| 	.file	"wm_sqrt.S" | 
 | /*---------------------------------------------------------------------------+ | 
 |  |  wm_sqrt.S                                                                | | 
 |  |                                                                           | | 
 |  | Fixed point arithmetic square root evaluation.                            | | 
 |  |                                                                           | | 
 |  | Copyright (C) 1992,1993,1995,1997                                         | | 
 |  |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | 
 |  |                       Australia.  E-mail billm@suburbia.net               | | 
 |  |                                                                           | | 
 |  | Call from C as:                                                           | | 
 |  |    int wm_sqrt(FPU_REG *n, unsigned int control_word)                     | | 
 |  |                                                                           | | 
 |  +---------------------------------------------------------------------------*/ | 
 |  | 
 | /*---------------------------------------------------------------------------+ | 
 |  |  wm_sqrt(FPU_REG *n, unsigned int control_word)                           | | 
 |  |    returns the square root of n in n.                                     | | 
 |  |                                                                           | | 
 |  |  Use Newton's method to compute the square root of a number, which must   | | 
 |  |  be in the range  [1.0 .. 4.0),  to 64 bits accuracy.                     | | 
 |  |  Does not check the sign or tag of the argument.                          | | 
 |  |  Sets the exponent, but not the sign or tag of the result.                | | 
 |  |                                                                           | | 
 |  |  The guess is kept in %esi:%edi                                           | | 
 |  +---------------------------------------------------------------------------*/ | 
 |  | 
 | #include "exception.h" | 
 | #include "fpu_emu.h" | 
 |  | 
 |  | 
 | #ifndef NON_REENTRANT_FPU | 
 | /*	Local storage on the stack: */ | 
 | #define FPU_accum_3	-4(%ebp)	/* ms word */ | 
 | #define FPU_accum_2	-8(%ebp) | 
 | #define FPU_accum_1	-12(%ebp) | 
 | #define FPU_accum_0	-16(%ebp) | 
 |  | 
 | /* | 
 |  * The de-normalised argument: | 
 |  *                  sq_2                  sq_1              sq_0 | 
 |  *        b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0 | 
 |  *           ^ binary point here | 
 |  */ | 
 | #define FPU_fsqrt_arg_2	-20(%ebp)	/* ms word */ | 
 | #define FPU_fsqrt_arg_1	-24(%ebp) | 
 | #define FPU_fsqrt_arg_0	-28(%ebp)	/* ls word, at most the ms bit is set */ | 
