|  | /* | 
|  | * linux/kernel/workqueue.c | 
|  | * | 
|  | * Generic mechanism for defining kernel helper threads for running | 
|  | * arbitrary tasks in process context. | 
|  | * | 
|  | * Started by Ingo Molnar, Copyright (C) 2002 | 
|  | * | 
|  | * Derived from the taskqueue/keventd code by: | 
|  | * | 
|  | *   David Woodhouse <dwmw2@infradead.org> | 
|  | *   Andrew Morton <andrewm@uow.edu.au> | 
|  | *   Kai Petzke <wpp@marie.physik.tu-berlin.de> | 
|  | *   Theodore Ts'o <tytso@mit.edu> | 
|  | * | 
|  | * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/lockdep.h> | 
|  |  | 
|  | /* | 
|  | * The per-CPU workqueue (if single thread, we always use the first | 
|  | * possible cpu). | 
|  | */ | 
|  | struct cpu_workqueue_struct { | 
|  |  | 
|  | spinlock_t lock; | 
|  |  | 
|  | struct list_head worklist; | 
|  | wait_queue_head_t more_work; | 
|  | struct work_struct *current_work; | 
|  |  | 
|  | struct workqueue_struct *wq; | 
|  | struct task_struct *thread; | 
|  |  | 
|  | int run_depth;		/* Detect run_workqueue() recursion depth */ | 
|  | } ____cacheline_aligned; | 
|  |  | 
|  | /* | 
|  | * The externally visible workqueue abstraction is an array of | 
|  | * per-CPU workqueues: | 
|  | */ | 
|  | struct workqueue_struct { | 
|  | struct cpu_workqueue_struct *cpu_wq; | 
|  | struct list_head list; | 
|  | const char *name; | 
|  | int singlethread; | 
|  | int freezeable;		/* Freeze threads during suspend */ | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | struct lockdep_map lockdep_map; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove | 
|  | threads to each one as cpus come/go. */ | 
|  | static DEFINE_MUTEX(workqueue_mutex); | 
|  | static LIST_HEAD(workqueues); | 
|  |  | 
|  | static int singlethread_cpu __read_mostly; | 
|  | static cpumask_t cpu_singlethread_map __read_mostly; | 
|  | /* | 
|  | * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD | 
|  | * flushes cwq->worklist. This means that flush_workqueue/wait_on_work | 
|  | * which comes in between can't use for_each_online_cpu(). We could | 
|  | * use cpu_possible_map, the cpumask below is more a documentation | 
|  | * than optimization. | 
|  | */ | 
|  | static cpumask_t cpu_populated_map __read_mostly; | 
|  |  | 
|  | /* If it's single threaded, it isn't in the list of workqueues. */ | 
|  | static inline int is_single_threaded(struct workqueue_struct *wq) | 
|  | { | 
|  | return wq->singlethread; | 
|  | } | 
|  |  | 
|  | static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) | 
|  | { | 
|  | return is_single_threaded(wq) | 
|  | ? &cpu_singlethread_map : &cpu_populated_map; | 
|  | } | 
|  |  | 
|  | static | 
|  | struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) | 
|  | { | 
|  | if (unlikely(is_single_threaded(wq))) | 
|  | cpu = singlethread_cpu; | 
|  | return per_cpu_ptr(wq->cpu_wq, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the workqueue on which a work item is to be run | 
|  | * - Must *only* be called if the pending flag is set | 
|  | */ | 
|  | static inline void set_wq_data(struct work_struct *work, | 
|  | struct cpu_workqueue_struct *cwq) | 
|  | { | 
|  | unsigned long new; | 
|  |  | 
|  | BUG_ON(!work_pending(work)); | 
|  |  | 
|  | new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); | 
|  | new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); | 
|  | atomic_long_set(&work->data, new); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) | 
|  | { | 
|  | return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); | 
|  | } | 
|  |  | 
|  | static void insert_work(struct cpu_workqueue_struct *cwq, | 
|  | struct work_struct *work, int tail) | 
|  | { | 
|  | set_wq_data(work, cwq); | 
|  | /* | 
|  | * Ensure that we get the right work->data if we see the | 
|  | * result of list_add() below, see try_to_grab_pending(). | 
