blob: 7a1e9cd9cc62cd539c3833866750efe4bdea0ad4 [file] [log] [blame]
/*
* Copyright (C) 2017 Netronome Systems, Inc.
*
* This software is dual licensed under the GNU General License Version 2,
* June 1991 as shown in the file COPYING in the top-level directory of this
* source tree or the BSD 2-Clause License provided below. You have the
* option to license this software under the complete terms of either license.
*
* The BSD 2-Clause License:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/bitfield.h>
#include <net/geneve.h>
#include <net/pkt_cls.h>
#include <net/switchdev.h>
#include <net/tc_act/tc_csum.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_vlan.h>
#include <net/tc_act/tc_tunnel_key.h>
#include "cmsg.h"
#include "main.h"
#include "../nfp_net_repr.h"
/* The kernel versions of TUNNEL_* are not ABI and therefore vulnerable
* to change. Such changes will break our FW ABI.
*/
#define NFP_FL_TUNNEL_CSUM cpu_to_be16(0x01)
#define NFP_FL_TUNNEL_KEY cpu_to_be16(0x04)
#define NFP_FL_TUNNEL_GENEVE_OPT cpu_to_be16(0x0800)
#define NFP_FL_SUPPORTED_TUNNEL_INFO_FLAGS IP_TUNNEL_INFO_TX
#define NFP_FL_SUPPORTED_IPV4_UDP_TUN_FLAGS (NFP_FL_TUNNEL_CSUM | \
NFP_FL_TUNNEL_KEY | \
NFP_FL_TUNNEL_GENEVE_OPT)
static void nfp_fl_pop_vlan(struct nfp_fl_pop_vlan *pop_vlan)
{
size_t act_size = sizeof(struct nfp_fl_pop_vlan);
pop_vlan->head.jump_id = NFP_FL_ACTION_OPCODE_POP_VLAN;
pop_vlan->head.len_lw = act_size >> NFP_FL_LW_SIZ;
pop_vlan->reserved = 0;
}
static void
nfp_fl_push_vlan(struct nfp_fl_push_vlan *push_vlan,
const struct tc_action *action)
{
size_t act_size = sizeof(struct nfp_fl_push_vlan);
u16 tmp_push_vlan_tci;
push_vlan->head.jump_id = NFP_FL_ACTION_OPCODE_PUSH_VLAN;
push_vlan->head.len_lw = act_size >> NFP_FL_LW_SIZ;
push_vlan->reserved = 0;
push_vlan->vlan_tpid = tcf_vlan_push_proto(action);
tmp_push_vlan_tci =
FIELD_PREP(NFP_FL_PUSH_VLAN_PRIO, tcf_vlan_push_prio(action)) |
FIELD_PREP(NFP_FL_PUSH_VLAN_VID, tcf_vlan_push_vid(action)) |
NFP_FL_PUSH_VLAN_CFI;
push_vlan->vlan_tci = cpu_to_be16(tmp_push_vlan_tci);
}
static int
nfp_fl_pre_lag(struct nfp_app *app, const struct tc_action *action,
struct nfp_fl_payload *nfp_flow, int act_len)
{
size_t act_size = sizeof(struct nfp_fl_pre_lag);
struct nfp_fl_pre_lag *pre_lag;
struct net_device *out_dev;
int err;
out_dev = tcf_mirred_dev(action);
if (!out_dev || !netif_is_lag_master(out_dev))
return 0;
if (act_len + act_size > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
/* Pre_lag action must be first on action list.
* If other actions already exist they need pushed forward.
