|  | /* | 
|  | * linux/arch/unicore32/mm/mmu.c | 
|  | * | 
|  | * Code specific to PKUnity SoC and UniCore ISA | 
|  | * | 
|  | * Copyright (C) 2001-2010 GUAN Xue-tao | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/sizes.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include <mach/map.h> | 
|  |  | 
|  | #include "mm.h" | 
|  |  | 
|  | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | 
|  |  | 
|  | /* | 
|  | * empty_zero_page is a special page that is used for | 
|  | * zero-initialized data and COW. | 
|  | */ | 
|  | struct page *empty_zero_page; | 
|  | EXPORT_SYMBOL(empty_zero_page); | 
|  |  | 
|  | /* | 
|  | * The pmd table for the upper-most set of pages. | 
|  | */ | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | pgprot_t pgprot_user; | 
|  | EXPORT_SYMBOL(pgprot_user); | 
|  |  | 
|  | pgprot_t pgprot_kernel; | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | cr_alignment &= ~CR_A; | 
|  | cr_no_alignment &= ~CR_A; | 
|  | set_cr(cr_alignment); | 
|  | return 1; | 
|  | } | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | void adjust_cr(unsigned long mask, unsigned long set) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | mask &= ~CR_A; | 
|  |  | 
|  | set &= mask; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cr_no_alignment = (cr_no_alignment & ~mask) | set; | 
|  | cr_alignment = (cr_alignment & ~mask) | set; | 
|  |  | 
|  | set_cr((get_cr() & ~mask) | set); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | struct map_desc { | 
|  | unsigned long virtual; | 
|  | unsigned long pfn; | 
|  | unsigned long length; | 
|  | unsigned int type; | 
|  | }; | 
|  |  | 
|  | #define PROT_PTE_DEVICE		(PTE_PRESENT | PTE_YOUNG |	\ | 
|  | PTE_DIRTY | PTE_READ | PTE_WRITE) | 
|  | #define PROT_SECT_DEVICE	(PMD_TYPE_SECT | PMD_PRESENT |	\ | 
|  | PMD_SECT_READ | PMD_SECT_WRITE) | 
|  |  | 
|  | static struct mem_type mem_types[] = { | 
|  | [MT_DEVICE] = {		  /* Strongly ordered */ | 
|  | .prot_pte	= PROT_PTE_DEVICE, | 
|  | .prot_l1	= PMD_TYPE_TABLE | PMD_PRESENT, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | }, | 
|  | /* | 
|  | * MT_KUSER: pte for vecpage -- cacheable, | 
|  | *       and sect for unigfx mmap -- noncacheable | 
|  | */ | 
|  | [MT_KUSER] = { | 
|  | .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | | 
|  | PTE_CACHEABLE | PTE_READ | PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT, | 
|  | .prot_sect = PROT_SECT_DEVICE, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | | 
|  | PTE_CACHEABLE | PTE_READ | PTE_WRITE | | 
|  | PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT, | 
|  | }, | 
|  | [MT_MEMORY] = { | 
|  | .prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY | | 
|  | PTE_WRITE | PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | | 
|  | PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE | | 
|  | PMD_SECT_READ, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const struct mem_type *get_mem_type(unsigned int type) | 
|  | { | 
|  | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_type); | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | static void __init build_mem_type_table(void) | 
|  | { | 
|  | pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE); | 
|  | pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG | | 
|  | PTE_DIRTY | PTE_READ | PTE_WRITE | | 
|  | PTE_EXEC | PTE_CACHEABLE); | 
|  | } | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | static void __init *early_alloc(unsigned long sz) | 
|  | { | 
|  | void *ptr = __va(memblock_alloc(sz, sz)); | 
|  | memset(ptr, 0, sz); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long prot) | 
|  | { | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t)); | 
|  | __pmd_populate(pmd, __pa(pte) | prot); | 
|  | } | 
|  | BUG_ON(pmd_bad(*pmd)); | 
|  | return pte_offset_kernel(pmd, addr); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, unsigned long pfn, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); | 
|  | do { | 
|  | set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte))); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_section(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, unsigned long phys, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset((pud_t *)pgd, addr); | 
|  |  | 
|  | /* | 
|  | * Try a section mapping - end, addr and phys must all be aligned | 
|  | * to a section boundary. | 
|  | */ | 
|  | if (((addr | end | phys) & ~SECTION_MASK) == 0) { | 
|  | pmd_t *p = pmd; | 
|  |  | 
|  | do { | 
|  | set_pmd(pmd, __pmd(phys | type->prot_sect)); | 
|  | phys += SECTION_SIZE; | 
|  | } while (pmd++, addr += SECTION_SIZE, addr != end); | 
|  |  | 
|  | flush_pmd_entry(p); | 
|  | } else { | 
|  | /* | 
|  | * No need to loop; pte's aren't interested in the | 
|  | * individual L1 entries. | 
