| /* |
| * Freescale eSDHC controller driver. |
| * |
| * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. |
| * Copyright (c) 2009 MontaVista Software, Inc. |
| * |
| * Authors: Xiaobo Xie <X.Xie@freescale.com> |
| * Anton Vorontsov <avorontsov@ru.mvista.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or (at |
| * your option) any later version. |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/sys_soc.h> |
| #include <linux/clk.h> |
| #include <linux/ktime.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mmc/host.h> |
| #include "sdhci-pltfm.h" |
| #include "sdhci-esdhc.h" |
| |
| #define VENDOR_V_22 0x12 |
| #define VENDOR_V_23 0x13 |
| |
| #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) |
| |
| struct esdhc_clk_fixup { |
| const unsigned int sd_dflt_max_clk; |
| const unsigned int max_clk[MMC_TIMING_NUM]; |
| }; |
| |
| static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { |
| .sd_dflt_max_clk = 25000000, |
| .max_clk[MMC_TIMING_MMC_HS] = 46500000, |
| .max_clk[MMC_TIMING_SD_HS] = 46500000, |
| }; |
| |
| static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { |
| .sd_dflt_max_clk = 25000000, |
| .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, |
| .max_clk[MMC_TIMING_MMC_HS200] = 167000000, |
| }; |
| |
| static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { |
| .sd_dflt_max_clk = 25000000, |
| .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, |
| .max_clk[MMC_TIMING_MMC_HS200] = 125000000, |
| }; |
| |
| static const struct esdhc_clk_fixup p1010_esdhc_clk = { |
| .sd_dflt_max_clk = 20000000, |
| .max_clk[MMC_TIMING_LEGACY] = 20000000, |
| .max_clk[MMC_TIMING_MMC_HS] = 42000000, |
| .max_clk[MMC_TIMING_SD_HS] = 40000000, |
| }; |
| |
| static const struct of_device_id sdhci_esdhc_of_match[] = { |
| { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, |
| { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, |
| { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, |
| { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk}, |
| { .compatible = "fsl,mpc8379-esdhc" }, |
| { .compatible = "fsl,mpc8536-esdhc" }, |
| { .compatible = "fsl,esdhc" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); |
| |
| struct sdhci_esdhc { |
| u8 vendor_ver; |
| u8 spec_ver; |
| bool quirk_incorrect_hostver; |
| unsigned int peripheral_clock; |
| const struct esdhc_clk_fixup *clk_fixup; |
| }; |
| |
| /** |
| * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register |
| * to make it compatible with SD spec. |
| * |
| * @host: pointer to sdhci_host |
| * @spec_reg: SD spec register address |
| * @value: 32bit eSDHC register value on spec_reg address |
| * |
| * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC |
| * registers are 32 bits. There are differences in register size, register |
| * address, register function, bit position and function between eSDHC spec |
| * and SD spec. |
| * |
| * Return a fixed up register value |
| */ |
| static u32 esdhc_readl_fixup(struct sdhci_host *host, |
| int spec_reg, u32 value) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| u32 ret; |
| |
| /* |
| * The bit of ADMA flag in eSDHC is not compatible with standard |
| * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is |
| * supported by eSDHC. |
| * And for many FSL eSDHC controller, the reset value of field |
| * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, |
| * only these vendor version is greater than 2.2/0x12 support ADMA. |
| */ |
| if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { |
| if (esdhc->vendor_ver > VENDOR_V_22) { |
| ret = value | SDHCI_CAN_DO_ADMA2; |
| return ret; |
| } |
| } |
| /* |
| * The DAT[3:0] line signal levels and the CMD line signal level are |
| * not compatible with standard SDHC register. The line signal levels |
| * DAT[7:0] are at bits 31:24 and the command line signal level is at |
| * bit 23. All other bits are the same as in the standard SDHC |
