|  | /* | 
|  | * linux/arch/unicore32/mm/fault.c | 
|  | * | 
|  | * Code specific to PKUnity SoC and UniCore ISA | 
|  | * | 
|  | * Copyright (C) 2001-2010 GUAN Xue-tao | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/extable.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | /* | 
|  | * Fault status register encodings.  We steal bit 31 for our own purposes. | 
|  | */ | 
|  | #define FSR_LNX_PF		(1 << 31) | 
|  |  | 
|  | static inline int fsr_fs(unsigned int fsr) | 
|  | { | 
|  | /* xyabcde will be abcde+xy */ | 
|  | return (fsr & 31) + ((fsr & (3 << 5)) >> 5); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is useful to dump out the page tables associated with | 
|  | * 'addr' in mm 'mm'. | 
|  | */ | 
|  | void show_pte(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (!mm) | 
|  | mm = &init_mm; | 
|  |  | 
|  | printk(KERN_ALERT "pgd = %p\n", mm->pgd); | 
|  | pgd = pgd_offset(mm, addr); | 
|  | printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd)); | 
|  |  | 
|  | do { | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (pgd_none(*pgd)) | 
|  | break; | 
|  |  | 
|  | if (pgd_bad(*pgd)) { | 
|  | printk("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset((pud_t *) pgd, addr); | 
|  | if (PTRS_PER_PMD != 1) | 
|  | printk(", *pmd=%08lx", pmd_val(*pmd)); | 
|  |  | 
|  | if (pmd_none(*pmd)) | 
|  | break; | 
|  |  | 
|  | if (pmd_bad(*pmd)) { | 
|  | printk("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We must not map this if we have highmem enabled */ | 
|  | if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) | 
|  | break; | 
|  |  | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | printk(", *pte=%08lx", pte_val(*pte)); | 
|  | pte_unmap(pte); | 
|  | } while (0); | 
|  |  | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Oops.  The kernel tried to access some page that wasn't present. | 
|  | */ | 
|  | static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * Are we prepared to handle this kernel fault? | 
|  | */ | 
|  | if (fixup_exception(regs)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * No handler, we'll have to terminate things with extreme prejudice. | 
|  | */ | 
|  | bust_spinlocks(1); | 
|  | printk(KERN_ALERT | 
|  | "Unable to handle kernel %s at virtual address %08lx\n", | 
|  | (addr < PAGE_SIZE) ? "NULL pointer dereference" : | 
|  | "paging request", addr); | 
|  |  | 
|  | show_pte(mm, addr); | 
|  | die("Oops", regs, fsr); | 
|  | bust_spinlocks(0); | 
|  | do_exit(SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * User mode accesses just cause a SIGSEGV | 
|  | */ | 
|  | static void __do_user_fault(struct task_struct *tsk, unsigned long addr, | 
|  | unsigned int fsr, unsigned int sig, int code, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct siginfo si; | 
|  |  | 
|  | tsk->thread.address = addr; | 
|  | tsk->thread.error_code = fsr; | 
|  | tsk->thread.trap_no = 14; | 
|  | clear_siginfo(&si); | 
|  | si.si_signo = sig; | 
|  | si.si_errno = 0; | 
|  | si.si_code = code; | 
|  | si.si_addr = (void __user *)addr; | 
|  | force_sig_info(sig, &si, tsk); | 
|  | } | 
|  |  | 
|  | void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct mm_struct *mm = tsk->active_mm; | 
|  |  | 
|  | /* | 
|  | * If we are in kernel mode at this point, we | 
|  | * have no context to handle this fault with. | 
|  | */ | 
|  | if (user_mode(regs)) | 
|  | __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); | 
|  | else | 
|  | __do_kernel_fault(mm, addr, fsr, regs); | 
|  | } | 
|  |  | 
|  | #define VM_FAULT_BADMAP		0x010000 | 
|  | #define VM_FAULT_BADACCESS	0x020000 | 
|  |  | 
|  | /* | 
|  | * Check that the permissions on the VMA allow for the fault which occurred. | 
|  | * If we encountered a write fault, we must have write permission, otherwise | 
|  | * we allow any permission. | 
|  | */ | 
|  | static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; | 
|  |  | 
|  | if (!(fsr ^ 0x12))	/* write? */ | 
|  | mask = VM_WRITE; | 
|  | if (fsr & FSR_LNX_PF) | 
|  | mask = VM_EXEC; | 
|  |  | 
|  | return vma->vm_flags & mask ? false : true; | 
|  | } | 
|  |  | 
|  | static int __do_pf(struct mm_struct *mm, unsigned long addr, unsigned int fsr, | 
|  | unsigned int flags, struct task_struct *tsk) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | int fault; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | fault = VM_FAULT_BADMAP; | 
|  | if (unlikely(!vma)) | 
|  | goto out; | 
|  | if (unlikely(vma->vm_start > addr)) | 
|  | goto check_stack; | 
|  |  | 
|  | /* | 
|  | * Ok, we have a good vm_area for this | 
|  | * memory access, so we can handle it. | 
|  | */ | 
|  | good_area: | 
|  | if (access_error(fsr, vma)) { | 
|  | fault = VM_FAULT_BADACCESS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, make | 
