|  | /* | 
|  | * Extensible Firmware Interface | 
|  | * | 
|  | * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 | 
|  | * | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 1999-2003 Hewlett-Packard Co. | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * | 
|  | * All EFI Runtime Services are not implemented yet as EFI only | 
|  | * supports physical mode addressing on SoftSDV. This is to be fixed | 
|  | * in a future version.  --drummond 1999-07-20 | 
|  | * | 
|  | * Implemented EFI runtime services and virtual mode calls.  --davidm | 
|  | * | 
|  | * Goutham Rao: <goutham.rao@intel.com> | 
|  | *	Skip non-WB memory and ignore empty memory ranges. | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/efi.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/kregs.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mca.h> | 
|  |  | 
|  | #define EFI_DEBUG	0 | 
|  |  | 
|  | extern efi_status_t efi_call_phys (void *, ...); | 
|  |  | 
|  | struct efi efi; | 
|  | EXPORT_SYMBOL(efi); | 
|  | static efi_runtime_services_t *runtime; | 
|  | static unsigned long mem_limit = ~0UL, max_addr = ~0UL; | 
|  |  | 
|  | #define efi_call_virt(f, args...)	(*(f))(args) | 
|  |  | 
|  | #define STUB_GET_TIME(prefix, adjust_arg)							  \ | 
|  | static efi_status_t										  \ | 
|  | prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \ | 
|  | {												  \ | 
|  | struct ia64_fpreg fr[6];								  \ | 
|  | efi_time_cap_t *atc = NULL;								  \ | 
|  | efi_status_t ret;									  \ | 
|  | \ | 
|  | if (tc)											  \ | 
|  | atc = adjust_arg(tc);								  \ | 
|  | ia64_save_scratch_fpregs(fr);								  \ | 
|  | ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ | 
|  | ia64_load_scratch_fpregs(fr);								  \ | 
|  | return ret;										  \ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_TIME(prefix, adjust_arg)							\ | 
|  | static efi_status_t										\ | 
|  | prefix##_set_time (efi_time_t *tm)								\ | 
|  | {												\ | 
|  | struct ia64_fpreg fr[6];								\ | 
|  | efi_status_t ret;									\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);								\ | 
|  | ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\ | 
|  | ia64_load_scratch_fpregs(fr);								\ | 
|  | return ret;										\ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\ | 
|  | static efi_status_t										\ | 
|  | prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\ | 
|  | {												\ | 
|  | struct ia64_fpreg fr[6];								\ | 
|  | efi_status_t ret;									\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);								\ | 
|  | ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\ | 
|  | adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\ | 
|  | ia64_load_scratch_fpregs(fr);								\ | 
|  | return ret;										\ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\ | 
|  | static efi_status_t										\ | 
|  | prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\ | 
|  | {												\ | 
|  | struct ia64_fpreg fr[6];								\ | 
|  | efi_time_t *atm = NULL;									\ | 
|  | efi_status_t ret;									\ | 
|  | \ | 
|  | if (tm)											\ | 
|  | atm = adjust_arg(tm);								\ | 
|  | ia64_save_scratch_fpregs(fr);								\ | 
|  | ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\ | 
|  | enabled, atm);							\ | 
|  | ia64_load_scratch_fpregs(fr);								\ | 
|  | return ret;										\ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_VARIABLE(prefix, adjust_arg)						\ | 
|  | static efi_status_t									\ | 
|  | prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\ | 
|  | unsigned long *data_size, void *data)				\ | 
|  | {											\ | 
|  | struct ia64_fpreg fr[6];							\ | 
|  | u32 *aattr = NULL;									\ | 
|  | efi_status_t ret;								\ | 
|  | \ | 
|  | if (attr)									\ | 
|  | aattr = adjust_arg(attr);						\ | 
|  | ia64_save_scratch_fpregs(fr);							\ | 
|  | ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\ | 
|  | adjust_arg(name), adjust_arg(vendor), aattr,		\ | 
|  | adjust_arg(data_size), adjust_arg(data));		\ | 
|  | ia64_load_scratch_fpregs(fr);							\ | 
|  | return ret;									\ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\ | 
|  | static efi_status_t										\ | 
|  | prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\ | 