|  | */ | 
|  | alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections. | 
|  | */ | 
|  | static void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | unsigned long phys, addr, length, end; | 
|  | const struct mem_type *type; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | printk(KERN_WARNING "BUG: not creating mapping for " | 
|  | "0x%08llx at 0x%08lx in user region\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
|  | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { | 
|  | printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " | 
|  | "overlaps vmalloc space\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | } | 
|  |  | 
|  | type = &mem_types[md->type]; | 
|  |  | 
|  | addr = md->virtual & PAGE_MASK; | 
|  | phys = (unsigned long)__pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  |  | 
|  | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
|  | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " | 
|  | "be mapped using pages, ignoring.\n", | 
|  | __pfn_to_phys(md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | unsigned long next = pgd_addr_end(addr, end); | 
|  |  | 
|  | alloc_init_section(pgd, addr, next, phys, type); | 
|  |  | 
|  | phys += next - addr; | 
|  | addr = next; | 
|  | } while (pgd++, addr != end); | 
|  | } | 
|  |  | 
|  | static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M); | 
|  |  | 
|  | /* | 
|  | * vmalloc=size forces the vmalloc area to be exactly 'size' | 
|  | * bytes. This can be used to increase (or decrease) the vmalloc | 
|  | * area - the default is 128m. | 
|  | */ | 
|  | static int __init early_vmalloc(char *arg) | 
|  | { | 
|  | unsigned long vmalloc_reserve = memparse(arg, NULL); | 
|  |  | 
|  | if (vmalloc_reserve < SZ_16M) { | 
|  | vmalloc_reserve = SZ_16M; | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area too small, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { | 
|  | vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area is too big, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); | 
|  | return 0; | 
|  | } | 
|  | early_param("vmalloc", early_vmalloc); | 
|  |  | 
|  | static phys_addr_t lowmem_limit __initdata = SZ_1G; | 
|  |  | 
|  | static void __init sanity_check_meminfo(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | lowmem_limit = __pa(vmalloc_min - 1) + 1; | 
|  | memblock_set_current_limit(lowmem_limit); | 
|  |  | 
|  | for (i = 0, j = 0; i < meminfo.nr_banks; i++) { | 
|  | struct membank *bank = &meminfo.bank[j]; | 
|  | *bank = meminfo.bank[i]; | 
|  | j++; | 
|  | } | 
|  | meminfo.nr_banks = j; | 
|  | } | 
|  |  | 
|  | static inline void prepare_page_table(void) | 
|  | { | 
|  | unsigned long addr; | 
|  | phys_addr_t end; | 
|  |  | 
|  | /* | 
|  | * Clear out all the mappings below the kernel image. | 
|  | */ | 
|  | for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Find the end of the first block of lowmem. | 
|  | */ | 
|  | end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; | 
|  | if (end >= lowmem_limit) | 
|  | end = lowmem_limit; | 
|  |  | 
|  | /* | 
|  | * Clear out all the kernel space mappings, except for the first | 
|  | * memory bank, up to the end of the vmalloc region. | 
|  | */ | 
|  | for (addr = __phys_to_virt(end); | 
|  | addr < VMALLOC_END; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the special regions of memory | 
|  | */ | 
|  | void __init uc32_mm_memblock_reserve(void) | 
|  | { | 
|  | /* | 
|  | * Reserve the page tables.  These are already in use, | 
|  | * and can only be in node 0. | 
|  | */ | 
|  | memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); | 
|  |  | 
|  | #ifdef CONFIG_PUV3_UNIGFX | 
|  | /* | 
|  | * These should likewise go elsewhere.  They pre-reserve the | 
|  | * screen/video memory region at the 48M~64M of main system memory. | 
|  | */ | 
|  | memblock_reserve(PKUNITY_UNIGFX_MMAP_BASE, PKUNITY_UNIGFX_MMAP_SIZE); | 
|  | memblock_reserve(PKUNITY_UVC_MMAP_BASE, PKUNITY_UVC_MMAP_SIZE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up device the mappings.  Since we clear out the page tables for all | 
|  | * mappings above VMALLOC_END, we will remove any debug device mappings. | 
|  | * This means you have to be careful how you debug this function, or any | 
|  | * called function.  This means you can't use any function or debugging | 
|  | * method which may touch any device, otherwise the kernel _will_ crash. | 
|  | */ | 
|  | static void __init devicemaps_init(void) | 
|  | { | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  | void *vectors; | 
|  |  | 
|  | /* | 
|  | * Allocate the vector page early. | 
|  | */ | 
|  | vectors = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Create a mapping for UniGFX VRAM | 
|  | */ | 
|  | #ifdef CONFIG_PUV3_UNIGFX | 
