| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * |
| * Copyright (C) 2000, 2001 Kanoj Sarcar |
| * Copyright (C) 2000, 2001 Ralf Baechle |
| * Copyright (C) 2000, 2001 Silicon Graphics, Inc. |
| * Copyright (C) 2000, 2001, 2003 Broadcom Corporation |
| */ |
| #include <linux/cache.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/threads.h> |
| #include <linux/export.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/sched/mm.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/ftrace.h> |
| #include <linux/irqdomain.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/cpu.h> |
| #include <asm/ginvt.h> |
| #include <asm/processor.h> |
| #include <asm/idle.h> |
| #include <asm/r4k-timer.h> |
| #include <asm/mips-cps.h> |
| #include <asm/mmu_context.h> |
| #include <asm/time.h> |
| #include <asm/setup.h> |
| #include <asm/maar.h> |
| |
| int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ |
| EXPORT_SYMBOL(__cpu_number_map); |
| |
| int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ |
| EXPORT_SYMBOL(__cpu_logical_map); |
| |
| /* Number of TCs (or siblings in Intel speak) per CPU core */ |
| int smp_num_siblings = 1; |
| EXPORT_SYMBOL(smp_num_siblings); |
| |
| /* representing the TCs (or siblings in Intel speak) of each logical CPU */ |
| cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_sibling_map); |
| |
| /* representing the core map of multi-core chips of each logical CPU */ |
| cpumask_t cpu_core_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_core_map); |
| |
| static DECLARE_COMPLETION(cpu_starting); |
| static DECLARE_COMPLETION(cpu_running); |
| |
| /* |
| * A logcal cpu mask containing only one VPE per core to |
| * reduce the number of IPIs on large MT systems. |
| */ |
| cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; |
| EXPORT_SYMBOL(cpu_foreign_map); |
| |
| /* representing cpus for which sibling maps can be computed */ |
| static cpumask_t cpu_sibling_setup_map; |
| |
| /* representing cpus for which core maps can be computed */ |
| static cpumask_t cpu_core_setup_map; |
| |
| cpumask_t cpu_coherent_mask; |
| |
| #ifdef CONFIG_GENERIC_IRQ_IPI |
| static struct irq_desc *call_desc; |
| static struct irq_desc *sched_desc; |
| #endif |
| |
| static inline void set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| |
| cpumask_set_cpu(cpu, &cpu_sibling_setup_map); |
| |
| if (smp_num_siblings > 1) { |
| for_each_cpu(i, &cpu_sibling_setup_map) { |
| if (cpus_are_siblings(cpu, i)) { |
| cpumask_set_cpu(i, &cpu_sibling_map[cpu]); |
| cpumask_set_cpu(cpu, &cpu_sibling_map[i]); |
| } |
| } |
| } else |
| cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); |
| } |
| |
| static inline void set_cpu_core_map(int cpu) |
| { |
| int i; |
| |
| cpumask_set_cpu(cpu, &cpu_core_setup_map); |
| |
| for_each_cpu(i, &cpu_core_setup_map) { |
| if (cpu_data[cpu].package == cpu_data[i].package) { |
| cpumask_set_cpu(i, &cpu_core_map[cpu]); |
| cpumask_set_cpu(cpu, &cpu_core_map[i]); |
| } |
| } |
| } |
| |
| /* |
| * Calculate a new cpu_foreign_map mask whenever a |
| * new cpu appears or disappears. |
| */ |
| void calculate_cpu_foreign_map(void) |
| { |
| int i, k, core_present; |
| cpumask_t temp_foreign_map; |
| |
| /* Re-calculate the mask */ |
| cpumask_clear(&temp_foreign_map); |
| for_each_online_cpu(i) { |
| core_present = 0; |
| for_each_cpu(k, &temp_foreign_map) |
| if (cpus_are_siblings(i, k)) |
| core_present = 1; |
| if (!core_present) |
| cpumask_set_cpu(i, &temp_foreign_map); |
| } |
| |
| for_each_online_cpu(i) |
| cpumask_andnot(&cpu_foreign_map[i], |
| &temp_foreign_map, &cpu_sibling_map[i]); |
| } |
| |
| const struct plat_smp_ops *mp_ops; |
