| /* | 
 |  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_defer.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_rtalloc.h" | 
 | #include "xfs_errortag.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_cksum.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_icreate_item.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_rmap.h" | 
 |  | 
 |  | 
 | /* | 
 |  * Allocation group level functions. | 
 |  */ | 
 | int | 
 | xfs_ialloc_cluster_alignment( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	if (xfs_sb_version_hasalign(&mp->m_sb) && | 
 | 	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) | 
 | 		return mp->m_sb.sb_inoalignmt; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Lookup a record by ino in the btree given by cur. | 
 |  */ | 
 | int					/* error */ | 
 | xfs_inobt_lookup( | 
 | 	struct xfs_btree_cur	*cur,	/* btree cursor */ | 
 | 	xfs_agino_t		ino,	/* starting inode of chunk */ | 
 | 	xfs_lookup_t		dir,	/* <=, >=, == */ | 
 | 	int			*stat)	/* success/failure */ | 
 | { | 
 | 	cur->bc_rec.i.ir_startino = ino; | 
 | 	cur->bc_rec.i.ir_holemask = 0; | 
 | 	cur->bc_rec.i.ir_count = 0; | 
 | 	cur->bc_rec.i.ir_freecount = 0; | 
 | 	cur->bc_rec.i.ir_free = 0; | 
 | 	return xfs_btree_lookup(cur, dir, stat); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the record referred to by cur to the value given. | 
 |  * This either works (return 0) or gets an EFSCORRUPTED error. | 
 |  */ | 
 | STATIC int				/* error */ | 
 | xfs_inobt_update( | 
 | 	struct xfs_btree_cur	*cur,	/* btree cursor */ | 
 | 	xfs_inobt_rec_incore_t	*irec)	/* btree record */ | 
 | { | 
 | 	union xfs_btree_rec	rec; | 
 |  | 
 | 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); | 
 | 	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { | 
 | 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); | 
 | 		rec.inobt.ir_u.sp.ir_count = irec->ir_count; | 
 | 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | 
 | 	} else { | 
 | 		/* ir_holemask/ir_count not supported on-disk */ | 
 | 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | 
 | 	} | 
 | 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free); | 
 | 	return xfs_btree_update(cur, &rec); | 
 | } | 
 |  | 
 | /* Convert on-disk btree record to incore inobt record. */ | 
 | void | 
 | xfs_inobt_btrec_to_irec( | 
 | 	struct xfs_mount		*mp, | 
 | 	union xfs_btree_rec		*rec, | 
 | 	struct xfs_inobt_rec_incore	*irec) | 
 | { | 
 | 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); | 
 | 	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { | 
 | 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); | 
 | 		irec->ir_count = rec->inobt.ir_u.sp.ir_count; | 
 | 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | 
 | 	} else { | 
 | 		/* | 
 | 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | 
 | 		 * values for full inode chunks. | 
 | 		 */ | 
 | 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | 
 | 		irec->ir_count = XFS_INODES_PER_CHUNK; | 
 | 		irec->ir_freecount = | 
 | 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | 
 | 	} | 
 | 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the data from the pointed-to record. | 
 |  */ | 
 | int | 
 | xfs_inobt_get_rec( | 
 | 	struct xfs_btree_cur		*cur, | 
 | 	struct xfs_inobt_rec_incore	*irec, | 
 | 	int				*stat) | 
 | { | 
 | 	union xfs_btree_rec		*rec; | 
 | 	int				error; | 
 |  | 
 | 	error = xfs_btree_get_rec(cur, &rec, stat); | 
 | 	if (error || *stat == 0) | 
 | 		return error; | 
 |  | 
 | 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a single inobt record. Cursor must already point to desired location. | 
 |  */ | 
 | int | 
 | xfs_inobt_insert_rec( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	uint16_t		holemask, | 
 | 	uint8_t			count, | 
 | 	int32_t			freecount, | 
 | 	xfs_inofree_t		free, | 
 | 	int			*stat) | 
 | { | 
 | 	cur->bc_rec.i.ir_holemask = holemask; | 
 | 	cur->bc_rec.i.ir_count = count; | 
 | 	cur->bc_rec.i.ir_freecount = freecount; | 
 | 	cur->bc_rec.i.ir_free = free; | 
 | 	return xfs_btree_insert(cur, stat); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert records describing a newly allocated inode chunk into the inobt. | 
 |  */ | 
 | STATIC int | 
 | xfs_inobt_insert( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_buf		*agbp, | 
 | 	xfs_agino_t		newino, | 
 | 	xfs_agino_t		newlen, | 
 | 	xfs_btnum_t		btnum) | 
 | { | 
 | 	struct xfs_btree_cur	*cur; | 
 | 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno); | 
 | 	xfs_agino_t		thisino; | 
 | 	int			i; | 
 | 	int			error; | 
 |  | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | 
 |  | 
 | 	for (thisino = newino; | 
 | 	     thisino < newino + newlen; | 
 | 	     thisino += XFS_INODES_PER_CHUNK) { | 
 | 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | 
 | 		if (error) { | 
 | 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 			return error; | 
 | 		} | 
 | 		ASSERT(i == 0); | 
 |  | 
 | 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, | 
 | 					     XFS_INODES_PER_CHUNK, | 
 | 					     XFS_INODES_PER_CHUNK, | 
 | 					     XFS_INOBT_ALL_FREE, &i); | 
 | 		if (error) { | 
 | 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 			return error; | 
 | 		} | 
 | 		ASSERT(i == 1); | 
 | 	} | 
 |  | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that the number of free inodes in the AGI is correct. | 
 |  */ | 
 | #ifdef DEBUG | 
 | STATIC int | 
 | xfs_check_agi_freecount( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	struct xfs_agi		*agi) | 
 | { | 
 | 	if (cur->bc_nlevels == 1) { | 
 | 		xfs_inobt_rec_incore_t rec; | 
 | 		int		freecount = 0; | 
 | 		int		error; | 
 | 		int		i; | 
 |  | 
 | 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		do { | 
 | 			error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 			if (error) | 
 | 				return error; | 
 |  | 
 | 			if (i) { | 
 | 				freecount += rec.ir_freecount; | 
 | 				error = xfs_btree_increment(cur, 0, &i); | 
 | 				if (error) | 
 | 					return error; | 
 | 			} | 
 | 		} while (i == 1); | 
 |  | 
 | 		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) | 
 | 			ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #else | 
 | #define xfs_check_agi_freecount(cur, agi)	0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initialise a new set of inodes. When called without a transaction context | 
 |  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | 
 |  * than logging them (which in a transaction context puts them into the AIL | 
 |  * for writeback rather than the xfsbufd queue). | 
 |  */ | 
 | int | 
 | xfs_ialloc_inode_init( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_trans	*tp, | 
 | 	struct list_head	*buffer_list, | 
 | 	int			icount, | 
 | 	xfs_agnumber_t		agno, | 
 | 	xfs_agblock_t		agbno, | 
 | 	xfs_agblock_t		length, | 
 | 	unsigned int		gen) | 
 | { | 
 | 	struct xfs_buf		*fbuf; | 
 | 	struct xfs_dinode	*free; | 
 | 	int			nbufs, blks_per_cluster, inodes_per_cluster; | 
 | 	int			version; | 
 | 	int			i, j; | 
 | 	xfs_daddr_t		d; | 
 | 	xfs_ino_t		ino = 0; | 
 |  | 
 | 	/* | 
 | 	 * Loop over the new block(s), filling in the inodes.  For small block | 
 | 	 * sizes, manipulate the inodes in buffers  which are multiples of the | 
 | 	 * blocks size. | 
 | 	 */ | 
 | 	blks_per_cluster = xfs_icluster_size_fsb(mp); | 
 | 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; | 
 | 	nbufs = length / blks_per_cluster; | 
 |  | 
 | 	/* | 
 | 	 * Figure out what version number to use in the inodes we create.  If | 
 | 	 * the superblock version has caught up to the one that supports the new | 
 | 	 * inode format, then use the new inode version.  Otherwise use the old | 
 | 	 * version so that old kernels will continue to be able to use the file | 
 | 	 * system. | 
 | 	 * | 
 | 	 * For v3 inodes, we also need to write the inode number into the inode, | 
 | 	 * so calculate the first inode number of the chunk here as | 
 | 	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not | 
 | 	 * across multiple filesystem blocks (such as a cluster) and so cannot | 
 | 	 * be used in the cluster buffer loop below. | 
 | 	 * | 
 | 	 * Further, because we are writing the inode directly into the buffer | 
 | 	 * and calculating a CRC on the entire inode, we have ot log the entire | 
 | 	 * inode so that the entire range the CRC covers is present in the log. | 
 | 	 * That means for v3 inode we log the entire buffer rather than just the | 
 | 	 * inode cores. | 
 | 	 */ | 
 | 	if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
 | 		version = 3; | 
 | 		ino = XFS_AGINO_TO_INO(mp, agno, | 
 | 				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); | 
 |  | 
 | 		/* | 
 | 		 * log the initialisation that is about to take place as an | 
 | 		 * logical operation. This means the transaction does not | 
 | 		 * need to log the physical changes to the inode buffers as log | 
 | 		 * recovery will know what initialisation is actually needed. | 
 | 		 * Hence we only need to log the buffers as "ordered" buffers so | 
 | 		 * they track in the AIL as if they were physically logged. | 
 | 		 */ | 
 | 		if (tp) | 
 | 			xfs_icreate_log(tp, agno, agbno, icount, | 
 | 					mp->m_sb.sb_inodesize, length, gen); | 
 | 	} else | 
 | 		version = 2; | 
 |  | 
 | 	for (j = 0; j < nbufs; j++) { | 
 | 		/* | 
 | 		 * Get the block. | 
 | 		 */ | 
 | 		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); | 
 | 		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, | 
 | 					 mp->m_bsize * blks_per_cluster, | 
 | 					 XBF_UNMAPPED); | 
 | 		if (!fbuf) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		/* Initialize the inode buffers and log them appropriately. */ | 
 | 		fbuf->b_ops = &xfs_inode_buf_ops; | 
 | 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); | 
 | 		for (i = 0; i < inodes_per_cluster; i++) { | 
 | 			int	ioffset = i << mp->m_sb.sb_inodelog; | 
 | 			uint	isize = xfs_dinode_size(version); | 
 |  | 
 | 			free = xfs_make_iptr(mp, fbuf, i); | 
 | 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | 
 | 			free->di_version = version; | 
 | 			free->di_gen = cpu_to_be32(gen); | 
 | 			free->di_next_unlinked = cpu_to_be32(NULLAGINO); | 
 |  | 
 | 			if (version == 3) { | 
 | 				free->di_ino = cpu_to_be64(ino); | 
 | 				ino++; | 
 | 				uuid_copy(&free->di_uuid, | 
 | 					  &mp->m_sb.sb_meta_uuid); | 
 | 				xfs_dinode_calc_crc(mp, free); | 
 | 			} else if (tp) { | 
 | 				/* just log the inode core */ | 
 | 				xfs_trans_log_buf(tp, fbuf, ioffset, | 
 | 						  ioffset + isize - 1); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (tp) { | 
 | 			/* | 
 | 			 * Mark the buffer as an inode allocation buffer so it | 
 | 			 * sticks in AIL at the point of this allocation | 
 | 			 * transaction. This ensures the they are on disk before | 
