		dev_priv->ppat.update_hw(dev_priv); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (USES_PPGTT(dev_priv)) { | 
 | 		struct i915_address_space *vm; | 
 |  | 
 | 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) { | 
 | 			struct i915_hw_ppgtt *ppgtt; | 
 |  | 
 | 			if (i915_is_ggtt(vm)) | 
 | 				ppgtt = dev_priv->mm.aliasing_ppgtt; | 
 | 			else | 
 | 				ppgtt = i915_vm_to_ppgtt(vm); | 
 |  | 
 | 			gen6_write_page_range(ppgtt, 0, ppgtt->base.total); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	i915_ggtt_invalidate(dev_priv); | 
 | } | 
 |  | 
 | static struct scatterlist * | 
 | rotate_pages(const dma_addr_t *in, unsigned int offset, | 
 | 	     unsigned int width, unsigned int height, | 
 | 	     unsigned int stride, | 
 | 	     struct sg_table *st, struct scatterlist *sg) | 
 | { | 
 | 	unsigned int column, row; | 
 | 	unsigned int src_idx; | 
 |  | 
 | 	for (column = 0; column < width; column++) { | 
 | 		src_idx = stride * (height - 1) + column; | 
 | 		for (row = 0; row < height; row++) { | 
 | 			st->nents++; | 
 | 			/* We don't need the pages, but need to initialize | 
 | 			 * the entries so the sg list can be happily traversed. | 
 | 			 * The only thing we need are DMA addresses. | 
 | 			 */ | 
 | 			sg_set_page(sg, NULL, PAGE_SIZE, 0); | 
 | 			sg_dma_address(sg) = in[offset + src_idx]; | 
 | 			sg_dma_len(sg) = PAGE_SIZE; | 
 | 			sg = sg_next(sg); | 
 | 			src_idx -= stride; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return sg; | 
 | } | 
 |  | 
 | static noinline struct sg_table * | 
 | intel_rotate_pages(struct intel_rotation_info *rot_info, | 
 | 		   struct drm_i915_gem_object *obj) | 
 | { | 
 | 	const unsigned long n_pages = obj->base.size / PAGE_SIZE; | 
 | 	unsigned int size = intel_rotation_info_size(rot_info); | 
 | 	struct sgt_iter sgt_iter; | 
 | 	dma_addr_t dma_addr; | 
 | 	unsigned long i; | 
 | 	dma_addr_t *page_addr_list; | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	/* Allocate a temporary list of source pages for random access. */ | 
 | 	page_addr_list = kvmalloc_array(n_pages, | 
 | 					sizeof(dma_addr_t), | 
 | 					GFP_KERNEL); | 
 | 	if (!page_addr_list) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	/* Allocate target SG list. */ | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (!st) | 
 | 		goto err_st_alloc; | 
 |  | 
 | 	ret = sg_alloc_table(st, size, GFP_KERNEL); | 
 | 	if (ret) | 
 | 		goto err_sg_alloc; | 
 |  | 
 | 	/* Populate source page list from the object. */ | 
 | 	i = 0; | 
 | 	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) | 
 | 		page_addr_list[i++] = dma_addr; | 
 |  | 
 | 	GEM_BUG_ON(i != n_pages); | 
 | 	st->nents = 0; | 
 | 	sg = st->sgl; | 
 |  | 
 | 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { | 
 | 		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, | 
 | 				  rot_info->plane[i].width, rot_info->plane[i].height, | 
 | 				  rot_info->plane[i].stride, st, sg); | 
 | 	} | 
 |  | 
 | 	kvfree(page_addr_list); | 
 |  | 
 | 	return st; | 
 |  | 
 | err_sg_alloc: | 
 | 	kfree(st); | 
 | err_st_alloc: | 
 | 	kvfree(page_addr_list); | 
 |  | 
 | 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", | 
 | 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); | 
 |  | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static noinline struct sg_table * | 
 | intel_partial_pages(const struct i915_ggtt_view *view, | 
 | 		    struct drm_i915_gem_object *obj) | 
 | { | 
 | 	struct sg_table *st; | 
 | 	struct scatterlist *sg, *iter; | 
 | 	unsigned int count = view->partial.size; | 
 | 	unsigned int offset; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	st = kmalloc(sizeof(*st), GFP_KERNEL); | 