| EXPORT_SYMBOL(mp_ops); |
| |
| void register_smp_ops(const struct plat_smp_ops *ops) |
| { |
| if (mp_ops) |
| printk(KERN_WARNING "Overriding previously set SMP ops\n"); |
| |
| mp_ops = ops; |
| } |
| |
| #ifdef CONFIG_GENERIC_IRQ_IPI |
| void mips_smp_send_ipi_single(int cpu, unsigned int action) |
| { |
| mips_smp_send_ipi_mask(cpumask_of(cpu), action); |
| } |
| |
| void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) |
| { |
| unsigned long flags; |
| unsigned int core; |
| int cpu; |
| |
| local_irq_save(flags); |
| |
| switch (action) { |
| case SMP_CALL_FUNCTION: |
| __ipi_send_mask(call_desc, mask); |
| break; |
| |
| case SMP_RESCHEDULE_YOURSELF: |
| __ipi_send_mask(sched_desc, mask); |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| if (mips_cpc_present()) { |
| for_each_cpu(cpu, mask) { |
| if (cpus_are_siblings(cpu, smp_processor_id())) |
| continue; |
| |
| core = cpu_core(&cpu_data[cpu]); |
| |
| while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { |
| mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| mips_cpc_lock_other(core); |
| write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); |
| mips_cpc_unlock_other(); |
| mips_cm_unlock_other(); |
| } |
| } |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| |
| static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) |
| { |
| scheduler_ipi(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) |
| { |
| generic_smp_call_function_interrupt(); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static struct irqaction irq_resched = { |
| .handler = ipi_resched_interrupt, |
| .flags = IRQF_PERCPU, |
| .name = "IPI resched" |
| }; |
| |
| static struct irqaction irq_call = { |
| .handler = ipi_call_interrupt, |
| .flags = IRQF_PERCPU, |
| .name = "IPI call" |
| }; |
| |
| static void smp_ipi_init_one(unsigned int virq, |
| struct irqaction *action) |
| { |
| int ret; |
| |
| irq_set_handler(virq, handle_percpu_irq); |
| ret = setup_irq(virq, action); |
| BUG_ON(ret); |
| } |
| |
| static unsigned int call_virq, sched_virq; |
| |
| int mips_smp_ipi_allocate(const struct cpumask *mask) |
| { |
| int virq; |
| struct irq_domain *ipidomain; |
| struct device_node *node; |
| |
| node = of_irq_find_parent(of_root); |
| ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); |
| |
| /* |
| * Some platforms have half DT setup. So if we found irq node but |
| * didn't find an ipidomain, try to search for one that is not in the |
| * DT. |
| */ |
| if (node && !ipidomain) |
| ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); |
| |
| /* |
| * There are systems which use IPI IRQ domains, but only have one |
| * registered when some runtime condition is met. For example a Malta |
| * kernel may include support for GIC & CPU interrupt controller IPI |
| * IRQ domains, but if run on a system with no GIC & no MT ASE then |
| * neither will be supported or registered. |
| * |
| * We only have a problem if we're actually using multiple CPUs so fail |
| * loudly if that is the case. Otherwise simply return, skipping IPI |
| * setup, if we're running with only a single CPU. |
| */ |
| if (!ipidomain) { |
| BUG_ON(num_present_cpus() > 1); |
| return 0; |
| } |
| |
| virq = irq_reserve_ipi(ipidomain, mask); |
| BUG_ON(!virq); |
| if (!call_virq) |
| call_virq = virq; |
| |
| virq = irq_reserve_ipi(ipidomain, mask); |
| BUG_ON(!virq); |
| if (!sched_virq) |
| sched_virq = virq; |
| |
| if (irq_domain_is_ipi_per_cpu(ipidomain)) { |
| int cpu; |
| |
| for_each_cpu(cpu, mask) { |
| smp_ipi_init_one(call_virq + cpu, &irq_call); |
| smp_ipi_init_one(sched_virq + cpu, &irq_resched); |
| } |
| } else { |
| smp_ipi_init_one(call_virq, &irq_call); |