|  | * sure we exit gracefully rather than endlessly redo the fault. | 
|  | */ | 
|  | fault = handle_mm_fault(vma, addr & PAGE_MASK, flags); | 
|  | return fault; | 
|  |  | 
|  | check_stack: | 
|  | if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) | 
|  | goto good_area; | 
|  | out: | 
|  | return fault; | 
|  | } | 
|  |  | 
|  | static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | int fault, sig, code; | 
|  | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  |  | 
|  | tsk = current; | 
|  | mm = tsk->mm; | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt or have no user | 
|  | * context, we must not take the fault.. | 
|  | */ | 
|  | if (faulthandler_disabled() || !mm) | 
|  | goto no_context; | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | flags |= FAULT_FLAG_USER; | 
|  | if (!(fsr ^ 0x12)) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  |  | 
|  | /* | 
|  | * As per x86, we may deadlock here.  However, since the kernel only | 
|  | * validly references user space from well defined areas of the code, | 
|  | * we can bug out early if this is from code which shouldn't. | 
|  | */ | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if (!user_mode(regs) | 
|  | && !search_exception_tables(regs->UCreg_pc)) | 
|  | goto no_context; | 
|  | retry: | 
|  | down_read(&mm->mmap_sem); | 
|  | } else { | 
|  | /* | 
|  | * The above down_read_trylock() might have succeeded in | 
|  | * which case, we'll have missed the might_sleep() from | 
|  | * down_read() | 
|  | */ | 
|  | might_sleep(); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | if (!user_mode(regs) && | 
|  | !search_exception_tables(regs->UCreg_pc)) | 
|  | goto no_context; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | fault = __do_pf(mm, addr, fsr, flags, tsk); | 
|  |  | 
|  | /* If we need to retry but a fatal signal is pending, handle the | 
|  | * signal first. We do not need to release the mmap_sem because | 
|  | * it would already be released in __lock_page_or_retry in | 
|  | * mm/filemap.c. */ | 
|  | if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) | 
|  | return 0; | 
|  |  | 
|  | if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) { | 
|  | if (fault & VM_FAULT_MAJOR) | 
|  | tsk->maj_flt++; | 
|  | else | 
|  | tsk->min_flt++; | 
|  | if (fault & VM_FAULT_RETRY) { | 
|  | /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk | 
|  | * of starvation. */ | 
|  | flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Handle the "normal" case first - VM_FAULT_MAJOR | 
|  | */ | 
|  | if (likely(!(fault & | 
|  | (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we are in kernel mode at this point, we | 
|  | * have no context to handle this fault with. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  |  | 
|  | if (fault & VM_FAULT_OOM) { | 
|  | /* | 
|  | * We ran out of memory, call the OOM killer, and return to | 
|  | * userspace (which will retry the fault, or kill us if we | 
|  | * got oom-killed) | 
|  | */ | 
|  | pagefault_out_of_memory(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (fault & VM_FAULT_SIGBUS) { | 
|  | /* | 
|  | * We had some memory, but were unable to | 
|  | * successfully fix up this page fault. | 
|  | */ | 
|  | sig = SIGBUS; | 
|  | code = BUS_ADRERR; | 
|  | } else { | 
|  | /* | 
|  | * Something tried to access memory that | 
|  | * isn't in our memory map.. | 
|  | */ | 
|  | sig = SIGSEGV; | 
|  | code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR; | 
|  | } | 
|  |  | 
|  | __do_user_fault(tsk, addr, fsr, sig, code, regs); | 
|  | return 0; | 
|  |  | 
|  | no_context: | 
|  | __do_kernel_fault(mm, addr, fsr, regs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First Level Translation Fault Handler | 
|  | * | 
|  | * We enter here because the first level page table doesn't contain | 
|  | * a valid entry for the address. | 
|  | * | 
|  | * If the address is in kernel space (>= TASK_SIZE), then we are | 
|  | * probably faulting in the vmalloc() area. | 
|  | * | 
|  | * If the init_task's first level page tables contains the relevant | 
|  | * entry, we copy the it to this task.  If not, we send the process | 
|  | * a signal, fixup the exception, or oops the kernel. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case. We may be in an | 
|  | * interrupt or a critical region, and should only copy the information | 
|  | * from the master page table, nothing more. | 
|  | */ | 
|  | static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | unsigned int index; | 
|  | pgd_t *pgd, *pgd_k; | 
|  | pmd_t *pmd, *pmd_k; | 
|  |  | 
|  | if (addr < TASK_SIZE) | 
|  | return do_pf(addr, fsr, regs); | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | goto bad_area; | 