 | 	if (!st) | 
 | 		goto err_st_alloc; | 
 |  | 
 | 	ret = sg_alloc_table(st, count, GFP_KERNEL); | 
 | 	if (ret) | 
 | 		goto err_sg_alloc; | 
 |  | 
 | 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); | 
 | 	GEM_BUG_ON(!iter); | 
 |  | 
 | 	sg = st->sgl; | 
 | 	st->nents = 0; | 
 | 	do { | 
 | 		unsigned int len; | 
 |  | 
 | 		len = min(iter->length - (offset << PAGE_SHIFT), | 
 | 			  count << PAGE_SHIFT); | 
 | 		sg_set_page(sg, NULL, len, 0); | 
 | 		sg_dma_address(sg) = | 
 | 			sg_dma_address(iter) + (offset << PAGE_SHIFT); | 
 | 		sg_dma_len(sg) = len; | 
 |  | 
 | 		st->nents++; | 
 | 		count -= len >> PAGE_SHIFT; | 
 | 		if (count == 0) { | 
 | 			sg_mark_end(sg); | 
 | 			return st; | 
 | 		} | 
 |  | 
 | 		sg = __sg_next(sg); | 
 | 		iter = __sg_next(iter); | 
 | 		offset = 0; | 
 | 	} while (1); | 
 |  | 
 | err_sg_alloc: | 
 | 	kfree(st); | 
 | err_st_alloc: | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int | 
 | i915_get_ggtt_vma_pages(struct i915_vma *vma) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* The vma->pages are only valid within the lifespan of the borrowed | 
 | 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so | 
 | 	 * must be the vma->pages. A simple rule is that vma->pages must only | 
 | 	 * be accessed when the obj->mm.pages are pinned. | 
 | 	 */ | 
 | 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); | 
 |  | 
 | 	switch (vma->ggtt_view.type) { | 
 | 	default: | 
 | 		GEM_BUG_ON(vma->ggtt_view.type); | 
 | 		/* fall through */ | 
 | 	case I915_GGTT_VIEW_NORMAL: | 
 | 		vma->pages = vma->obj->mm.pages; | 
 | 		return 0; | 
 |  | 
 | 	case I915_GGTT_VIEW_ROTATED: | 
 | 		vma->pages = | 
 | 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); | 
 | 		break; | 
 |  | 
 | 	case I915_GGTT_VIEW_PARTIAL: | 
 | 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (unlikely(IS_ERR(vma->pages))) { | 
 | 		ret = PTR_ERR(vma->pages); | 
 | 		vma->pages = NULL; | 
 | 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", | 
 | 			  vma->ggtt_view.type, ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) | 
 |  * @vm: the &struct i915_address_space | 
 |  * @node: the &struct drm_mm_node (typically i915_vma.mode) | 
 |  * @size: how much space to allocate inside the GTT, | 
 |  *        must be #I915_GTT_PAGE_SIZE aligned | 
 |  * @offset: where to insert inside the GTT, | 
 |  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node | 
 |  *          (@offset + @size) must fit within the address space | 
 |  * @color: color to apply to node, if this node is not from a VMA, | 
 |  *         color must be #I915_COLOR_UNEVICTABLE | 
 |  * @flags: control search and eviction behaviour | 
 |  * | 
 |  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside | 
 |  * the address space (using @size and @color). If the @node does not fit, it | 
 |  * tries to evict any overlapping nodes from the GTT, including any | 
 |  * neighbouring nodes if the colors do not match (to ensure guard pages between | 
 |  * differing domains). See i915_gem_evict_for_node() for the gory details | 
 |  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on | 
 |  * evicting active overlapping objects, and any overlapping node that is pinned | 
 |  * or marked as unevictable will also result in failure. | 
 |  * | 
 |  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if | 
 |  * asked to wait for eviction and interrupted. | 
 |  */ | 
 | int i915_gem_gtt_reserve(struct i915_address_space *vm, | 
 | 			 struct drm_mm_node *node, | 
 | 			 u64 size, u64 offset, unsigned long color, | 