 | 			 * the tail of the log can be moved past this | 
 | 			 * transaction (i.e. by preventing relogging from moving | 
 | 			 * it forward in the log). | 
 | 			 */ | 
 | 			xfs_trans_inode_alloc_buf(tp, fbuf); | 
 | 			if (version == 3) { | 
 | 				/* | 
 | 				 * Mark the buffer as ordered so that they are | 
 | 				 * not physically logged in the transaction but | 
 | 				 * still tracked in the AIL as part of the | 
 | 				 * transaction and pin the log appropriately. | 
 | 				 */ | 
 | 				xfs_trans_ordered_buf(tp, fbuf); | 
 | 			} | 
 | 		} else { | 
 | 			fbuf->b_flags |= XBF_DONE; | 
 | 			xfs_buf_delwri_queue(fbuf, buffer_list); | 
 | 			xfs_buf_relse(fbuf); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Align startino and allocmask for a recently allocated sparse chunk such that | 
 |  * they are fit for insertion (or merge) into the on-disk inode btrees. | 
 |  * | 
 |  * Background: | 
 |  * | 
 |  * When enabled, sparse inode support increases the inode alignment from cluster | 
 |  * size to inode chunk size. This means that the minimum range between two | 
 |  * non-adjacent inode records in the inobt is large enough for a full inode | 
 |  * record. This allows for cluster sized, cluster aligned block allocation | 
 |  * without need to worry about whether the resulting inode record overlaps with | 
 |  * another record in the tree. Without this basic rule, we would have to deal | 
 |  * with the consequences of overlap by potentially undoing recent allocations in | 
 |  * the inode allocation codepath. | 
 |  * | 
 |  * Because of this alignment rule (which is enforced on mount), there are two | 
 |  * inobt possibilities for newly allocated sparse chunks. One is that the | 
 |  * aligned inode record for the chunk covers a range of inodes not already | 
 |  * covered in the inobt (i.e., it is safe to insert a new sparse record). The | 
 |  * other is that a record already exists at the aligned startino that considers | 
 |  * the newly allocated range as sparse. In the latter case, record content is | 
 |  * merged in hope that sparse inode chunks fill to full chunks over time. | 
 |  */ | 
 | STATIC void | 
 | xfs_align_sparse_ino( | 
 | 	struct xfs_mount		*mp, | 
 | 	xfs_agino_t			*startino, | 
 | 	uint16_t			*allocmask) | 
 | { | 
 | 	xfs_agblock_t			agbno; | 
 | 	xfs_agblock_t			mod; | 
 | 	int				offset; | 
 |  | 
 | 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | 
 | 	mod = agbno % mp->m_sb.sb_inoalignmt; | 
 | 	if (!mod) | 
 | 		return; | 
 |  | 
 | 	/* calculate the inode offset and align startino */ | 
 | 	offset = mod << mp->m_sb.sb_inopblog; | 
 | 	*startino -= offset; | 
 |  | 
 | 	/* | 
 | 	 * Since startino has been aligned down, left shift allocmask such that | 
 | 	 * it continues to represent the same physical inodes relative to the | 
 | 	 * new startino. | 
 | 	 */ | 
 | 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine whether the source inode record can merge into the target. Both | 
 |  * records must be sparse, the inode ranges must match and there must be no | 
 |  * allocation overlap between the records. | 
 |  */ | 
 | STATIC bool | 
 | __xfs_inobt_can_merge( | 
 | 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */ | 
 | 	struct xfs_inobt_rec_incore	*srec)	/* src record */ | 
 | { | 
 | 	uint64_t			talloc; | 
 | 	uint64_t			salloc; | 
 |  | 
 | 	/* records must cover the same inode range */ | 
 | 	if (trec->ir_startino != srec->ir_startino) | 
 | 		return false; | 
 |  | 
 | 	/* both records must be sparse */ | 
 | 	if (!xfs_inobt_issparse(trec->ir_holemask) || | 
 | 	    !xfs_inobt_issparse(srec->ir_holemask)) | 
 | 		return false; | 
 |  | 
 | 	/* both records must track some inodes */ | 
 | 	if (!trec->ir_count || !srec->ir_count) | 
 | 		return false; | 
 |  | 
 | 	/* can't exceed capacity of a full record */ | 
 | 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | 
 | 		return false; | 
 |  | 
 | 	/* verify there is no allocation overlap */ | 
 | 	talloc = xfs_inobt_irec_to_allocmask(trec); | 
 | 	salloc = xfs_inobt_irec_to_allocmask(srec); | 
 | 	if (talloc & salloc) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Merge the source inode record into the target. The caller must call | 
 |  * __xfs_inobt_can_merge() to ensure the merge is valid. | 
 |  */ | 
 | STATIC void | 
 | __xfs_inobt_rec_merge( | 
 | 	struct xfs_inobt_rec_incore	*trec,	/* target */ | 
 | 	struct xfs_inobt_rec_incore	*srec)	/* src */ | 
 | { | 
 | 	ASSERT(trec->ir_startino == srec->ir_startino); | 
 |  | 
 | 	/* combine the counts */ | 
 | 	trec->ir_count += srec->ir_count; | 
 | 	trec->ir_freecount += srec->ir_freecount; | 
 |  | 
 | 	/* | 
 | 	 * Merge the holemask and free mask. For both fields, 0 bits refer to | 
 | 	 * allocated inodes. We combine the allocated ranges with bitwise AND. | 
 | 	 */ | 
 | 	trec->ir_holemask &= srec->ir_holemask; | 
 | 	trec->ir_free &= srec->ir_free; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a new sparse inode chunk into the associated inode btree. The inode | 
 |  * record for the sparse chunk is pre-aligned to a startino that should match | 
 |  * any pre-existing sparse inode record in the tree. This allows sparse chunks | 
 |  * to fill over time. | 
 |  * | 
 |  * This function supports two modes of handling preexisting records depending on | 
 |  * the merge flag. If merge is true, the provided record is merged with the | 
 |  * existing record and updated in place. The merged record is returned in nrec. | 
 |  * If merge is false, an existing record is replaced with the provided record. | 
 |  * If no preexisting record exists, the provided record is always inserted. | 
 |  * | 
 |  * It is considered corruption if a merge is requested and not possible. Given | 
 |  * the sparse inode alignment constraints, this should never happen. | 
 |  */ | 
 | STATIC int | 
 | xfs_inobt_insert_sprec( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xfs_trans		*tp, | 
 | 	struct xfs_buf			*agbp, | 
 | 	int				btnum, | 
 | 	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */ | 
 | 	bool				merge)	/* merge or replace */ | 
 | { | 
 | 	struct xfs_btree_cur		*cur; | 
 | 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno); | 
 | 	int				error; | 
 | 	int				i; | 
 | 	struct xfs_inobt_rec_incore	rec; | 
 |  | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | 
 |  | 
 | 	/* the new record is pre-aligned so we know where to look */ | 
 | 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | 
 | 	if (error) | 
 | 		goto error; | 
 | 	/* if nothing there, insert a new record and return */ | 
 | 	if (i == 0) { | 
 | 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | 
 | 					     nrec->ir_count, nrec->ir_freecount, | 
 | 					     nrec->ir_free, &i); | 
 | 		if (error) | 
 | 			goto error; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A record exists at this startino. Merge or replace the record | 
 | 	 * depending on what we've been asked to do. | 
 | 	 */ | 
 | 	if (merge) { | 
 | 		error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 		if (error) | 
 | 			goto error; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, | 
 | 					rec.ir_startino == nrec->ir_startino, | 
 | 					error); | 
 |  | 
 | 		/* | 
 | 		 * This should never fail. If we have coexisting records that | 
 | 		 * cannot merge, something is seriously wrong. | 
 | 		 */ | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), | 
 | 					error); | 
 |  | 
 | 		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, | 
 | 					 rec.ir_holemask, nrec->ir_startino, | 
 | 					 nrec->ir_holemask); | 
 |  | 
 | 		/* merge to nrec to output the updated record */ | 
 | 		__xfs_inobt_rec_merge(nrec, &rec); | 
 |  | 
 | 		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, | 
 | 					  nrec->ir_holemask); | 
 |  | 
 | 		error = xfs_inobt_rec_check_count(mp, nrec); | 
 | 		if (error) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | 	error = xfs_inobt_update(cur, nrec); | 
 | 	if (error) | 
 | 		goto error; | 
 |  | 
 | out: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 	return 0; | 
 | error: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate new inodes in the allocation group specified by agbp. | 
 |  * Return 0 for success, else error code. | 
 |  */ | 
 | STATIC int				/* error code or 0 */ | 
 | xfs_ialloc_ag_alloc( | 
 | 	xfs_trans_t	*tp,		/* transaction pointer */ | 
 | 	xfs_buf_t	*agbp,		/* alloc group buffer */ | 
 | 	int		*alloc) | 
 | { | 
 | 	xfs_agi_t	*agi;		/* allocation group header */ | 
 | 	xfs_alloc_arg_t	args;		/* allocation argument structure */ | 
 | 	xfs_agnumber_t	agno; | 
 | 	int		error; | 
 | 	xfs_agino_t	newino;		/* new first inode's number */ | 
 | 	xfs_agino_t	newlen;		/* new number of inodes */ | 
 | 	int		isaligned = 0;	/* inode allocation at stripe unit */ | 
 | 					/* boundary */ | 
 | 	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */ | 
 | 	struct xfs_inobt_rec_incore rec; | 
 | 	struct xfs_perag *pag; | 
 | 	int		do_sparse = 0; | 
 |  | 
 | 	memset(&args, 0, sizeof(args)); | 
 | 	args.tp = tp; | 
 | 	args.mp = tp->t_mountp; | 
 | 	args.fsbno = NULLFSBLOCK; | 
 | 	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); | 
 |  | 
 | #ifdef DEBUG | 
 | 	/* randomly do sparse inode allocations */ | 
 | 	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && | 
 | 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) | 
 | 		do_sparse = prandom_u32() & 1; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Locking will ensure that we don't have two callers in here | 
 | 	 * at one time. | 
 | 	 */ | 
 | 	newlen = args.mp->m_ialloc_inos; | 
 | 	if (args.mp->m_maxicount && | 
 | 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen > | 
 | 							args.mp->m_maxicount) | 
 | 		return -ENOSPC; | 
 | 	args.minlen = args.maxlen = args.mp->m_ialloc_blks; | 
 | 	/* | 
 | 	 * First try to allocate inodes contiguous with the last-allocated | 
 | 	 * chunk of inodes.  If the filesystem is striped, this will fill | 
 | 	 * an entire stripe unit with inodes. | 
 | 	 */ | 
 | 	agi = XFS_BUF_TO_AGI(agbp); | 
 | 	newino = be32_to_cpu(agi->agi_newino); | 
 | 	agno = be32_to_cpu(agi->agi_seqno); | 
 | 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + | 
 | 		     args.mp->m_ialloc_blks; | 
 | 	if (do_sparse) | 
 | 		goto sparse_alloc; | 
 | 	if (likely(newino != NULLAGINO && | 
 | 		  (args.agbno < be32_to_cpu(agi->agi_length)))) { | 
 | 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | 
 | 		args.type = XFS_ALLOCTYPE_THIS_BNO; | 
 | 		args.prod = 1; | 
 |  | 
 | 		/* | 
 | 		 * We need to take into account alignment here to ensure that | 
 | 		 * we don't modify the free list if we fail to have an exact | 
 | 		 * block. If we don't have an exact match, and every oher | 
 | 		 * attempt allocation attempt fails, we'll end up cancelling | 