*/
if (act_len)
memmove(nfp_flow->action_data + act_size,
nfp_flow->action_data, act_len);
pre_lag = (struct nfp_fl_pre_lag *)nfp_flow->action_data;
err = nfp_flower_lag_populate_pre_action(app, out_dev, pre_lag);
if (err)
return err;
pre_lag->head.jump_id = NFP_FL_ACTION_OPCODE_PRE_LAG;
pre_lag->head.len_lw = act_size >> NFP_FL_LW_SIZ;
nfp_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
return act_size;
}
static bool nfp_fl_netdev_is_tunnel_type(struct net_device *out_dev,
enum nfp_flower_tun_type tun_type)
{
if (!out_dev->rtnl_link_ops)
return false;
if (!strcmp(out_dev->rtnl_link_ops->kind, "vxlan"))
return tun_type == NFP_FL_TUNNEL_VXLAN;
if (!strcmp(out_dev->rtnl_link_ops->kind, "geneve"))
return tun_type == NFP_FL_TUNNEL_GENEVE;
return false;
}
static int
nfp_fl_output(struct nfp_app *app, struct nfp_fl_output *output,
const struct tc_action *action, struct nfp_fl_payload *nfp_flow,
bool last, struct net_device *in_dev,
enum nfp_flower_tun_type tun_type, int *tun_out_cnt)
{
size_t act_size = sizeof(struct nfp_fl_output);
struct nfp_flower_priv *priv = app->priv;
struct net_device *out_dev;
u16 tmp_flags;
output->head.jump_id = NFP_FL_ACTION_OPCODE_OUTPUT;
output->head.len_lw = act_size >> NFP_FL_LW_SIZ;
out_dev = tcf_mirred_dev(action);
if (!out_dev)
return -EOPNOTSUPP;
tmp_flags = last ? NFP_FL_OUT_FLAGS_LAST : 0;
if (tun_type) {
/* Verify the egress netdev matches the tunnel type. */
if (!nfp_fl_netdev_is_tunnel_type(out_dev, tun_type))
return -EOPNOTSUPP;
if (*tun_out_cnt)
return -EOPNOTSUPP;
(*tun_out_cnt)++;
output->flags = cpu_to_be16(tmp_flags |
NFP_FL_OUT_FLAGS_USE_TUN);
output->port = cpu_to_be32(NFP_FL_PORT_TYPE_TUN | tun_type);
} else if (netif_is_lag_master(out_dev) &&
priv->flower_ext_feats & NFP_FL_FEATS_LAG) {
int gid;
output->flags = cpu_to_be16(tmp_flags);
gid = nfp_flower_lag_get_output_id(app, out_dev);
if (gid < 0)
return gid;
output->port = cpu_to_be32(NFP_FL_LAG_OUT | gid);
} else {
/* Set action output parameters. */
output->flags = cpu_to_be16(tmp_flags);
/* Only offload if egress ports are on the same device as the
* ingress port.
*/
if (!switchdev_port_same_parent_id(in_dev, out_dev))
return -EOPNOTSUPP;
if (!nfp_netdev_is_nfp_repr(out_dev))
return -EOPNOTSUPP;
output->port = cpu_to_be32(nfp_repr_get_port_id(out_dev));
if (!output->port)
return -EOPNOTSUPP;
}
nfp_flow->meta.shortcut = output->port;
return 0;
}
static enum nfp_flower_tun_type
nfp_fl_get_tun_from_act_l4_port(struct nfp_app *app,
const struct tc_action *action)
{
struct ip_tunnel_info *tun = tcf_tunnel_info(action);
struct nfp_flower_priv *priv = app->priv;
switch (tun->key.tp_dst) {
case htons(NFP_FL_VXLAN_PORT):
return NFP_FL_TUNNEL_VXLAN;
case htons(NFP_FL_GENEVE_PORT):
if (priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)
return NFP_FL_TUNNEL_GENEVE;
/* FALLTHROUGH */
default:
return NFP_FL_TUNNEL_NONE;
}
}
static struct nfp_fl_pre_tunnel *nfp_fl_pre_tunnel(char *act_data, int act_len)
{
size_t act_size = sizeof(struct nfp_fl_pre_tunnel);
struct nfp_fl_pre_tunnel *pre_tun_act;
/* Pre_tunnel action must be first on action list.