 | 			 unsigned int flags) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	GEM_BUG_ON(!size); | 
 | 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); | 
 | 	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); | 
 | 	GEM_BUG_ON(range_overflows(offset, size, vm->total)); | 
 | 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); | 
 | 	GEM_BUG_ON(drm_mm_node_allocated(node)); | 
 |  | 
 | 	node->size = size; | 
 | 	node->start = offset; | 
 | 	node->color = color; | 
 |  | 
 | 	err = drm_mm_reserve_node(&vm->mm, node); | 
 | 	if (err != -ENOSPC) | 
 | 		return err; | 
 |  | 
 | 	if (flags & PIN_NOEVICT) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	err = i915_gem_evict_for_node(vm, node, flags); | 
 | 	if (err == 0) | 
 | 		err = drm_mm_reserve_node(&vm->mm, node); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static u64 random_offset(u64 start, u64 end, u64 len, u64 align) | 
 | { | 
 | 	u64 range, addr; | 
 |  | 
 | 	GEM_BUG_ON(range_overflows(start, len, end)); | 
 | 	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); | 
 |  | 
 | 	range = round_down(end - len, align) - round_up(start, align); | 
 | 	if (range) { | 
 | 		if (sizeof(unsigned long) == sizeof(u64)) { | 
 | 			addr = get_random_long(); | 
 | 		} else { | 
 | 			addr = get_random_int(); | 
 | 			if (range > U32_MAX) { | 
 | 				addr <<= 32; | 
 | 				addr |= get_random_int(); | 
 | 			} | 
 | 		} | 
 | 		div64_u64_rem(addr, range, &addr); | 
 | 		start += addr; | 
 | 	} | 
 |  | 
 | 	return round_up(start, align); | 
 | } | 
 |  | 
 | /** | 
 |  * i915_gem_gtt_insert - insert a node into an address_space (GTT) | 
 |  * @vm: the &struct i915_address_space | 
 |  * @node: the &struct drm_mm_node (typically i915_vma.node) | 
 |  * @size: how much space to allocate inside the GTT, | 
 |  *        must be #I915_GTT_PAGE_SIZE aligned | 
 |  * @alignment: required alignment of starting offset, may be 0 but | 
 |  *             if specified, this must be a power-of-two and at least | 
 |  *             #I915_GTT_MIN_ALIGNMENT | 
 |  * @color: color to apply to node | 
 |  * @start: start of any range restriction inside GTT (0 for all), | 
 |  *         must be #I915_GTT_PAGE_SIZE aligned | 
 |  * @end: end of any range restriction inside GTT (U64_MAX for all), | 
 |  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX | 
 |  * @flags: control search and eviction behaviour | 
 |  * | 
 |  * i915_gem_gtt_insert() first searches for an available hole into which | 
 |  * is can insert the node. The hole address is aligned to @alignment and | 
 |  * its @size must then fit entirely within the [@start, @end] bounds. The | 
 |  * nodes on either side of the hole must match @color, or else a guard page | 
 |  * will be inserted between the two nodes (or the node evicted). If no | 
 |  * suitable hole is found, first a victim is randomly selected and tested | 
 |  * for eviction, otherwise then the LRU list of objects within the GTT | 
 |  * is scanned to find the first set of replacement nodes to create the hole. | 
 |  * Those old overlapping nodes are evicted from the GTT (and so must be | 
 |  * rebound before any future use). Any node that is currently pinned cannot | 
 |  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently | 
 |  * active and #PIN_NONBLOCK is specified, that node is also skipped when | 
 |  * searching for an eviction candidate. See i915_gem_evict_something() for | 
 |  * the gory details on the eviction algorithm. | 
 |  * | 
 |  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if | 
 |  * asked to wait for eviction and interrupted. | 
 |  */ | 
 | int i915_gem_gtt_insert(struct i915_address_space *vm, | 