 | 		 * a dirty transaction and shutting down. | 
 | 		 * | 
 | 		 * For an exact allocation, alignment must be 1, | 
 | 		 * however we need to take cluster alignment into account when | 
 | 		 * fixing up the freelist. Use the minalignslop field to | 
 | 		 * indicate that extra blocks might be required for alignment, | 
 | 		 * but not to use them in the actual exact allocation. | 
 | 		 */ | 
 | 		args.alignment = 1; | 
 | 		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; | 
 |  | 
 | 		/* Allow space for the inode btree to split. */ | 
 | 		args.minleft = args.mp->m_in_maxlevels - 1; | 
 | 		if ((error = xfs_alloc_vextent(&args))) | 
 | 			return error; | 
 |  | 
 | 		/* | 
 | 		 * This request might have dirtied the transaction if the AG can | 
 | 		 * satisfy the request, but the exact block was not available. | 
 | 		 * If the allocation did fail, subsequent requests will relax | 
 | 		 * the exact agbno requirement and increase the alignment | 
 | 		 * instead. It is critical that the total size of the request | 
 | 		 * (len + alignment + slop) does not increase from this point | 
 | 		 * on, so reset minalignslop to ensure it is not included in | 
 | 		 * subsequent requests. | 
 | 		 */ | 
 | 		args.minalignslop = 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(args.fsbno == NULLFSBLOCK)) { | 
 | 		/* | 
 | 		 * Set the alignment for the allocation. | 
 | 		 * If stripe alignment is turned on then align at stripe unit | 
 | 		 * boundary. | 
 | 		 * If the cluster size is smaller than a filesystem block | 
 | 		 * then we're doing I/O for inodes in filesystem block size | 
 | 		 * pieces, so don't need alignment anyway. | 
 | 		 */ | 
 | 		isaligned = 0; | 
 | 		if (args.mp->m_sinoalign) { | 
 | 			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); | 
 | 			args.alignment = args.mp->m_dalign; | 
 | 			isaligned = 1; | 
 | 		} else | 
 | 			args.alignment = xfs_ialloc_cluster_alignment(args.mp); | 
 | 		/* | 
 | 		 * Need to figure out where to allocate the inode blocks. | 
 | 		 * Ideally they should be spaced out through the a.g. | 
 | 		 * For now, just allocate blocks up front. | 
 | 		 */ | 
 | 		args.agbno = be32_to_cpu(agi->agi_root); | 
 | 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | 
 | 		/* | 
 | 		 * Allocate a fixed-size extent of inodes. | 
 | 		 */ | 
 | 		args.type = XFS_ALLOCTYPE_NEAR_BNO; | 
 | 		args.prod = 1; | 
 | 		/* | 
 | 		 * Allow space for the inode btree to split. | 
 | 		 */ | 
 | 		args.minleft = args.mp->m_in_maxlevels - 1; | 
 | 		if ((error = xfs_alloc_vextent(&args))) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If stripe alignment is turned on, then try again with cluster | 
 | 	 * alignment. | 
 | 	 */ | 
 | 	if (isaligned && args.fsbno == NULLFSBLOCK) { | 
 | 		args.type = XFS_ALLOCTYPE_NEAR_BNO; | 
 | 		args.agbno = be32_to_cpu(agi->agi_root); | 
 | 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | 
 | 		args.alignment = xfs_ialloc_cluster_alignment(args.mp); | 
 | 		if ((error = xfs_alloc_vextent(&args))) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finally, try a sparse allocation if the filesystem supports it and | 
 | 	 * the sparse allocation length is smaller than a full chunk. | 
 | 	 */ | 
 | 	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && | 
 | 	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && | 
 | 	    args.fsbno == NULLFSBLOCK) { | 
 | sparse_alloc: | 
 | 		args.type = XFS_ALLOCTYPE_NEAR_BNO; | 
 | 		args.agbno = be32_to_cpu(agi->agi_root); | 
 | 		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | 
 | 		args.alignment = args.mp->m_sb.sb_spino_align; | 
 | 		args.prod = 1; | 
 |  | 
 | 		args.minlen = args.mp->m_ialloc_min_blks; | 
 | 		args.maxlen = args.minlen; | 
 |  | 
 | 		/* | 
 | 		 * The inode record will be aligned to full chunk size. We must | 
 | 		 * prevent sparse allocation from AG boundaries that result in | 
 | 		 * invalid inode records, such as records that start at agbno 0 | 
 | 		 * or extend beyond the AG. | 
 | 		 * | 
 | 		 * Set min agbno to the first aligned, non-zero agbno and max to | 
 | 		 * the last aligned agbno that is at least one full chunk from | 
 | 		 * the end of the AG. | 
 | 		 */ | 
 | 		args.min_agbno = args.mp->m_sb.sb_inoalignmt; | 
 | 		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, | 
 | 					    args.mp->m_sb.sb_inoalignmt) - | 
 | 				 args.mp->m_ialloc_blks; | 
 |  | 
 | 		error = xfs_alloc_vextent(&args); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		newlen = args.len << args.mp->m_sb.sb_inopblog; | 
 | 		ASSERT(newlen <= XFS_INODES_PER_CHUNK); | 
 | 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; | 
 | 	} | 
 |  | 
 | 	if (args.fsbno == NULLFSBLOCK) { | 
 | 		*alloc = 0; | 
 | 		return 0; | 
 | 	} | 
 | 	ASSERT(args.len == args.minlen); | 
 |  | 
 | 	/* | 
 | 	 * Stamp and write the inode buffers. | 
 | 	 * | 
 | 	 * Seed the new inode cluster with a random generation number. This | 
 | 	 * prevents short-term reuse of generation numbers if a chunk is | 
 | 	 * freed and then immediately reallocated. We use random numbers | 
 | 	 * rather than a linear progression to prevent the next generation | 
 | 	 * number from being easily guessable. | 
 | 	 */ | 
 | 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, | 
 | 			args.agbno, args.len, prandom_u32()); | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 | 	/* | 
 | 	 * Convert the results. | 
 | 	 */ | 
 | 	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); | 
 |  | 
 | 	if (xfs_inobt_issparse(~allocmask)) { | 
 | 		/* | 
 | 		 * We've allocated a sparse chunk. Align the startino and mask. | 
 | 		 */ | 
 | 		xfs_align_sparse_ino(args.mp, &newino, &allocmask); | 
 |  | 
 | 		rec.ir_startino = newino; | 
 | 		rec.ir_holemask = ~allocmask; | 
 | 		rec.ir_count = newlen; | 
 | 		rec.ir_freecount = newlen; | 
 | 		rec.ir_free = XFS_INOBT_ALL_FREE; | 
 |  | 
 | 		/* | 
 | 		 * Insert the sparse record into the inobt and allow for a merge | 
 | 		 * if necessary. If a merge does occur, rec is updated to the | 
 | 		 * merged record. | 
 | 		 */ | 
 | 		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, | 
 | 					       &rec, true); | 
 | 		if (error == -EFSCORRUPTED) { | 
 | 			xfs_alert(args.mp, | 
 | 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | 
 | 				  XFS_AGINO_TO_INO(args.mp, agno, | 
 | 						   rec.ir_startino), | 
 | 				  rec.ir_holemask, rec.ir_count); | 
 | 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | 
 | 		} | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		/* | 
 | 		 * We can't merge the part we've just allocated as for the inobt | 
 | 		 * due to finobt semantics. The original record may or may not | 
 | 		 * exist independent of whether physical inodes exist in this | 
 | 		 * sparse chunk. | 
 | 		 * | 
 | 		 * We must update the finobt record based on the inobt record. | 
 | 		 * rec contains the fully merged and up to date inobt record | 
 | 		 * from the previous call. Set merge false to replace any | 
 | 		 * existing record with this one. | 
 | 		 */ | 
 | 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | 
 | 			error = xfs_inobt_insert_sprec(args.mp, tp, agbp, | 
 | 						       XFS_BTNUM_FINO, &rec, | 
 | 						       false); | 
 | 			if (error) | 
 | 				return error; | 
 | 		} | 
 | 	} else { | 
 | 		/* full chunk - insert new records to both btrees */ | 
 | 		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, | 
 | 					 XFS_BTNUM_INO); | 
 | 		if (error) | 
 | 			return error; | 
 |  | 
 | 		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | 
 | 			error = xfs_inobt_insert(args.mp, tp, agbp, newino, | 
 | 						 newlen, XFS_BTNUM_FINO); | 
 | 			if (error) | 
 | 				return error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update AGI counts and newino. | 
 | 	 */ | 
 | 	be32_add_cpu(&agi->agi_count, newlen); | 
 | 	be32_add_cpu(&agi->agi_freecount, newlen); | 
 | 	pag = xfs_perag_get(args.mp, agno); | 
 | 	pag->pagi_freecount += newlen; | 
 | 	xfs_perag_put(pag); | 
 | 	agi->agi_newino = cpu_to_be32(newino); | 
 |  | 
 | 	/* | 
 | 	 * Log allocation group header fields | 
 | 	 */ | 
 | 	xfs_ialloc_log_agi(tp, agbp, | 
 | 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | 
 | 	/* | 
 | 	 * Modify/log superblock values for inode count and inode free count. | 
 | 	 */ | 
 | 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | 
 | 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | 
 | 	*alloc = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC xfs_agnumber_t | 
 | xfs_ialloc_next_ag( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_agnumber_t	agno; | 
 |  | 
 | 	spin_lock(&mp->m_agirotor_lock); | 
 | 	agno = mp->m_agirotor; | 
 | 	if (++mp->m_agirotor >= mp->m_maxagi) | 
 | 		mp->m_agirotor = 0; | 
 | 	spin_unlock(&mp->m_agirotor_lock); | 
 |  | 
 | 	return agno; | 
 | } | 
 |  | 
 | /* | 
 |  * Select an allocation group to look for a free inode in, based on the parent | 
 |  * inode and the mode.  Return the allocation group buffer. | 
 |  */ | 
 | STATIC xfs_agnumber_t | 
 | xfs_ialloc_ag_select( | 
 | 	xfs_trans_t	*tp,		/* transaction pointer */ | 
 | 	xfs_ino_t	parent,		/* parent directory inode number */ | 
 | 	umode_t		mode)		/* bits set to indicate file type */ | 
 | { | 
 | 	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */ | 
 | 	xfs_agnumber_t	agno;		/* current ag number */ | 
 | 	int		flags;		/* alloc buffer locking flags */ | 
 | 	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */ | 
 | 	xfs_extlen_t	longest = 0;	/* longest extent available */ | 
 | 	xfs_mount_t	*mp;		/* mount point structure */ | 
 | 	int		needspace;	/* file mode implies space allocated */ | 
 | 	xfs_perag_t	*pag;		/* per allocation group data */ | 
 | 	xfs_agnumber_t	pagno;		/* parent (starting) ag number */ | 
 | 	int		error; | 
 |  | 
 | 	/* | 
 | 	 * Files of these types need at least one block if length > 0 | 
 | 	 * (and they won't fit in the inode, but that's hard to figure out). | 
 | 	 */ | 
 | 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | 
 | 	mp = tp->t_mountp; | 
 | 	agcount = mp->m_maxagi; | 
 | 	if (S_ISDIR(mode)) | 
 | 		pagno = xfs_ialloc_next_ag(mp); | 
 | 	else { | 
 | 		pagno = XFS_INO_TO_AGNO(mp, parent); | 
 | 		if (pagno >= agcount) | 
 | 			pagno = 0; | 
 | 	} | 
 |  | 
 | 	ASSERT(pagno < agcount); | 
 |  | 
 | 	/* | 
 | 	 * Loop through allocation groups, looking for one with a little | 
 | 	 * free space in it.  Note we don't look for free inodes, exactly. | 
 | 	 * Instead, we include whether there is a need to allocate inodes | 
 | 	 * to mean that blocks must be allocated for them, | 
 | 	 * if none are currently free. | 
 | 	 */ | 
 | 	agno = pagno; | 
 | 	flags = XFS_ALLOC_FLAG_TRYLOCK; | 
 | 	for (;;) { | 
 | 		pag = xfs_perag_get(mp, agno); | 