|  | {												\ | 
|  | struct ia64_fpreg fr[6];								\ | 
|  | efi_status_t ret;									\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);								\ | 
|  | ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\ | 
|  | adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\ | 
|  | ia64_load_scratch_fpregs(fr);								\ | 
|  | return ret;										\ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_VARIABLE(prefix, adjust_arg)						\ | 
|  | static efi_status_t									\ | 
|  | prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\ | 
|  | unsigned long data_size, void *data)				\ | 
|  | {											\ | 
|  | struct ia64_fpreg fr[6];							\ | 
|  | efi_status_t ret;								\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);							\ | 
|  | ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\ | 
|  | adjust_arg(name), adjust_arg(vendor), attr, data_size,	\ | 
|  | adjust_arg(data));					\ | 
|  | ia64_load_scratch_fpregs(fr);							\ | 
|  | return ret;									\ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\ | 
|  | static efi_status_t										\ | 
|  | prefix##_get_next_high_mono_count (u32 *count)							\ | 
|  | {												\ | 
|  | struct ia64_fpreg fr[6];								\ | 
|  | efi_status_t ret;									\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);								\ | 
|  | ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\ | 
|  | __va(runtime->get_next_high_mono_count), adjust_arg(count));	\ | 
|  | ia64_load_scratch_fpregs(fr);								\ | 
|  | return ret;										\ | 
|  | } | 
|  |  | 
|  | #define STUB_RESET_SYSTEM(prefix, adjust_arg)					\ | 
|  | static void									\ | 
|  | prefix##_reset_system (int reset_type, efi_status_t status,			\ | 
|  | unsigned long data_size, efi_char16_t *data)		\ | 
|  | {										\ | 
|  | struct ia64_fpreg fr[6];						\ | 
|  | efi_char16_t *adata = NULL;						\ | 
|  | \ | 
|  | if (data)								\ | 
|  | adata = adjust_arg(data);					\ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);						\ | 
|  | efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\ | 
|  | reset_type, status, data_size, adata);		\ | 
|  | /* should not return, but just in case... */				\ | 
|  | ia64_load_scratch_fpregs(fr);						\ | 
|  | } | 
|  |  | 
|  | #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg)) | 
|  |  | 
|  | STUB_GET_TIME(phys, phys_ptr) | 
|  | STUB_SET_TIME(phys, phys_ptr) | 
|  | STUB_GET_WAKEUP_TIME(phys, phys_ptr) | 
|  | STUB_SET_WAKEUP_TIME(phys, phys_ptr) | 
|  | STUB_GET_VARIABLE(phys, phys_ptr) | 
|  | STUB_GET_NEXT_VARIABLE(phys, phys_ptr) | 
|  | STUB_SET_VARIABLE(phys, phys_ptr) | 
|  | STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) | 
|  | STUB_RESET_SYSTEM(phys, phys_ptr) | 
|  |  | 
|  | #define id(arg)	arg | 
|  |  | 
|  | STUB_GET_TIME(virt, id) | 
|  | STUB_SET_TIME(virt, id) | 
|  | STUB_GET_WAKEUP_TIME(virt, id) | 
|  | STUB_SET_WAKEUP_TIME(virt, id) | 
|  | STUB_GET_VARIABLE(virt, id) | 
|  | STUB_GET_NEXT_VARIABLE(virt, id) | 
|  | STUB_SET_VARIABLE(virt, id) | 
|  | STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) | 
|  | STUB_RESET_SYSTEM(virt, id) | 
|  |  | 
|  | void | 
|  | efi_gettimeofday (struct timespec *ts) | 
|  | { | 
|  | efi_time_t tm; | 
|  |  | 
|  | memset(ts, 0, sizeof(ts)); | 
|  | if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) | 
|  | return; | 
|  |  | 
|  | ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); | 
|  | ts->tv_nsec = tm.nanosecond; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_available_memory (efi_memory_desc_t *md) | 
|  | { | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | return 0; | 
|  |  | 
|  | switch (md->type) { | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trim descriptor MD so its starts at address START_ADDR.  If the descriptor covers | 
|  | * memory that is normally available to the kernel, issue a warning that some memory | 
|  | * is being ignored. | 
|  | */ | 
|  | static void | 
|  | trim_bottom (efi_memory_desc_t *md, u64 start_addr) | 
|  | { | 
|  | u64 num_skipped_pages; | 
|  |  | 
|  | if (md->phys_addr >= start_addr || !md->num_pages) | 
|  | return; | 
|  |  | 
|  | num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT; | 
|  | if (num_skipped_pages > md->num_pages) | 