 | 			struct drm_mm_node *node, | 
 | 			u64 size, u64 alignment, unsigned long color, | 
 | 			u64 start, u64 end, unsigned int flags) | 
 | { | 
 | 	enum drm_mm_insert_mode mode; | 
 | 	u64 offset; | 
 | 	int err; | 
 |  | 
 | 	lockdep_assert_held(&vm->i915->drm.struct_mutex); | 
 | 	GEM_BUG_ON(!size); | 
 | 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); | 
 | 	GEM_BUG_ON(alignment && !is_power_of_2(alignment)); | 
 | 	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); | 
 | 	GEM_BUG_ON(start >= end); | 
 | 	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); | 
 | 	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); | 
 | 	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base); | 
 | 	GEM_BUG_ON(drm_mm_node_allocated(node)); | 
 |  | 
 | 	if (unlikely(range_overflows(start, size, end))) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	mode = DRM_MM_INSERT_BEST; | 
 | 	if (flags & PIN_HIGH) | 
 | 		mode = DRM_MM_INSERT_HIGH; | 
 | 	if (flags & PIN_MAPPABLE) | 
 | 		mode = DRM_MM_INSERT_LOW; | 
 |  | 
 | 	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, | 
 | 	 * so we know that we always have a minimum alignment of 4096. | 
 | 	 * The drm_mm range manager is optimised to return results | 
 | 	 * with zero alignment, so where possible use the optimal | 
 | 	 * path. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); | 
 | 	if (alignment <= I915_GTT_MIN_ALIGNMENT) | 
 | 		alignment = 0; | 
 |  | 
 | 	err = drm_mm_insert_node_in_range(&vm->mm, node, | 
 | 					  size, alignment, color, | 
 | 					  start, end, mode); | 
 | 	if (err != -ENOSPC) | 
 | 		return err; | 
 |  | 
 | 	if (flags & PIN_NOEVICT) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* No free space, pick a slot at random. | 
 | 	 * | 
 | 	 * There is a pathological case here using a GTT shared between | 
 | 	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): | 
 | 	 * | 
 | 	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| | 
 | 	 *         (64k objects)             (448k objects) | 
 | 	 * | 
 | 	 * Now imagine that the eviction LRU is ordered top-down (just because | 
 | 	 * pathology meets real life), and that we need to evict an object to | 
 | 	 * make room inside the aperture. The eviction scan then has to walk | 
 | 	 * the 448k list before it finds one within range. And now imagine that | 
 | 	 * it has to search for a new hole between every byte inside the memcpy, | 
 | 	 * for several simultaneous clients. | 
 | 	 * | 
 | 	 * On a full-ppgtt system, if we have run out of available space, there | 
 | 	 * will be lots and lots of objects in the eviction list! Again, | 
 | 	 * searching that LRU list may be slow if we are also applying any | 
 | 	 * range restrictions (e.g. restriction to low 4GiB) and so, for | 
 | 	 * simplicity and similarilty between different GTT, try the single | 
 | 	 * random replacement first. | 
 | 	 */ | 
 | 	offset = random_offset(start, end, | 
 | 			       size, alignment ?: I915_GTT_MIN_ALIGNMENT); | 
 | 	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); | 
 | 	if (err != -ENOSPC) | 
 | 		return err; | 
 |  | 
 | 	/* Randomly selected placement is pinned, do a search */ | 
 | 	err = i915_gem_evict_something(vm, size, alignment, color, | 
 | 				       start, end, flags); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return drm_mm_insert_node_in_range(&vm->mm, node, | 
 | 					   size, alignment, color, | 
 | 					   start, end, DRM_MM_INSERT_EVICT); | 
 | } | 
 |  | 
 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) | 
 | #include "selftests/mock_gtt.c" | 
 | #include "selftests/i915_gem_gtt.c" | 
 | #endif |