|  | */ | 
|  | smp_wmb(); | 
|  | if (tail) | 
|  | list_add_tail(&work->entry, &cwq->worklist); | 
|  | else | 
|  | list_add(&work->entry, &cwq->worklist); | 
|  | wake_up(&cwq->more_work); | 
|  | } | 
|  |  | 
|  | /* Preempt must be disabled. */ | 
|  | static void __queue_work(struct cpu_workqueue_struct *cwq, | 
|  | struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&cwq->lock, flags); | 
|  | insert_work(cwq, work, 1); | 
|  | spin_unlock_irqrestore(&cwq->lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * queue_work - queue work on a workqueue | 
|  | * @wq: workqueue to use | 
|  | * @work: work to queue | 
|  | * | 
|  | * Returns 0 if @work was already on a queue, non-zero otherwise. | 
|  | * | 
|  | * We queue the work to the CPU it was submitted, but there is no | 
|  | * guarantee that it will be processed by that CPU. | 
|  | */ | 
|  | int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 
|  | BUG_ON(!list_empty(&work->entry)); | 
|  | __queue_work(wq_per_cpu(wq, get_cpu()), work); | 
|  | put_cpu(); | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(queue_work); | 
|  |  | 
|  | void delayed_work_timer_fn(unsigned long __data) | 
|  | { | 
|  | struct delayed_work *dwork = (struct delayed_work *)__data; | 
|  | struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); | 
|  | struct workqueue_struct *wq = cwq->wq; | 
|  |  | 
|  | __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * queue_delayed_work - queue work on a workqueue after delay | 
|  | * @wq: workqueue to use | 
|  | * @dwork: delayable work to queue | 
|  | * @delay: number of jiffies to wait before queueing | 
|  | * | 
|  | * Returns 0 if @work was already on a queue, non-zero otherwise. | 
|  | */ | 
|  | int fastcall queue_delayed_work(struct workqueue_struct *wq, | 
|  | struct delayed_work *dwork, unsigned long delay) | 
|  | { | 
|  | timer_stats_timer_set_start_info(&dwork->timer); | 
|  | if (delay == 0) | 
|  | return queue_work(wq, &dwork->work); | 
|  |  | 
|  | return queue_delayed_work_on(-1, wq, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(queue_delayed_work); | 
|  |  | 
|  | /** | 
|  | * queue_delayed_work_on - queue work on specific CPU after delay | 
|  | * @cpu: CPU number to execute work on | 
|  | * @wq: workqueue to use | 
|  | * @dwork: work to queue | 
|  | * @delay: number of jiffies to wait before queueing | 
|  | * | 
|  | * Returns 0 if @work was already on a queue, non-zero otherwise. | 
|  | */ | 
|  | int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, | 
|  | struct delayed_work *dwork, unsigned long delay) | 
|  | { | 
|  | int ret = 0; | 
|  | struct timer_list *timer = &dwork->timer; | 
|  | struct work_struct *work = &dwork->work; | 
|  |  | 
|  | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { | 
|  | BUG_ON(timer_pending(timer)); | 
|  | BUG_ON(!list_empty(&work->entry)); | 
|  |  | 
|  | /* This stores cwq for the moment, for the timer_fn */ | 
|  | set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); | 
|  | timer->expires = jiffies + delay; | 
|  | timer->data = (unsigned long)dwork; | 
|  | timer->function = delayed_work_timer_fn; | 
|  |  | 
|  | if (unlikely(cpu >= 0)) | 
|  | add_timer_on(timer, cpu); | 
|  | else | 
|  | add_timer(timer); | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(queue_delayed_work_on); | 
|  |  | 
|  | static void run_workqueue(struct cpu_workqueue_struct *cwq) | 
|  | { | 
|  | spin_lock_irq(&cwq->lock); | 
|  | cwq->run_depth++; | 
|  | if (cwq->run_depth > 3) { | 
|  | /* morton gets to eat his hat */ | 
|  | printk("%s: recursion depth exceeded: %d\n", | 
|  | __FUNCTION__, cwq->run_depth); | 
|  | dump_stack(); | 
|  | } | 
|  | while (!list_empty(&cwq->worklist)) { | 
|  | struct work_struct *work = list_entry(cwq->worklist.next, | 