 |  | 
 | #else | 
 | /*	Local storage in a static area: */ | 
 | .data | 
 | 	.align 4,0 | 
 | FPU_accum_3: | 
 | 	.long	0		/* ms word */ | 
 | FPU_accum_2: | 
 | 	.long	0 | 
 | FPU_accum_1: | 
 | 	.long	0 | 
 | FPU_accum_0: | 
 | 	.long	0 | 
 |  | 
 | /* The de-normalised argument: | 
 |                     sq_2                  sq_1              sq_0 | 
 |           b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0 | 
 |              ^ binary point here | 
 |  */ | 
 | FPU_fsqrt_arg_2: | 
 | 	.long	0		/* ms word */ | 
 | FPU_fsqrt_arg_1: | 
 | 	.long	0 | 
 | FPU_fsqrt_arg_0: | 
 | 	.long	0		/* ls word, at most the ms bit is set */ | 
 | #endif /* NON_REENTRANT_FPU */  | 
 |  | 
 |  | 
 | .text | 
 | ENTRY(wm_sqrt) | 
 | 	pushl	%ebp | 
 | 	movl	%esp,%ebp | 
 | #ifndef NON_REENTRANT_FPU | 
 | 	subl	$28,%esp | 
 | #endif /* NON_REENTRANT_FPU */ | 
 | 	pushl	%esi | 
 | 	pushl	%edi | 
 | 	pushl	%ebx | 
 |  | 
 | 	movl	PARAM1,%esi | 
 |  | 
 | 	movl	SIGH(%esi),%eax | 
 | 	movl	SIGL(%esi),%ecx | 
 | 	xorl	%edx,%edx | 
 |  | 
 | /* We use a rough linear estimate for the first guess.. */ | 
 |  | 
 | 	cmpw	EXP_BIAS,EXP(%esi) | 
 | 	jnz	sqrt_arg_ge_2 | 
 |  | 
 | 	shrl	$1,%eax			/* arg is in the range  [1.0 .. 2.0) */ | 
 | 	rcrl	$1,%ecx | 
 | 	rcrl	$1,%edx | 
 |  | 
 | sqrt_arg_ge_2: | 
 | /* From here on, n is never accessed directly again until it is | 
 |    replaced by the answer. */ | 
 |  | 
 | 	movl	%eax,FPU_fsqrt_arg_2		/* ms word of n */ | 
 | 	movl	%ecx,FPU_fsqrt_arg_1 | 
 | 	movl	%edx,FPU_fsqrt_arg_0 | 
 |  | 
 | /* Make a linear first estimate */ | 
 | 	shrl	$1,%eax | 
 | 	addl	$0x40000000,%eax | 
 | 	movl	$0xaaaaaaaa,%ecx | 
 | 	mull	%ecx | 
 | 	shll	%edx			/* max result was 7fff... */ | 
 | 	testl	$0x80000000,%edx	/* but min was 3fff... */ | 
 | 	jnz	sqrt_prelim_no_adjust | 
 |  | 
 | 	movl	$0x80000000,%edx	/* round up */ | 
 |  | 
 | sqrt_prelim_no_adjust: | 
 | 	movl	%edx,%esi	/* Our first guess */ | 
 |  | 
 | /* We have now computed (approx)   (2 + x) / 3, which forms the basis | 
 |    for a few iterations of Newton's method */ | 
 |  | 
 | 	movl	FPU_fsqrt_arg_2,%ecx	/* ms word */ | 
 |  | 
 | /* | 
 |  * From our initial estimate, three iterations are enough to get us | 
 |  * to 30 bits or so. This will then allow two iterations at better | 
 |  * precision to complete the process. | 
 |  */ | 
 |  | 
 | /* Compute  (g + n/g)/2  at each iteration (g is the guess). */ | 
 | 	shrl	%ecx		/* Doing this first will prevent a divide */ | 
 | 				/* overflow later. */ | 
 |  | 
 | 	movl	%ecx,%edx	/* msw of the arg / 2 */ | 
 | 	divl	%esi		/* current estimate */ | 
 | 	shrl	%esi		/* divide by 2 */ | 
 | 	addl	%eax,%esi	/* the new estimate */ | 
 |  | 
 | 	movl	%ecx,%edx | 