 | 		if (!pag->pagi_inodeok) { | 
 | 			xfs_ialloc_next_ag(mp); | 
 | 			goto nextag; | 
 | 		} | 
 |  | 
 | 		if (!pag->pagi_init) { | 
 | 			error = xfs_ialloc_pagi_init(mp, tp, agno); | 
 | 			if (error) | 
 | 				goto nextag; | 
 | 		} | 
 |  | 
 | 		if (pag->pagi_freecount) { | 
 | 			xfs_perag_put(pag); | 
 | 			return agno; | 
 | 		} | 
 |  | 
 | 		if (!pag->pagf_init) { | 
 | 			error = xfs_alloc_pagf_init(mp, tp, agno, flags); | 
 | 			if (error) | 
 | 				goto nextag; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check that there is enough free space for the file plus a | 
 | 		 * chunk of inodes if we need to allocate some. If this is the | 
 | 		 * first pass across the AGs, take into account the potential | 
 | 		 * space needed for alignment of inode chunks when checking the | 
 | 		 * longest contiguous free space in the AG - this prevents us | 
 | 		 * from getting ENOSPC because we have free space larger than | 
 | 		 * m_ialloc_blks but alignment constraints prevent us from using | 
 | 		 * it. | 
 | 		 * | 
 | 		 * If we can't find an AG with space for full alignment slack to | 
 | 		 * be taken into account, we must be near ENOSPC in all AGs. | 
 | 		 * Hence we don't include alignment for the second pass and so | 
 | 		 * if we fail allocation due to alignment issues then it is most | 
 | 		 * likely a real ENOSPC condition. | 
 | 		 */ | 
 | 		ineed = mp->m_ialloc_min_blks; | 
 | 		if (flags && ineed > 1) | 
 | 			ineed += xfs_ialloc_cluster_alignment(mp); | 
 | 		longest = pag->pagf_longest; | 
 | 		if (!longest) | 
 | 			longest = pag->pagf_flcount > 0; | 
 |  | 
 | 		if (pag->pagf_freeblks >= needspace + ineed && | 
 | 		    longest >= ineed) { | 
 | 			xfs_perag_put(pag); | 
 | 			return agno; | 
 | 		} | 
 | nextag: | 
 | 		xfs_perag_put(pag); | 
 | 		/* | 
 | 		 * No point in iterating over the rest, if we're shutting | 
 | 		 * down. | 
 | 		 */ | 
 | 		if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 			return NULLAGNUMBER; | 
 | 		agno++; | 
 | 		if (agno >= agcount) | 
 | 			agno = 0; | 
 | 		if (agno == pagno) { | 
 | 			if (flags == 0) | 
 | 				return NULLAGNUMBER; | 
 | 			flags = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Try to retrieve the next record to the left/right from the current one. | 
 |  */ | 
 | STATIC int | 
 | xfs_ialloc_next_rec( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	xfs_inobt_rec_incore_t	*rec, | 
 | 	int			*done, | 
 | 	int			left) | 
 | { | 
 | 	int                     error; | 
 | 	int			i; | 
 |  | 
 | 	if (left) | 
 | 		error = xfs_btree_decrement(cur, 0, &i); | 
 | 	else | 
 | 		error = xfs_btree_increment(cur, 0, &i); | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 | 	*done = !i; | 
 | 	if (i) { | 
 | 		error = xfs_inobt_get_rec(cur, rec, &i); | 
 | 		if (error) | 
 | 			return error; | 
 | 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_ialloc_get_rec( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	xfs_agino_t		agino, | 
 | 	xfs_inobt_rec_incore_t	*rec, | 
 | 	int			*done) | 
 | { | 
 | 	int                     error; | 
 | 	int			i; | 
 |  | 
 | 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | 
 | 	if (error) | 
 | 		return error; | 
 | 	*done = !i; | 
 | 	if (i) { | 
 | 		error = xfs_inobt_get_rec(cur, rec, &i); | 
 | 		if (error) | 
 | 			return error; | 
 | 		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the offset of the first free inode in the record. If the inode chunk | 
 |  * is sparsely allocated, we convert the record holemask to inode granularity | 
 |  * and mask off the unallocated regions from the inode free mask. | 
 |  */ | 
 | STATIC int | 
 | xfs_inobt_first_free_inode( | 
 | 	struct xfs_inobt_rec_incore	*rec) | 
 | { | 
 | 	xfs_inofree_t			realfree; | 
 |  | 
 | 	/* if there are no holes, return the first available offset */ | 
 | 	if (!xfs_inobt_issparse(rec->ir_holemask)) | 
 | 		return xfs_lowbit64(rec->ir_free); | 
 |  | 
 | 	realfree = xfs_inobt_irec_to_allocmask(rec); | 
 | 	realfree &= rec->ir_free; | 
 |  | 
 | 	return xfs_lowbit64(realfree); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an inode using the inobt-only algorithm. | 
 |  */ | 
 | STATIC int | 
 | xfs_dialloc_ag_inobt( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_buf		*agbp, | 
 | 	xfs_ino_t		parent, | 
 | 	xfs_ino_t		*inop) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno); | 
 | 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent); | 
 | 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent); | 
 | 	struct xfs_perag	*pag; | 
 | 	struct xfs_btree_cur	*cur, *tcur; | 
 | 	struct xfs_inobt_rec_incore rec, trec; | 
 | 	xfs_ino_t		ino; | 
 | 	int			error; | 
 | 	int			offset; | 
 | 	int			i, j; | 
 | 	int			searchdistance = 10; | 
 |  | 
 | 	pag = xfs_perag_get(mp, agno); | 
 |  | 
 | 	ASSERT(pag->pagi_init); | 
 | 	ASSERT(pag->pagi_inodeok); | 
 | 	ASSERT(pag->pagi_freecount > 0); | 
 |  | 
 |  restart_pagno: | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | 
 | 	/* | 
 | 	 * If pagino is 0 (this is the root inode allocation) use newino. | 
 | 	 * This must work because we've just allocated some. | 
 | 	 */ | 
 | 	if (!pagino) | 
 | 		pagino = be32_to_cpu(agi->agi_newino); | 
 |  | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error0; | 
 |  | 
 | 	/* | 
 | 	 * If in the same AG as the parent, try to get near the parent. | 
 | 	 */ | 
 | 	if (pagno == agno) { | 
 | 		int		doneleft;	/* done, to the left */ | 
 | 		int		doneright;	/* done, to the right */ | 
 |  | 
 | 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); | 
 | 		if (error) | 
 | 			goto error0; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 |  | 
 | 		error = xfs_inobt_get_rec(cur, &rec, &j); | 
 | 		if (error) | 
 | 			goto error0; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); | 
 |  | 
 | 		if (rec.ir_freecount > 0) { | 
 | 			/* | 
 | 			 * Found a free inode in the same chunk | 
 | 			 * as the parent, done. | 
 | 			 */ | 
 | 			goto alloc_inode; | 
 | 		} | 
 |  | 
 |  | 
 | 		/* | 
 | 		 * In the same AG as parent, but parent's chunk is full. | 
 | 		 */ | 
 |  | 
 | 		/* duplicate the cursor, search left & right simultaneously */ | 
 | 		error = xfs_btree_dup_cursor(cur, &tcur); | 
 | 		if (error) | 
 | 			goto error0; | 
 |  | 
 | 		/* | 
 | 		 * Skip to last blocks looked up if same parent inode. | 
 | 		 */ | 
 | 		if (pagino != NULLAGINO && | 
 | 		    pag->pagl_pagino == pagino && | 
 | 		    pag->pagl_leftrec != NULLAGINO && | 
 | 		    pag->pagl_rightrec != NULLAGINO) { | 
 | 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | 
 | 						   &trec, &doneleft); | 
 | 			if (error) | 
 | 				goto error1; | 
 |  | 
 | 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, | 
 | 						   &rec, &doneright); | 
 | 			if (error) | 
 | 				goto error1; | 
 | 		} else { | 
 | 			/* search left with tcur, back up 1 record */ | 
 | 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | 
 | 			if (error) | 
 | 				goto error1; | 
 |  | 
 | 			/* search right with cur, go forward 1 record. */ | 
 | 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | 
 | 			if (error) | 
 | 				goto error1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Loop until we find an inode chunk with a free inode. | 
 | 		 */ | 
 | 		while (--searchdistance > 0 && (!doneleft || !doneright)) { | 
 | 			int	useleft;  /* using left inode chunk this time */ | 
 |  | 
 | 			/* figure out the closer block if both are valid. */ | 
 | 			if (!doneleft && !doneright) { | 
 | 				useleft = pagino - | 
 | 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | 
 | 				  rec.ir_startino - pagino; | 
 | 			} else { | 
 | 				useleft = !doneleft; | 
 | 			} | 
 |  | 
 | 			/* free inodes to the left? */ | 
 | 			if (useleft && trec.ir_freecount) { | 
 | 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 				cur = tcur; | 
 |  | 
 | 				pag->pagl_leftrec = trec.ir_startino; | 
 | 				pag->pagl_rightrec = rec.ir_startino; | 
 | 				pag->pagl_pagino = pagino; | 
 | 				rec = trec; | 
 | 				goto alloc_inode; | 
 | 			} | 
 |  | 
 | 			/* free inodes to the right? */ | 
 | 			if (!useleft && rec.ir_freecount) { | 
 | 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
 |  | 
 | 				pag->pagl_leftrec = trec.ir_startino; | 
 | 				pag->pagl_rightrec = rec.ir_startino; | 
 | 				pag->pagl_pagino = pagino; | 
 | 				goto alloc_inode; | 
 | 			} | 
 |  | 
 | 			/* get next record to check */ | 
 | 			if (useleft) { | 
 | 				error = xfs_ialloc_next_rec(tcur, &trec, | 
 | 								 &doneleft, 1); | 
 | 			} else { | 
 | 				error = xfs_ialloc_next_rec(cur, &rec, | 
 | 								 &doneright, 0); | 
 | 			} | 
 | 			if (error) | 
 | 				goto error1; | 
 | 		} | 
 |  | 
 | 		if (searchdistance <= 0) { | 
 | 			/* | 
 | 			 * Not in range - save last search | 
 | 			 * location and allocate a new inode | 
 | 			 */ | 
 | 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
 | 			pag->pagl_leftrec = trec.ir_startino; | 
 | 			pag->pagl_rightrec = rec.ir_startino; | 
 | 			pag->pagl_pagino = pagino; | 
 |  | 
 | 		} else { | 
 | 			/* | 
 | 			 * We've reached the end of the btree. because | 
 | 			 * we are only searching a small chunk of the | 
 | 			 * btree each search, there is obviously free | 
 | 			 * inodes closer to the parent inode than we | 
 | 			 * are now. restart the search again. | 
 | 			 */ | 
 | 			pag->pagl_pagino = NULLAGINO; | 
 | 			pag->pagl_leftrec = NULLAGINO; | 
 | 			pag->pagl_rightrec = NULLAGINO; | 
 | 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | 
 | 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 			goto restart_pagno; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In a different AG from the parent. | 
 | 	 * See if the most recently allocated block has any free. | 
 | 	 */ | 
 | 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | 
 | 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), | 
 | 					 XFS_LOOKUP_EQ, &i); | 
 | 		if (error) | 
 | 			goto error0; | 
 |  | 
 | 		if (i == 1) { | 
 | 			error = xfs_inobt_get_rec(cur, &rec, &j); | 
 | 			if (error) | 
 | 				goto error0; | 
 |  | 
 | 			if (j == 1 && rec.ir_freecount > 0) { | 
 | 				/* | 
 | 				 * The last chunk allocated in the group | 
 | 				 * still has a free inode. | 
 | 				 */ | 
 | 				goto alloc_inode; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * None left in the last group, search the whole AG | 
 | 	 */ | 
 | 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
 | 	if (error) | 
 | 		goto error0; | 
 | 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 |  | 
 | 	for (;;) { | 
 | 		error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 		if (error) | 
 | 			goto error0; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 | 		if (rec.ir_freecount > 0) | 
 | 			break; | 
 | 		error = xfs_btree_increment(cur, 0, &i); | 