|  | struct work_struct, entry); | 
|  | work_func_t f = work->func; | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | /* | 
|  | * It is permissible to free the struct work_struct | 
|  | * from inside the function that is called from it, | 
|  | * this we need to take into account for lockdep too. | 
|  | * To avoid bogus "held lock freed" warnings as well | 
|  | * as problems when looking into work->lockdep_map, | 
|  | * make a copy and use that here. | 
|  | */ | 
|  | struct lockdep_map lockdep_map = work->lockdep_map; | 
|  | #endif | 
|  |  | 
|  | cwq->current_work = work; | 
|  | list_del_init(cwq->worklist.next); | 
|  | spin_unlock_irq(&cwq->lock); | 
|  |  | 
|  | BUG_ON(get_wq_data(work) != cwq); | 
|  | work_clear_pending(work); | 
|  | lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); | 
|  | lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_); | 
|  | f(work); | 
|  | lock_release(&lockdep_map, 1, _THIS_IP_); | 
|  | lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); | 
|  |  | 
|  | if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { | 
|  | printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " | 
|  | "%s/0x%08x/%d\n", | 
|  | current->comm, preempt_count(), | 
|  | task_pid_nr(current)); | 
|  | printk(KERN_ERR "    last function: "); | 
|  | print_symbol("%s\n", (unsigned long)f); | 
|  | debug_show_held_locks(current); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&cwq->lock); | 
|  | cwq->current_work = NULL; | 
|  | } | 
|  | cwq->run_depth--; | 
|  | spin_unlock_irq(&cwq->lock); | 
|  | } | 
|  |  | 
|  | static int worker_thread(void *__cwq) | 
|  | { | 
|  | struct cpu_workqueue_struct *cwq = __cwq; | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | if (cwq->wq->freezeable) | 
|  | set_freezable(); | 
|  |  | 
|  | set_user_nice(current, -5); | 
|  |  | 
|  | for (;;) { | 
|  | prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); | 
|  | if (!freezing(current) && | 
|  | !kthread_should_stop() && | 
|  | list_empty(&cwq->worklist)) | 
|  | schedule(); | 
|  | finish_wait(&cwq->more_work, &wait); | 
|  |  | 
|  | try_to_freeze(); | 
|  |  | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  |  | 
|  | run_workqueue(cwq); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct wq_barrier { | 
|  | struct work_struct	work; | 
|  | struct completion	done; | 
|  | }; | 
|  |  | 
|  | static void wq_barrier_func(struct work_struct *work) | 
|  | { | 
|  | struct wq_barrier *barr = container_of(work, struct wq_barrier, work); | 
|  | complete(&barr->done); | 
|  | } | 
|  |  | 
|  | static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, | 
|  | struct wq_barrier *barr, int tail) | 
|  | { | 
|  | INIT_WORK(&barr->work, wq_barrier_func); | 
|  | __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); | 
|  |  | 
|  | init_completion(&barr->done); | 
|  |  | 
|  | insert_work(cwq, &barr->work, tail); | 
|  | } | 
|  |  | 
|  | static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) | 
|  | { | 
|  | int active; | 
|  |  | 
|  | if (cwq->thread == current) { | 
|  | /* | 
|  | * Probably keventd trying to flush its own queue. So simply run | 
|  | * it by hand rather than deadlocking. | 
|  | */ | 
|  | run_workqueue(cwq); | 
|  | active = 1; | 
|  | } else { | 
|  | struct wq_barrier barr; | 
|  |  | 
|  | active = 0; | 
|  | spin_lock_irq(&cwq->lock); | 
|  | if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { | 
|  | insert_wq_barrier(cwq, &barr, 1); | 
|  | active = 1; | 
|  | } | 
|  | spin_unlock_irq(&cwq->lock); | 
|  |  | 
|  | if (active) | 
|  | wait_for_completion(&barr.done); | 
|  | } | 
|  |  | 
|  | return active; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * flush_workqueue - ensure that any scheduled work has run to completion. | 
|  | * @wq: workqueue to flush | 