 | 	divl	%esi | 
 | 	shrl	%esi | 
 | 	addl	%eax,%esi | 
 |  | 
 | 	movl	%ecx,%edx | 
 | 	divl	%esi | 
 | 	shrl	%esi | 
 | 	addl	%eax,%esi | 
 |  | 
 | /* | 
 |  * Now that an estimate accurate to about 30 bits has been obtained (in %esi), | 
 |  * we improve it to 60 bits or so. | 
 |  * | 
 |  * The strategy from now on is to compute new estimates from | 
 |  *      guess := guess + (n - guess^2) / (2 * guess) | 
 |  */ | 
 |  | 
 | /* First, find the square of the guess */ | 
 | 	movl	%esi,%eax | 
 | 	mull	%esi | 
 | /* guess^2 now in %edx:%eax */ | 
 |  | 
 | 	movl	FPU_fsqrt_arg_1,%ecx | 
 | 	subl	%ecx,%eax | 
 | 	movl	FPU_fsqrt_arg_2,%ecx	/* ms word of normalized n */ | 
 | 	sbbl	%ecx,%edx | 
 | 	jnc	sqrt_stage_2_positive | 
 |  | 
 | /* Subtraction gives a negative result, | 
 |    negate the result before division. */ | 
 | 	notl	%edx | 
 | 	notl	%eax | 
 | 	addl	$1,%eax | 
 | 	adcl	$0,%edx | 
 |  | 
 | 	divl	%esi | 
 | 	movl	%eax,%ecx | 
 |  | 
 | 	movl	%edx,%eax | 
 | 	divl	%esi | 
 | 	jmp	sqrt_stage_2_finish | 
 |  | 
 | sqrt_stage_2_positive: | 
 | 	divl	%esi | 
 | 	movl	%eax,%ecx | 
 |  | 
 | 	movl	%edx,%eax | 
 | 	divl	%esi | 
 |  | 
 | 	notl	%ecx | 
 | 	notl	%eax | 
 | 	addl	$1,%eax | 
 | 	adcl	$0,%ecx | 
 |  | 
 | sqrt_stage_2_finish: | 
 | 	sarl	$1,%ecx		/* divide by 2 */ | 
 | 	rcrl	$1,%eax | 
 |  | 
 | 	/* Form the new estimate in %esi:%edi */ | 
 | 	movl	%eax,%edi | 
 | 	addl	%ecx,%esi | 
 |  | 
 | 	jnz	sqrt_stage_2_done	/* result should be [1..2) */ | 
 |  | 
 | #ifdef PARANOID | 
 | /* It should be possible to get here only if the arg is ffff....ffff */ | 
 | 	cmp	$0xffffffff,FPU_fsqrt_arg_1 | 
 | 	jnz	sqrt_stage_2_error | 
 | #endif /* PARANOID */ | 
 |  | 
 | /* The best rounded result. */ | 
 | 	xorl	%eax,%eax | 
 | 	decl	%eax | 
 | 	movl	%eax,%edi | 
 | 	movl	%eax,%esi | 
 | 	movl	$0x7fffffff,%eax | 
 | 	jmp	sqrt_round_result | 
 |  | 
 | #ifdef PARANOID | 
 | sqrt_stage_2_error: | 
 | 	pushl	EX_INTERNAL|0x213 | 
 | 	call	EXCEPTION | 
 | #endif /* PARANOID */  | 
 |  | 
 | sqrt_stage_2_done: | 
 |  | 
 | /* Now the square root has been computed to better than 60 bits. */ | 
 |  | 
 | /* Find the square of the guess. */ | 
 | 	movl	%edi,%eax		/* ls word of guess */ | 
 | 	mull	%edi | 
 | 	movl	%edx,FPU_accum_1 | 
 |  | 
 | 	movl	%esi,%eax | 
 | 	mull	%esi | 
 | 	movl	%edx,FPU_accum_3 | 
 | 	movl	%eax,FPU_accum_2 | 
 |  | 
 | 	movl	%edi,%eax | 
 | 	mull	%esi | 
 | 	addl	%eax,FPU_accum_1 | 
 | 	adcl	%edx,FPU_accum_2 | 
 | 	adcl	$0,FPU_accum_3 | 
 |  | 
 | /*	movl	%esi,%eax */ | 
 | /*	mull	%edi */ | 
 | 	addl	%eax,FPU_accum_1 | 
 | 	adcl	%edx,FPU_accum_2 | 
 | 	adcl	$0,FPU_accum_3 | 
 |  | 
 | /* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */ | 
 |  | 