|  | num_skipped_pages = md->num_pages; | 
|  |  | 
|  | if (is_available_memory(md)) | 
|  | printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " | 
|  | "at 0x%lx\n", __FUNCTION__, | 
|  | (num_skipped_pages << EFI_PAGE_SHIFT) >> 10, | 
|  | md->phys_addr, start_addr - IA64_GRANULE_SIZE); | 
|  | /* | 
|  | * NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory | 
|  | * descriptor list to become unsorted.  In such a case, md->num_pages will be | 
|  | * zero, so the Right Thing will happen. | 
|  | */ | 
|  | md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT; | 
|  | md->num_pages -= num_skipped_pages; | 
|  | } | 
|  |  | 
|  | static void | 
|  | trim_top (efi_memory_desc_t *md, u64 end_addr) | 
|  | { | 
|  | u64 num_dropped_pages, md_end_addr; | 
|  |  | 
|  | md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT); | 
|  |  | 
|  | if (md_end_addr <= end_addr || !md->num_pages) | 
|  | return; | 
|  |  | 
|  | num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT; | 
|  | if (num_dropped_pages > md->num_pages) | 
|  | num_dropped_pages = md->num_pages; | 
|  |  | 
|  | if (is_available_memory(md)) | 
|  | printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole " | 
|  | "at 0x%lx\n", __FUNCTION__, | 
|  | (num_dropped_pages << EFI_PAGE_SHIFT) >> 10, | 
|  | md->phys_addr, end_addr); | 
|  | md->num_pages -= num_dropped_pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that | 
|  | * has memory that is available for OS use. | 
|  | */ | 
|  | void | 
|  | efi_memmap_walk (efi_freemem_callback_t callback, void *arg) | 
|  | { | 
|  | int prev_valid = 0; | 
|  | struct range { | 
|  | u64 start; | 
|  | u64 end; | 
|  | } prev, curr; | 
|  | void *efi_map_start, *efi_map_end, *p, *q; | 
|  | efi_memory_desc_t *md, *check_md; | 
|  | u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0; | 
|  | unsigned long total_mem = 0; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | /* skip over non-WB memory descriptors; that's all we're interested in... */ | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * granule_addr is the base of md's first granule. | 
|  | * [granule_addr - first_non_wb_addr) is guaranteed to | 
|  | * be contiguous WB memory. | 
|  | */ | 
|  | granule_addr = GRANULEROUNDDOWN(md->phys_addr); | 
|  | first_non_wb_addr = max(first_non_wb_addr, granule_addr); | 
|  |  | 
|  | if (first_non_wb_addr < md->phys_addr) { | 
|  | trim_bottom(md, granule_addr + IA64_GRANULE_SIZE); | 
|  | granule_addr = GRANULEROUNDDOWN(md->phys_addr); | 
|  | first_non_wb_addr = max(first_non_wb_addr, granule_addr); | 
|  | } | 
|  |  | 
|  | for (q = p; q < efi_map_end; q += efi_desc_size) { | 
|  | check_md = q; | 
|  |  | 
|  | if ((check_md->attribute & EFI_MEMORY_WB) && | 
|  | (check_md->phys_addr == first_non_wb_addr)) | 
|  | first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT; | 
|  | else | 
|  | break;		/* non-WB or hole */ | 
|  | } | 
|  |  | 
|  | last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr); | 
|  | if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) | 
|  | trim_top(md, last_granule_addr); | 
|  |  | 
|  | if (is_available_memory(md)) { | 
|  | if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) { | 
|  | if (md->phys_addr >= max_addr) | 
|  | continue; | 
|  | md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT; | 
|  | first_non_wb_addr = max_addr; | 
|  | } | 
|  |  | 
|  | if (total_mem >= mem_limit) | 
|  | continue; | 
|  |  | 
|  | if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) { | 
|  | unsigned long limit_addr = md->phys_addr; | 
|  |  | 
|  | limit_addr += mem_limit - total_mem; | 
|  | limit_addr = GRANULEROUNDDOWN(limit_addr); | 
|  |  | 
|  | if (md->phys_addr > limit_addr) | 
|  | continue; | 
|  |  | 
|  | md->num_pages = (limit_addr - md->phys_addr) >> | 
|  | EFI_PAGE_SHIFT; | 
|  | first_non_wb_addr = max_addr = md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT); | 
|  | } | 
|  | total_mem += (md->num_pages << EFI_PAGE_SHIFT); | 
|  |  | 
|  | if (md->num_pages == 0) | 
|  | continue; | 
|  |  | 
|  | curr.start = PAGE_OFFSET + md->phys_addr; | 
|  | curr.end   = curr.start + (md->num_pages << EFI_PAGE_SHIFT); | 
|  |  | 
|  | if (!prev_valid) { | 
|  | prev = curr; | 
|  | prev_valid = 1; | 