|  | * | 
|  | * Forces execution of the workqueue and blocks until its completion. | 
|  | * This is typically used in driver shutdown handlers. | 
|  | * | 
|  | * We sleep until all works which were queued on entry have been handled, | 
|  | * but we are not livelocked by new incoming ones. | 
|  | * | 
|  | * This function used to run the workqueues itself.  Now we just wait for the | 
|  | * helper threads to do it. | 
|  | */ | 
|  | void fastcall flush_workqueue(struct workqueue_struct *wq) | 
|  | { | 
|  | const cpumask_t *cpu_map = wq_cpu_map(wq); | 
|  | int cpu; | 
|  |  | 
|  | might_sleep(); | 
|  | lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); | 
|  | lock_release(&wq->lockdep_map, 1, _THIS_IP_); | 
|  | for_each_cpu_mask(cpu, *cpu_map) | 
|  | flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(flush_workqueue); | 
|  |  | 
|  | /* | 
|  | * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, | 
|  | * so this work can't be re-armed in any way. | 
|  | */ | 
|  | static int try_to_grab_pending(struct work_struct *work) | 
|  | { | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | int ret = -1; | 
|  |  | 
|  | if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The queueing is in progress, or it is already queued. Try to | 
|  | * steal it from ->worklist without clearing WORK_STRUCT_PENDING. | 
|  | */ | 
|  |  | 
|  | cwq = get_wq_data(work); | 
|  | if (!cwq) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irq(&cwq->lock); | 
|  | if (!list_empty(&work->entry)) { | 
|  | /* | 
|  | * This work is queued, but perhaps we locked the wrong cwq. | 
|  | * In that case we must see the new value after rmb(), see | 
|  | * insert_work()->wmb(). | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (cwq == get_wq_data(work)) { | 
|  | list_del_init(&work->entry); | 
|  | ret = 1; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&cwq->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, | 
|  | struct work_struct *work) | 
|  | { | 
|  | struct wq_barrier barr; | 
|  | int running = 0; | 
|  |  | 
|  | spin_lock_irq(&cwq->lock); | 
|  | if (unlikely(cwq->current_work == work)) { | 
|  | insert_wq_barrier(cwq, &barr, 0); | 
|  | running = 1; | 
|  | } | 
|  | spin_unlock_irq(&cwq->lock); | 
|  |  | 
|  | if (unlikely(running)) | 
|  | wait_for_completion(&barr.done); | 
|  | } | 
|  |  | 
|  | static void wait_on_work(struct work_struct *work) | 
|  | { | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | struct workqueue_struct *wq; | 
|  | const cpumask_t *cpu_map; | 
|  | int cpu; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_); | 
|  | lock_release(&work->lockdep_map, 1, _THIS_IP_); | 
|  |  | 
|  | cwq = get_wq_data(work); | 
|  | if (!cwq) | 
|  | return; | 
|  |  | 
|  | wq = cwq->wq; | 
|  | cpu_map = wq_cpu_map(wq); | 
|  |  | 
|  | for_each_cpu_mask(cpu, *cpu_map) | 
|  | wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); | 
|  | } | 
|  |  | 
|  | static int __cancel_work_timer(struct work_struct *work, | 
|  | struct timer_list* timer) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | ret = (timer && likely(del_timer(timer))); | 
|  | if (!ret) | 
|  | ret = try_to_grab_pending(work); | 
|  | wait_on_work(work); | 
|  | } while (unlikely(ret < 0)); | 
|  |  | 
|  | work_clear_pending(work); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cancel_work_sync - block until a work_struct's callback has terminated | 
|  | * @work: the work which is to be flushed | 
|  | * | 
|  | * Returns true if @work was pending. | 
|  | * | 
|  | * cancel_work_sync() will cancel the work if it is queued. If the work's | 
|  | * callback appears to be running, cancel_work_sync() will block until it | 
|  | * has completed. | 
|  | * | 
|  | * It is possible to use this function if the work re-queues itself. It can | 