* If other actions already exist they need to be pushed forward.
*/
if (act_len)
memmove(act_data + act_size, act_data, act_len);
pre_tun_act = (struct nfp_fl_pre_tunnel *)act_data;
memset(pre_tun_act, 0, act_size);
pre_tun_act->head.jump_id = NFP_FL_ACTION_OPCODE_PRE_TUNNEL;
pre_tun_act->head.len_lw = act_size >> NFP_FL_LW_SIZ;
return pre_tun_act;
}
static int
nfp_fl_push_geneve_options(struct nfp_fl_payload *nfp_fl, int *list_len,
const struct tc_action *action)
{
struct ip_tunnel_info *ip_tun = tcf_tunnel_info(action);
int opt_len, opt_cnt, act_start, tot_push_len;
u8 *src = ip_tunnel_info_opts(ip_tun);
/* We need to populate the options in reverse order for HW.
* Therefore we go through the options, calculating the
* number of options and the total size, then we populate
* them in reverse order in the action list.
*/
opt_cnt = 0;
tot_push_len = 0;
opt_len = ip_tun->options_len;
while (opt_len > 0) {
struct geneve_opt *opt = (struct geneve_opt *)src;
opt_cnt++;
if (opt_cnt > NFP_FL_MAX_GENEVE_OPT_CNT)
return -EOPNOTSUPP;
tot_push_len += sizeof(struct nfp_fl_push_geneve) +
opt->length * 4;
if (tot_push_len > NFP_FL_MAX_GENEVE_OPT_ACT)
return -EOPNOTSUPP;
opt_len -= sizeof(struct geneve_opt) + opt->length * 4;
src += sizeof(struct geneve_opt) + opt->length * 4;
}
if (*list_len + tot_push_len > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
act_start = *list_len;
*list_len += tot_push_len;
src = ip_tunnel_info_opts(ip_tun);
while (opt_cnt) {
struct geneve_opt *opt = (struct geneve_opt *)src;
struct nfp_fl_push_geneve *push;
size_t act_size, len;
opt_cnt--;
act_size = sizeof(struct nfp_fl_push_geneve) + opt->length * 4;
tot_push_len -= act_size;
len = act_start + tot_push_len;
push = (struct nfp_fl_push_geneve *)&nfp_fl->action_data[len];
push->head.jump_id = NFP_FL_ACTION_OPCODE_PUSH_GENEVE;
push->head.len_lw = act_size >> NFP_FL_LW_SIZ;
push->reserved = 0;
push->class = opt->opt_class;
push->type = opt->type;
push->length = opt->length;
memcpy(&push->opt_data, opt->opt_data, opt->length * 4);
src += sizeof(struct geneve_opt) + opt->length * 4;
}
return 0;
}
static int
nfp_fl_set_ipv4_udp_tun(struct nfp_app *app,
struct nfp_fl_set_ipv4_udp_tun *set_tun,
const struct tc_action *action,
struct nfp_fl_pre_tunnel *pre_tun,
enum nfp_flower_tun_type tun_type,
struct net_device *netdev)
{
size_t act_size = sizeof(struct nfp_fl_set_ipv4_udp_tun);
struct ip_tunnel_info *ip_tun = tcf_tunnel_info(action);
struct nfp_flower_priv *priv = app->priv;
u32 tmp_set_ip_tun_type_index = 0;
/* Currently support one pre-tunnel so index is always 0. */
int pretun_idx = 0;
BUILD_BUG_ON(NFP_FL_TUNNEL_CSUM != TUNNEL_CSUM ||
NFP_FL_TUNNEL_KEY != TUNNEL_KEY ||
NFP_FL_TUNNEL_GENEVE_OPT != TUNNEL_GENEVE_OPT);
if (ip_tun->options_len &&
(tun_type != NFP_FL_TUNNEL_GENEVE ||
!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)))
return -EOPNOTSUPP;
set_tun->head.jump_id = NFP_FL_ACTION_OPCODE_SET_IPV4_TUNNEL;
set_tun->head.len_lw = act_size >> NFP_FL_LW_SIZ;
/* Set tunnel type and pre-tunnel index. */
tmp_set_ip_tun_type_index |=
FIELD_PREP(NFP_FL_IPV4_TUNNEL_TYPE, tun_type) |
FIELD_PREP(NFP_FL_IPV4_PRE_TUN_INDEX, pretun_idx);
set_tun->tun_type_index = cpu_to_be32(tmp_set_ip_tun_type_index);
set_tun->tun_id = ip_tun->key.tun_id;
if (ip_tun->key.ttl) {
set_tun->ttl = ip_tun->key.ttl;
} else {
struct net *net = dev_net(netdev);
struct flowi4 flow = {};
struct rtable *rt;
int err;
/* Do a route lookup to determine ttl - if fails then use
* default. Note that CONFIG_INET is a requirement of
* CONFIG_NET_SWITCHDEV so must be defined here.