| * register. |
| */ |
| if (spec_reg == SDHCI_PRESENT_STATE) { |
| ret = value & 0x000fffff; |
| ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; |
| ret |= (value << 1) & SDHCI_CMD_LVL; |
| return ret; |
| } |
| |
| /* |
| * DTS properties of mmc host are used to enable each speed mode |
| * according to soc and board capability. So clean up |
| * SDR50/SDR104/DDR50 support bits here. |
| */ |
| if (spec_reg == SDHCI_CAPABILITIES_1) { |
| ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | |
| SDHCI_SUPPORT_DDR50); |
| return ret; |
| } |
| |
| ret = value; |
| return ret; |
| } |
| |
| static u16 esdhc_readw_fixup(struct sdhci_host *host, |
| int spec_reg, u32 value) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| u16 ret; |
| int shift = (spec_reg & 0x2) * 8; |
| |
| if (spec_reg == SDHCI_HOST_VERSION) |
| ret = value & 0xffff; |
| else |
| ret = (value >> shift) & 0xffff; |
| /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect |
| * vendor version and spec version information. |
| */ |
| if ((spec_reg == SDHCI_HOST_VERSION) && |
| (esdhc->quirk_incorrect_hostver)) |
| ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; |
| return ret; |
| } |
| |
| static u8 esdhc_readb_fixup(struct sdhci_host *host, |
| int spec_reg, u32 value) |
| { |
| u8 ret; |
| u8 dma_bits; |
| int shift = (spec_reg & 0x3) * 8; |
| |
| ret = (value >> shift) & 0xff; |
| |
| /* |
| * "DMA select" locates at offset 0x28 in SD specification, but on |
| * P5020 or P3041, it locates at 0x29. |
| */ |
| if (spec_reg == SDHCI_HOST_CONTROL) { |
| /* DMA select is 22,23 bits in Protocol Control Register */ |
| dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; |
| /* fixup the result */ |
| ret &= ~SDHCI_CTRL_DMA_MASK; |
| ret |= dma_bits; |
| } |
| return ret; |
| } |
| |
| /** |
| * esdhc_write*_fixup - Fixup the SD spec register value so that it could be |
| * written into eSDHC register. |
| * |
| * @host: pointer to sdhci_host |
| * @spec_reg: SD spec register address |
| * @value: 8/16/32bit SD spec register value that would be written |
| * @old_value: 32bit eSDHC register value on spec_reg address |
| * |
| * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC |
| * registers are 32 bits. There are differences in register size, register |
| * address, register function, bit position and function between eSDHC spec |
| * and SD spec. |
| * |
| * Return a fixed up register value |
| */ |
| static u32 esdhc_writel_fixup(struct sdhci_host *host, |
| int spec_reg, u32 value, u32 old_value) |
| { |
| u32 ret; |
| |
| /* |
| * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] |
| * when SYSCTL[RSTD] is set for some special operations. |
| * No any impact on other operation. |
| */ |
| if (spec_reg == SDHCI_INT_ENABLE) |
| ret = value | SDHCI_INT_BLK_GAP; |
| else |
| ret = value; |
| |
| return ret; |
| } |
| |
| static u32 esdhc_writew_fixup(struct sdhci_host *host, |
| int spec_reg, u16 value, u32 old_value) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| int shift = (spec_reg & 0x2) * 8; |
| u32 ret; |
| |
| switch (spec_reg) { |
| case SDHCI_TRANSFER_MODE: |
| /* |
| * Postpone this write, we must do it together with a |
| * command write that is down below. Return old value. |
| */ |
| pltfm_host->xfer_mode_shadow = value; |
| return old_value; |
| case SDHCI_COMMAND: |
| ret = (value << 16) | pltfm_host->xfer_mode_shadow; |
| return ret; |
| } |
| |
| ret = old_value & (~(0xffff << shift)); |
| ret |= (value << shift); |
| |
| if (spec_reg == SDHCI_BLOCK_SIZE) { |
| /* |
| * Two last DMA bits are reserved, and first one is used for |
| * non-standard blksz of 4096 bytes that we don't support |
| * yet. So clear the DMA boundary bits. |
| */ |
| ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); |
| } |
| return ret; |
| } |
| |
| static u32 esdhc_writeb_fixup(struct sdhci_host *host, |