|  | * cancel the work even if it migrates to another workqueue, however in that | 
|  | * case it only guarantees that work->func() has completed on the last queued | 
|  | * workqueue. | 
|  | * | 
|  | * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not | 
|  | * pending, otherwise it goes into a busy-wait loop until the timer expires. | 
|  | * | 
|  | * The caller must ensure that workqueue_struct on which this work was last | 
|  | * queued can't be destroyed before this function returns. | 
|  | */ | 
|  | int cancel_work_sync(struct work_struct *work) | 
|  | { | 
|  | return __cancel_work_timer(work, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cancel_work_sync); | 
|  |  | 
|  | /** | 
|  | * cancel_delayed_work_sync - reliably kill off a delayed work. | 
|  | * @dwork: the delayed work struct | 
|  | * | 
|  | * Returns true if @dwork was pending. | 
|  | * | 
|  | * It is possible to use this function if @dwork rearms itself via queue_work() | 
|  | * or queue_delayed_work(). See also the comment for cancel_work_sync(). | 
|  | */ | 
|  | int cancel_delayed_work_sync(struct delayed_work *dwork) | 
|  | { | 
|  | return __cancel_work_timer(&dwork->work, &dwork->timer); | 
|  | } | 
|  | EXPORT_SYMBOL(cancel_delayed_work_sync); | 
|  |  | 
|  | static struct workqueue_struct *keventd_wq __read_mostly; | 
|  |  | 
|  | /** | 
|  | * schedule_work - put work task in global workqueue | 
|  | * @work: job to be done | 
|  | * | 
|  | * This puts a job in the kernel-global workqueue. | 
|  | */ | 
|  | int fastcall schedule_work(struct work_struct *work) | 
|  | { | 
|  | return queue_work(keventd_wq, work); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_work); | 
|  |  | 
|  | /** | 
|  | * schedule_delayed_work - put work task in global workqueue after delay | 
|  | * @dwork: job to be done | 
|  | * @delay: number of jiffies to wait or 0 for immediate execution | 
|  | * | 
|  | * After waiting for a given time this puts a job in the kernel-global | 
|  | * workqueue. | 
|  | */ | 
|  | int fastcall schedule_delayed_work(struct delayed_work *dwork, | 
|  | unsigned long delay) | 
|  | { | 
|  | timer_stats_timer_set_start_info(&dwork->timer); | 
|  | return queue_delayed_work(keventd_wq, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_delayed_work); | 
|  |  | 
|  | /** | 
|  | * schedule_delayed_work_on - queue work in global workqueue on CPU after delay | 
|  | * @cpu: cpu to use | 
|  | * @dwork: job to be done | 
|  | * @delay: number of jiffies to wait | 
|  | * | 
|  | * After waiting for a given time this puts a job in the kernel-global | 
|  | * workqueue on the specified CPU. | 
|  | */ | 
|  | int schedule_delayed_work_on(int cpu, | 
|  | struct delayed_work *dwork, unsigned long delay) | 
|  | { | 
|  | return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); | 
|  | } | 
|  | EXPORT_SYMBOL(schedule_delayed_work_on); | 
|  |  | 
|  | /** | 
|  | * schedule_on_each_cpu - call a function on each online CPU from keventd | 
|  | * @func: the function to call | 
|  | * | 
|  | * Returns zero on success. | 
|  | * Returns -ve errno on failure. | 
|  | * | 
|  | * Appears to be racy against CPU hotplug. | 
|  | * | 
|  | * schedule_on_each_cpu() is very slow. | 
|  | */ | 
|  | int schedule_on_each_cpu(work_func_t func) | 
|  | { | 
|  | int cpu; | 
|  | struct work_struct *works; | 
|  |  | 
|  | works = alloc_percpu(struct work_struct); | 
|  | if (!works) | 
|  | return -ENOMEM; | 
|  |  | 
|  | preempt_disable();		/* CPU hotplug */ | 
|  | for_each_online_cpu(cpu) { | 
|  | struct work_struct *work = per_cpu_ptr(works, cpu); | 
|  |  | 
|  | INIT_WORK(work, func); | 
|  | set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); | 
|  | __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); | 
|  | } | 
|  | preempt_enable(); | 