| smp_ipi_init_one(sched_virq, &irq_resched); |
| } |
| |
| return 0; |
| } |
| |
| int mips_smp_ipi_free(const struct cpumask *mask) |
| { |
| struct irq_domain *ipidomain; |
| struct device_node *node; |
| |
| node = of_irq_find_parent(of_root); |
| ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); |
| |
| /* |
| * Some platforms have half DT setup. So if we found irq node but |
| * didn't find an ipidomain, try to search for one that is not in the |
| * DT. |
| */ |
| if (node && !ipidomain) |
| ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); |
| |
| BUG_ON(!ipidomain); |
| |
| if (irq_domain_is_ipi_per_cpu(ipidomain)) { |
| int cpu; |
| |
| for_each_cpu(cpu, mask) { |
| remove_irq(call_virq + cpu, &irq_call); |
| remove_irq(sched_virq + cpu, &irq_resched); |
| } |
| } |
| irq_destroy_ipi(call_virq, mask); |
| irq_destroy_ipi(sched_virq, mask); |
| return 0; |
| } |
| |
| |
| static int __init mips_smp_ipi_init(void) |
| { |
| if (num_possible_cpus() == 1) |
| return 0; |
| |
| mips_smp_ipi_allocate(cpu_possible_mask); |
| |
| call_desc = irq_to_desc(call_virq); |
| sched_desc = irq_to_desc(sched_virq); |
| |
| return 0; |
| } |
| early_initcall(mips_smp_ipi_init); |
| #endif |
| |
| /* |
| * First C code run on the secondary CPUs after being started up by |
| * the master. |
| */ |
| asmlinkage void start_secondary(void) |
| { |
| unsigned int cpu; |
| |
| cpu_probe(); |
| per_cpu_trap_init(false); |
| mips_clockevent_init(); |
| mp_ops->init_secondary(); |
| cpu_report(); |
| maar_init(); |
| |
| /* |
| * XXX parity protection should be folded in here when it's converted |
| * to an option instead of something based on .cputype |
| */ |
| |
| calibrate_delay(); |
| preempt_disable(); |
| cpu = smp_processor_id(); |
| cpu_data[cpu].udelay_val = loops_per_jiffy; |
| |
| cpumask_set_cpu(cpu, &cpu_coherent_mask); |
| notify_cpu_starting(cpu); |
| |
| /* Notify boot CPU that we're starting & ready to sync counters */ |
| complete(&cpu_starting); |
| |
| synchronise_count_slave(cpu); |
| |
| /* The CPU is running and counters synchronised, now mark it online */ |
| set_cpu_online(cpu, true); |
| |
| set_cpu_sibling_map(cpu); |
| set_cpu_core_map(cpu); |
| |
| calculate_cpu_foreign_map(); |
| |
| /* |
| * Notify boot CPU that we're up & online and it can safely return |
| * from __cpu_up |
| */ |
| complete(&cpu_running); |
| |
| /* |
| * irq will be enabled in ->smp_finish(), enabling it too early |
| * is dangerous. |
| */ |
| WARN_ON_ONCE(!irqs_disabled()); |
| mp_ops->smp_finish(); |
| |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| } |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| /* |
| * Remove this CPU: |
| */ |
| |
| set_cpu_online(smp_processor_id(), false); |
| calculate_cpu_foreign_map(); |
| local_irq_disable(); |
| while (1); |
| } |
| |
| void smp_send_stop(void) |
| { |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| /* called from main before smp_init() */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| init_new_context(current, &init_mm); |
| current_thread_info()->cpu = 0; |
| mp_ops->prepare_cpus(max_cpus); |
| set_cpu_sibling_map(0); |
| set_cpu_core_map(0); |
| calculate_cpu_foreign_map(); |
| #ifndef CONFIG_HOTPLUG_CPU |
| init_cpu_present(cpu_possible_mask); |
| #endif |
| cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); |
| } |
| |
| /* preload SMP state for boot cpu */ |
| void smp_prepare_boot_cpu(void) |
| { |
| if (mp_ops->prepare_boot_cpu) |
| mp_ops->prepare_boot_cpu(); |
| set_cpu_possible(0, true); |
| set_cpu_online(0, true); |
| } |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| int err; |
| |
| err = mp_ops->boot_secondary(cpu, tidle); |