|  |  | 
|  | index = pgd_index(addr); | 
|  |  | 
|  | pgd = cpu_get_pgd() + index; | 
|  | pgd_k = init_mm.pgd + index; | 
|  |  | 
|  | if (pgd_none(*pgd_k)) | 
|  | goto bad_area; | 
|  |  | 
|  | pmd_k = pmd_offset((pud_t *) pgd_k, addr); | 
|  | pmd = pmd_offset((pud_t *) pgd, addr); | 
|  |  | 
|  | if (pmd_none(*pmd_k)) | 
|  | goto bad_area; | 
|  |  | 
|  | set_pmd(pmd, *pmd_k); | 
|  | flush_pmd_entry(pmd); | 
|  | return 0; | 
|  |  | 
|  | bad_area: | 
|  | do_bad_area(addr, fsr, regs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This abort handler always returns "fault". | 
|  | */ | 
|  | static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | unsigned int res1, res2; | 
|  |  | 
|  | printk("dabt exception but no error!\n"); | 
|  |  | 
|  | __asm__ __volatile__( | 
|  | "mff %0,f0\n" | 
|  | "mff %1,f1\n" | 
|  | : "=r"(res1), "=r"(res2) | 
|  | : | 
|  | : "memory"); | 
|  |  | 
|  | printk(KERN_EMERG "r0 :%08x  r1 :%08x\n", res1, res2); | 
|  | panic("shut up\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct fsr_info { | 
|  | int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs); | 
|  | int sig; | 
|  | int code; | 
|  | const char *name; | 
|  | } fsr_info[] = { | 
|  | /* | 
|  | * The following are the standard Unicore-I and UniCore-II aborts. | 
|  | */ | 
|  | { do_good,	SIGBUS,  0,		"no error"		}, | 
|  | { do_bad,	SIGBUS,  BUS_ADRALN,	"alignment exception"	}, | 
|  | { do_bad,	SIGBUS,  BUS_OBJERR,	"external exception"	}, | 
|  | { do_bad,	SIGBUS,  0,		"burst operation"	}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 00100"		}, | 
|  | { do_ifault,	SIGSEGV, SEGV_MAPERR,	"2nd level pt non-exist"}, | 
|  | { do_bad,	SIGBUS,  0,		"2nd lvl large pt non-exist" }, | 
|  | { do_bad,	SIGBUS,  0,		"invalid pte"		}, | 
|  | { do_pf,	SIGSEGV, SEGV_MAPERR,	"page miss"		}, | 
|  | { do_bad,	SIGBUS,  0,		"middle page miss"	}, | 
|  | { do_bad,	SIGBUS,	 0,		"large page miss"	}, | 
|  | { do_pf,	SIGSEGV, SEGV_MAPERR,	"super page (section) miss" }, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 01100"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 01101"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 01110"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 01111"		}, | 
|  | { do_bad,	SIGBUS,  0,		"addr: up 3G or IO"	}, | 
|  | { do_pf,	SIGSEGV, SEGV_ACCERR,	"read unreadable addr"	}, | 
|  | { do_pf,	SIGSEGV, SEGV_ACCERR,	"write unwriteable addr"}, | 
|  | { do_pf,	SIGSEGV, SEGV_ACCERR,	"exec unexecutable addr"}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 10100"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 10101"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 10110"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 10111"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11000"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11001"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11010"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11011"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11100"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11101"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11110"		}, | 
|  | { do_bad,	SIGBUS,  0,		"unknown 11111"		} | 
|  | }; | 
|  |  | 
|  | void __init hook_fault_code(int nr, | 
|  | int (*fn) (unsigned long, unsigned int, struct pt_regs *), | 
|  | int sig, int code, const char *name) | 
|  | { | 
|  | if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) | 
|  | BUG(); | 
|  |  | 
|  | fsr_info[nr].fn   = fn; | 
|  | fsr_info[nr].sig  = sig; | 
|  | fsr_info[nr].code = code; | 
|  | fsr_info[nr].name = name; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispatch a data abort to the relevant handler. | 
|  | */ | 
|  | asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | const struct fsr_info *inf = fsr_info + fsr_fs(fsr); | 
|  | struct siginfo info; | 
|  |  | 
|  | if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n", | 
|  | inf->name, fsr, addr); | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = inf->sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = inf->code; | 
|  | info.si_addr = (void __user *)addr; | 
|  | uc32_notify_die("", regs, &info, fsr, 0); | 
|  | } | 
|  |  | 
|  | asmlinkage void do_PrefetchAbort(unsigned long addr, | 
|  | unsigned int ifsr, struct pt_regs *regs) | 
|  | { | 
|  | const struct fsr_info *inf = fsr_info + fsr_fs(ifsr); | 
|  | struct siginfo info; | 
|  |  | 
|  | if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", | 
|  | inf->name, ifsr, addr); | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = inf->sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = inf->code; | 
|  | info.si_addr = (void __user *)addr; | 
|  | uc32_notify_die("", regs, &info, ifsr, 0); | 
|  | } |