|  | } else { | 
|  | if (curr.start < prev.start) | 
|  | printk(KERN_ERR "Oops: EFI memory table not ordered!\n"); | 
|  |  | 
|  | if (prev.end == curr.start) { | 
|  | /* merge two consecutive memory ranges */ | 
|  | prev.end = curr.end; | 
|  | } else { | 
|  | start = PAGE_ALIGN(prev.start); | 
|  | end = prev.end & PAGE_MASK; | 
|  | if ((end > start) && (*callback)(start, end, arg) < 0) | 
|  | return; | 
|  | prev = curr; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (prev_valid) { | 
|  | start = PAGE_ALIGN(prev.start); | 
|  | end = prev.end & PAGE_MASK; | 
|  | if (end > start) | 
|  | (*callback)(start, end, arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map to pull out leftover pages in the lower | 
|  | * memory regions which do not end up in the regular memory map and | 
|  | * stick them into the uncached allocator | 
|  | * | 
|  | * The regular walk function is significantly more complex than the | 
|  | * uncached walk which means it really doesn't make sense to try and | 
|  | * marge the two. | 
|  | */ | 
|  | void __init | 
|  | efi_memmap_walk_uc (efi_freemem_callback_t callback) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size, start, end; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->attribute == EFI_MEMORY_UC) { | 
|  | start = PAGE_ALIGN(md->phys_addr); | 
|  | end = PAGE_ALIGN((md->phys_addr+(md->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK); | 
|  | if ((*callback)(start, end, NULL) < 0) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Look for the PAL_CODE region reported by EFI and maps it using an | 
|  | * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor | 
|  | * Abstraction Layer chapter 11 in ADAG | 
|  | */ | 
|  |  | 
|  | void * | 
|  | efi_get_pal_addr (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  | int pal_code_count = 0; | 
|  | u64 vaddr, mask; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->type != EFI_PAL_CODE) | 
|  | continue; | 
|  |  | 
|  | if (++pal_code_count > 1) { | 
|  | printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", | 
|  | md->phys_addr); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The only ITLB entry in region 7 that is used is the one installed by | 
|  | * __start().  That entry covers a 64MB range. | 
|  | */ | 
|  | mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); | 
|  | vaddr = PAGE_OFFSET + md->phys_addr; | 
|  |  | 
|  | /* | 
|  | * We must check that the PAL mapping won't overlap with the kernel | 
|  | * mapping. | 
|  | * | 
|  | * PAL code is guaranteed to be aligned on a power of 2 between 4k and | 
|  | * 256KB and that only one ITR is needed to map it. This implies that the | 
|  | * PAL code is always aligned on its size, i.e., the closest matching page | 
|  | * size supported by the TLB. Therefore PAL code is guaranteed never to | 
|  | * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for | 
|  | * now the following test is enough to determine whether or not we need a | 
|  | * dedicated ITR for the PAL code. | 
|  | */ | 
|  | if ((vaddr & mask) == (KERNEL_START & mask)) { | 
|  | printk(KERN_INFO "%s: no need to install ITR for PAL code\n", | 
|  | __FUNCTION__); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) | 
|  | panic("Woah!  PAL code size bigger than a granule!"); | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | mask  = ~((1 << IA64_GRANULE_SHIFT) - 1); | 
|  |  | 
|  | printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", | 
|  | smp_processor_id(), md->phys_addr, | 
|  | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
|  | vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); | 
|  | #endif | 
|  | return __va(md->phys_addr); | 
|  | } | 
|  | printk(KERN_WARNING "%s: no PAL-code memory-descriptor found", | 
|  | __FUNCTION__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void | 
|  | efi_map_pal_code (void) | 
|  | { | 
|  | void *pal_vaddr = efi_get_pal_addr (); | 
|  | u64 psr; | 
|  |  | 
|  | if (!pal_vaddr) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Cannot write to CRx with PSR.ic=1 | 
|  | */ | 
|  | psr = ia64_clear_ic(); | 
|  | ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr), | 
|  | pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), | 
|  | IA64_GRANULE_SHIFT); | 