 | 	movl	FPU_fsqrt_arg_0,%eax		/* get normalized n */ | 
 | 	subl	%eax,FPU_accum_1 | 
 | 	movl	FPU_fsqrt_arg_1,%eax | 
 | 	sbbl	%eax,FPU_accum_2 | 
 | 	movl	FPU_fsqrt_arg_2,%eax		/* ms word of normalized n */ | 
 | 	sbbl	%eax,FPU_accum_3 | 
 | 	jnc	sqrt_stage_3_positive | 
 |  | 
 | /* Subtraction gives a negative result, | 
 |    negate the result before division */ | 
 | 	notl	FPU_accum_1 | 
 | 	notl	FPU_accum_2 | 
 | 	notl	FPU_accum_3 | 
 | 	addl	$1,FPU_accum_1 | 
 | 	adcl	$0,FPU_accum_2 | 
 |  | 
 | #ifdef PARANOID | 
 | 	adcl	$0,FPU_accum_3	/* This must be zero */ | 
 | 	jz	sqrt_stage_3_no_error | 
 |  | 
 | sqrt_stage_3_error: | 
 | 	pushl	EX_INTERNAL|0x207 | 
 | 	call	EXCEPTION | 
 |  | 
 | sqrt_stage_3_no_error: | 
 | #endif /* PARANOID */ | 
 |  | 
 | 	movl	FPU_accum_2,%edx | 
 | 	movl	FPU_accum_1,%eax | 
 | 	divl	%esi | 
 | 	movl	%eax,%ecx | 
 |  | 
 | 	movl	%edx,%eax | 
 | 	divl	%esi | 
 |  | 
 | 	sarl	$1,%ecx		/* divide by 2 */ | 
 | 	rcrl	$1,%eax | 
 |  | 
 | 	/* prepare to round the result */ | 
 |  | 
 | 	addl	%ecx,%edi | 
 | 	adcl	$0,%esi | 
 |  | 
 | 	jmp	sqrt_stage_3_finished | 
 |  | 
 | sqrt_stage_3_positive: | 
 | 	movl	FPU_accum_2,%edx | 
 | 	movl	FPU_accum_1,%eax | 
 | 	divl	%esi | 
 | 	movl	%eax,%ecx | 
 |  | 
 | 	movl	%edx,%eax | 
 | 	divl	%esi | 
 |  | 
 | 	sarl	$1,%ecx		/* divide by 2 */ | 
 | 	rcrl	$1,%eax | 
 |  | 
 | 	/* prepare to round the result */ | 
 |  | 
 | 	notl	%eax		/* Negate the correction term */ | 
 | 	notl	%ecx | 
 | 	addl	$1,%eax | 
 | 	adcl	$0,%ecx		/* carry here ==> correction == 0 */ | 
 | 	adcl	$0xffffffff,%esi | 
 |  | 
 | 	addl	%ecx,%edi | 
 | 	adcl	$0,%esi | 
 |  | 
 | sqrt_stage_3_finished: | 
 |  | 
 | /* | 
 |  * The result in %esi:%edi:%esi should be good to about 90 bits here, | 
 |  * and the rounding information here does not have sufficient accuracy | 
 |  * in a few rare cases. | 
 |  */ | 
 | 	cmpl	$0xffffffe0,%eax | 
 | 	ja	sqrt_near_exact_x | 
 |  | 
 | 	cmpl	$0x00000020,%eax | 
 | 	jb	sqrt_near_exact | 
 |  | 
 | 	cmpl	$0x7fffffe0,%eax | 
 | 	jb	sqrt_round_result | 
 |  | 
 | 	cmpl	$0x80000020,%eax | 
 | 	jb	sqrt_get_more_precision | 
 |  | 
 | sqrt_round_result: | 
 | /* Set up for rounding operations */ | 
 | 	movl	%eax,%edx | 
 | 	movl	%esi,%eax | 
 | 	movl	%edi,%ebx | 
 | 	movl	PARAM1,%edi | 
 | 	movw	EXP_BIAS,EXP(%edi)	/* Result is in  [1.0 .. 2.0) */ | 
 | 	jmp	fpu_reg_round | 
 |  | 
 |  | 
 | sqrt_near_exact_x: | 
 | /* First, the estimate must be rounded up. */ | 
 | 	addl	$1,%edi | 
 | 	adcl	$0,%esi | 
 |  | 
 | sqrt_near_exact: | 
 | /* | 
 |  * This is an easy case because x^1/2 is monotonic. | 
 |  * We need just find the square of our estimate, compare it | 
 |  * with the argument, and deduce whether our estimate is | 