 | 		if (error) | 
 | 			goto error0; | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 | 	} | 
 |  | 
 | alloc_inode: | 
 | 	offset = xfs_inobt_first_free_inode(&rec); | 
 | 	ASSERT(offset >= 0); | 
 | 	ASSERT(offset < XFS_INODES_PER_CHUNK); | 
 | 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | 
 | 				   XFS_INODES_PER_CHUNK) == 0); | 
 | 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | 
 | 	rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
 | 	rec.ir_freecount--; | 
 | 	error = xfs_inobt_update(cur, &rec); | 
 | 	if (error) | 
 | 		goto error0; | 
 | 	be32_add_cpu(&agi->agi_freecount, -1); | 
 | 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
 | 	pag->pagi_freecount--; | 
 |  | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error0; | 
 |  | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | 
 | 	xfs_perag_put(pag); | 
 | 	*inop = ino; | 
 | 	return 0; | 
 | error1: | 
 | 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | 
 | error0: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Use the free inode btree to allocate an inode based on distance from the | 
 |  * parent. Note that the provided cursor may be deleted and replaced. | 
 |  */ | 
 | STATIC int | 
 | xfs_dialloc_ag_finobt_near( | 
 | 	xfs_agino_t			pagino, | 
 | 	struct xfs_btree_cur		**ocur, | 
 | 	struct xfs_inobt_rec_incore	*rec) | 
 | { | 
 | 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */ | 
 | 	struct xfs_btree_cur		*rcur;	/* right search cursor */ | 
 | 	struct xfs_inobt_rec_incore	rrec; | 
 | 	int				error; | 
 | 	int				i, j; | 
 |  | 
 | 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (i == 1) { | 
 | 		error = xfs_inobt_get_rec(lcur, rec, &i); | 
 | 		if (error) | 
 | 			return error; | 
 | 		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); | 
 |  | 
 | 		/* | 
 | 		 * See if we've landed in the parent inode record. The finobt | 
 | 		 * only tracks chunks with at least one free inode, so record | 
 | 		 * existence is enough. | 
 | 		 */ | 
 | 		if (pagino >= rec->ir_startino && | 
 | 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	error = xfs_btree_dup_cursor(lcur, &rcur); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | 
 | 	if (error) | 
 | 		goto error_rcur; | 
 | 	if (j == 1) { | 
 | 		error = xfs_inobt_get_rec(rcur, &rrec, &j); | 
 | 		if (error) | 
 | 			goto error_rcur; | 
 | 		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); | 
 | 	} | 
 |  | 
 | 	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); | 
 | 	if (i == 1 && j == 1) { | 
 | 		/* | 
 | 		 * Both the left and right records are valid. Choose the closer | 
 | 		 * inode chunk to the target. | 
 | 		 */ | 
 | 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | 
 | 		    (rrec.ir_startino - pagino)) { | 
 | 			*rec = rrec; | 
 | 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | 
 | 			*ocur = rcur; | 
 | 		} else { | 
 | 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | 
 | 		} | 
 | 	} else if (j == 1) { | 
 | 		/* only the right record is valid */ | 
 | 		*rec = rrec; | 
 | 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | 
 | 		*ocur = rcur; | 
 | 	} else if (i == 1) { | 
 | 		/* only the left record is valid */ | 
 | 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_rcur: | 
 | 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Use the free inode btree to find a free inode based on a newino hint. If | 
 |  * the hint is NULL, find the first free inode in the AG. | 
 |  */ | 
 | STATIC int | 
 | xfs_dialloc_ag_finobt_newino( | 
 | 	struct xfs_agi			*agi, | 
 | 	struct xfs_btree_cur		*cur, | 
 | 	struct xfs_inobt_rec_incore	*rec) | 
 | { | 
 | 	int error; | 
 | 	int i; | 
 |  | 
 | 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | 
 | 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), | 
 | 					 XFS_LOOKUP_EQ, &i); | 
 | 		if (error) | 
 | 			return error; | 
 | 		if (i == 1) { | 
 | 			error = xfs_inobt_get_rec(cur, rec, &i); | 
 | 			if (error) | 
 | 				return error; | 
 | 			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Find the first inode available in the AG. | 
 | 	 */ | 
 | 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | 
 | 	if (error) | 
 | 		return error; | 
 | 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 |  | 
 | 	error = xfs_inobt_get_rec(cur, rec, &i); | 
 | 	if (error) | 
 | 		return error; | 
 | 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update the inobt based on a modification made to the finobt. Also ensure that | 
 |  * the records from both trees are equivalent post-modification. | 
 |  */ | 
 | STATIC int | 
 | xfs_dialloc_ag_update_inobt( | 
 | 	struct xfs_btree_cur		*cur,	/* inobt cursor */ | 
 | 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */ | 
 | 	int				offset) /* inode offset */ | 
 | { | 
 | 	struct xfs_inobt_rec_incore	rec; | 
 | 	int				error; | 
 | 	int				i; | 
 |  | 
 | 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | 
 | 	if (error) | 
 | 		return error; | 
 | 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 |  | 
 | 	error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 	if (error) | 
 | 		return error; | 
 | 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); | 
 | 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % | 
 | 				   XFS_INODES_PER_CHUNK) == 0); | 
 |  | 
 | 	rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
 | 	rec.ir_freecount--; | 
 |  | 
 | 	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && | 
 | 				  (rec.ir_freecount == frec->ir_freecount)); | 
 |  | 
 | 	return xfs_inobt_update(cur, &rec); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an inode using the free inode btree, if available. Otherwise, fall | 
 |  * back to the inobt search algorithm. | 
 |  * | 
 |  * The caller selected an AG for us, and made sure that free inodes are | 
 |  * available. | 
 |  */ | 
 | STATIC int | 
 | xfs_dialloc_ag( | 
 | 	struct xfs_trans	*tp, | 
 | 	struct xfs_buf		*agbp, | 
 | 	xfs_ino_t		parent, | 
 | 	xfs_ino_t		*inop) | 
 | { | 
 | 	struct xfs_mount		*mp = tp->t_mountp; | 
 | 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno); | 
 | 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent); | 
 | 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent); | 
 | 	struct xfs_perag		*pag; | 
 | 	struct xfs_btree_cur		*cur;	/* finobt cursor */ | 
 | 	struct xfs_btree_cur		*icur;	/* inobt cursor */ | 
 | 	struct xfs_inobt_rec_incore	rec; | 
 | 	xfs_ino_t			ino; | 
 | 	int				error; | 
 | 	int				offset; | 
 | 	int				i; | 
 |  | 
 | 	if (!xfs_sb_version_hasfinobt(&mp->m_sb)) | 
 | 		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); | 
 |  | 
 | 	pag = xfs_perag_get(mp, agno); | 
 |  | 
 | 	/* | 
 | 	 * If pagino is 0 (this is the root inode allocation) use newino. | 
 | 	 * This must work because we've just allocated some. | 
 | 	 */ | 
 | 	if (!pagino) | 
 | 		pagino = be32_to_cpu(agi->agi_newino); | 
 |  | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | 
 |  | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error_cur; | 
 |  | 
 | 	/* | 
 | 	 * The search algorithm depends on whether we're in the same AG as the | 
 | 	 * parent. If so, find the closest available inode to the parent. If | 
 | 	 * not, consider the agi hint or find the first free inode in the AG. | 
 | 	 */ | 
 | 	if (agno == pagno) | 
 | 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); | 
 | 	else | 
 | 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | 
 | 	if (error) | 
 | 		goto error_cur; | 
 |  | 
 | 	offset = xfs_inobt_first_free_inode(&rec); | 
 | 	ASSERT(offset >= 0); | 
 | 	ASSERT(offset < XFS_INODES_PER_CHUNK); | 
 | 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | 
 | 				   XFS_INODES_PER_CHUNK) == 0); | 
 | 	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | 
 |  | 
 | 	/* | 
 | 	 * Modify or remove the finobt record. | 
 | 	 */ | 
 | 	rec.ir_free &= ~XFS_INOBT_MASK(offset); | 
 | 	rec.ir_freecount--; | 
 | 	if (rec.ir_freecount) | 
 | 		error = xfs_inobt_update(cur, &rec); | 
 | 	else | 
 | 		error = xfs_btree_delete(cur, &i); | 
 | 	if (error) | 
 | 		goto error_cur; | 
 |  | 
 | 	/* | 
 | 	 * The finobt has now been updated appropriately. We haven't updated the | 
 | 	 * agi and superblock yet, so we can create an inobt cursor and validate | 
 | 	 * the original freecount. If all is well, make the equivalent update to | 
 | 	 * the inobt using the finobt record and offset information. | 
 | 	 */ | 
 | 	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | 
 |  | 
 | 	error = xfs_check_agi_freecount(icur, agi); | 
 | 	if (error) | 
 | 		goto error_icur; | 
 |  | 
 | 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); | 
 | 	if (error) | 
 | 		goto error_icur; | 
 |  | 
 | 	/* | 
 | 	 * Both trees have now been updated. We must update the perag and | 
 | 	 * superblock before we can check the freecount for each btree. | 
 | 	 */ | 
 | 	be32_add_cpu(&agi->agi_freecount, -1); | 
 | 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
 | 	pag->pagi_freecount--; | 
 |  | 
 | 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | 
 |  | 
 | 	error = xfs_check_agi_freecount(icur, agi); | 
 | 	if (error) | 
 | 		goto error_icur; | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error_icur; | 
 |  | 
 | 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 	xfs_perag_put(pag); | 
 | 	*inop = ino; | 
 | 	return 0; | 
 |  | 
 | error_icur: | 
 | 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | 
 | error_cur: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate an inode on disk. | 
 |  * | 
 |  * Mode is used to tell whether the new inode will need space, and whether it | 
 |  * is a directory. | 
 |  * | 
 |  * This function is designed to be called twice if it has to do an allocation | 
 |  * to make more free inodes.  On the first call, *IO_agbp should be set to NULL. | 
 |  * If an inode is available without having to performn an allocation, an inode | 
 |  * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation | 
 |  * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. | 
 |  * The caller should then commit the current transaction, allocate a | 
 |  * new transaction, and call xfs_dialloc() again, passing in the previous value | 
 |  * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI | 
 |  * buffer is locked across the two calls, the second call is guaranteed to have | 
 |  * a free inode available. | 
 |  * | 
 |  * Once we successfully pick an inode its number is returned and the on-disk | 
 |  * data structures are updated.  The inode itself is not read in, since doing so | 
 |  * would break ordering constraints with xfs_reclaim. | 
 |  */ | 
 | int | 
 | xfs_dialloc( | 
 | 	struct xfs_trans	*tp, | 
 | 	xfs_ino_t		parent, | 
 | 	umode_t			mode, | 
 | 	struct xfs_buf		**IO_agbp, | 
 | 	xfs_ino_t		*inop) | 