*/
flow.daddr = ip_tun->key.u.ipv4.dst;
flow.flowi4_proto = IPPROTO_UDP;
rt = ip_route_output_key(net, &flow);
err = PTR_ERR_OR_ZERO(rt);
if (!err) {
set_tun->ttl = ip4_dst_hoplimit(&rt->dst);
ip_rt_put(rt);
} else {
set_tun->ttl = net->ipv4.sysctl_ip_default_ttl;
}
}
set_tun->tos = ip_tun->key.tos;
if (!(ip_tun->key.tun_flags & NFP_FL_TUNNEL_KEY) ||
ip_tun->key.tun_flags & ~NFP_FL_SUPPORTED_IPV4_UDP_TUN_FLAGS)
return -EOPNOTSUPP;
set_tun->tun_flags = ip_tun->key.tun_flags;
if (tun_type == NFP_FL_TUNNEL_GENEVE) {
set_tun->tun_proto = htons(ETH_P_TEB);
set_tun->tun_len = ip_tun->options_len / 4;
}
/* Complete pre_tunnel action. */
pre_tun->ipv4_dst = ip_tun->key.u.ipv4.dst;
return 0;
}
static void nfp_fl_set_helper32(u32 value, u32 mask, u8 *p_exact, u8 *p_mask)
{
u32 oldvalue = get_unaligned((u32 *)p_exact);
u32 oldmask = get_unaligned((u32 *)p_mask);
value &= mask;
value |= oldvalue & ~mask;
put_unaligned(oldmask | mask, (u32 *)p_mask);
put_unaligned(value, (u32 *)p_exact);
}
static int
nfp_fl_set_eth(const struct tc_action *action, int idx, u32 off,
struct nfp_fl_set_eth *set_eth)
{
u32 exact, mask;
if (off + 4 > ETH_ALEN * 2)
return -EOPNOTSUPP;
mask = ~tcf_pedit_mask(action, idx);
exact = tcf_pedit_val(action, idx);
if (exact & ~mask)
return -EOPNOTSUPP;
nfp_fl_set_helper32(exact, mask, &set_eth->eth_addr_val[off],
&set_eth->eth_addr_mask[off]);
set_eth->reserved = cpu_to_be16(0);
set_eth->head.jump_id = NFP_FL_ACTION_OPCODE_SET_ETHERNET;
set_eth->head.len_lw = sizeof(*set_eth) >> NFP_FL_LW_SIZ;
return 0;
}
static int
nfp_fl_set_ip4(const struct tc_action *action, int idx, u32 off,
struct nfp_fl_set_ip4_addrs *set_ip_addr)
{
__be32 exact, mask;
/* We are expecting tcf_pedit to return a big endian value */
mask = (__force __be32)~tcf_pedit_mask(action, idx);
exact = (__force __be32)tcf_pedit_val(action, idx);
if (exact & ~mask)
return -EOPNOTSUPP;
switch (off) {
case offsetof(struct iphdr, daddr):
set_ip_addr->ipv4_dst_mask |= mask;
set_ip_addr->ipv4_dst &= ~mask;
set_ip_addr->ipv4_dst |= exact & mask;
break;
case offsetof(struct iphdr, saddr):
set_ip_addr->ipv4_src_mask |= mask;
set_ip_addr->ipv4_src &= ~mask;
set_ip_addr->ipv4_src |= exact & mask;
break;
default:
return -EOPNOTSUPP;
}
set_ip_addr->reserved = cpu_to_be16(0);
set_ip_addr->head.jump_id = NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS;