|  | flush_workqueue(keventd_wq); | 
|  | free_percpu(works); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void flush_scheduled_work(void) | 
|  | { | 
|  | flush_workqueue(keventd_wq); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_scheduled_work); | 
|  |  | 
|  | /** | 
|  | * execute_in_process_context - reliably execute the routine with user context | 
|  | * @fn:		the function to execute | 
|  | * @ew:		guaranteed storage for the execute work structure (must | 
|  | *		be available when the work executes) | 
|  | * | 
|  | * Executes the function immediately if process context is available, | 
|  | * otherwise schedules the function for delayed execution. | 
|  | * | 
|  | * Returns:	0 - function was executed | 
|  | *		1 - function was scheduled for execution | 
|  | */ | 
|  | int execute_in_process_context(work_func_t fn, struct execute_work *ew) | 
|  | { | 
|  | if (!in_interrupt()) { | 
|  | fn(&ew->work); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | INIT_WORK(&ew->work, fn); | 
|  | schedule_work(&ew->work); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(execute_in_process_context); | 
|  |  | 
|  | int keventd_up(void) | 
|  | { | 
|  | return keventd_wq != NULL; | 
|  | } | 
|  |  | 
|  | int current_is_keventd(void) | 
|  | { | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!keventd_wq); | 
|  |  | 
|  | cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); | 
|  | if (current == cwq->thread) | 
|  | ret = 1; | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct cpu_workqueue_struct * | 
|  | init_cpu_workqueue(struct workqueue_struct *wq, int cpu) | 
|  | { | 
|  | struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 
|  |  | 
|  | cwq->wq = wq; | 
|  | spin_lock_init(&cwq->lock); | 
|  | INIT_LIST_HEAD(&cwq->worklist); | 
|  | init_waitqueue_head(&cwq->more_work); | 
|  |  | 
|  | return cwq; | 
|  | } | 
|  |  | 
|  | static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 
|  | { | 
|  | struct workqueue_struct *wq = cwq->wq; | 
|  | const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; | 
|  | struct task_struct *p; | 
|  |  | 
|  | p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); | 
|  | /* | 
|  | * Nobody can add the work_struct to this cwq, | 
|  | *	if (caller is __create_workqueue) | 
|  | *		nobody should see this wq | 
|  | *	else // caller is CPU_UP_PREPARE | 
|  | *		cpu is not on cpu_online_map | 
|  | * so we can abort safely. | 
|  | */ | 
|  | if (IS_ERR(p)) | 
|  | return PTR_ERR(p); | 
|  |  | 
|  | cwq->thread = p; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 
|  | { | 
|  | struct task_struct *p = cwq->thread; | 
|  |  | 
|  | if (p != NULL) { | 
|  | if (cpu >= 0) | 
|  | kthread_bind(p, cpu); | 
|  | wake_up_process(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct workqueue_struct *__create_workqueue_key(const char *name, | 
|  | int singlethread, | 
|  | int freezeable, | 
|  | struct lock_class_key *key) | 
|  | { | 
|  | struct workqueue_struct *wq; | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | int err = 0, cpu; | 
|  |  | 
|  | wq = kzalloc(sizeof(*wq), GFP_KERNEL); | 
|  | if (!wq) | 
|  | return NULL; | 
|  |  | 
|  | wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); | 
|  | if (!wq->cpu_wq) { | 
|  | kfree(wq); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | wq->name = name; | 
|  | lockdep_init_map(&wq->lockdep_map, name, key, 0); | 
|  | wq->singlethread = singlethread; | 
|  | wq->freezeable = freezeable; | 
|  | INIT_LIST_HEAD(&wq->list); | 
|  |  | 
|  | if (singlethread) { | 
|  | cwq = init_cpu_workqueue(wq, singlethread_cpu); | 
|  | err = create_workqueue_thread(cwq, singlethread_cpu); | 
|  | start_workqueue_thread(cwq, -1); | 
|  | } else { | 
|  | mutex_lock(&workqueue_mutex); | 