| if (err) |
| return err; |
| |
| /* Wait for CPU to start and be ready to sync counters */ |
| if (!wait_for_completion_timeout(&cpu_starting, |
| msecs_to_jiffies(1000))) { |
| pr_crit("CPU%u: failed to start\n", cpu); |
| return -EIO; |
| } |
| |
| synchronise_count_master(cpu); |
| |
| /* Wait for CPU to finish startup & mark itself online before return */ |
| wait_for_completion(&cpu_running); |
| return 0; |
| } |
| |
| /* Not really SMP stuff ... */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return 0; |
| } |
| |
| static void flush_tlb_all_ipi(void *info) |
| { |
| local_flush_tlb_all(); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| if (cpu_has_mmid) { |
| htw_stop(); |
| ginvt_full(); |
| sync_ginv(); |
| instruction_hazard(); |
| htw_start(); |
| return; |
| } |
| |
| on_each_cpu(flush_tlb_all_ipi, NULL, 1); |
| } |
| |
| static void flush_tlb_mm_ipi(void *mm) |
| { |
| drop_mmu_context((struct mm_struct *)mm); |
| } |
| |
| /* |
| * Special Variant of smp_call_function for use by TLB functions: |
| * |
| * o No return value |
| * o collapses to normal function call on UP kernels |
| * o collapses to normal function call on systems with a single shared |
| * primary cache. |
| */ |
| static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) |
| { |
| smp_call_function(func, info, 1); |
| } |
| |
| static inline void smp_on_each_tlb(void (*func) (void *info), void *info) |
| { |
| preempt_disable(); |
| |
| smp_on_other_tlbs(func, info); |
| func(info); |
| |
| preempt_enable(); |
| } |
| |
| /* |
| * The following tlb flush calls are invoked when old translations are |
| * being torn down, or pte attributes are changing. For single threaded |
| * address spaces, a new context is obtained on the current cpu, and tlb |
| * context on other cpus are invalidated to force a new context allocation |
| * at switch_mm time, should the mm ever be used on other cpus. For |
| * multithreaded address spaces, intercpu interrupts have to be sent. |
| * Another case where intercpu interrupts are required is when the target |
| * mm might be active on another cpu (eg debuggers doing the flushes on |
| * behalf of debugees, kswapd stealing pages from another process etc). |
| * Kanoj 07/00. |
| */ |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| preempt_disable(); |
| |
| if (cpu_has_mmid) { |
| /* |
| * No need to worry about other CPUs - the ginvt in |
| * drop_mmu_context() will be globalized. |
| */ |
| } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| smp_on_other_tlbs(flush_tlb_mm_ipi, mm); |
| } else { |
| unsigned int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (cpu != smp_processor_id() && cpu_context(cpu, mm)) |
| set_cpu_context(cpu, mm, 0); |
| } |
| } |
| drop_mmu_context(mm); |
| |
| preempt_enable(); |
| } |
| |
| struct flush_tlb_data { |
| struct vm_area_struct *vma; |
| unsigned long addr1; |
| unsigned long addr2; |
| }; |
| |
| static void flush_tlb_range_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); |
| } |
| |
| void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long addr; |
| u32 old_mmid; |
| |
| preempt_disable(); |
| if (cpu_has_mmid) { |
| htw_stop(); |
| old_mmid = read_c0_memorymapid(); |
| write_c0_memorymapid(cpu_asid(0, mm)); |
| mtc0_tlbw_hazard(); |
| addr = round_down(start, PAGE_SIZE * 2); |
| end = round_up(end, PAGE_SIZE * 2); |
| do { |
| ginvt_va_mmid(addr); |
| sync_ginv(); |
| addr += PAGE_SIZE * 2; |
| } while (addr < end); |
| write_c0_memorymapid(old_mmid); |
| instruction_hazard(); |
| htw_start(); |
| } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| struct flush_tlb_data fd = { |
| .vma = vma, |