 | { | 
 | 	struct xfs_mount	*mp = tp->t_mountp; | 
 | 	struct xfs_buf		*agbp; | 
 | 	xfs_agnumber_t		agno; | 
 | 	int			error; | 
 | 	int			ialloced; | 
 | 	int			noroom = 0; | 
 | 	xfs_agnumber_t		start_agno; | 
 | 	struct xfs_perag	*pag; | 
 | 	int			okalloc = 1; | 
 |  | 
 | 	if (*IO_agbp) { | 
 | 		/* | 
 | 		 * If the caller passes in a pointer to the AGI buffer, | 
 | 		 * continue where we left off before.  In this case, we | 
 | 		 * know that the allocation group has free inodes. | 
 | 		 */ | 
 | 		agbp = *IO_agbp; | 
 | 		goto out_alloc; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do not have an agbp, so select an initial allocation | 
 | 	 * group for inode allocation. | 
 | 	 */ | 
 | 	start_agno = xfs_ialloc_ag_select(tp, parent, mode); | 
 | 	if (start_agno == NULLAGNUMBER) { | 
 | 		*inop = NULLFSINO; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have already hit the ceiling of inode blocks then clear | 
 | 	 * okalloc so we scan all available agi structures for a free | 
 | 	 * inode. | 
 | 	 * | 
 | 	 * Read rough value of mp->m_icount by percpu_counter_read_positive, | 
 | 	 * which will sacrifice the preciseness but improve the performance. | 
 | 	 */ | 
 | 	if (mp->m_maxicount && | 
 | 	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos | 
 | 							> mp->m_maxicount) { | 
 | 		noroom = 1; | 
 | 		okalloc = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Loop until we find an allocation group that either has free inodes | 
 | 	 * or in which we can allocate some inodes.  Iterate through the | 
 | 	 * allocation groups upward, wrapping at the end. | 
 | 	 */ | 
 | 	agno = start_agno; | 
 | 	for (;;) { | 
 | 		pag = xfs_perag_get(mp, agno); | 
 | 		if (!pag->pagi_inodeok) { | 
 | 			xfs_ialloc_next_ag(mp); | 
 | 			goto nextag; | 
 | 		} | 
 |  | 
 | 		if (!pag->pagi_init) { | 
 | 			error = xfs_ialloc_pagi_init(mp, tp, agno); | 
 | 			if (error) | 
 | 				goto out_error; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Do a first racy fast path check if this AG is usable. | 
 | 		 */ | 
 | 		if (!pag->pagi_freecount && !okalloc) | 
 | 			goto nextag; | 
 |  | 
 | 		/* | 
 | 		 * Then read in the AGI buffer and recheck with the AGI buffer | 
 | 		 * lock held. | 
 | 		 */ | 
 | 		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | 
 | 		if (error) | 
 | 			goto out_error; | 
 |  | 
 | 		if (pag->pagi_freecount) { | 
 | 			xfs_perag_put(pag); | 
 | 			goto out_alloc; | 
 | 		} | 
 |  | 
 | 		if (!okalloc) | 
 | 			goto nextag_relse_buffer; | 
 |  | 
 |  | 
 | 		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); | 
 | 		if (error) { | 
 | 			xfs_trans_brelse(tp, agbp); | 
 |  | 
 | 			if (error != -ENOSPC) | 
 | 				goto out_error; | 
 |  | 
 | 			xfs_perag_put(pag); | 
 | 			*inop = NULLFSINO; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (ialloced) { | 
 | 			/* | 
 | 			 * We successfully allocated some inodes, return | 
 | 			 * the current context to the caller so that it | 
 | 			 * can commit the current transaction and call | 
 | 			 * us again where we left off. | 
 | 			 */ | 
 | 			ASSERT(pag->pagi_freecount > 0); | 
 | 			xfs_perag_put(pag); | 
 |  | 
 | 			*IO_agbp = agbp; | 
 | 			*inop = NULLFSINO; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | nextag_relse_buffer: | 
 | 		xfs_trans_brelse(tp, agbp); | 
 | nextag: | 
 | 		xfs_perag_put(pag); | 
 | 		if (++agno == mp->m_sb.sb_agcount) | 
 | 			agno = 0; | 
 | 		if (agno == start_agno) { | 
 | 			*inop = NULLFSINO; | 
 | 			return noroom ? -ENOSPC : 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | out_alloc: | 
 | 	*IO_agbp = NULL; | 
 | 	return xfs_dialloc_ag(tp, agbp, parent, inop); | 
 | out_error: | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Free the blocks of an inode chunk. We must consider that the inode chunk | 
 |  * might be sparse and only free the regions that are allocated as part of the | 
 |  * chunk. | 
 |  */ | 
 | STATIC void | 
 | xfs_difree_inode_chunk( | 
 | 	struct xfs_mount		*mp, | 
 | 	xfs_agnumber_t			agno, | 
 | 	struct xfs_inobt_rec_incore	*rec, | 
 | 	struct xfs_defer_ops		*dfops) | 
 | { | 
 | 	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); | 
 | 	int		startidx, endidx; | 
 | 	int		nextbit; | 
 | 	xfs_agblock_t	agbno; | 
 | 	int		contigblk; | 
 | 	struct xfs_owner_info	oinfo; | 
 | 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); | 
 | 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); | 
 |  | 
 | 	if (!xfs_inobt_issparse(rec->ir_holemask)) { | 
 | 		/* not sparse, calculate extent info directly */ | 
 | 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), | 
 | 				  mp->m_ialloc_blks, &oinfo); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* holemask is only 16-bits (fits in an unsigned long) */ | 
 | 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | 
 | 	holemask[0] = rec->ir_holemask; | 
 |  | 
 | 	/* | 
 | 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the | 
 | 	 * holemask and convert the start/end index of each range to an extent. | 
 | 	 * We start with the start and end index both pointing at the first 0 in | 
 | 	 * the mask. | 
 | 	 */ | 
 | 	startidx = endidx = find_first_zero_bit(holemask, | 
 | 						XFS_INOBT_HOLEMASK_BITS); | 
 | 	nextbit = startidx + 1; | 
 | 	while (startidx < XFS_INOBT_HOLEMASK_BITS) { | 
 | 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, | 
 | 					     nextbit); | 
 | 		/* | 
 | 		 * If the next zero bit is contiguous, update the end index of | 
 | 		 * the current range and continue. | 
 | 		 */ | 
 | 		if (nextbit != XFS_INOBT_HOLEMASK_BITS && | 
 | 		    nextbit == endidx + 1) { | 
 | 			endidx = nextbit; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * nextbit is not contiguous with the current end index. Convert | 
 | 		 * the current start/end to an extent and add it to the free | 
 | 		 * list. | 
 | 		 */ | 
 | 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | 
 | 				  mp->m_sb.sb_inopblock; | 
 | 		contigblk = ((endidx - startidx + 1) * | 
 | 			     XFS_INODES_PER_HOLEMASK_BIT) / | 
 | 			    mp->m_sb.sb_inopblock; | 
 |  | 
 | 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | 
 | 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | 
 | 		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), | 
 | 				  contigblk, &oinfo); | 
 |  | 
 | 		/* reset range to current bit and carry on... */ | 
 | 		startidx = endidx = nextbit; | 
 |  | 
 | next: | 
 | 		nextbit++; | 
 | 	} | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_difree_inobt( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xfs_trans		*tp, | 
 | 	struct xfs_buf			*agbp, | 
 | 	xfs_agino_t			agino, | 
 | 	struct xfs_defer_ops		*dfops, | 
 | 	struct xfs_icluster		*xic, | 
 | 	struct xfs_inobt_rec_incore	*orec) | 
 | { | 
 | 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno); | 
 | 	struct xfs_perag		*pag; | 
 | 	struct xfs_btree_cur		*cur; | 
 | 	struct xfs_inobt_rec_incore	rec; | 
 | 	int				ilen; | 
 | 	int				error; | 
 | 	int				i; | 
 | 	int				off; | 
 |  | 
 | 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); | 
 | 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the cursor. | 
 | 	 */ | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | 
 |  | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error0; | 
 |  | 
 | 	/* | 
 | 	 * Look for the entry describing this inode. | 
 | 	 */ | 
 | 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { | 
 | 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", | 
 | 			__func__, error); | 
 | 		goto error0; | 
 | 	} | 
 | 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 | 	error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", | 
 | 			__func__, error); | 
 | 		goto error0; | 
 | 	} | 
 | 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); | 
 | 	/* | 
 | 	 * Get the offset in the inode chunk. | 
 | 	 */ | 
 | 	off = agino - rec.ir_startino; | 
 | 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | 
 | 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); | 
 | 	/* | 
 | 	 * Mark the inode free & increment the count. | 
 | 	 */ | 
 | 	rec.ir_free |= XFS_INOBT_MASK(off); | 
 | 	rec.ir_freecount++; | 
 |  | 
 | 	/* | 
 | 	 * When an inode chunk is free, it becomes eligible for removal. Don't | 
 | 	 * remove the chunk if the block size is large enough for multiple inode | 
 | 	 * chunks (that might not be free). | 
 | 	 */ | 
 | 	if (!(mp->m_flags & XFS_MOUNT_IKEEP) && | 
 | 	    rec.ir_free == XFS_INOBT_ALL_FREE && | 
 | 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | 
 | 		xic->deleted = true; | 
 | 		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); | 
 | 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec); | 
 |  | 
 | 		/* | 
 | 		 * Remove the inode cluster from the AGI B+Tree, adjust the | 
 | 		 * AGI and Superblock inode counts, and mark the disk space | 
 | 		 * to be freed when the transaction is committed. | 
 | 		 */ | 
 | 		ilen = rec.ir_freecount; | 
 | 		be32_add_cpu(&agi->agi_count, -ilen); | 
 | 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | 
 | 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); | 
 | 		pag = xfs_perag_get(mp, agno); | 
 | 		pag->pagi_freecount -= ilen - 1; | 
 | 		xfs_perag_put(pag); | 
 | 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); | 
 | 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | 
 |  | 
 | 		if ((error = xfs_btree_delete(cur, &i))) { | 
 | 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", | 
 | 				__func__, error); | 
 | 			goto error0; | 
 | 		} | 
 |  | 
 | 		xfs_difree_inode_chunk(mp, agno, &rec, dfops); | 
 | 	} else { | 
 | 		xic->deleted = false; | 
 |  | 
 | 		error = xfs_inobt_update(cur, &rec); | 
 | 		if (error) { | 
 | 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", | 
 | 				__func__, error); | 
 | 			goto error0; | 
 | 		} | 
 |  | 
 | 		/*  | 
 | 		 * Change the inode free counts and log the ag/sb changes. | 
 | 		 */ | 
 | 		be32_add_cpu(&agi->agi_freecount, 1); | 
 | 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | 
 | 		pag = xfs_perag_get(mp, agno); | 
 | 		pag->pagi_freecount++; | 
 | 		xfs_perag_put(pag); | 
 | 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); | 
 | 	} | 
 |  | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error0; | 
 |  | 
 | 	*orec = rec; | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 	return 0; | 
 |  | 
 | error0: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Free an inode in the free inode btree. | 
 |  */ | 
 | STATIC int | 
 | xfs_difree_finobt( | 
 | 	struct xfs_mount		*mp, | 
 | 	struct xfs_trans		*tp, | 
 | 	struct xfs_buf			*agbp, | 
 | 	xfs_agino_t			agino, | 
 | 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */ | 
 | { | 
 | 	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp); | 
 | 	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno); | 