|  | list_add(&wq->list, &workqueues); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | cwq = init_cpu_workqueue(wq, cpu); | 
|  | if (err || !cpu_online(cpu)) | 
|  | continue; | 
|  | err = create_workqueue_thread(cwq, cpu); | 
|  | start_workqueue_thread(cwq, cpu); | 
|  | } | 
|  | mutex_unlock(&workqueue_mutex); | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | destroy_workqueue(wq); | 
|  | wq = NULL; | 
|  | } | 
|  | return wq; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__create_workqueue_key); | 
|  |  | 
|  | static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) | 
|  | { | 
|  | /* | 
|  | * Our caller is either destroy_workqueue() or CPU_DEAD, | 
|  | * workqueue_mutex protects cwq->thread | 
|  | */ | 
|  | if (cwq->thread == NULL) | 
|  | return; | 
|  |  | 
|  | lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); | 
|  | lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); | 
|  |  | 
|  | flush_cpu_workqueue(cwq); | 
|  | /* | 
|  | * If the caller is CPU_DEAD and cwq->worklist was not empty, | 
|  | * a concurrent flush_workqueue() can insert a barrier after us. | 
|  | * However, in that case run_workqueue() won't return and check | 
|  | * kthread_should_stop() until it flushes all work_struct's. | 
|  | * When ->worklist becomes empty it is safe to exit because no | 
|  | * more work_structs can be queued on this cwq: flush_workqueue | 
|  | * checks list_empty(), and a "normal" queue_work() can't use | 
|  | * a dead CPU. | 
|  | */ | 
|  | kthread_stop(cwq->thread); | 
|  | cwq->thread = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * destroy_workqueue - safely terminate a workqueue | 
|  | * @wq: target workqueue | 
|  | * | 
|  | * Safely destroy a workqueue. All work currently pending will be done first. | 
|  | */ | 
|  | void destroy_workqueue(struct workqueue_struct *wq) | 
|  | { | 
|  | const cpumask_t *cpu_map = wq_cpu_map(wq); | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | int cpu; | 
|  |  | 
|  | mutex_lock(&workqueue_mutex); | 
|  | list_del(&wq->list); | 
|  | mutex_unlock(&workqueue_mutex); | 
|  |  | 
|  | for_each_cpu_mask(cpu, *cpu_map) { | 
|  | cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 
|  | cleanup_workqueue_thread(cwq, cpu); | 
|  | } | 
|  |  | 
|  | free_percpu(wq->cpu_wq); | 
|  | kfree(wq); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(destroy_workqueue); | 
|  |  | 
|  | static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (unsigned long)hcpu; | 
|  | struct cpu_workqueue_struct *cwq; | 
|  | struct workqueue_struct *wq; | 
|  |  | 
|  | action &= ~CPU_TASKS_FROZEN; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_LOCK_ACQUIRE: | 
|  | mutex_lock(&workqueue_mutex); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | case CPU_LOCK_RELEASE: | 
|  | mutex_unlock(&workqueue_mutex); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | cpu_set(cpu, cpu_populated_map); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(wq, &workqueues, list) { | 
|  | cwq = per_cpu_ptr(wq->cpu_wq, cpu); | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | if (!create_workqueue_thread(cwq, cpu)) | 
|  | break; | 
|  | printk(KERN_ERR "workqueue for %i failed\n", cpu); | 
|  | return NOTIFY_BAD; | 
|  |  | 
|  | case CPU_ONLINE: | 
|  | start_workqueue_thread(cwq, cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | start_workqueue_thread(cwq, -1); | 
|  | case CPU_DEAD: | 
|  | cleanup_workqueue_thread(cwq, cpu); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | void __init init_workqueues(void) | 
|  | { | 
|  | cpu_populated_map = cpu_online_map; | 
|  | singlethread_cpu = first_cpu(cpu_possible_map); | 
|  | cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); | 
|  | hotcpu_notifier(workqueue_cpu_callback, 0); | 
|  | keventd_wq = create_workqueue("events"); | 
|  | BUG_ON(!keventd_wq); | 
|  | } |