set_ip_addr->head.len_lw = sizeof(*set_ip_addr) >> NFP_FL_LW_SIZ;
return 0;
}
static void
nfp_fl_set_ip6_helper(int opcode_tag, u8 word, __be32 exact, __be32 mask,
struct nfp_fl_set_ipv6_addr *ip6)
{
ip6->ipv6[word].mask |= mask;
ip6->ipv6[word].exact &= ~mask;
ip6->ipv6[word].exact |= exact & mask;
ip6->reserved = cpu_to_be16(0);
ip6->head.jump_id = opcode_tag;
ip6->head.len_lw = sizeof(*ip6) >> NFP_FL_LW_SIZ;
}
static int
nfp_fl_set_ip6(const struct tc_action *action, int idx, u32 off,
struct nfp_fl_set_ipv6_addr *ip_dst,
struct nfp_fl_set_ipv6_addr *ip_src)
{
__be32 exact, mask;
u8 word;
/* We are expecting tcf_pedit to return a big endian value */
mask = (__force __be32)~tcf_pedit_mask(action, idx);
exact = (__force __be32)tcf_pedit_val(action, idx);
if (exact & ~mask)
return -EOPNOTSUPP;
if (off < offsetof(struct ipv6hdr, saddr)) {
return -EOPNOTSUPP;
} else if (off < offsetof(struct ipv6hdr, daddr)) {
word = (off - offsetof(struct ipv6hdr, saddr)) / sizeof(exact);
nfp_fl_set_ip6_helper(NFP_FL_ACTION_OPCODE_SET_IPV6_SRC, word,
exact, mask, ip_src);
} else if (off < offsetof(struct ipv6hdr, daddr) +
sizeof(struct in6_addr)) {
word = (off - offsetof(struct ipv6hdr, daddr)) / sizeof(exact);
nfp_fl_set_ip6_helper(NFP_FL_ACTION_OPCODE_SET_IPV6_DST, word,
exact, mask, ip_dst);
} else {
return -EOPNOTSUPP;
}
return 0;
}
static int
nfp_fl_set_tport(const struct tc_action *action, int idx, u32 off,
struct nfp_fl_set_tport *set_tport, int opcode)
{
u32 exact, mask;
if (off)
return -EOPNOTSUPP;
mask = ~tcf_pedit_mask(action, idx);
exact = tcf_pedit_val(action, idx);
if (exact & ~mask)
return -EOPNOTSUPP;
nfp_fl_set_helper32(exact, mask, set_tport->tp_port_val,
set_tport->tp_port_mask);
set_tport->reserved = cpu_to_be16(0);
set_tport->head.jump_id = opcode;
set_tport->head.len_lw = sizeof(*set_tport) >> NFP_FL_LW_SIZ;
return 0;
}
static u32 nfp_fl_csum_l4_to_flag(u8 ip_proto)
{
switch (ip_proto) {
case 0:
/* Filter doesn't force proto match,
* both TCP and UDP will be updated if encountered
*/
return TCA_CSUM_UPDATE_FLAG_TCP | TCA_CSUM_UPDATE_FLAG_UDP;
case IPPROTO_TCP:
return TCA_CSUM_UPDATE_FLAG_TCP;
case IPPROTO_UDP:
return TCA_CSUM_UPDATE_FLAG_UDP;
default:
/* All other protocols will be ignored by FW */
return 0;
}
}
static int
nfp_fl_pedit(const struct tc_action *action, struct tc_cls_flower_offload *flow,