 | 	struct xfs_btree_cur		*cur; | 
 | 	struct xfs_inobt_rec_incore	rec; | 
 | 	int				offset = agino - ibtrec->ir_startino; | 
 | 	int				error; | 
 | 	int				i; | 
 |  | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | 
 |  | 
 | 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | 
 | 	if (error) | 
 | 		goto error; | 
 | 	if (i == 0) { | 
 | 		/* | 
 | 		 * If the record does not exist in the finobt, we must have just | 
 | 		 * freed an inode in a previously fully allocated chunk. If not, | 
 | 		 * something is out of sync. | 
 | 		 */ | 
 | 		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); | 
 |  | 
 | 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, | 
 | 					     ibtrec->ir_count, | 
 | 					     ibtrec->ir_freecount, | 
 | 					     ibtrec->ir_free, &i); | 
 | 		if (error) | 
 | 			goto error; | 
 | 		ASSERT(i == 1); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read and update the existing record. We could just copy the ibtrec | 
 | 	 * across here, but that would defeat the purpose of having redundant | 
 | 	 * metadata. By making the modifications independently, we can catch | 
 | 	 * corruptions that we wouldn't see if we just copied from one record | 
 | 	 * to another. | 
 | 	 */ | 
 | 	error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 	if (error) | 
 | 		goto error; | 
 | 	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); | 
 |  | 
 | 	rec.ir_free |= XFS_INOBT_MASK(offset); | 
 | 	rec.ir_freecount++; | 
 |  | 
 | 	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && | 
 | 				(rec.ir_freecount == ibtrec->ir_freecount), | 
 | 				error); | 
 |  | 
 | 	/* | 
 | 	 * The content of inobt records should always match between the inobt | 
 | 	 * and finobt. The lifecycle of records in the finobt is different from | 
 | 	 * the inobt in that the finobt only tracks records with at least one | 
 | 	 * free inode. Hence, if all of the inodes are free and we aren't | 
 | 	 * keeping inode chunks permanently on disk, remove the record. | 
 | 	 * Otherwise, update the record with the new information. | 
 | 	 * | 
 | 	 * Note that we currently can't free chunks when the block size is large | 
 | 	 * enough for multiple chunks. Leave the finobt record to remain in sync | 
 | 	 * with the inobt. | 
 | 	 */ | 
 | 	if (rec.ir_free == XFS_INOBT_ALL_FREE && | 
 | 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && | 
 | 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) { | 
 | 		error = xfs_btree_delete(cur, &i); | 
 | 		if (error) | 
 | 			goto error; | 
 | 		ASSERT(i == 1); | 
 | 	} else { | 
 | 		error = xfs_inobt_update(cur, &rec); | 
 | 		if (error) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | out: | 
 | 	error = xfs_check_agi_freecount(cur, agi); | 
 | 	if (error) | 
 | 		goto error; | 
 |  | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Free disk inode.  Carefully avoids touching the incore inode, all | 
 |  * manipulations incore are the caller's responsibility. | 
 |  * The on-disk inode is not changed by this operation, only the | 
 |  * btree (free inode mask) is changed. | 
 |  */ | 
 | int | 
 | xfs_difree( | 
 | 	struct xfs_trans	*tp,		/* transaction pointer */ | 
 | 	xfs_ino_t		inode,		/* inode to be freed */ | 
 | 	struct xfs_defer_ops	*dfops,		/* extents to free */ | 
 | 	struct xfs_icluster	*xic)	/* cluster info if deleted */ | 
 | { | 
 | 	/* REFERENCED */ | 
 | 	xfs_agblock_t		agbno;	/* block number containing inode */ | 
 | 	struct xfs_buf		*agbp;	/* buffer for allocation group header */ | 
 | 	xfs_agino_t		agino;	/* allocation group inode number */ | 
 | 	xfs_agnumber_t		agno;	/* allocation group number */ | 
 | 	int			error;	/* error return value */ | 
 | 	struct xfs_mount	*mp;	/* mount structure for filesystem */ | 
 | 	struct xfs_inobt_rec_incore rec;/* btree record */ | 
 |  | 
 | 	mp = tp->t_mountp; | 
 |  | 
 | 	/* | 
 | 	 * Break up inode number into its components. | 
 | 	 */ | 
 | 	agno = XFS_INO_TO_AGNO(mp, inode); | 
 | 	if (agno >= mp->m_sb.sb_agcount)  { | 
 | 		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", | 
 | 			__func__, agno, mp->m_sb.sb_agcount); | 
 | 		ASSERT(0); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	agino = XFS_INO_TO_AGINO(mp, inode); | 
 | 	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  { | 
 | 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", | 
 | 			__func__, (unsigned long long)inode, | 
 | 			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); | 
 | 		ASSERT(0); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	agbno = XFS_AGINO_TO_AGBNO(mp, agino); | 
 | 	if (agbno >= mp->m_sb.sb_agblocks)  { | 
 | 		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", | 
 | 			__func__, agbno, mp->m_sb.sb_agblocks); | 
 | 		ASSERT(0); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* | 
 | 	 * Get the allocation group header. | 
 | 	 */ | 
 | 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | 
 | 			__func__, error); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Fix up the inode allocation btree. | 
 | 	 */ | 
 | 	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); | 
 | 	if (error) | 
 | 		goto error0; | 
 |  | 
 | 	/* | 
 | 	 * Fix up the free inode btree. | 
 | 	 */ | 
 | 	if (xfs_sb_version_hasfinobt(&mp->m_sb)) { | 
 | 		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); | 
 | 		if (error) | 
 | 			goto error0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error0: | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_imap_lookup( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_trans	*tp, | 
 | 	xfs_agnumber_t		agno, | 
 | 	xfs_agino_t		agino, | 
 | 	xfs_agblock_t		agbno, | 
 | 	xfs_agblock_t		*chunk_agbno, | 
 | 	xfs_agblock_t		*offset_agbno, | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_inobt_rec_incore rec; | 
 | 	struct xfs_btree_cur	*cur; | 
 | 	struct xfs_buf		*agbp; | 
 | 	int			error; | 
 | 	int			i; | 
 |  | 
 | 	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | 
 | 	if (error) { | 
 | 		xfs_alert(mp, | 
 | 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d", | 
 | 			__func__, error, agno); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Lookup the inode record for the given agino. If the record cannot be | 
 | 	 * found, then it's an invalid inode number and we should abort. Once | 
 | 	 * we have a record, we need to ensure it contains the inode number | 
 | 	 * we are looking up. | 
 | 	 */ | 
 | 	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | 
 | 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); | 
 | 	if (!error) { | 
 | 		if (i) | 
 | 			error = xfs_inobt_get_rec(cur, &rec, &i); | 
 | 		if (!error && i == 0) | 
 | 			error = -EINVAL; | 
 | 	} | 
 |  | 
 | 	xfs_trans_brelse(tp, agbp); | 
 | 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* check that the returned record contains the required inode */ | 
 | 	if (rec.ir_startino > agino || | 
 | 	    rec.ir_startino + mp->m_ialloc_inos <= agino) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* for untrusted inodes check it is allocated first */ | 
 | 	if ((flags & XFS_IGET_UNTRUSTED) && | 
 | 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | 
 | 	*offset_agbno = agbno - *chunk_agbno; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the location of the inode in imap, for mapping it into a buffer. | 
 |  */ | 
 | int | 
 | xfs_imap( | 
 | 	xfs_mount_t	 *mp,	/* file system mount structure */ | 
 | 	xfs_trans_t	 *tp,	/* transaction pointer */ | 
 | 	xfs_ino_t	ino,	/* inode to locate */ | 
 | 	struct xfs_imap	*imap,	/* location map structure */ | 
 | 	uint		flags)	/* flags for inode btree lookup */ | 
 | { | 
 | 	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */ | 
 | 	xfs_agino_t	agino;	/* inode number within alloc group */ | 
 | 	xfs_agnumber_t	agno;	/* allocation group number */ | 
 | 	int		blks_per_cluster; /* num blocks per inode cluster */ | 
 | 	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */ | 
 | 	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */ | 
 | 	int		error;	/* error code */ | 
 | 	int		offset;	/* index of inode in its buffer */ | 
 | 	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */ | 
 |  | 
 | 	ASSERT(ino != NULLFSINO); | 
 |  | 
 | 	/* | 
 | 	 * Split up the inode number into its parts. | 
 | 	 */ | 
 | 	agno = XFS_INO_TO_AGNO(mp, ino); | 
 | 	agino = XFS_INO_TO_AGINO(mp, ino); | 
 | 	agbno = XFS_AGINO_TO_AGBNO(mp, agino); | 
 | 	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || | 
 | 	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | 
 | #ifdef DEBUG | 
 | 		/* | 
 | 		 * Don't output diagnostic information for untrusted inodes | 
 | 		 * as they can be invalid without implying corruption. | 
 | 		 */ | 
 | 		if (flags & XFS_IGET_UNTRUSTED) | 
 | 			return -EINVAL; | 
 | 		if (agno >= mp->m_sb.sb_agcount) { | 
 | 			xfs_alert(mp, | 
 | 				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", | 
 | 				__func__, agno, mp->m_sb.sb_agcount); | 
 | 		} | 
 | 		if (agbno >= mp->m_sb.sb_agblocks) { | 
 | 			xfs_alert(mp, | 
 | 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | 
 | 				__func__, (unsigned long long)agbno, | 
 | 				(unsigned long)mp->m_sb.sb_agblocks); | 
 | 		} | 
 | 		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | 
 | 			xfs_alert(mp, | 
 | 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", | 
 | 				__func__, ino, | 
 | 				XFS_AGINO_TO_INO(mp, agno, agino)); | 
 | 		} | 
 | 		xfs_stack_trace(); | 
 | #endif /* DEBUG */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	blks_per_cluster = xfs_icluster_size_fsb(mp); | 
 |  | 
 | 	/* | 
 | 	 * For bulkstat and handle lookups, we have an untrusted inode number | 
 | 	 * that we have to verify is valid. We cannot do this just by reading | 
 | 	 * the inode buffer as it may have been unlinked and removed leaving | 
 | 	 * inodes in stale state on disk. Hence we have to do a btree lookup | 
 | 	 * in all cases where an untrusted inode number is passed. | 
 | 	 */ | 
 | 	if (flags & XFS_IGET_UNTRUSTED) { | 
 | 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno, | 
 | 					&chunk_agbno, &offset_agbno, flags); | 
 | 		if (error) | 
 | 			return error; | 
 | 		goto out_map; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the inode cluster size is the same as the blocksize or | 
 | 	 * smaller we get to the buffer by simple arithmetics. | 
 | 	 */ | 
 | 	if (blks_per_cluster == 1) { | 
 | 		offset = XFS_INO_TO_OFFSET(mp, ino); | 
 | 		ASSERT(offset < mp->m_sb.sb_inopblock); | 
 |  | 
 | 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); | 
 | 		imap->im_len = XFS_FSB_TO_BB(mp, 1); | 
 | 		imap->im_boffset = (unsigned short)(offset << | 
 | 							mp->m_sb.sb_inodelog); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the inode chunks are aligned then use simple maths to | 
