| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * DMA operations that map physical memory directly without using an IOMMU or | 
 |  * flushing caches. | 
 |  */ | 
 | #include <linux/export.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/dma-direct.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/dma-contiguous.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/set_memory.h> | 
 |  | 
 | #define DIRECT_MAPPING_ERROR		0 | 
 |  | 
 | /* | 
 |  * Most architectures use ZONE_DMA for the first 16 Megabytes, but | 
 |  * some use it for entirely different regions: | 
 |  */ | 
 | #ifndef ARCH_ZONE_DMA_BITS | 
 | #define ARCH_ZONE_DMA_BITS 24 | 
 | #endif | 
 |  | 
 | /* | 
 |  * For AMD SEV all DMA must be to unencrypted addresses. | 
 |  */ | 
 | static inline bool force_dma_unencrypted(void) | 
 | { | 
 | 	return sev_active(); | 
 | } | 
 |  | 
 | static bool | 
 | check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, | 
 | 		const char *caller) | 
 | { | 
 | 	if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { | 
 | 		if (!dev->dma_mask) { | 
 | 			dev_err(dev, | 
 | 				"%s: call on device without dma_mask\n", | 
 | 				caller); | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 		if (*dev->dma_mask >= DMA_BIT_MASK(32)) { | 
 | 			dev_err(dev, | 
 | 				"%s: overflow %pad+%zu of device mask %llx\n", | 
 | 				caller, &dma_addr, size, *dev->dma_mask); | 
 | 		} | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) | 
 | { | 
 | 	dma_addr_t addr = force_dma_unencrypted() ? | 
 | 		__phys_to_dma(dev, phys) : phys_to_dma(dev, phys); | 
 | 	return addr + size - 1 <= dev->coherent_dma_mask; | 
 | } | 
 |  | 
 | void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, | 
 | 		gfp_t gfp, unsigned long attrs) | 
 | { | 
 | 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	int page_order = get_order(size); | 
 | 	struct page *page = NULL; | 
 | 	void *ret; | 
 |  | 
 | 	/* we always manually zero the memory once we are done: */ | 
 | 	gfp &= ~__GFP_ZERO; | 
 |  | 
 | 	/* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ | 
 | 	if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) | 
 | 		gfp |= GFP_DMA; | 
 | 	if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) | 
 | 		gfp |= GFP_DMA32; | 
 |  | 
 | again: | 
 | 	/* CMA can be used only in the context which permits sleeping */ | 
 | 	if (gfpflags_allow_blocking(gfp)) { | 
 | 		page = dma_alloc_from_contiguous(dev, count, page_order, gfp); | 
 | 		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | 
 | 			dma_release_from_contiguous(dev, page, count); | 
 | 			page = NULL; | 
 | 		} | 
 | 	} | 
 | 	if (!page) | 
 | 		page = alloc_pages_node(dev_to_node(dev), gfp, page_order); | 
 |  | 
 | 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { | 
 | 		__free_pages(page, page_order); | 
 | 		page = NULL; | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_ZONE_DMA32) && | 
 | 		    dev->coherent_dma_mask < DMA_BIT_MASK(64) && | 
 | 		    !(gfp & (GFP_DMA32 | GFP_DMA))) { | 
 | 			gfp |= GFP_DMA32; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_ZONE_DMA) && | 
 | 		    dev->coherent_dma_mask < DMA_BIT_MASK(32) && | 
 | 		    !(gfp & GFP_DMA)) { | 
 | 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA; | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!page) | 
 | 		return NULL; | 
 | 	ret = page_address(page); | 
 | 	if (force_dma_unencrypted()) { | 
 | 		set_memory_decrypted((unsigned long)ret, 1 << page_order); | 
 | 		*dma_handle = __phys_to_dma(dev, page_to_phys(page)); | 
 | 	} else { | 
 | 		*dma_handle = phys_to_dma(dev, page_to_phys(page)); | 
 | 	} | 
 | 	memset(ret, 0, size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: this function must never look at the dma_addr argument, because we want | 
 |  * to be able to use it as a helper for iommu implementations as well. | 
 |  */ | 
 | void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, | 
 | 		dma_addr_t dma_addr, unsigned long attrs) | 
 | { | 
 | 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	unsigned int page_order = get_order(size); | 
 |  | 
 | 	if (force_dma_unencrypted()) | 
 | 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); | 
 | 	if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) | 
 | 		free_pages((unsigned long)cpu_addr, page_order); | 
 | } | 
 |  | 
 | dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, | 
 | 		unsigned long offset, size_t size, enum dma_data_direction dir, | 
 | 		unsigned long attrs) | 
 | { | 
 | 	dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; | 
 |  | 
 | 	if (!check_addr(dev, dma_addr, size, __func__)) | 
 | 		return DIRECT_MAPPING_ERROR; | 
 | 	return dma_addr; | 
 | } | 
 |  | 
 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, | 
 | 		enum dma_data_direction dir, unsigned long attrs) | 
 | { | 
 | 	int i; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	for_each_sg(sgl, sg, nents, i) { | 
 | 		BUG_ON(!sg_page(sg)); | 
 |  | 
 | 		sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); | 
 | 		if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) | 
 | 			return 0; | 
 | 		sg_dma_len(sg) = sg->length; | 
 | 	} | 
 |  | 
 | 	return nents; | 
 | } | 
 |  | 
 | int dma_direct_supported(struct device *dev, u64 mask) | 
 | { | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) | 
 | 		return 0; | 
 | #else | 
 | 	/* | 
 | 	 * Because 32-bit DMA masks are so common we expect every architecture | 
 | 	 * to be able to satisfy them - either by not supporting more physical | 
 | 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the | 
 | 	 * architecture needs to use an IOMMU instead of the direct mapping. | 
 | 	 */ | 
 | 	if (mask < DMA_BIT_MASK(32)) | 
 | 		return 0; | 
 | #endif | 
 | 	/* | 
 | 	 * Various PCI/PCIe bridges have broken support for > 32bit DMA even | 
 | 	 * if the device itself might support it. | 
 | 	 */ | 
 | 	if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	return dma_addr == DIRECT_MAPPING_ERROR; | 
 | } | 
 |  | 
 | const struct dma_map_ops dma_direct_ops = { | 
 | 	.alloc			= dma_direct_alloc, | 
 | 	.free			= dma_direct_free, | 
 | 	.map_page		= dma_direct_map_page, | 
 | 	.map_sg			= dma_direct_map_sg, | 
 | 	.dma_supported		= dma_direct_supported, | 
 | 	.mapping_error		= dma_direct_mapping_error, | 
 | }; | 
 | EXPORT_SYMBOL(dma_direct_ops); |