| /* IEEE754 floating point arithmetic |
| * single precision |
| */ |
| /* |
| * MIPS floating point support |
| * Copyright (C) 1994-2000 Algorithmics Ltd. |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| */ |
| |
| #include <linux/compiler.h> |
| |
| #include "ieee754sp.h" |
| |
| int ieee754sp_class(union ieee754sp x) |
| { |
| COMPXSP; |
| EXPLODEXSP; |
| return xc; |
| } |
| |
| int ieee754sp_isnan(union ieee754sp x) |
| { |
| return ieee754sp_class(x) >= IEEE754_CLASS_SNAN; |
| } |
| |
| int ieee754sp_issnan(union ieee754sp x) |
| { |
| assert(ieee754sp_isnan(x)); |
| return (SPMANT(x) & SP_MBIT(SP_MBITS-1)); |
| } |
| |
| |
| union ieee754sp __cold ieee754sp_xcpt(union ieee754sp r, const char *op, ...) |
| { |
| struct ieee754xctx ax; |
| |
| if (!TSTX()) |
| return r; |
| |
| ax.op = op; |
| ax.rt = IEEE754_RT_SP; |
| ax.rv.sp = r; |
| va_start(ax.ap, op); |
| ieee754_xcpt(&ax); |
| va_end(ax.ap); |
| return ax.rv.sp; |
| } |
| |
| union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r, const char *op, ...) |
| { |
| struct ieee754xctx ax; |
| |
| assert(ieee754sp_isnan(r)); |
| |
| if (!ieee754sp_issnan(r)) /* QNAN does not cause invalid op !! */ |
| return r; |
| |
| if (!SETANDTESTCX(IEEE754_INVALID_OPERATION)) { |
| /* not enabled convert to a quiet NaN */ |
| SPMANT(r) &= (~SP_MBIT(SP_MBITS-1)); |
| if (ieee754sp_isnan(r)) |
| return r; |
| else |
| return ieee754sp_indef(); |
| } |
| |
| ax.op = op; |
| ax.rt = 0; |
| ax.rv.sp = r; |
| va_start(ax.ap, op); |
| ieee754_xcpt(&ax); |
| va_end(ax.ap); |
| return ax.rv.sp; |
| } |
| |
| union ieee754sp ieee754sp_bestnan(union ieee754sp x, union ieee754sp y) |
| { |
| assert(ieee754sp_isnan(x)); |
| assert(ieee754sp_isnan(y)); |
| |
| if (SPMANT(x) > SPMANT(y)) |
| return x; |
| else |
| return y; |
| } |
| |
| |
| static unsigned get_rounding(int sn, unsigned xm) |
| { |
| /* inexact must round of 3 bits |
| */ |
| if (xm & (SP_MBIT(3) - 1)) { |
| switch (ieee754_csr.rm) { |
| case IEEE754_RZ: |
| break; |
| case IEEE754_RN: |
| xm += 0x3 + ((xm >> 3) & 1); |
| /* xm += (xm&0x8)?0x4:0x3 */ |
| break; |
| case IEEE754_RU: /* toward +Infinity */ |
| if (!sn) /* ?? */ |
| xm += 0x8; |
| break; |
| case IEEE754_RD: /* toward -Infinity */ |
| if (sn) /* ?? */ |
| xm += 0x8; |
| break; |
| } |
| } |
| return xm; |
| } |
| |
| |
| /* generate a normal/denormal number with over,under handling |
| * sn is sign |
| * xe is an unbiased exponent |
| * xm is 3bit extended precision value. |
| */ |
| union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm) |
| { |
| assert(xm); /* we don't gen exact zeros (probably should) */ |
| |
| assert((xm >> (SP_MBITS + 1 + 3)) == 0); /* no execess */ |
| assert(xm & (SP_HIDDEN_BIT << 3)); |
| |
| if (xe < SP_EMIN) { |
| /* strip lower bits */ |
| int es = SP_EMIN - xe; |
| |
| if (ieee754_csr.nod) { |
| SETCX(IEEE754_UNDERFLOW); |
| SETCX(IEEE754_INEXACT); |
| |
| switch(ieee754_csr.rm) { |
| case IEEE754_RN: |
| case IEEE754_RZ: |
| return ieee754sp_zero(sn); |
| case IEEE754_RU: /* toward +Infinity */ |
| if(sn == 0) |
| return ieee754sp_min(0); |
| else |
| return ieee754sp_zero(1); |
| case IEEE754_RD: /* toward -Infinity */ |
| if(sn == 0) |
| return ieee754sp_zero(0); |
| else |
| return ieee754sp_min(1); |
| } |
| } |
| |
| if (xe == SP_EMIN - 1 |
| && get_rounding(sn, xm) >> (SP_MBITS + 1 + 3)) |
| { |
| /* Not tiny after rounding */ |
| SETCX(IEEE754_INEXACT); |
| xm = get_rounding(sn, xm); |
| xm >>= 1; |
| /* Clear grs bits */ |
| xm &= ~(SP_MBIT(3) - 1); |
| xe++; |
| } |
| else { |
| /* sticky right shift es bits |
| */ |
| SPXSRSXn(es); |
| assert((xm & (SP_HIDDEN_BIT << 3)) == 0); |
| assert(xe == SP_EMIN); |
| } |
| } |
| if (xm & (SP_MBIT(3) - 1)) { |
| SETCX(IEEE754_INEXACT); |
| if ((xm & (SP_HIDDEN_BIT << 3)) == 0) { |
| SETCX(IEEE754_UNDERFLOW); |
| } |
| |
| /* inexact must round of 3 bits |
| */ |
| xm = get_rounding(sn, xm); |
| /* adjust exponent for rounding add overflowing |
| */ |
| if (xm >> (SP_MBITS + 1 + 3)) { |
| /* add causes mantissa overflow */ |
| xm >>= 1; |
| xe++; |
| } |
| } |
| /* strip grs bits */ |
| xm >>= 3; |
| |
| assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */ |
| assert(xe >= SP_EMIN); |
| |
| if (xe > SP_EMAX) { |
| SETCX(IEEE754_OVERFLOW); |
| SETCX(IEEE754_INEXACT); |
| /* -O can be table indexed by (rm,sn) */ |
| switch (ieee754_csr.rm) { |
| case IEEE754_RN: |
| return ieee754sp_inf(sn); |
| case IEEE754_RZ: |
| return ieee754sp_max(sn); |
| case IEEE754_RU: /* toward +Infinity */ |
| if (sn == 0) |
| return ieee754sp_inf(0); |
| else |
| return ieee754sp_max(1); |
| case IEEE754_RD: /* toward -Infinity */ |
| if (sn == 0) |
| return ieee754sp_max(0); |
| else |
| return ieee754sp_inf(1); |
| } |
| } |
| /* gen norm/denorm/zero */ |
| |
| if ((xm & SP_HIDDEN_BIT) == 0) { |
| /* we underflow (tiny/zero) */ |
| assert(xe == SP_EMIN); |
| if (ieee754_csr.mx & IEEE754_UNDERFLOW) |
| SETCX(IEEE754_UNDERFLOW); |
| return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm); |
| } else { |
| assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */ |
| assert(xm & SP_HIDDEN_BIT); |
| |
| return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT); |
| } |
| } |