 |  * above, below, or exact. We use the fact that the estimate | 
 |  * is known to be accurate to about 90 bits. | 
 |  */ | 
 | 	movl	%edi,%eax		/* ls word of guess */ | 
 | 	mull	%edi | 
 | 	movl	%edx,%ebx		/* 2nd ls word of square */ | 
 | 	movl	%eax,%ecx		/* ls word of square */ | 
 |  | 
 | 	movl	%edi,%eax | 
 | 	mull	%esi | 
 | 	addl	%eax,%ebx | 
 | 	addl	%eax,%ebx | 
 |  | 
 | #ifdef PARANOID | 
 | 	cmp	$0xffffffb0,%ebx | 
 | 	jb	sqrt_near_exact_ok | 
 |  | 
 | 	cmp	$0x00000050,%ebx | 
 | 	ja	sqrt_near_exact_ok | 
 |  | 
 | 	pushl	EX_INTERNAL|0x214 | 
 | 	call	EXCEPTION | 
 |  | 
 | sqrt_near_exact_ok: | 
 | #endif /* PARANOID */  | 
 |  | 
 | 	or	%ebx,%ebx | 
 | 	js	sqrt_near_exact_small | 
 |  | 
 | 	jnz	sqrt_near_exact_large | 
 |  | 
 | 	or	%ebx,%edx | 
 | 	jnz	sqrt_near_exact_large | 
 |  | 
 | /* Our estimate is exactly the right answer */ | 
 | 	xorl	%eax,%eax | 
 | 	jmp	sqrt_round_result | 
 |  | 
 | sqrt_near_exact_small: | 
 | /* Our estimate is too small */ | 
 | 	movl	$0x000000ff,%eax | 
 | 	jmp	sqrt_round_result | 
 | 	 | 
 | sqrt_near_exact_large: | 
 | /* Our estimate is too large, we need to decrement it */ | 
 | 	subl	$1,%edi | 
 | 	sbbl	$0,%esi | 
 | 	movl	$0xffffff00,%eax | 
 | 	jmp	sqrt_round_result | 
 |  | 
 |  | 
 | sqrt_get_more_precision: | 
 | /* This case is almost the same as the above, except we start | 
 |    with an extra bit of precision in the estimate. */ | 
 | 	stc			/* The extra bit. */ | 
 | 	rcll	$1,%edi		/* Shift the estimate left one bit */ | 
 | 	rcll	$1,%esi | 
 |  | 
 | 	movl	%edi,%eax		/* ls word of guess */ | 
 | 	mull	%edi | 
 | 	movl	%edx,%ebx		/* 2nd ls word of square */ | 
 | 	movl	%eax,%ecx		/* ls word of square */ | 
 |  | 
 | 	movl	%edi,%eax | 
 | 	mull	%esi | 
 | 	addl	%eax,%ebx | 
 | 	addl	%eax,%ebx | 
 |  | 
 | /* Put our estimate back to its original value */ | 
 | 	stc			/* The ms bit. */ | 
 | 	rcrl	$1,%esi		/* Shift the estimate left one bit */ | 
 | 	rcrl	$1,%edi | 
 |  | 
 | #ifdef PARANOID | 
 | 	cmp	$0xffffff60,%ebx | 
 | 	jb	sqrt_more_prec_ok | 
 |  | 
 | 	cmp	$0x000000a0,%ebx | 
 | 	ja	sqrt_more_prec_ok | 
 |  | 
 | 	pushl	EX_INTERNAL|0x215 | 
 | 	call	EXCEPTION | 
 |  | 
 | sqrt_more_prec_ok: | 
 | #endif /* PARANOID */  | 
 |  | 
 | 	or	%ebx,%ebx | 
 | 	js	sqrt_more_prec_small | 
 |  | 
 | 	jnz	sqrt_more_prec_large | 
 |  | 
 | 	or	%ebx,%ecx | 
 | 	jnz	sqrt_more_prec_large | 
 |  | 
 | /* Our estimate is exactly the right answer */ | 
 | 	movl	$0x80000000,%eax | 
 | 	jmp	sqrt_round_result | 
 |  | 
 | sqrt_more_prec_small: | 
 | /* Our estimate is too small */ | 
 | 	movl	$0x800000ff,%eax | 
 | 	jmp	sqrt_round_result | 
 | 	 | 
 | sqrt_more_prec_large: | 
 | /* Our estimate is too large */ | 
 | 	movl	$0x7fffff00,%eax | 
 | 	jmp	sqrt_round_result |