char *nfp_action, int *a_len, u32 *csum_updated)
{
struct nfp_fl_set_ipv6_addr set_ip6_dst, set_ip6_src;
struct nfp_fl_set_ip4_addrs set_ip_addr;
struct nfp_fl_set_tport set_tport;
struct nfp_fl_set_eth set_eth;
enum pedit_header_type htype;
int idx, nkeys, err;
size_t act_size = 0;
u32 offset, cmd;
u8 ip_proto = 0;
memset(&set_ip6_dst, 0, sizeof(set_ip6_dst));
memset(&set_ip6_src, 0, sizeof(set_ip6_src));
memset(&set_ip_addr, 0, sizeof(set_ip_addr));
memset(&set_tport, 0, sizeof(set_tport));
memset(&set_eth, 0, sizeof(set_eth));
nkeys = tcf_pedit_nkeys(action);
for (idx = 0; idx < nkeys; idx++) {
cmd = tcf_pedit_cmd(action, idx);
htype = tcf_pedit_htype(action, idx);
offset = tcf_pedit_offset(action, idx);
if (cmd != TCA_PEDIT_KEY_EX_CMD_SET)
return -EOPNOTSUPP;
switch (htype) {
case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH:
err = nfp_fl_set_eth(action, idx, offset, &set_eth);
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4:
err = nfp_fl_set_ip4(action, idx, offset, &set_ip_addr);
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6:
err = nfp_fl_set_ip6(action, idx, offset, &set_ip6_dst,
&set_ip6_src);
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP:
err = nfp_fl_set_tport(action, idx, offset, &set_tport,
NFP_FL_ACTION_OPCODE_SET_TCP);
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP:
err = nfp_fl_set_tport(action, idx, offset, &set_tport,
NFP_FL_ACTION_OPCODE_SET_UDP);
break;
default:
return -EOPNOTSUPP;
}
if (err)
return err;
}
if (dissector_uses_key(flow->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_dissector_key_basic *basic;
basic = skb_flow_dissector_target(flow->dissector,
FLOW_DISSECTOR_KEY_BASIC,
flow->key);
ip_proto = basic->ip_proto;
}
if (set_eth.head.len_lw) {
act_size = sizeof(set_eth);
memcpy(nfp_action, &set_eth, act_size);
*a_len += act_size;
}
if (set_ip_addr.head.len_lw) {
nfp_action += act_size;
act_size = sizeof(set_ip_addr);
memcpy(nfp_action, &set_ip_addr, act_size);
*a_len += act_size;
/* Hardware will automatically fix IPv4 and TCP/UDP checksum. */
*csum_updated |= TCA_CSUM_UPDATE_FLAG_IPV4HDR |
nfp_fl_csum_l4_to_flag(ip_proto);
}
if (set_ip6_dst.head.len_lw && set_ip6_src.head.len_lw) {
/* TC compiles set src and dst IPv6 address as a single action,
* the hardware requires this to be 2 separate actions.