| .addr1 = start, |
| .addr2 = end, |
| }; |
| |
| smp_on_other_tlbs(flush_tlb_range_ipi, &fd); |
| local_flush_tlb_range(vma, start, end); |
| } else { |
| unsigned int cpu; |
| int exec = vma->vm_flags & VM_EXEC; |
| |
| for_each_online_cpu(cpu) { |
| /* |
| * flush_cache_range() will only fully flush icache if |
| * the VMA is executable, otherwise we must invalidate |
| * ASID without it appearing to has_valid_asid() as if |
| * mm has been completely unused by that CPU. |
| */ |
| if (cpu != smp_processor_id() && cpu_context(cpu, mm)) |
| set_cpu_context(cpu, mm, !exec); |
| } |
| local_flush_tlb_range(vma, start, end); |
| } |
| preempt_enable(); |
| } |
| |
| static void flush_tlb_kernel_range_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_kernel_range(fd->addr1, fd->addr2); |
| } |
| |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| struct flush_tlb_data fd = { |
| .addr1 = start, |
| .addr2 = end, |
| }; |
| |
| on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); |
| } |
| |
| static void flush_tlb_page_ipi(void *info) |
| { |
| struct flush_tlb_data *fd = info; |
| |
| local_flush_tlb_page(fd->vma, fd->addr1); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| u32 old_mmid; |
| |
| preempt_disable(); |
| if (cpu_has_mmid) { |
| htw_stop(); |
| old_mmid = read_c0_memorymapid(); |
| write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); |
| mtc0_tlbw_hazard(); |
| ginvt_va_mmid(page); |
| sync_ginv(); |
| write_c0_memorymapid(old_mmid); |
| instruction_hazard(); |
| htw_start(); |
| } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || |
| (current->mm != vma->vm_mm)) { |
| struct flush_tlb_data fd = { |
| .vma = vma, |
| .addr1 = page, |
| }; |
| |
| smp_on_other_tlbs(flush_tlb_page_ipi, &fd); |
| local_flush_tlb_page(vma, page); |
| } else { |
| unsigned int cpu; |
| |
| for_each_online_cpu(cpu) { |
| /* |
| * flush_cache_page() only does partial flushes, so |
| * invalidate ASID without it appearing to |
| * has_valid_asid() as if mm has been completely unused |
| * by that CPU. |
| */ |
| if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) |
| set_cpu_context(cpu, vma->vm_mm, 1); |
| } |
| local_flush_tlb_page(vma, page); |
| } |
| preempt_enable(); |
| } |
| |
| static void flush_tlb_one_ipi(void *info) |
| { |
| unsigned long vaddr = (unsigned long) info; |
| |
| local_flush_tlb_one(vaddr); |
| } |
| |
| void flush_tlb_one(unsigned long vaddr) |
| { |
| smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); |
| } |
| |
| EXPORT_SYMBOL(flush_tlb_page); |
| EXPORT_SYMBOL(flush_tlb_one); |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| |
| static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); |
| static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd); |
| |
| void tick_broadcast(const struct cpumask *mask) |
| { |
| atomic_t *count; |
| call_single_data_t *csd; |
| int cpu; |
| |
| for_each_cpu(cpu, mask) { |
| count = &per_cpu(tick_broadcast_count, cpu); |
| csd = &per_cpu(tick_broadcast_csd, cpu); |
| |
| if (atomic_inc_return(count) == 1) |
| smp_call_function_single_async(cpu, csd); |
| } |
| } |
| |
| static void tick_broadcast_callee(void *info) |
| { |
| int cpu = smp_processor_id(); |
| tick_receive_broadcast(); |
| atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); |
| } |
| |
| static int __init tick_broadcast_init(void) |
| { |
| call_single_data_t *csd; |
| int cpu; |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| csd = &per_cpu(tick_broadcast_csd, cpu); |
| csd->func = tick_broadcast_callee; |
| } |
| |
| return 0; |
| } |
| early_initcall(tick_broadcast_init); |
| |
| #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ |