|  | /* | 
|  | * Copyright (c) 2013 Intel Corporation. All rights reserved. | 
|  | * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. | 
|  | * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  | /* | 
|  | * This file contains all of the code that is specific to the SerDes | 
|  | * on the QLogic_IB 7220 chip. | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/firmware.h> | 
|  |  | 
|  | #include "qib.h" | 
|  | #include "qib_7220.h" | 
|  |  | 
|  | #define SD7220_FW_NAME "intel/sd7220.fw" | 
|  | MODULE_FIRMWARE(SD7220_FW_NAME); | 
|  |  | 
|  | /* | 
|  | * Same as in qib_iba7220.c, but just the registers needed here. | 
|  | * Could move whole set to qib_7220.h, but decided better to keep | 
|  | * local. | 
|  | */ | 
|  | #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64)) | 
|  | #define kr_hwerrclear KREG_IDX(HwErrClear) | 
|  | #define kr_hwerrmask KREG_IDX(HwErrMask) | 
|  | #define kr_hwerrstatus KREG_IDX(HwErrStatus) | 
|  | #define kr_ibcstatus KREG_IDX(IBCStatus) | 
|  | #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl) | 
|  | #define kr_scratch KREG_IDX(Scratch) | 
|  | #define kr_xgxs_cfg KREG_IDX(XGXSCfg) | 
|  | /* these are used only here, not in qib_iba7220.c */ | 
|  | #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl) | 
|  | #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg) | 
|  | #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg) | 
|  | #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl) | 
|  | #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0) | 
|  |  | 
|  | /* | 
|  | * The IBSerDesMappTable is a memory that holds values to be stored in | 
|  | * various SerDes registers by IBC. | 
|  | */ | 
|  | #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable) | 
|  |  | 
|  | /* | 
|  | * Below used for sdnum parameter, selecting one of the two sections | 
|  | * used for PCIe, or the single SerDes used for IB. | 
|  | */ | 
|  | #define PCIE_SERDES0 0 | 
|  | #define PCIE_SERDES1 1 | 
|  |  | 
|  | /* | 
|  | * The EPB requires addressing in a particular form. EPB_LOC() is intended | 
|  | * to make #definitions a little more readable. | 
|  | */ | 
|  | #define EPB_ADDR_SHF 8 | 
|  | #define EPB_LOC(chn, elt, reg) \ | 
|  | (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ | 
|  | EPB_ADDR_SHF) | 
|  | #define EPB_IB_QUAD0_CS_SHF (25) | 
|  | #define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF) | 
|  | #define EPB_IB_UC_CS_SHF (26) | 
|  | #define EPB_PCIE_UC_CS_SHF (27) | 
|  | #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) | 
|  |  | 
|  | /* Forward declarations. */ | 
|  | static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, | 
|  | u32 data, u32 mask); | 
|  | static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, | 
|  | int mask); | 
|  | static int qib_sd_trimdone_poll(struct qib_devdata *dd); | 
|  | static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where); | 
|  | static int qib_sd_setvals(struct qib_devdata *dd); | 
|  | static int qib_sd_early(struct qib_devdata *dd); | 
|  | static int qib_sd_dactrim(struct qib_devdata *dd); | 
|  | static int qib_internal_presets(struct qib_devdata *dd); | 
|  | /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ | 
|  | static int qib_sd_trimself(struct qib_devdata *dd, int val); | 
|  | static int epb_access(struct qib_devdata *dd, int sdnum, int claim); | 
|  | static int qib_sd7220_ib_load(struct qib_devdata *dd, | 
|  | const struct firmware *fw); | 
|  | static int qib_sd7220_ib_vfy(struct qib_devdata *dd, | 
|  | const struct firmware *fw); | 
|  |  | 
|  | /* | 
|  | * Below keeps track of whether the "once per power-on" initialization has | 
|  | * been done, because uC code Version 1.32.17 or higher allows the uC to | 
|  | * be reset at will, and Automatic Equalization may require it. So the | 
|  | * state of the reset "pin", is no longer valid. Instead, we check for the | 
|  | * actual uC code having been loaded. | 
|  | */ | 
|  | static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd, | 
|  | const struct firmware *fw) | 
|  | { | 
|  | struct qib_devdata *dd = ppd->dd; | 
|  |  | 
|  | if (!dd->cspec->serdes_first_init_done && | 
|  | qib_sd7220_ib_vfy(dd, fw) > 0) | 
|  | dd->cspec->serdes_first_init_done = 1; | 
|  | return dd->cspec->serdes_first_init_done; | 
|  | } | 
|  |  | 
|  | /* repeat #define for local use. "Real" #define is in qib_iba7220.c */ | 
|  | #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL | 
|  | #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) | 
|  | #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) | 
|  | #define UC_PAR_CLR_D 8 | 
|  | #define UC_PAR_CLR_M 0xC | 
|  | #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) | 
|  | #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) | 
|  |  | 
|  | void qib_sd7220_clr_ibpar(struct qib_devdata *dd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* clear, then re-enable parity errs */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, | 
|  | UC_PAR_CLR_D, UC_PAR_CLR_M); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); | 
|  | goto bail; | 
|  | } | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, | 
|  | UC_PAR_CLR_M); | 
|  |  | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | udelay(4); | 
|  | qib_write_kreg(dd, kr_hwerrclear, | 
|  | QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | bail: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After a reset or other unusual event, the epb interface may need | 
|  | * to be re-synchronized, between the host and the uC. | 
|  | * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) | 
|  | */ | 
|  | #define IBSD_RESYNC_TRIES 3 | 
|  | #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) | 
|  | #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) | 
|  |  | 
|  | static int qib_resync_ibepb(struct qib_devdata *dd) | 
|  | { | 
|  | int ret, pat, tries, chn; | 
|  | u32 loc; | 
|  |  | 
|  | ret = -1; | 
|  | chn = 0; | 
|  | for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { | 
|  | loc = IB_PGUDP(chn); | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed read in resync\n"); | 
|  | continue; | 
|  | } | 
|  | if (ret != 0xF0 && ret != 0x55 && tries == 0) | 
|  | qib_dev_err(dd, "unexpected pattern in resync\n"); | 
|  | pat = ret ^ 0xA5; /* alternate F0 and 55 */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed write in resync\n"); | 
|  | continue; | 
|  | } | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed re-read in resync\n"); | 
|  | continue; | 
|  | } | 
|  | if (ret != pat) { | 
|  | qib_dev_err(dd, "Failed compare1 in resync\n"); | 
|  | continue; | 
|  | } | 
|  | loc = IB_CMUDONE(chn); | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed CMUDONE rd in resync\n"); | 
|  | continue; | 
|  | } | 
|  | if ((ret & 0x70) != ((chn << 4) | 0x40)) { | 
|  | qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", | 
|  | ret, chn); | 
|  | continue; | 
|  | } | 
|  | if (++chn == 4) | 
|  | break;  /* Success */ | 
|  | } | 
|  | return (ret > 0) ? 0 : ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Localize the stuff that should be done to change IB uC reset | 
|  | * returns <0 for errors. | 
|  | */ | 
|  | static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst) | 
|  | { | 
|  | u64 rst_val; | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | rst_val = qib_read_kreg64(dd, kr_ibserdesctrl); | 
|  | if (assert_rst) { | 
|  | /* | 
|  | * Vendor recommends "interrupting" uC before reset, to | 
|  | * minimize possible glitches. | 
|  | */ | 
|  | spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); | 
|  | epb_access(dd, IB_7220_SERDES, 1); | 
|  | rst_val |= 1ULL; | 
|  | /* Squelch possible parity error from _asserting_ reset */ | 
|  | qib_write_kreg(dd, kr_hwerrmask, | 
|  | dd->cspec->hwerrmask & | 
|  | ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); | 
|  | qib_write_kreg(dd, kr_ibserdesctrl, rst_val); | 
|  | /* flush write, delay to ensure it took effect */ | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | udelay(2); | 
|  | /* once it's reset, can remove interrupt */ | 
|  | epb_access(dd, IB_7220_SERDES, -1); | 
|  | spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); | 
|  | } else { | 
|  | /* | 
|  | * Before we de-assert reset, we need to deal with | 
|  | * possible glitch on the Parity-error line. | 
|  | * Suppress it around the reset, both in chip-level | 
|  | * hwerrmask and in IB uC control reg. uC will allow | 
|  | * it again during startup. | 
|  | */ | 
|  | u64 val; | 
|  | rst_val &= ~(1ULL); | 
|  | qib_write_kreg(dd, kr_hwerrmask, | 
|  | dd->cspec->hwerrmask & | 
|  | ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR); | 
|  |  | 
|  | ret = qib_resync_ibepb(dd); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "unable to re-sync IB EPB\n"); | 
|  |  | 
|  | /* set uC control regs to suppress parity errs */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  | /* IB uC code past Version 1.32.17 allow suppression of wdog */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, | 
|  | 0x80); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed to set WDOG disable\n"); | 
|  | goto bail; | 
|  | } | 
|  | qib_write_kreg(dd, kr_ibserdesctrl, rst_val); | 
|  | /* flush write, delay for startup */ | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | udelay(1); | 
|  | /* clear, then re-enable parity errs */ | 
|  | qib_sd7220_clr_ibpar(dd); | 
|  | val = qib_read_kreg64(dd, kr_hwerrstatus); | 
|  | if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) { | 
|  | qib_dev_err(dd, "IBUC Parity still set after RST\n"); | 
|  | dd->cspec->hwerrmask &= | 
|  | ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR; | 
|  | } | 
|  | qib_write_kreg(dd, kr_hwerrmask, | 
|  | dd->cspec->hwerrmask); | 
|  | } | 
|  |  | 
|  | bail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void qib_sd_trimdone_monitor(struct qib_devdata *dd, | 
|  | const char *where) | 
|  | { | 
|  | int ret, chn, baduns; | 
|  | u64 val; | 
|  |  | 
|  | if (!where) | 
|  | where = "?"; | 
|  |  | 
|  | /* give time for reset to settle out in EPB */ | 
|  | udelay(2); | 
|  |  | 
|  | ret = qib_resync_ibepb(dd); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); | 
|  |  | 
|  | /* Do "sacrificial read" to get EPB in sane state after reset */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); | 
|  |  | 
|  | /* Check/show "summary" Trim-done bit in IBCStatus */ | 
|  | val = qib_read_kreg64(dd, kr_ibcstatus); | 
|  | if (!(val & (1ULL << 11))) | 
|  | qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); | 
|  | /* | 
|  | * Do "dummy read/mod/wr" to get EPB in sane state after reset | 
|  | * The default value for MPREG6 is 0. | 
|  | */ | 
|  | udelay(2); | 
|  |  | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); | 
|  | udelay(10); | 
|  |  | 
|  | baduns = 0; | 
|  |  | 
|  | for (chn = 3; chn >= 0; --chn) { | 
|  | /* Read CTRL reg for each channel to check TRIMDONE */ | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | IB_CTRL2(chn), 0, 0); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, | 
|  | "Failed checking TRIMDONE, chn %d (%s)\n", | 
|  | chn, where); | 
|  |  | 
|  | if (!(ret & 0x10)) { | 
|  | int probe; | 
|  |  | 
|  | baduns |= (1 << chn); | 
|  | qib_dev_err(dd, | 
|  | "TRIMDONE cleared on chn %d (%02X). (%s)\n", | 
|  | chn, ret, where); | 
|  | probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | IB_PGUDP(0), 0, 0); | 
|  | qib_dev_err(dd, "probe is %d (%02X)\n", | 
|  | probe, probe); | 
|  | probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | IB_CTRL2(chn), 0, 0); | 
|  | qib_dev_err(dd, "re-read: %d (%02X)\n", | 
|  | probe, probe); | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | IB_CTRL2(chn), 0x10, 0x10); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, | 
|  | "Err on TRIMDONE rewrite1\n"); | 
|  | } | 
|  | } | 
|  | for (chn = 3; chn >= 0; --chn) { | 
|  | /* Read CTRL reg for each channel to check TRIMDONE */ | 
|  | if (baduns & (1 << chn)) { | 
|  | qib_dev_err(dd, | 
|  | "Resetting TRIMDONE on chn %d (%s)\n", | 
|  | chn, where); | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | IB_CTRL2(chn), 0x10, 0x10); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, | 
|  | "Failed re-setting TRIMDONE, chn %d (%s)\n", | 
|  | chn, where); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Below is portion of IBA7220-specific bringup_serdes() that actually | 
|  | * deals with registers and memory within the SerDes itself. | 
|  | * Post IB uC code version 1.32.17, was_reset being 1 is not really | 
|  | * informative, so we double-check. | 
|  | */ | 
|  | int qib_sd7220_init(struct qib_devdata *dd) | 
|  | { | 
|  | const struct firmware *fw; | 
|  | int ret = 1; /* default to failure */ | 
|  | int first_reset, was_reset; | 
|  |  | 
|  | /* SERDES MPU reset recorded in D0 */ | 
|  | was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1); | 
|  | if (!was_reset) { | 
|  | /* entered with reset not asserted, we need to do it */ | 
|  | qib_ibsd_reset(dd, 1); | 
|  | qib_sd_trimdone_monitor(dd, "Driver-reload"); | 
|  | } | 
|  |  | 
|  | ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev); | 
|  | if (ret) { | 
|  | qib_dev_err(dd, "Failed to load IB SERDES image\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Substitute our deduced value for was_reset */ | 
|  | ret = qib_ibsd_ucode_loaded(dd->pport, fw); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ | 
|  | /* | 
|  | * Alter some regs per vendor latest doc, reset-defaults | 
|  | * are not right for IB. | 
|  | */ | 
|  | ret = qib_sd_early(dd); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed to set IB SERDES early defaults\n"); | 
|  | goto bail; | 
|  | } | 
|  | /* | 
|  | * Set DAC manual trim IB. | 
|  | * We only do this once after chip has been reset (usually | 
|  | * same as once per system boot). | 
|  | */ | 
|  | if (first_reset) { | 
|  | ret = qib_sd_dactrim(dd); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed IB SERDES DAC trim\n"); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Set various registers (DDS and RXEQ) that will be | 
|  | * controlled by IBC (in 1.2 mode) to reasonable preset values | 
|  | * Calling the "internal" version avoids the "check for needed" | 
|  | * and "trimdone monitor" that might be counter-productive. | 
|  | */ | 
|  | ret = qib_internal_presets(dd); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed to set IB SERDES presets\n"); | 
|  | goto bail; | 
|  | } | 
|  | ret = qib_sd_trimself(dd, 0x80); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | /* Load image, then try to verify */ | 
|  | ret = 0;        /* Assume success */ | 
|  | if (first_reset) { | 
|  | int vfy; | 
|  | int trim_done; | 
|  |  | 
|  | ret = qib_sd7220_ib_load(dd, fw); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed to load IB SERDES image\n"); | 
|  | goto bail; | 
|  | } else { | 
|  | /* Loaded image, try to verify */ | 
|  | vfy = qib_sd7220_ib_vfy(dd, fw); | 
|  | if (vfy != ret) { | 
|  | qib_dev_err(dd, "SERDES PRAM VFY failed\n"); | 
|  | goto bail; | 
|  | } /* end if verified */ | 
|  | } /* end if loaded */ | 
|  |  | 
|  | /* | 
|  | * Loaded and verified. Almost good... | 
|  | * hold "success" in ret | 
|  | */ | 
|  | ret = 0; | 
|  | /* | 
|  | * Prev steps all worked, continue bringup | 
|  | * De-assert RESET to uC, only in first reset, to allow | 
|  | * trimming. | 
|  | * | 
|  | * Since our default setup sets START_EQ1 to | 
|  | * PRESET, we need to clear that for this very first run. | 
|  | */ | 
|  | ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); | 
|  | if (ret < 0) { | 
|  | qib_dev_err(dd, "Failed clearing START_EQ1\n"); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | qib_ibsd_reset(dd, 0); | 
|  | /* | 
|  | * If this is not the first reset, trimdone should be set | 
|  | * already. We may need to check about this. | 
|  | */ | 
|  | trim_done = qib_sd_trimdone_poll(dd); | 
|  | /* | 
|  | * Whether or not trimdone succeeded, we need to put the | 
|  | * uC back into reset to avoid a possible fight with the | 
|  | * IBC state-machine. | 
|  | */ | 
|  | qib_ibsd_reset(dd, 1); | 
|  |  | 
|  | if (!trim_done) { | 
|  | qib_dev_err(dd, "No TRIMDONE seen\n"); | 
|  | goto bail; | 
|  | } | 
|  | /* | 
|  | * DEBUG: check each time we reset if trimdone bits have | 
|  | * gotten cleared, and re-set them. | 
|  | */ | 
|  | qib_sd_trimdone_monitor(dd, "First-reset"); | 
|  | /* Remember so we do not re-do the load, dactrim, etc. */ | 
|  | dd->cspec->serdes_first_init_done = 1; | 
|  | } | 
|  | /* | 
|  | * setup for channel training and load values for | 
|  | * RxEq and DDS in tables used by IBC in IB1.2 mode | 
|  | */ | 
|  | ret = 0; | 
|  | if (qib_sd_setvals(dd) >= 0) | 
|  | goto done; | 
|  | bail: | 
|  | ret = 1; | 
|  | done: | 
|  | /* start relock timer regardless, but start at 1 second */ | 
|  | set_7220_relock_poll(dd, -1); | 
|  |  | 
|  | release_firmware(fw); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define EPB_ACC_REQ 1 | 
|  | #define EPB_ACC_GNT 0x100 | 
|  | #define EPB_DATA_MASK 0xFF | 
|  | #define EPB_RD (1ULL << 24) | 
|  | #define EPB_TRANS_RDY (1ULL << 31) | 
|  | #define EPB_TRANS_ERR (1ULL << 30) | 
|  | #define EPB_TRANS_TRIES 5 | 
|  |  | 
|  | /* | 
|  | * query, claim, release ownership of the EPB (External Parallel Bus) | 
|  | * for a specified SERDES. | 
|  | * the "claim" parameter is >0 to claim, <0 to release, 0 to query. | 
|  | * Returns <0 for errors, >0 if we had ownership, else 0. | 
|  | */ | 
|  | static int epb_access(struct qib_devdata *dd, int sdnum, int claim) | 
|  | { | 
|  | u16 acc; | 
|  | u64 accval; | 
|  | int owned = 0; | 
|  | u64 oct_sel = 0; | 
|  |  | 
|  | switch (sdnum) { | 
|  | case IB_7220_SERDES: | 
|  | /* | 
|  | * The IB SERDES "ownership" is fairly simple. A single each | 
|  | * request/grant. | 
|  | */ | 
|  | acc = kr_ibsd_epb_access_ctrl; | 
|  | break; | 
|  |  | 
|  | case PCIE_SERDES0: | 
|  | case PCIE_SERDES1: | 
|  | /* PCIe SERDES has two "octants", need to select which */ | 
|  | acc = kr_pciesd_epb_access_ctrl; | 
|  | oct_sel = (2 << (sdnum - PCIE_SERDES0)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Make sure any outstanding transaction was seen */ | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | udelay(15); | 
|  |  | 
|  | accval = qib_read_kreg32(dd, acc); | 
|  |  | 
|  | owned = !!(accval & EPB_ACC_GNT); | 
|  | if (claim < 0) { | 
|  | /* Need to release */ | 
|  | u64 pollval; | 
|  | /* | 
|  | * The only writeable bits are the request and CS. | 
|  | * Both should be clear | 
|  | */ | 
|  | u64 newval = 0; | 
|  | qib_write_kreg(dd, acc, newval); | 
|  | /* First read after write is not trustworthy */ | 
|  | pollval = qib_read_kreg32(dd, acc); | 
|  | udelay(5); | 
|  | pollval = qib_read_kreg32(dd, acc); | 
|  | if (pollval & EPB_ACC_GNT) | 
|  | owned = -1; | 
|  | } else if (claim > 0) { | 
|  | /* Need to claim */ | 
|  | u64 pollval; | 
|  | u64 newval = EPB_ACC_REQ | oct_sel; | 
|  | qib_write_kreg(dd, acc, newval); | 
|  | /* First read after write is not trustworthy */ | 
|  | pollval = qib_read_kreg32(dd, acc); | 
|  | udelay(5); | 
|  | pollval = qib_read_kreg32(dd, acc); | 
|  | if (!(pollval & EPB_ACC_GNT)) | 
|  | owned = -1; | 
|  | } | 
|  | return owned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lemma to deal with race condition of write..read to epb regs | 
|  | */ | 
|  | static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) | 
|  | { | 
|  | int tries; | 
|  | u64 transval; | 
|  |  | 
|  | qib_write_kreg(dd, reg, i_val); | 
|  | /* Throw away first read, as RDY bit may be stale */ | 
|  | transval = qib_read_kreg64(dd, reg); | 
|  |  | 
|  | for (tries = EPB_TRANS_TRIES; tries; --tries) { | 
|  | transval = qib_read_kreg32(dd, reg); | 
|  | if (transval & EPB_TRANS_RDY) | 
|  | break; | 
|  | udelay(5); | 
|  | } | 
|  | if (transval & EPB_TRANS_ERR) | 
|  | return -1; | 
|  | if (tries > 0 && o_vp) | 
|  | *o_vp = transval; | 
|  | return tries; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * qib_sd7220_reg_mod - modify SERDES register | 
|  | * @dd: the qlogic_ib device | 
|  | * @sdnum: which SERDES to access | 
|  | * @loc: location - channel, element, register, as packed by EPB_LOC() macro. | 
|  | * @wd: Write Data - value to set in register | 
|  | * @mask: ones where data should be spliced into reg. | 
|  | * | 
|  | * Basic register read/modify/write, with un-needed acesses elided. That is, | 
|  | * a mask of zero will prevent write, while a mask of 0xFF will prevent read. | 
|  | * returns current (presumed, if a write was done) contents of selected | 
|  | * register, or <0 if errors. | 
|  | */ | 
|  | static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc, | 
|  | u32 wd, u32 mask) | 
|  | { | 
|  | u16 trans; | 
|  | u64 transval; | 
|  | int owned; | 
|  | int tries, ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (sdnum) { | 
|  | case IB_7220_SERDES: | 
|  | trans = kr_ibsd_epb_transaction_reg; | 
|  | break; | 
|  |  | 
|  | case PCIE_SERDES0: | 
|  | case PCIE_SERDES1: | 
|  | trans = kr_pciesd_epb_transaction_reg; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All access is locked in software (vs other host threads) and | 
|  | * hardware (vs uC access). | 
|  | */ | 
|  | spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); | 
|  |  | 
|  | owned = epb_access(dd, sdnum, 1); | 
|  | if (owned < 0) { | 
|  | spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); | 
|  | return -1; | 
|  | } | 
|  | ret = 0; | 
|  | for (tries = EPB_TRANS_TRIES; tries; --tries) { | 
|  | transval = qib_read_kreg32(dd, trans); | 
|  | if (transval & EPB_TRANS_RDY) | 
|  | break; | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | if (tries > 0) { | 
|  | tries = 1;      /* to make read-skip work */ | 
|  | if (mask != 0xFF) { | 
|  | /* | 
|  | * Not a pure write, so need to read. | 
|  | * loc encodes chip-select as well as address | 
|  | */ | 
|  | transval = loc | EPB_RD; | 
|  | tries = epb_trans(dd, trans, transval, &transval); | 
|  | } | 
|  | if (tries > 0 && mask != 0) { | 
|  | /* | 
|  | * Not a pure read, so need to write. | 
|  | */ | 
|  | wd = (wd & mask) | (transval & ~mask); | 
|  | transval = loc | (wd & EPB_DATA_MASK); | 
|  | tries = epb_trans(dd, trans, transval, &transval); | 
|  | } | 
|  | } | 
|  | /* else, failed to see ready, what error-handling? */ | 
|  |  | 
|  | /* | 
|  | * Release bus. Failure is an error. | 
|  | */ | 
|  | if (epb_access(dd, sdnum, -1) < 0) | 
|  | ret = -1; | 
|  | else | 
|  | ret = transval & EPB_DATA_MASK; | 
|  |  | 
|  | spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); | 
|  | if (tries <= 0) | 
|  | ret = -1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define EPB_ROM_R (2) | 
|  | #define EPB_ROM_W (1) | 
|  | /* | 
|  | * Below, all uC-related, use appropriate UC_CS, depending | 
|  | * on which SerDes is used. | 
|  | */ | 
|  | #define EPB_UC_CTL EPB_LOC(6, 0, 0) | 
|  | #define EPB_MADDRL EPB_LOC(6, 0, 2) | 
|  | #define EPB_MADDRH EPB_LOC(6, 0, 3) | 
|  | #define EPB_ROMDATA EPB_LOC(6, 0, 4) | 
|  | #define EPB_RAMDATA EPB_LOC(6, 0, 5) | 
|  |  | 
|  | /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ | 
|  | static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc, | 
|  | u8 *buf, int cnt, int rd_notwr) | 
|  | { | 
|  | u16 trans; | 
|  | u64 transval; | 
|  | u64 csbit; | 
|  | int owned; | 
|  | int tries; | 
|  | int sofar; | 
|  | int addr; | 
|  | int ret; | 
|  | unsigned long flags; | 
|  | const char *op; | 
|  |  | 
|  | /* Pick appropriate transaction reg and "Chip select" for this serdes */ | 
|  | switch (sdnum) { | 
|  | case IB_7220_SERDES: | 
|  | csbit = 1ULL << EPB_IB_UC_CS_SHF; | 
|  | trans = kr_ibsd_epb_transaction_reg; | 
|  | break; | 
|  |  | 
|  | case PCIE_SERDES0: | 
|  | case PCIE_SERDES1: | 
|  | /* PCIe SERDES has uC "chip select" in different bit, too */ | 
|  | csbit = 1ULL << EPB_PCIE_UC_CS_SHF; | 
|  | trans = kr_pciesd_epb_transaction_reg; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | op = rd_notwr ? "Rd" : "Wr"; | 
|  | spin_lock_irqsave(&dd->cspec->sdepb_lock, flags); | 
|  |  | 
|  | owned = epb_access(dd, sdnum, 1); | 
|  | if (owned < 0) { | 
|  | spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In future code, we may need to distinguish several address ranges, | 
|  | * and select various memories based on this. For now, just trim | 
|  | * "loc" (location including address and memory select) to | 
|  | * "addr" (address within memory). we will only support PRAM | 
|  | * The memory is 8KB. | 
|  | */ | 
|  | addr = loc & 0x1FFF; | 
|  | for (tries = EPB_TRANS_TRIES; tries; --tries) { | 
|  | transval = qib_read_kreg32(dd, trans); | 
|  | if (transval & EPB_TRANS_RDY) | 
|  | break; | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | sofar = 0; | 
|  | if (tries > 0) { | 
|  | /* | 
|  | * Every "memory" access is doubly-indirect. | 
|  | * We set two bytes of address, then read/write | 
|  | * one or mores bytes of data. | 
|  | */ | 
|  |  | 
|  | /* First, we set control to "Read" or "Write" */ | 
|  | transval = csbit | EPB_UC_CTL | | 
|  | (rd_notwr ? EPB_ROM_R : EPB_ROM_W); | 
|  | tries = epb_trans(dd, trans, transval, &transval); | 
|  | while (tries > 0 && sofar < cnt) { | 
|  | if (!sofar) { | 
|  | /* Only set address at start of chunk */ | 
|  | int addrbyte = (addr + sofar) >> 8; | 
|  | transval = csbit | EPB_MADDRH | addrbyte; | 
|  | tries = epb_trans(dd, trans, transval, | 
|  | &transval); | 
|  | if (tries <= 0) | 
|  | break; | 
|  | addrbyte = (addr + sofar) & 0xFF; | 
|  | transval = csbit | EPB_MADDRL | addrbyte; | 
|  | tries = epb_trans(dd, trans, transval, | 
|  | &transval); | 
|  | if (tries <= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rd_notwr) | 
|  | transval = csbit | EPB_ROMDATA | EPB_RD; | 
|  | else | 
|  | transval = csbit | EPB_ROMDATA | buf[sofar]; | 
|  | tries = epb_trans(dd, trans, transval, &transval); | 
|  | if (tries <= 0) | 
|  | break; | 
|  | if (rd_notwr) | 
|  | buf[sofar] = transval & EPB_DATA_MASK; | 
|  | ++sofar; | 
|  | } | 
|  | /* Finally, clear control-bit for Read or Write */ | 
|  | transval = csbit | EPB_UC_CTL; | 
|  | tries = epb_trans(dd, trans, transval, &transval); | 
|  | } | 
|  |  | 
|  | ret = sofar; | 
|  | /* Release bus. Failure is an error */ | 
|  | if (epb_access(dd, sdnum, -1) < 0) | 
|  | ret = -1; | 
|  |  | 
|  | spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags); | 
|  | if (tries <= 0) | 
|  | ret = -1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define PROG_CHUNK 64 | 
|  |  | 
|  | static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum, | 
|  | const u8 *img, int len, int offset) | 
|  | { | 
|  | int cnt, sofar, req; | 
|  |  | 
|  | sofar = 0; | 
|  | while (sofar < len) { | 
|  | req = len - sofar; | 
|  | if (req > PROG_CHUNK) | 
|  | req = PROG_CHUNK; | 
|  | cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar, | 
|  | (u8 *)img + sofar, req, 0); | 
|  | if (cnt < req) { | 
|  | sofar = -1; | 
|  | break; | 
|  | } | 
|  | sofar += req; | 
|  | } | 
|  | return sofar; | 
|  | } | 
|  |  | 
|  | #define VFY_CHUNK 64 | 
|  | #define SD_PRAM_ERROR_LIMIT 42 | 
|  |  | 
|  | static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum, | 
|  | const u8 *img, int len, int offset) | 
|  | { | 
|  | int cnt, sofar, req, idx, errors; | 
|  | unsigned char readback[VFY_CHUNK]; | 
|  |  | 
|  | errors = 0; | 
|  | sofar = 0; | 
|  | while (sofar < len) { | 
|  | req = len - sofar; | 
|  | if (req > VFY_CHUNK) | 
|  | req = VFY_CHUNK; | 
|  | cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset, | 
|  | readback, req, 1); | 
|  | if (cnt < req) { | 
|  | /* failed in read itself */ | 
|  | sofar = -1; | 
|  | break; | 
|  | } | 
|  | for (idx = 0; idx < cnt; ++idx) { | 
|  | if (readback[idx] != img[idx+sofar]) | 
|  | ++errors; | 
|  | } | 
|  | sofar += cnt; | 
|  | } | 
|  | return errors ? -errors : sofar; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw) | 
|  | { | 
|  | return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0); | 
|  | } | 
|  |  | 
|  | static int | 
|  | qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw) | 
|  | { | 
|  | return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ not set up at this point in init, so we poll. | 
|  | */ | 
|  | #define IB_SERDES_TRIM_DONE (1ULL << 11) | 
|  | #define TRIM_TMO (30) | 
|  |  | 
|  | static int qib_sd_trimdone_poll(struct qib_devdata *dd) | 
|  | { | 
|  | int trim_tmo, ret; | 
|  | uint64_t val; | 
|  |  | 
|  | /* | 
|  | * Default to failure, so IBC will not start | 
|  | * without IB_SERDES_TRIM_DONE. | 
|  | */ | 
|  | ret = 0; | 
|  | for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { | 
|  | val = qib_read_kreg64(dd, kr_ibcstatus); | 
|  | if (val & IB_SERDES_TRIM_DONE) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | msleep(10); | 
|  | } | 
|  | if (trim_tmo >= TRIM_TMO) { | 
|  | qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define TX_FAST_ELT (9) | 
|  |  | 
|  | /* | 
|  | * Set the "negotiation" values for SERDES. These are used by the IB1.2 | 
|  | * link negotiation. Macros below are attempt to keep the values a | 
|  | * little more human-editable. | 
|  | * First, values related to Drive De-emphasis Settings. | 
|  | */ | 
|  |  | 
|  | #define NUM_DDS_REGS 6 | 
|  | #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ | 
|  |  | 
|  | #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ | 
|  | { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ | 
|  | (main_d << 3) | 4 | (ipre_d >> 2), \ | 
|  | (main_s << 3) | 4 | (ipre_s >> 2), \ | 
|  | ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ | 
|  | ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } | 
|  |  | 
|  | static struct dds_init { | 
|  | uint8_t reg_vals[NUM_DDS_REGS]; | 
|  | } dds_init_vals[] = { | 
|  | /*       DDR(FDR)       SDR(HDR)   */ | 
|  | /* Vendor recommends below for 3m cable */ | 
|  | #define DDS_3M 0 | 
|  | DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0), | 
|  | DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), | 
|  | DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), | 
|  | DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), | 
|  | DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), | 
|  | DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), | 
|  | DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), | 
|  | DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), | 
|  | DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0), | 
|  | DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0), | 
|  | DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0), | 
|  | DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0), | 
|  | DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0), | 
|  | /* Vendor recommends below for 1m cable */ | 
|  | #define DDS_1M 13 | 
|  | DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0), | 
|  | DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0), | 
|  | DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0) | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Now the RXEQ section of the table. | 
|  | */ | 
|  | /* Hardware packs an element number and register address thus: */ | 
|  | #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) | 
|  | #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ | 
|  | {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } | 
|  |  | 
|  | #define RXEQ_VAL_ALL(elt, adr, val)  \ | 
|  | {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } | 
|  |  | 
|  | #define RXEQ_SDR_DFELTH 0 | 
|  | #define RXEQ_SDR_TLTH 0 | 
|  | #define RXEQ_SDR_G1CNT_Z1CNT 0x11 | 
|  | #define RXEQ_SDR_ZCNT 23 | 
|  |  | 
|  | static struct rxeq_init { | 
|  | u16 rdesc;      /* in form used in SerDesDDSRXEQ */ | 
|  | u8  rdata[4]; | 
|  | } rxeq_init_vals[] = { | 
|  | /* Set Rcv Eq. to Preset node */ | 
|  | RXEQ_VAL_ALL(7, 0x27, 0x10), | 
|  | /* Set DFELTHFDR/HDR thresholds */ | 
|  | RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */ | 
|  | RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ | 
|  | /* Set TLTHFDR/HDR theshold */ | 
|  | RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */ | 
|  | RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */ | 
|  | /* Set Preamp setting 2 (ZFR/ZCNT) */ | 
|  | RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */ | 
|  | RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */ | 
|  | /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ | 
|  | RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */ | 
|  | RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */ | 
|  | /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ | 
|  | RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ | 
|  | RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ | 
|  | }; | 
|  |  | 
|  | /* There are 17 values from vendor, but IBC only accesses the first 16 */ | 
|  | #define DDS_ROWS (16) | 
|  | #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) | 
|  |  | 
|  | static int qib_sd_setvals(struct qib_devdata *dd) | 
|  | { | 
|  | int idx, midx; | 
|  | int min_idx;     /* Minimum index for this portion of table */ | 
|  | uint32_t dds_reg_map; | 
|  | u64 __iomem *taddr, *iaddr; | 
|  | uint64_t data; | 
|  | uint64_t sdctl; | 
|  |  | 
|  | taddr = dd->kregbase + kr_serdes_maptable; | 
|  | iaddr = dd->kregbase + kr_serdes_ddsrxeq0; | 
|  |  | 
|  | /* | 
|  | * Init the DDS section of the table. | 
|  | * Each "row" of the table provokes NUM_DDS_REG writes, to the | 
|  | * registers indicated in DDS_REG_MAP. | 
|  | */ | 
|  | sdctl = qib_read_kreg64(dd, kr_ibserdesctrl); | 
|  | sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); | 
|  | sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); | 
|  | qib_write_kreg(dd, kr_ibserdesctrl, sdctl); | 
|  |  | 
|  | /* | 
|  | * Iterate down table within loop for each register to store. | 
|  | */ | 
|  | dds_reg_map = DDS_REG_MAP; | 
|  | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { | 
|  | data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; | 
|  | writeq(data, iaddr + idx); | 
|  | mmiowb(); | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | dds_reg_map >>= 4; | 
|  | for (midx = 0; midx < DDS_ROWS; ++midx) { | 
|  | u64 __iomem *daddr = taddr + ((midx << 4) + idx); | 
|  | data = dds_init_vals[midx].reg_vals[idx]; | 
|  | writeq(data, daddr); | 
|  | mmiowb(); | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | } /* End inner for (vals for this reg, each row) */ | 
|  | } /* end outer for (regs to be stored) */ | 
|  |  | 
|  | /* | 
|  | * Init the RXEQ section of the table. | 
|  | * This runs in a different order, as the pattern of | 
|  | * register references is more complex, but there are only | 
|  | * four "data" values per register. | 
|  | */ | 
|  | min_idx = idx; /* RXEQ indices pick up where DDS left off */ | 
|  | taddr += 0x100; /* RXEQ data is in second half of table */ | 
|  | /* Iterate through RXEQ register addresses */ | 
|  | for (idx = 0; idx < RXEQ_ROWS; ++idx) { | 
|  | int didx; /* "destination" */ | 
|  | int vidx; | 
|  |  | 
|  | /* didx is offset by min_idx to address RXEQ range of regs */ | 
|  | didx = idx + min_idx; | 
|  | /* Store the next RXEQ register address */ | 
|  | writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); | 
|  | mmiowb(); | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | /* Iterate through RXEQ values */ | 
|  | for (vidx = 0; vidx < 4; vidx++) { | 
|  | data = rxeq_init_vals[idx].rdata[vidx]; | 
|  | writeq(data, taddr + (vidx << 6) + idx); | 
|  | mmiowb(); | 
|  | qib_read_kreg32(dd, kr_scratch); | 
|  | } | 
|  | } /* end outer for (Reg-writes for RXEQ) */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define CMUCTRL5 EPB_LOC(7, 0, 0x15) | 
|  | #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) | 
|  | #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) | 
|  | #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) | 
|  | #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) | 
|  | #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) | 
|  |  | 
|  | /* | 
|  | * Repeat a "store" across all channels of the IB SerDes. | 
|  | * Although nominally it inherits the "read value" of the last | 
|  | * channel it modified, the only really useful return is <0 for | 
|  | * failure, >= 0 for success. The parameter 'loc' is assumed to | 
|  | * be the location in some channel of the register to be modified | 
|  | * The caller can specify use of the "gang write" option of EPB, | 
|  | * in which case we use the specified channel data for any fields | 
|  | * not explicitely written. | 
|  | */ | 
|  | static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val, | 
|  | int mask) | 
|  | { | 
|  | int ret = -1; | 
|  | int chnl; | 
|  |  | 
|  | if (loc & EPB_GLOBAL_WR) { | 
|  | /* | 
|  | * Our caller has assured us that we can set all four | 
|  | * channels at once. Trust that. If mask is not 0xFF, | 
|  | * we will read the _specified_ channel for our starting | 
|  | * value. | 
|  | */ | 
|  | loc |= (1U << EPB_IB_QUAD0_CS_SHF); | 
|  | chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; | 
|  | if (mask != 0xFF) { | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, | 
|  | loc & ~EPB_GLOBAL_WR, 0, 0); | 
|  | if (ret < 0) { | 
|  | int sloc = loc >> EPB_ADDR_SHF; | 
|  |  | 
|  | qib_dev_err(dd, | 
|  | "pre-read failed: elt %d, addr 0x%X, chnl %d\n", | 
|  | (sloc & 0xF), | 
|  | (sloc >> 9) & 0x3f, chnl); | 
|  | return ret; | 
|  | } | 
|  | val = (ret & ~mask) | (val & mask); | 
|  | } | 
|  | loc &=  ~(7 << (4+EPB_ADDR_SHF)); | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); | 
|  | if (ret < 0) { | 
|  | int sloc = loc >> EPB_ADDR_SHF; | 
|  |  | 
|  | qib_dev_err(dd, | 
|  | "Global WR failed: elt %d, addr 0x%X, val %02X\n", | 
|  | (sloc & 0xF), (sloc >> 9) & 0x3f, val); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | /* Clear "channel" and set CS so we can simply iterate */ | 
|  | loc &=  ~(7 << (4+EPB_ADDR_SHF)); | 
|  | loc |= (1U << EPB_IB_QUAD0_CS_SHF); | 
|  | for (chnl = 0; chnl < 4; ++chnl) { | 
|  | int cloc = loc | (chnl << (4+EPB_ADDR_SHF)); | 
|  |  | 
|  | ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); | 
|  | if (ret < 0) { | 
|  | int sloc = loc >> EPB_ADDR_SHF; | 
|  |  | 
|  | qib_dev_err(dd, | 
|  | "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n", | 
|  | (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, | 
|  | val & 0xFF, mask & 0xFF); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the Tx values normally modified by IBC in IB1.2 mode to default | 
|  | * values, as gotten from first row of init table. | 
|  | */ | 
|  | static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi) | 
|  | { | 
|  | int ret; | 
|  | int idx, reg, data; | 
|  | uint32_t regmap; | 
|  |  | 
|  | regmap = DDS_REG_MAP; | 
|  | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { | 
|  | reg = (regmap & 0xF); | 
|  | regmap >>= 4; | 
|  | data = ddi->reg_vals[idx]; | 
|  | /* Vendor says RMW not needed for these regs, use 0xFF mask */ | 
|  | ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the Rx values normally modified by IBC in IB1.2 mode to default | 
|  | * values, as gotten from selected column of init table. | 
|  | */ | 
|  | static int set_rxeq_vals(struct qib_devdata *dd, int vsel) | 
|  | { | 
|  | int ret; | 
|  | int ridx; | 
|  | int cnt = ARRAY_SIZE(rxeq_init_vals); | 
|  |  | 
|  | for (ridx = 0; ridx < cnt; ++ridx) { | 
|  | int elt, reg, val, loc; | 
|  |  | 
|  | elt = rxeq_init_vals[ridx].rdesc & 0xF; | 
|  | reg = rxeq_init_vals[ridx].rdesc >> 4; | 
|  | loc = EPB_LOC(0, elt, reg); | 
|  | val = rxeq_init_vals[ridx].rdata[vsel]; | 
|  | /* mask of 0xFF, because hardware does full-byte store. */ | 
|  | ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the default values (row 0) for DDR Driver Demphasis. | 
|  | * we do this initially and whenever we turn off IB-1.2 | 
|  | * | 
|  | * The "default" values for Rx equalization are also stored to | 
|  | * SerDes registers. Formerly (and still default), we used set 2. | 
|  | * For experimenting with cables and link-partners, we allow changing | 
|  | * that via a module parameter. | 
|  | */ | 
|  | static unsigned qib_rxeq_set = 2; | 
|  | module_param_named(rxeq_default_set, qib_rxeq_set, uint, | 
|  | S_IWUSR | S_IRUGO); | 
|  | MODULE_PARM_DESC(rxeq_default_set, | 
|  | "Which set [0..3] of Rx Equalization values is default"); | 
|  |  | 
|  | static int qib_internal_presets(struct qib_devdata *dd) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ret = set_dds_vals(dd, dds_init_vals + DDS_3M); | 
|  |  | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "Failed to set default DDS values\n"); | 
|  | ret = set_rxeq_vals(dd, qib_rxeq_set & 3); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "Failed to set default RXEQ values\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int qib_sd7220_presets(struct qib_devdata *dd) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!dd->cspec->presets_needed) | 
|  | return ret; | 
|  | dd->cspec->presets_needed = 0; | 
|  | /* Assert uC reset, so we don't clash with it. */ | 
|  | qib_ibsd_reset(dd, 1); | 
|  | udelay(2); | 
|  | qib_sd_trimdone_monitor(dd, "link-down"); | 
|  |  | 
|  | ret = qib_internal_presets(dd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int qib_sd_trimself(struct qib_devdata *dd, int val) | 
|  | { | 
|  | int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF); | 
|  |  | 
|  | return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); | 
|  | } | 
|  |  | 
|  | static int qib_sd_early(struct qib_devdata *dd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  | ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  | ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF); | 
|  | bail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) | 
|  | #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) | 
|  | #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) | 
|  |  | 
|  | static int qib_sd_dactrim(struct qib_devdata *dd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | /* more fine-tuning of what will be default */ | 
|  | ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF); | 
|  | if (ret < 0) | 
|  | goto bail; | 
|  |  | 
|  | /* | 
|  | * Delay for max possible number of steps, with slop. | 
|  | * Each step is about 4usec. | 
|  | */ | 
|  | udelay(415); | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF); | 
|  |  | 
|  | bail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define RELOCK_FIRST_MS 3 | 
|  | #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) | 
|  | void toggle_7220_rclkrls(struct qib_devdata *dd) | 
|  | { | 
|  | int loc = RXLSPPM(0) | EPB_GLOBAL_WR; | 
|  | int ret; | 
|  |  | 
|  | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); | 
|  | else { | 
|  | udelay(1); | 
|  | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); | 
|  | } | 
|  | /* And again for good measure */ | 
|  | udelay(1); | 
|  | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); | 
|  | if (ret < 0) | 
|  | qib_dev_err(dd, "RCLKRLS failed to clear D7\n"); | 
|  | else { | 
|  | udelay(1); | 
|  | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); | 
|  | } | 
|  | /* Now reset xgxs and IBC to complete the recovery */ | 
|  | dd->f_xgxs_reset(dd->pport); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shut down the timer that polls for relock occasions, if needed | 
|  | * this is "hooked" from qib_7220_quiet_serdes(), which is called | 
|  | * just before qib_shutdown_device() in qib_driver.c shuts down all | 
|  | * the other timers | 
|  | */ | 
|  | void shutdown_7220_relock_poll(struct qib_devdata *dd) | 
|  | { | 
|  | if (dd->cspec->relock_timer_active) | 
|  | del_timer_sync(&dd->cspec->relock_timer); | 
|  | } | 
|  |  | 
|  | static unsigned qib_relock_by_timer = 1; | 
|  | module_param_named(relock_by_timer, qib_relock_by_timer, uint, | 
|  | S_IWUSR | S_IRUGO); | 
|  | MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); | 
|  |  | 
|  | static void qib_run_relock(unsigned long opaque) | 
|  | { | 
|  | struct qib_devdata *dd = (struct qib_devdata *)opaque; | 
|  | struct qib_pportdata *ppd = dd->pport; | 
|  | struct qib_chip_specific *cs = dd->cspec; | 
|  | int timeoff; | 
|  |  | 
|  | /* | 
|  | * Check link-training state for "stuck" state, when down. | 
|  | * if found, try relock and schedule another try at | 
|  | * exponentially growing delay, maxed at one second. | 
|  | * if not stuck, our work is done. | 
|  | */ | 
|  | if ((dd->flags & QIB_INITTED) && !(ppd->lflags & | 
|  | (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED | | 
|  | QIBL_LINKACTIVE))) { | 
|  | if (qib_relock_by_timer) { | 
|  | if (!(ppd->lflags & QIBL_IB_LINK_DISABLED)) | 
|  | toggle_7220_rclkrls(dd); | 
|  | } | 
|  | /* re-set timer for next check */ | 
|  | timeoff = cs->relock_interval << 1; | 
|  | if (timeoff > HZ) | 
|  | timeoff = HZ; | 
|  | cs->relock_interval = timeoff; | 
|  | } else | 
|  | timeoff = HZ; | 
|  | mod_timer(&cs->relock_timer, jiffies + timeoff); | 
|  | } | 
|  |  | 
|  | void set_7220_relock_poll(struct qib_devdata *dd, int ibup) | 
|  | { | 
|  | struct qib_chip_specific *cs = dd->cspec; | 
|  |  | 
|  | if (ibup) { | 
|  | /* We are now up, relax timer to 1 second interval */ | 
|  | if (cs->relock_timer_active) { | 
|  | cs->relock_interval = HZ; | 
|  | mod_timer(&cs->relock_timer, jiffies + HZ); | 
|  | } | 
|  | } else { | 
|  | /* Transition to down, (re-)set timer to short interval. */ | 
|  | unsigned int timeout; | 
|  |  | 
|  | timeout = msecs_to_jiffies(RELOCK_FIRST_MS); | 
|  | if (timeout == 0) | 
|  | timeout = 1; | 
|  | /* If timer has not yet been started, do so. */ | 
|  | if (!cs->relock_timer_active) { | 
|  | cs->relock_timer_active = 1; | 
|  | init_timer(&cs->relock_timer); | 
|  | cs->relock_timer.function = qib_run_relock; | 
|  | cs->relock_timer.data = (unsigned long) dd; | 
|  | cs->relock_interval = timeout; | 
|  | cs->relock_timer.expires = jiffies + timeout; | 
|  | add_timer(&cs->relock_timer); | 
|  | } else { | 
|  | cs->relock_interval = timeout; | 
|  | mod_timer(&cs->relock_timer, jiffies + timeout); | 
|  | } | 
|  | } | 
|  | } |