| int spec_reg, u8 value, u32 old_value) |
| { |
| u32 ret; |
| u32 dma_bits; |
| u8 tmp; |
| int shift = (spec_reg & 0x3) * 8; |
| |
| /* |
| * eSDHC doesn't have a standard power control register, so we do |
| * nothing here to avoid incorrect operation. |
| */ |
| if (spec_reg == SDHCI_POWER_CONTROL) |
| return old_value; |
| /* |
| * "DMA select" location is offset 0x28 in SD specification, but on |
| * P5020 or P3041, it's located at 0x29. |
| */ |
| if (spec_reg == SDHCI_HOST_CONTROL) { |
| /* |
| * If host control register is not standard, exit |
| * this function |
| */ |
| if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) |
| return old_value; |
| |
| /* DMA select is 22,23 bits in Protocol Control Register */ |
| dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; |
| ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; |
| tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | |
| (old_value & SDHCI_CTRL_DMA_MASK); |
| ret = (ret & (~0xff)) | tmp; |
| |
| /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ |
| ret &= ~ESDHC_HOST_CONTROL_RES; |
| return ret; |
| } |
| |
| ret = (old_value & (~(0xff << shift))) | (value << shift); |
| return ret; |
| } |
| |
| static u32 esdhc_be_readl(struct sdhci_host *host, int reg) |
| { |
| u32 ret; |
| u32 value; |
| |
| if (reg == SDHCI_CAPABILITIES_1) |
| value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); |
| else |
| value = ioread32be(host->ioaddr + reg); |
| |
| ret = esdhc_readl_fixup(host, reg, value); |
| |
| return ret; |
| } |
| |
| static u32 esdhc_le_readl(struct sdhci_host *host, int reg) |
| { |
| u32 ret; |
| u32 value; |
| |
| if (reg == SDHCI_CAPABILITIES_1) |
| value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); |
| else |
| value = ioread32(host->ioaddr + reg); |
| |
| ret = esdhc_readl_fixup(host, reg, value); |
| |
| return ret; |
| } |
| |
| static u16 esdhc_be_readw(struct sdhci_host *host, int reg) |
| { |
| u16 ret; |
| u32 value; |
| int base = reg & ~0x3; |
| |
| value = ioread32be(host->ioaddr + base); |
| ret = esdhc_readw_fixup(host, reg, value); |
| return ret; |
| } |
| |
| static u16 esdhc_le_readw(struct sdhci_host *host, int reg) |
| { |
| u16 ret; |
| u32 value; |
| int base = reg & ~0x3; |
| |
| value = ioread32(host->ioaddr + base); |
| ret = esdhc_readw_fixup(host, reg, value); |
| return ret; |
| } |
| |
| static u8 esdhc_be_readb(struct sdhci_host *host, int reg) |
| { |
| u8 ret; |
| u32 value; |
| int base = reg & ~0x3; |
| |
| value = ioread32be(host->ioaddr + base); |
| ret = esdhc_readb_fixup(host, reg, value); |
| return ret; |
| } |
| |
| static u8 esdhc_le_readb(struct sdhci_host *host, int reg) |
| { |
| u8 ret; |
| u32 value; |
| int base = reg & ~0x3; |
| |
| value = ioread32(host->ioaddr + base); |
| ret = esdhc_readb_fixup(host, reg, value); |
| return ret; |
| } |
| |
| static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) |
| { |
| u32 value; |
| |
| value = esdhc_writel_fixup(host, reg, val, 0); |
| iowrite32be(value, host->ioaddr + reg); |
| } |
| |
| static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) |
| { |
| u32 value; |
| |
| value = esdhc_writel_fixup(host, reg, val, 0); |
| iowrite32(value, host->ioaddr + reg); |
| } |
| |
| static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) |
| { |
| int base = reg & ~0x3; |
| u32 value; |
| u32 ret; |
| |
| value = ioread32be(host->ioaddr + base); |
| ret = esdhc_writew_fixup(host, reg, val, value); |
| if (reg != SDHCI_TRANSFER_MODE) |
| iowrite32be(ret, host->ioaddr + base); |
| } |
| |
| static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) |
| { |
| int base = reg & ~0x3; |
| u32 value; |
| u32 ret; |
| |
| value = ioread32(host->ioaddr + base); |
| ret = esdhc_writew_fixup(host, reg, val, value); |
| if (reg != SDHCI_TRANSFER_MODE) |
| iowrite32(ret, host->ioaddr + base); |
| } |
| |
| static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) |