|  | map.pfn = __phys_to_pfn(PKUNITY_UNIGFX_MMAP_BASE); | 
|  | map.virtual = KUSER_UNIGFX_BASE; | 
|  | map.length = PKUNITY_UNIGFX_MMAP_SIZE; | 
|  | map.type = MT_KUSER; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the machine vectors at the high-vectors | 
|  | * location (0xffff0000).  If we aren't using high-vectors, also | 
|  | * create a mapping at the low-vectors virtual address. | 
|  | */ | 
|  | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
|  | map.virtual = VECTORS_BASE; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_HIGH_VECTORS; | 
|  | create_mapping(&map); | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the kuser page at the special | 
|  | * location (0xbfff0000) to the same vectors location. | 
|  | */ | 
|  | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
|  | map.virtual = KUSER_VECPAGE_BASE; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_KUSER; | 
|  | create_mapping(&map); | 
|  |  | 
|  | /* | 
|  | * Finally flush the caches and tlb to ensure that we're in a | 
|  | * consistent state wrt the writebuffer.  This also ensures that | 
|  | * any write-allocated cache lines in the vector page are written | 
|  | * back.  After this point, we can start to touch devices again. | 
|  | */ | 
|  | local_flush_tlb_all(); | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | static void __init map_lowmem(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  |  | 
|  | /* Map all the lowmem memory banks. */ | 
|  | for_each_memblock(memory, reg) { | 
|  | phys_addr_t start = reg->base; | 
|  | phys_addr_t end = start + reg->size; | 
|  | struct map_desc map; | 
|  |  | 
|  | if (end > lowmem_limit) | 
|  | end = lowmem_limit; | 
|  | if (start >= end) | 
|  | break; | 
|  |  | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = end - start; | 
|  | map.type = MT_MEMORY; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables, initialises the zone memory | 
|  | * maps, and sets up the zero page, bad page and bad page tables. | 
|  | */ | 
|  | void __init paging_init(void) | 
|  | { | 
|  | void *zero_page; | 
|  |  | 
|  | build_mem_type_table(); | 
|  | sanity_check_meminfo(); | 
|  | prepare_page_table(); | 
|  | map_lowmem(); | 
|  | devicemaps_init(); | 
|  |  | 
|  | top_pmd = pmd_off_k(0xffff0000); | 
|  |  | 
|  | /* allocate the zero page. */ | 
|  | zero_page = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | bootmem_init(); | 
|  |  | 
|  | empty_zero_page = virt_to_page(zero_page); | 
|  | __flush_dcache_page(NULL, empty_zero_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to soft-boot, we need to insert a 1:1 mapping in place of | 
|  | * the user-mode pages.  This will then ensure that we have predictable | 
|  | * results when turning the mmu off | 
|  | */ | 
|  | void setup_mm_for_reboot(char mode) | 
|  | { | 
|  | unsigned long base_pmdval; | 
|  | pgd_t *pgd; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We need to access to user-mode page tables here. For kernel threads | 
|  | * we don't have any user-mode mappings so we use the context that we | 
|  | * "borrowed". | 
|  | */ | 
|  | pgd = current->active_mm->pgd; | 
|  |  | 
|  | base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT; | 
|  |  | 
|  | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { | 
|  | unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = pmd_off(pgd, i << PGDIR_SHIFT); | 
|  | set_pmd(pmd, __pmd(pmdval)); | 
|  | flush_pmd_entry(pmd); | 
|  | } | 
|  |  | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take care of architecture specific things when placing a new PTE into | 
|  | * a page table, or changing an existing PTE.  Basically, there are two | 
|  | * things that we need to take care of: | 
|  | * | 
|  | *  1. If PG_dcache_clean is not set for the page, we need to ensure | 
|  | *     that any cache entries for the kernels virtual memory | 
|  | *     range are written back to the page. | 
|  | *  2. If we have multiple shared mappings of the same space in | 
|  | *     an object, we need to deal with the cache aliasing issues. | 
|  | * | 
|  | * Note that the pte lock will be held. | 
|  | */ | 
|  | void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(*ptep); | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  |  | 
|  | if (!pfn_valid(pfn)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The zero page is never written to, so never has any dirty | 
|  | * cache lines, and therefore never needs to be flushed. | 
|  | */ | 
|  | page = pfn_to_page(pfn); | 
|  | if (page == ZERO_PAGE(0)) | 
|  | return; | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | if (!test_and_set_bit(PG_dcache_clean, &page->flags)) | 
|  | __flush_dcache_page(mapping, page); | 
|  | if (mapping) | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | __flush_icache_all(); | 
|  | } |