*/
nfp_action += act_size;
act_size = sizeof(set_ip6_src);
memcpy(nfp_action, &set_ip6_src, act_size);
*a_len += act_size;
act_size = sizeof(set_ip6_dst);
memcpy(&nfp_action[sizeof(set_ip6_src)], &set_ip6_dst,
act_size);
*a_len += act_size;
/* Hardware will automatically fix TCP/UDP checksum. */
*csum_updated |= nfp_fl_csum_l4_to_flag(ip_proto);
} else if (set_ip6_dst.head.len_lw) {
nfp_action += act_size;
act_size = sizeof(set_ip6_dst);
memcpy(nfp_action, &set_ip6_dst, act_size);
*a_len += act_size;
/* Hardware will automatically fix TCP/UDP checksum. */
*csum_updated |= nfp_fl_csum_l4_to_flag(ip_proto);
} else if (set_ip6_src.head.len_lw) {
nfp_action += act_size;
act_size = sizeof(set_ip6_src);
memcpy(nfp_action, &set_ip6_src, act_size);
*a_len += act_size;
/* Hardware will automatically fix TCP/UDP checksum. */
*csum_updated |= nfp_fl_csum_l4_to_flag(ip_proto);
}
if (set_tport.head.len_lw) {
nfp_action += act_size;
act_size = sizeof(set_tport);
memcpy(nfp_action, &set_tport, act_size);
*a_len += act_size;
/* Hardware will automatically fix TCP/UDP checksum. */
*csum_updated |= nfp_fl_csum_l4_to_flag(ip_proto);
}
return 0;
}
static int
nfp_flower_output_action(struct nfp_app *app, const struct tc_action *a,
struct nfp_fl_payload *nfp_fl, int *a_len,
struct net_device *netdev, bool last,
enum nfp_flower_tun_type *tun_type, int *tun_out_cnt,
int *out_cnt, u32 *csum_updated)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_output *output;
int err, prelag_size;
/* If csum_updated has not been reset by now, it means HW will
* incorrectly update csums when they are not requested.
*/
if (*csum_updated)
return -EOPNOTSUPP;
if (*a_len + sizeof(struct nfp_fl_output) > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
output = (struct nfp_fl_output *)&nfp_fl->action_data[*a_len];
err = nfp_fl_output(app, output, a, nfp_fl, last, netdev, *tun_type,
tun_out_cnt);
if (err)
return err;
*a_len += sizeof(struct nfp_fl_output);
if (priv->flower_ext_feats & NFP_FL_FEATS_LAG) {
/* nfp_fl_pre_lag returns -err or size of prelag action added.
* This will be 0 if it is not egressing to a lag dev.
*/
prelag_size = nfp_fl_pre_lag(app, a, nfp_fl, *a_len);
if (prelag_size < 0)
return prelag_size;
else if (prelag_size > 0 && (!last || *out_cnt))
return -EOPNOTSUPP;
*a_len += prelag_size;
}
(*out_cnt)++;
return 0;
}
static int
nfp_flower_loop_action(struct nfp_app *app, const struct tc_action *a,
struct tc_cls_flower_offload *flow,
struct nfp_fl_payload *nfp_fl, int *a_len,
struct net_device *netdev,
enum nfp_flower_tun_type *tun_type, int *tun_out_cnt,
int *out_cnt, u32 *csum_updated)
{
struct nfp_fl_set_ipv4_udp_tun *set_tun;
struct nfp_fl_pre_tunnel *pre_tun;
struct nfp_fl_push_vlan *psh_v;
struct nfp_fl_pop_vlan *pop_v;
int err;
if (is_tcf_gact_shot(a)) {
nfp_fl->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_DROP);
} else if (is_tcf_mirred_egress_redirect(a)) {
err = nfp_flower_output_action(app, a, nfp_fl, a_len, netdev,
true, tun_type, tun_out_cnt,
out_cnt, csum_updated);
if (err)
return err;
} else if (is_tcf_mirred_egress_mirror(a)) {
err = nfp_flower_output_action(app, a, nfp_fl, a_len, netdev,
false, tun_type, tun_out_cnt,
out_cnt, csum_updated);
if (err)
return err;
} else if (is_tcf_vlan(a) && tcf_vlan_action(a) == TCA_VLAN_ACT_POP) {
if (*a_len + sizeof(struct nfp_fl_pop_vlan) > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
pop_v = (struct nfp_fl_pop_vlan *)&nfp_fl->action_data[*a_len];
nfp_fl->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_POPV);
nfp_fl_pop_vlan(pop_v);
*a_len += sizeof(struct nfp_fl_pop_vlan);
} else if (is_tcf_vlan(a) && tcf_vlan_action(a) == TCA_VLAN_ACT_PUSH) {
if (*a_len + sizeof(struct nfp_fl_push_vlan) > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
psh_v = (struct nfp_fl_push_vlan *)&nfp_fl->action_data[*a_len];
nfp_fl->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
nfp_fl_push_vlan(psh_v, a);
*a_len += sizeof(struct nfp_fl_push_vlan);
} else if (is_tcf_tunnel_set(a)) {
struct ip_tunnel_info *ip_tun = tcf_tunnel_info(a);
struct nfp_repr *repr = netdev_priv(netdev);
*tun_type = nfp_fl_get_tun_from_act_l4_port(repr->app, a);
if (*tun_type == NFP_FL_TUNNEL_NONE)
return -EOPNOTSUPP;
if (ip_tun->mode & ~NFP_FL_SUPPORTED_TUNNEL_INFO_FLAGS)
return -EOPNOTSUPP;
/* Pre-tunnel action is required for tunnel encap.