|  | ia64_set_psr(psr);		/* restore psr */ | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | efi_init (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end; | 
|  | efi_config_table_t *config_tables; | 
|  | efi_char16_t *c16; | 
|  | u64 efi_desc_size; | 
|  | char *cp, *end, vendor[100] = "unknown"; | 
|  | extern char saved_command_line[]; | 
|  | int i; | 
|  |  | 
|  | /* it's too early to be able to use the standard kernel command line support... */ | 
|  | for (cp = saved_command_line; *cp; ) { | 
|  | if (memcmp(cp, "mem=", 4) == 0) { | 
|  | cp += 4; | 
|  | mem_limit = memparse(cp, &end); | 
|  | if (end != cp) | 
|  | break; | 
|  | cp = end; | 
|  | } else if (memcmp(cp, "max_addr=", 9) == 0) { | 
|  | cp += 9; | 
|  | max_addr = GRANULEROUNDDOWN(memparse(cp, &end)); | 
|  | if (end != cp) | 
|  | break; | 
|  | cp = end; | 
|  | } else { | 
|  | while (*cp != ' ' && *cp) | 
|  | ++cp; | 
|  | while (*cp == ' ') | 
|  | ++cp; | 
|  | } | 
|  | } | 
|  | if (max_addr != ~0UL) | 
|  | printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20); | 
|  |  | 
|  | efi.systab = __va(ia64_boot_param->efi_systab); | 
|  |  | 
|  | /* | 
|  | * Verify the EFI Table | 
|  | */ | 
|  | if (efi.systab == NULL) | 
|  | panic("Woah! Can't find EFI system table.\n"); | 
|  | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
|  | panic("Woah! EFI system table signature incorrect\n"); | 
|  | if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) | 
|  | printk(KERN_WARNING "Warning: EFI system table major version mismatch: " | 
|  | "got %d.%02d, expected %d.%02d\n", | 
|  | efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, | 
|  | EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); | 
|  |  | 
|  | config_tables = __va(efi.systab->tables); | 
|  |  | 
|  | /* Show what we know for posterity */ | 
|  | c16 = __va(efi.systab->fw_vendor); | 
|  | if (c16) { | 
|  | for (i = 0;i < (int) sizeof(vendor) && *c16; ++i) | 
|  | vendor[i] = *c16++; | 
|  | vendor[i] = '\0'; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "EFI v%u.%.02u by %s:", | 
|  | efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); | 
|  |  | 
|  | for (i = 0; i < (int) efi.systab->nr_tables; i++) { | 
|  | if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { | 
|  | efi.mps = __va(config_tables[i].table); | 
|  | printk(" MPS=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { | 
|  | efi.acpi20 = __va(config_tables[i].table); | 
|  | printk(" ACPI 2.0=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { | 
|  | efi.acpi = __va(config_tables[i].table); | 
|  | printk(" ACPI=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { | 
|  | efi.smbios = __va(config_tables[i].table); | 
|  | printk(" SMBIOS=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { | 
|  | efi.sal_systab = __va(config_tables[i].table); | 
|  | printk(" SALsystab=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { | 
|  | efi.hcdp = __va(config_tables[i].table); | 
|  | printk(" HCDP=0x%lx", config_tables[i].table); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | runtime = __va(efi.systab->runtime); | 
|  | efi.get_time = phys_get_time; | 
|  | efi.set_time = phys_set_time; | 
|  | efi.get_wakeup_time = phys_get_wakeup_time; | 
|  | efi.set_wakeup_time = phys_set_wakeup_time; | 
|  | efi.get_variable = phys_get_variable; | 
|  | efi.get_next_variable = phys_get_next_variable; | 
|  | efi.set_variable = phys_set_variable; | 
|  | efi.get_next_high_mono_count = phys_get_next_high_mono_count; | 
|  | efi.reset_system = phys_reset_system; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | /* print EFI memory map: */ | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { | 
|  | md = p; | 
|  | printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", | 
|  | i, md->type, md->attribute, md->phys_addr, | 
|  | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
|  | md->num_pages >> (20 - EFI_PAGE_SHIFT)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | efi_map_pal_code(); | 
|  | efi_enter_virtual_mode(); | 
|  | } | 
|  |  | 
|  | void | 
|  | efi_enter_virtual_mode (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | efi_status_t status; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->attribute & EFI_MEMORY_RUNTIME) { | 
|  | /* | 