| { |
| int base = reg & ~0x3; |
| u32 value; |
| u32 ret; |
| |
| value = ioread32be(host->ioaddr + base); |
| ret = esdhc_writeb_fixup(host, reg, val, value); |
| iowrite32be(ret, host->ioaddr + base); |
| } |
| |
| static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) |
| { |
| int base = reg & ~0x3; |
| u32 value; |
| u32 ret; |
| |
| value = ioread32(host->ioaddr + base); |
| ret = esdhc_writeb_fixup(host, reg, val, value); |
| iowrite32(ret, host->ioaddr + base); |
| } |
| |
| /* |
| * For Abort or Suspend after Stop at Block Gap, ignore the ADMA |
| * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) |
| * and Block Gap Event(IRQSTAT[BGE]) are also set. |
| * For Continue, apply soft reset for data(SYSCTL[RSTD]); |
| * and re-issue the entire read transaction from beginning. |
| */ |
| static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| bool applicable; |
| dma_addr_t dmastart; |
| dma_addr_t dmanow; |
| |
| applicable = (intmask & SDHCI_INT_DATA_END) && |
| (intmask & SDHCI_INT_BLK_GAP) && |
| (esdhc->vendor_ver == VENDOR_V_23); |
| if (!applicable) |
| return; |
| |
| host->data->error = 0; |
| dmastart = sg_dma_address(host->data->sg); |
| dmanow = dmastart + host->data->bytes_xfered; |
| /* |
| * Force update to the next DMA block boundary. |
| */ |
| dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + |
| SDHCI_DEFAULT_BOUNDARY_SIZE; |
| host->data->bytes_xfered = dmanow - dmastart; |
| sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); |
| } |
| |
| static int esdhc_of_enable_dma(struct sdhci_host *host) |
| { |
| u32 value; |
| struct device *dev = mmc_dev(host->mmc); |
| |
| if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || |
| of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) |
| dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); |
| |
| value = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| value |= ESDHC_DMA_SNOOP; |
| sdhci_writel(host, value, ESDHC_DMA_SYSCTL); |
| return 0; |
| } |
| |
| static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| |
| if (esdhc->peripheral_clock) |
| return esdhc->peripheral_clock; |
| else |
| return pltfm_host->clock; |
| } |
| |
| static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| unsigned int clock; |
| |
| if (esdhc->peripheral_clock) |
| clock = esdhc->peripheral_clock; |
| else |
| clock = pltfm_host->clock; |
| return clock / 256 / 16; |
| } |
| |
| static void esdhc_clock_enable(struct sdhci_host *host, bool enable) |
| { |
| u32 val; |
| ktime_t timeout; |
| |
| val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| |
| if (enable) |
| val |= ESDHC_CLOCK_SDCLKEN; |
| else |
| val &= ~ESDHC_CLOCK_SDCLKEN; |
| |
| sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); |
| |
| /* Wait max 20 ms */ |
| timeout = ktime_add_ms(ktime_get(), 20); |
| val = ESDHC_CLOCK_STABLE; |
| while (!(sdhci_readl(host, ESDHC_PRSSTAT) & val)) { |
| if (ktime_after(ktime_get(), timeout)) { |
| pr_err("%s: Internal clock never stabilised.\n", |
| mmc_hostname(host->mmc)); |
| break; |
| } |
| udelay(10); |
| } |
| } |
| |
| static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) |
| { |
| struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); |
| struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); |
| int pre_div = 1; |
| int div = 1; |
| ktime_t timeout; |
| long fixup = 0; |
| u32 temp; |
| |
| host->mmc->actual_clock = 0; |
| |
| if (clock == 0) { |
| esdhc_clock_enable(host, false); |
| return; |
| } |
| |
| /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */ |
| if (esdhc->vendor_ver < VENDOR_V_23) |
| pre_div = 2; |
| |
| if (host->mmc->card && mmc_card_sd(host->mmc->card) && |
| esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) |
| fixup = esdhc->clk_fixup->sd_dflt_max_clk; |
| else if (esdhc->clk_fixup) |
| fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; |