* This checks for next hop entries on NFP.
* If none, the packet falls back before applying other actions.
*/
if (*a_len + sizeof(struct nfp_fl_pre_tunnel) +
sizeof(struct nfp_fl_set_ipv4_udp_tun) > NFP_FL_MAX_A_SIZ)
return -EOPNOTSUPP;
pre_tun = nfp_fl_pre_tunnel(nfp_fl->action_data, *a_len);
nfp_fl->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
*a_len += sizeof(struct nfp_fl_pre_tunnel);
err = nfp_fl_push_geneve_options(nfp_fl, a_len, a);
if (err)
return err;
set_tun = (void *)&nfp_fl->action_data[*a_len];
err = nfp_fl_set_ipv4_udp_tun(app, set_tun, a, pre_tun,
*tun_type, netdev);
if (err)
return err;
*a_len += sizeof(struct nfp_fl_set_ipv4_udp_tun);
} else if (is_tcf_tunnel_release(a)) {
/* Tunnel decap is handled by default so accept action. */
return 0;
} else if (is_tcf_pedit(a)) {
if (nfp_fl_pedit(a, flow, &nfp_fl->action_data[*a_len],
a_len, csum_updated))
return -EOPNOTSUPP;
} else if (is_tcf_csum(a)) {
/* csum action requests recalc of something we have not fixed */
if (tcf_csum_update_flags(a) & ~*csum_updated)
return -EOPNOTSUPP;
/* If we will correctly fix the csum we can remove it from the
* csum update list. Which will later be used to check support.
*/
*csum_updated &= ~tcf_csum_update_flags(a);
} else {
/* Currently we do not handle any other actions. */
return -EOPNOTSUPP;
}
return 0;
}
int nfp_flower_compile_action(struct nfp_app *app,
struct tc_cls_flower_offload *flow,
struct net_device *netdev,
struct nfp_fl_payload *nfp_flow)
{
int act_len, act_cnt, err, tun_out_cnt, out_cnt, i;
enum nfp_flower_tun_type tun_type;
const struct tc_action *a;
u32 csum_updated = 0;
memset(nfp_flow->action_data, 0, NFP_FL_MAX_A_SIZ);
nfp_flow->meta.act_len = 0;
tun_type = NFP_FL_TUNNEL_NONE;
act_len = 0;
act_cnt = 0;
tun_out_cnt = 0;
out_cnt = 0;
tcf_exts_for_each_action(i, a, flow->exts) {
err = nfp_flower_loop_action(app, a, flow, nfp_flow, &act_len,
netdev, &tun_type, &tun_out_cnt,
&out_cnt, &csum_updated);
if (err)
return err;
act_cnt++;
}
/* We optimise when the action list is small, this can unfortunately
* not happen once we have more than one action in the action list.
*/
if (act_cnt > 1)
nfp_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
nfp_flow->meta.act_len = act_len;
return 0;
}