|  | * Some descriptors have multiple bits set, so the order of | 
|  | * the tests is relevant. | 
|  | */ | 
|  | if (md->attribute & EFI_MEMORY_WB) { | 
|  | md->virt_addr = (u64) __va(md->phys_addr); | 
|  | } else if (md->attribute & EFI_MEMORY_UC) { | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | } else if (md->attribute & EFI_MEMORY_WC) { | 
|  | #if 0 | 
|  | md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | 
|  | | _PAGE_D | 
|  | | _PAGE_MA_WC | 
|  | | _PAGE_PL_0 | 
|  | | _PAGE_AR_RW)); | 
|  | #else | 
|  | printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | #endif | 
|  | } else if (md->attribute & EFI_MEMORY_WT) { | 
|  | #if 0 | 
|  | md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | 
|  | | _PAGE_D | _PAGE_MA_WT | 
|  | | _PAGE_PL_0 | 
|  | | _PAGE_AR_RW)); | 
|  | #else | 
|  | printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | status = efi_call_phys(__va(runtime->set_virtual_address_map), | 
|  | ia64_boot_param->efi_memmap_size, | 
|  | efi_desc_size, ia64_boot_param->efi_memdesc_version, | 
|  | ia64_boot_param->efi_memmap); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_WARNING "warning: unable to switch EFI into virtual mode " | 
|  | "(status=%lu)\n", status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, we call the EFI functions more efficiently: | 
|  | */ | 
|  | efi.get_time = virt_get_time; | 
|  | efi.set_time = virt_set_time; | 
|  | efi.get_wakeup_time = virt_get_wakeup_time; | 
|  | efi.set_wakeup_time = virt_set_wakeup_time; | 
|  | efi.get_variable = virt_get_variable; | 
|  | efi.get_next_variable = virt_get_next_variable; | 
|  | efi.set_variable = virt_set_variable; | 
|  | efi.get_next_high_mono_count = virt_get_next_high_mono_count; | 
|  | efi.reset_system = virt_reset_system; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of | 
|  | * this type, other I/O port ranges should be described via ACPI. | 
|  | */ | 
|  | u64 | 
|  | efi_get_iobase (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { | 
|  | if (md->attribute & EFI_MEMORY_UC) | 
|  | return md->phys_addr; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u32 | 
|  | efi_mem_type (unsigned long phys_addr) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) | 
|  | return md->type; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u64 | 
|  | efi_mem_attributes (unsigned long phys_addr) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) | 
|  | return md->attribute; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(efi_mem_attributes); | 
|  |  | 
|  | int | 
|  | valid_phys_addr_range (unsigned long phys_addr, unsigned long *size) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) { | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | return 0; | 
|  |  | 
|  | if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr) | 
|  | *size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __init | 
|  | efi_uart_console_only(void) | 
|  | { | 
|  | efi_status_t status; | 
|  | char *s, name[] = "ConOut"; | 
|  | efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; | 
|  | efi_char16_t *utf16, name_utf16[32]; | 
|  | unsigned char data[1024]; | 
|  | unsigned long size = sizeof(data); | 
|  | struct efi_generic_dev_path *hdr, *end_addr; | 
|  | int uart = 0; | 
|  |  | 
|  | /* Convert to UTF-16 */ | 
|  | utf16 = name_utf16; | 
|  | s = name; | 
|  | while (*s) | 
|  | *utf16++ = *s++ & 0x7f; | 
|  | *utf16 = 0; | 
|  |  | 
|  | status = efi.get_variable(name_utf16, &guid, NULL, &size, data); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_ERR "No EFI %s variable?\n", name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hdr = (struct efi_generic_dev_path *) data; | 
|  | end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); | 
|  | while (hdr < end_addr) { | 
|  | if (hdr->type == EFI_DEV_MSG && | 
|  | hdr->sub_type == EFI_DEV_MSG_UART) | 
|  | uart = 1; | 
|  | else if (hdr->type == EFI_DEV_END_PATH || | 
|  | hdr->type == EFI_DEV_END_PATH2) { | 
|  | if (!uart) | 
|  | return 0; | 
|  | if (hdr->sub_type == EFI_DEV_END_ENTIRE) | 
|  | return 1; | 
|  | uart = 0; | 
|  | } | 
|  | hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); | 
|  | } | 
|  | printk(KERN_ERR "Malformed %s value\n", name); | 
|  | return 0; | 
|  | } |