| |
| if (fixup && clock > fixup) |
| clock = fixup; |
| |
| temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | |
| ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK); |
| sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| |
| while (host->max_clk / pre_div / 16 > clock && pre_div < 256) |
| pre_div *= 2; |
| |
| while (host->max_clk / pre_div / div > clock && div < 16) |
| div++; |
| |
| dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", |
| clock, host->max_clk / pre_div / div); |
| host->mmc->actual_clock = host->max_clk / pre_div / div; |
| pre_div >>= 1; |
| div--; |
| |
| temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); |
| temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN |
| | (div << ESDHC_DIVIDER_SHIFT) |
| | (pre_div << ESDHC_PREDIV_SHIFT)); |
| sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| |
| /* Wait max 20 ms */ |
| timeout = ktime_add_ms(ktime_get(), 20); |
| while (!(sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)) { |
| if (ktime_after(ktime_get(), timeout)) { |
| pr_err("%s: Internal clock never stabilised.\n", |
| mmc_hostname(host->mmc)); |
| return; |
| } |
| udelay(10); |
| } |
| |
| temp |= ESDHC_CLOCK_SDCLKEN; |
| sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); |
| } |
| |
| static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) |
| { |
| u32 ctrl; |
| |
| ctrl = sdhci_readl(host, ESDHC_PROCTL); |
| ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); |
| switch (width) { |
| case MMC_BUS_WIDTH_8: |
| ctrl |= ESDHC_CTRL_8BITBUS; |
| break; |
| |
| case MMC_BUS_WIDTH_4: |
| ctrl |= ESDHC_CTRL_4BITBUS; |
| break; |
| |
| default: |
| break; |
| } |
| |
| sdhci_writel(host, ctrl, ESDHC_PROCTL); |
| } |
| |
| static void esdhc_reset(struct sdhci_host *host, u8 mask) |
| { |
| u32 val; |
| |
| sdhci_reset(host, mask); |
| |
| sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); |
| sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); |
| |
| if (mask & SDHCI_RESET_ALL) { |
| val = sdhci_readl(host, ESDHC_TBCTL); |
| val &= ~ESDHC_TB_EN; |
| sdhci_writel(host, val, ESDHC_TBCTL); |
| } |
| } |
| |
| /* The SCFG, Supplemental Configuration Unit, provides SoC specific |
| * configuration and status registers for the device. There is a |
| * SDHC IO VSEL control register on SCFG for some platforms. It's |
| * used to support SDHC IO voltage switching. |
| */ |
| static const struct of_device_id scfg_device_ids[] = { |
| { .compatible = "fsl,t1040-scfg", }, |
| { .compatible = "fsl,ls1012a-scfg", }, |
| { .compatible = "fsl,ls1046a-scfg", }, |
| {} |
| }; |
| |
| /* SDHC IO VSEL control register definition */ |
| #define SCFG_SDHCIOVSELCR 0x408 |
| #define SDHCIOVSELCR_TGLEN 0x80000000 |
| #define SDHCIOVSELCR_VSELVAL 0x60000000 |
| #define SDHCIOVSELCR_SDHC_VS 0x00000001 |
| |
| static int esdhc_signal_voltage_switch(struct mmc_host *mmc, |
| struct mmc_ios *ios) |
| { |
| struct sdhci_host *host = mmc_priv(mmc); |
| struct device_node *scfg_node; |
| void __iomem *scfg_base = NULL; |
| u32 sdhciovselcr; |
| u32 val; |
| |
| /* |
| * Signal Voltage Switching is only applicable for Host Controllers |
| * v3.00 and above. |
| */ |
| if (host->version < SDHCI_SPEC_300) |
| return 0; |
| |
| val = sdhci_readl(host, ESDHC_PROCTL); |
| |
| switch (ios->signal_voltage) { |
| case MMC_SIGNAL_VOLTAGE_330: |
| val &= ~ESDHC_VOLT_SEL; |
| sdhci_writel(host, val, ESDHC_PROCTL); |
| return 0; |
| case MMC_SIGNAL_VOLTAGE_180: |
| scfg_node = of_find_matching_node(NULL, scfg_device_ids); |
| if (scfg_node) |
| scfg_base = of_iomap(scfg_node, 0); |
| if (scfg_base) { |
| sdhciovselcr = SDHCIOVSELCR_TGLEN | |
| SDHCIOVSELCR_VSELVAL; |
| iowrite32be(sdhciovselcr, |
| scfg_base + SCFG_SDHCIOVSELCR); |
| |
| val |= ESDHC_VOLT_SEL; |
| sdhci_writel(host, val, ESDHC_PROCTL); |
| mdelay(5); |
| |
| sdhciovselcr = SDHCIOVSELCR_TGLEN | |
| SDHCIOVSELCR_SDHC_VS; |
| iowrite32be(sdhciovselcr, |
| scfg_base + SCFG_SDHCIOVSELCR); |
| iounmap(scfg_base); |
| } else { |
| val |= ESDHC_VOLT_SEL; |
| sdhci_writel(host, val, ESDHC_PROCTL); |
| } |
| return 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) |
| { |
| struct sdhci_host *host = mmc_priv(mmc); |
| u32 val; |
| |
| /* Use tuning block for tuning procedure */ |
| esdhc_clock_enable(host, false); |
| val = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| val |= ESDHC_FLUSH_ASYNC_FIFO; |
| sdhci_writel(host, val, ESDHC_DMA_SYSCTL); |
| |
| val = sdhci_readl(host, ESDHC_TBCTL); |
| val |= ESDHC_TB_EN; |
| sdhci_writel(host, val, ESDHC_TBCTL); |
| esdhc_clock_enable(host, true); |
| |
| return sdhci_execute_tuning(mmc, opcode); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static u32 esdhc_proctl; |
| static int esdhc_of_suspend(struct device *dev) |
| { |
| struct sdhci_host *host = dev_get_drvdata(dev); |
| |
| esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); |
| |
| if (host->tuning_mode != SDHCI_TUNING_MODE_3) |
| mmc_retune_needed(host->mmc); |
| |
| return sdhci_suspend_host(host); |
| } |
| |
| static int esdhc_of_resume(struct device *dev) |
| { |
| struct sdhci_host *host = dev_get_drvdata(dev); |
| int ret = sdhci_resume_host(host); |
| |
| if (ret == 0) { |
| /* Isn't this already done by sdhci_resume_host() ? --rmk */ |
| esdhc_of_enable_dma(host); |
| sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); |
| } |
| return ret; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, |
| esdhc_of_suspend, |
| esdhc_of_resume); |
| |
| static const struct sdhci_ops sdhci_esdhc_be_ops = { |
| .read_l = esdhc_be_readl, |
| .read_w = esdhc_be_readw, |
| .read_b = esdhc_be_readb, |
| .write_l = esdhc_be_writel, |
| .write_w = esdhc_be_writew, |
| .write_b = esdhc_be_writeb, |
| .set_clock = esdhc_of_set_clock, |
| .enable_dma = esdhc_of_enable_dma, |
| .get_max_clock = esdhc_of_get_max_clock, |
| .get_min_clock = esdhc_of_get_min_clock, |
| .adma_workaround = esdhc_of_adma_workaround, |
| .set_bus_width = esdhc_pltfm_set_bus_width, |
| .reset = esdhc_reset, |
| .set_uhs_signaling = sdhci_set_uhs_signaling, |
| }; |
| |
| static const struct sdhci_ops sdhci_esdhc_le_ops = { |
| .read_l = esdhc_le_readl, |
| .read_w = esdhc_le_readw, |
| .read_b = esdhc_le_readb, |
| .write_l = esdhc_le_writel, |
| .write_w = esdhc_le_writew, |
| .write_b = esdhc_le_writeb, |
| .set_clock = esdhc_of_set_clock, |
| .enable_dma = esdhc_of_enable_dma, |
| .get_max_clock = esdhc_of_get_max_clock, |
| .get_min_clock = esdhc_of_get_min_clock, |
| .adma_workaround = esdhc_of_adma_workaround, |
| .set_bus_width = esdhc_pltfm_set_bus_width, |
| .reset = esdhc_reset, |
| .set_uhs_signaling = sdhci_set_uhs_signaling, |
| }; |
| |
| static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { |
| .quirks = ESDHC_DEFAULT_QUIRKS | |
| #ifdef CONFIG_PPC |
| SDHCI_QUIRK_BROKEN_CARD_DETECTION | |
| #endif |
| SDHCI_QUIRK_NO_CARD_NO_RESET | |
| SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, |
| .ops = &sdhci_esdhc_be_ops, |
| }; |
| |
| static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { |
| .quirks = ESDHC_DEFAULT_QUIRKS | |
| SDHCI_QUIRK_NO_CARD_NO_RESET | |
| SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, |
| .ops = &sdhci_esdhc_le_ops, |
| }; |
| |
| static struct soc_device_attribute soc_incorrect_hostver[] = { |
| { .family = "QorIQ T4240", .revision = "1.0", }, |
| { .family = "QorIQ T4240", .revision = "2.0", }, |
| { }, |
| }; |
| |
| static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) |
| { |
| const struct of_device_id *match; |
| struct sdhci_pltfm_host *pltfm_host; |
| struct sdhci_esdhc *esdhc; |
| struct device_node *np; |
| struct clk *clk; |
| u32 val; |
| u16 host_ver; |
| |
| pltfm_host = sdhci_priv(host); |
| esdhc = sdhci_pltfm_priv(pltfm_host); |
| |
| host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); |
| esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> |
| SDHCI_VENDOR_VER_SHIFT; |
| esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; |
| if (soc_device_match(soc_incorrect_hostver)) |
| esdhc->quirk_incorrect_hostver = true; |
| else |
| esdhc->quirk_incorrect_hostver = false; |
| |
| match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); |
| if (match) |
| esdhc->clk_fixup = match->data; |
| np = pdev->dev.of_node; |
| clk = of_clk_get(np, 0); |
| if (!IS_ERR(clk)) { |
| /* |
| * esdhc->peripheral_clock would be assigned with a value |
| * which is eSDHC base clock when use periperal clock. |
| * For ls1046a, the clock value got by common clk API is |
| * peripheral clock while the eSDHC base clock is 1/2 |
| * peripheral clock. |
| */ |
| if (of_device_is_compatible(np, "fsl,ls1046a-esdhc")) |
| esdhc->peripheral_clock = clk_get_rate(clk) / 2; |
| else |
| esdhc->peripheral_clock = clk_get_rate(clk); |
| |
| clk_put(clk); |
| } |
| |
| if (esdhc->peripheral_clock) { |
| esdhc_clock_enable(host, false); |
| val = sdhci_readl(host, ESDHC_DMA_SYSCTL); |
| val |= ESDHC_PERIPHERAL_CLK_SEL; |
| sdhci_writel(host, val, ESDHC_DMA_SYSCTL); |
| esdhc_clock_enable(host, true); |
| } |
| } |
| |
| static int sdhci_esdhc_probe(struct platform_device *pdev) |
| { |
| struct sdhci_host *host; |
| struct device_node *np; |
| struct sdhci_pltfm_host *pltfm_host; |
| struct sdhci_esdhc *esdhc; |
| int ret; |
| |
| np = pdev->dev.of_node; |
| |
| if (of_property_read_bool(np, "little-endian")) |
| host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, |
| sizeof(struct sdhci_esdhc)); |
| else |
| host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, |
| sizeof(struct sdhci_esdhc)); |
| |
| if (IS_ERR(host)) |
| return PTR_ERR(host); |
| |
| host->mmc_host_ops.start_signal_voltage_switch = |
| esdhc_signal_voltage_switch; |
| host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; |
| host->tuning_delay = 1; |
| |
| esdhc_init(pdev, host); |
| |
| sdhci_get_of_property(pdev); |
| |
| pltfm_host = sdhci_priv(host); |
| esdhc = sdhci_pltfm_priv(pltfm_host); |
| if (esdhc->vendor_ver == VENDOR_V_22) |
| host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; |
| |
| if (esdhc->vendor_ver > VENDOR_V_22) |
| host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; |
| |
| if (of_device_is_compatible(np, "fsl,p5040-esdhc") || |
| of_device_is_compatible(np, "fsl,p5020-esdhc") || |
| of_device_is_compatible(np, "fsl,p4080-esdhc") || |
| of_device_is_compatible(np, "fsl,p1020-esdhc") || |
| of_device_is_compatible(np, "fsl,t1040-esdhc")) |
| host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; |
| |
| if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) |
| host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; |
| |
| if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { |
| /* |
| * Freescale messed up with P2020 as it has a non-standard |
| * host control register |
| */ |
| host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; |
| } |
| |
| /* call to generic mmc_of_parse to support additional capabilities */ |
| ret = mmc_of_parse(host->mmc); |
| if (ret) |
| goto err; |
| |
| mmc_of_parse_voltage(np, &host->ocr_mask); |
| |
| ret = sdhci_add_host(host); |
| if (ret) |
| goto err; |
| |
| return 0; |
| err: |
| sdhci_pltfm_free(pdev); |
| return ret; |
| } |
| |
| static struct platform_driver sdhci_esdhc_driver = { |
| .driver = { |
| .name = "sdhci-esdhc", |
| .of_match_table = sdhci_esdhc_of_match, |
| .pm = &esdhc_of_dev_pm_ops, |
| }, |
| .probe = sdhci_esdhc_probe, |
| .remove = sdhci_pltfm_unregister, |
| }; |
| |
| module_platform_driver(sdhci_esdhc_driver); |
| |
| MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); |
| MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " |
| "Anton Vorontsov <avorontsov@ru.mvista.com>"); |
| MODULE_LICENSE("GPL v2"); |