 | 	 * find the location. Otherwise we have to do a btree | 
 | 	 * lookup to find the location. | 
 | 	 */ | 
 | 	if (mp->m_inoalign_mask) { | 
 | 		offset_agbno = agbno & mp->m_inoalign_mask; | 
 | 		chunk_agbno = agbno - offset_agbno; | 
 | 	} else { | 
 | 		error = xfs_imap_lookup(mp, tp, agno, agino, agbno, | 
 | 					&chunk_agbno, &offset_agbno, flags); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | out_map: | 
 | 	ASSERT(agbno >= chunk_agbno); | 
 | 	cluster_agbno = chunk_agbno + | 
 | 		((offset_agbno / blks_per_cluster) * blks_per_cluster); | 
 | 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + | 
 | 		XFS_INO_TO_OFFSET(mp, ino); | 
 |  | 
 | 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); | 
 | 	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); | 
 | 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); | 
 |  | 
 | 	/* | 
 | 	 * If the inode number maps to a block outside the bounds | 
 | 	 * of the file system then return NULL rather than calling | 
 | 	 * read_buf and panicing when we get an error from the | 
 | 	 * driver. | 
 | 	 */ | 
 | 	if ((imap->im_blkno + imap->im_len) > | 
 | 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
 | 		xfs_alert(mp, | 
 | 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | 
 | 			__func__, (unsigned long long) imap->im_blkno, | 
 | 			(unsigned long long) imap->im_len, | 
 | 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute and fill in value of m_in_maxlevels. | 
 |  */ | 
 | void | 
 | xfs_ialloc_compute_maxlevels( | 
 | 	xfs_mount_t	*mp)		/* file system mount structure */ | 
 | { | 
 | 	uint		inodes; | 
 |  | 
 | 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | 
 | 	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr, | 
 | 							 inodes); | 
 | } | 
 |  | 
 | /* | 
 |  * Log specified fields for the ag hdr (inode section). The growth of the agi | 
 |  * structure over time requires that we interpret the buffer as two logical | 
 |  * regions delineated by the end of the unlinked list. This is due to the size | 
 |  * of the hash table and its location in the middle of the agi. | 
 |  * | 
 |  * For example, a request to log a field before agi_unlinked and a field after | 
 |  * agi_unlinked could cause us to log the entire hash table and use an excessive | 
 |  * amount of log space. To avoid this behavior, log the region up through | 
 |  * agi_unlinked in one call and the region after agi_unlinked through the end of | 
 |  * the structure in another. | 
 |  */ | 
 | void | 
 | xfs_ialloc_log_agi( | 
 | 	xfs_trans_t	*tp,		/* transaction pointer */ | 
 | 	xfs_buf_t	*bp,		/* allocation group header buffer */ | 
 | 	int		fields)		/* bitmask of fields to log */ | 
 | { | 
 | 	int			first;		/* first byte number */ | 
 | 	int			last;		/* last byte number */ | 
 | 	static const short	offsets[] = {	/* field starting offsets */ | 
 | 					/* keep in sync with bit definitions */ | 
 | 		offsetof(xfs_agi_t, agi_magicnum), | 
 | 		offsetof(xfs_agi_t, agi_versionnum), | 
 | 		offsetof(xfs_agi_t, agi_seqno), | 
 | 		offsetof(xfs_agi_t, agi_length), | 
 | 		offsetof(xfs_agi_t, agi_count), | 
 | 		offsetof(xfs_agi_t, agi_root), | 
 | 		offsetof(xfs_agi_t, agi_level), | 
 | 		offsetof(xfs_agi_t, agi_freecount), | 
 | 		offsetof(xfs_agi_t, agi_newino), | 
 | 		offsetof(xfs_agi_t, agi_dirino), | 
 | 		offsetof(xfs_agi_t, agi_unlinked), | 
 | 		offsetof(xfs_agi_t, agi_free_root), | 
 | 		offsetof(xfs_agi_t, agi_free_level), | 
 | 		sizeof(xfs_agi_t) | 
 | 	}; | 
 | #ifdef DEBUG | 
 | 	xfs_agi_t		*agi;	/* allocation group header */ | 
 |  | 
 | 	agi = XFS_BUF_TO_AGI(bp); | 
 | 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Compute byte offsets for the first and last fields in the first | 
 | 	 * region and log the agi buffer. This only logs up through | 
 | 	 * agi_unlinked. | 
 | 	 */ | 
 | 	if (fields & XFS_AGI_ALL_BITS_R1) { | 
 | 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | 
 | 				  &first, &last); | 
 | 		xfs_trans_log_buf(tp, bp, first, last); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mask off the bits in the first region and calculate the first and | 
 | 	 * last field offsets for any bits in the second region. | 
 | 	 */ | 
 | 	fields &= ~XFS_AGI_ALL_BITS_R1; | 
 | 	if (fields) { | 
 | 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | 
 | 				  &first, &last); | 
 | 		xfs_trans_log_buf(tp, bp, first, last); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef DEBUG | 
 | STATIC void | 
 | xfs_check_agi_unlinked( | 
 | 	struct xfs_agi		*agi) | 
 | { | 
 | 	int			i; | 
 |  | 
 | 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) | 
 | 		ASSERT(agi->agi_unlinked[i]); | 
 | } | 
 | #else | 
 | #define xfs_check_agi_unlinked(agi) | 
 | #endif | 
 |  | 
 | static xfs_failaddr_t | 
 | xfs_agi_verify( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_mount *mp = bp->b_target->bt_mount; | 
 | 	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp); | 
 |  | 
 | 	if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
 | 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) | 
 | 			return __this_address; | 
 | 		if (!xfs_log_check_lsn(mp, | 
 | 				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) | 
 | 			return __this_address; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Validate the magic number of the agi block. | 
 | 	 */ | 
 | 	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) | 
 | 		return __this_address; | 
 | 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) | 
 | 		return __this_address; | 
 |  | 
 | 	if (be32_to_cpu(agi->agi_level) < 1 || | 
 | 	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) | 
 | 		return __this_address; | 
 |  | 
 | 	if (xfs_sb_version_hasfinobt(&mp->m_sb) && | 
 | 	    (be32_to_cpu(agi->agi_free_level) < 1 || | 
 | 	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) | 
 | 		return __this_address; | 
 |  | 
 | 	/* | 
 | 	 * during growfs operations, the perag is not fully initialised, | 
 | 	 * so we can't use it for any useful checking. growfs ensures we can't | 
 | 	 * use it by using uncached buffers that don't have the perag attached | 
 | 	 * so we can detect and avoid this problem. | 
 | 	 */ | 
 | 	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) | 
 | 		return __this_address; | 
 |  | 
 | 	xfs_check_agi_unlinked(agi); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | xfs_agi_read_verify( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_mount *mp = bp->b_target->bt_mount; | 
 | 	xfs_failaddr_t	fa; | 
 |  | 
 | 	if (xfs_sb_version_hascrc(&mp->m_sb) && | 
 | 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) | 
 | 		xfs_verifier_error(bp, -EFSBADCRC, __this_address); | 
 | 	else { | 
 | 		fa = xfs_agi_verify(bp); | 
 | 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) | 
 | 			xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | xfs_agi_write_verify( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_mount	*mp = bp->b_target->bt_mount; | 
 | 	struct xfs_buf_log_item	*bip = bp->b_log_item; | 
 | 	xfs_failaddr_t		fa; | 
 |  | 
 | 	fa = xfs_agi_verify(bp); | 
 | 	if (fa) { | 
 | 		xfs_verifier_error(bp, -EFSCORRUPTED, fa); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!xfs_sb_version_hascrc(&mp->m_sb)) | 
 | 		return; | 
 |  | 
 | 	if (bip) | 
 | 		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); | 
 | 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); | 
 | } | 
 |  | 
 | const struct xfs_buf_ops xfs_agi_buf_ops = { | 
 | 	.name = "xfs_agi", | 
 | 	.verify_read = xfs_agi_read_verify, | 
 | 	.verify_write = xfs_agi_write_verify, | 
 | 	.verify_struct = xfs_agi_verify, | 
 | }; | 
 |  | 
 | /* | 
 |  * Read in the allocation group header (inode allocation section) | 
 |  */ | 
 | int | 
 | xfs_read_agi( | 
 | 	struct xfs_mount	*mp,	/* file system mount structure */ | 
 | 	struct xfs_trans	*tp,	/* transaction pointer */ | 
 | 	xfs_agnumber_t		agno,	/* allocation group number */ | 
 | 	struct xfs_buf		**bpp)	/* allocation group hdr buf */ | 
 | { | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_read_agi(mp, agno); | 
 |  | 
 | 	ASSERT(agno != NULLAGNUMBER); | 
 | 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, | 
 | 			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), | 
 | 			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (tp) | 
 | 		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); | 
 |  | 
 | 	xfs_buf_set_ref(*bpp, XFS_AGI_REF); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_ialloc_read_agi( | 
 | 	struct xfs_mount	*mp,	/* file system mount structure */ | 
 | 	struct xfs_trans	*tp,	/* transaction pointer */ | 
 | 	xfs_agnumber_t		agno,	/* allocation group number */ | 
 | 	struct xfs_buf		**bpp)	/* allocation group hdr buf */ | 
 | { | 
 | 	struct xfs_agi		*agi;	/* allocation group header */ | 
 | 	struct xfs_perag	*pag;	/* per allocation group data */ | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_ialloc_read_agi(mp, agno); | 
 |  | 
 | 	error = xfs_read_agi(mp, tp, agno, bpp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	agi = XFS_BUF_TO_AGI(*bpp); | 
 | 	pag = xfs_perag_get(mp, agno); | 
 | 	if (!pag->pagi_init) { | 
 | 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); | 
 | 		pag->pagi_count = be32_to_cpu(agi->agi_count); | 
 | 		pag->pagi_init = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's possible for these to be out of sync if | 
 | 	 * we are in the middle of a forced shutdown. | 
 | 	 */ | 
 | 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | 
 | 		XFS_FORCED_SHUTDOWN(mp)); | 
 | 	xfs_perag_put(pag); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read in the agi to initialise the per-ag data in the mount structure | 
 |  */ | 
 | int | 
 | xfs_ialloc_pagi_init( | 
 | 	xfs_mount_t	*mp,		/* file system mount structure */ | 
 | 	xfs_trans_t	*tp,		/* transaction pointer */ | 
 | 	xfs_agnumber_t	agno)		/* allocation group number */ | 
 | { | 
 | 	xfs_buf_t	*bp = NULL; | 
 | 	int		error; | 
 |  | 
 | 	error = xfs_ialloc_read_agi(mp, tp, agno, &bp); | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (bp) | 
 | 		xfs_trans_brelse(tp, bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Calculate the first and last possible inode number in an AG. */ | 
 | void | 
 | xfs_ialloc_agino_range( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_agnumber_t		agno, | 
 | 	xfs_agino_t		*first, | 
 | 	xfs_agino_t		*last) | 
 | { | 
 | 	xfs_agblock_t		bno; | 
 | 	xfs_agblock_t		eoag; | 
 |  | 
 | 	eoag = xfs_ag_block_count(mp, agno); | 
 |  | 
 | 	/* | 
 | 	 * Calculate the first inode, which will be in the first | 
 | 	 * cluster-aligned block after the AGFL. | 
 | 	 */ | 
 | 	bno = round_up(XFS_AGFL_BLOCK(mp) + 1, | 
 | 			xfs_ialloc_cluster_alignment(mp)); | 
 | 	*first = XFS_OFFBNO_TO_AGINO(mp, bno, 0); | 
 |  | 
 | 	/* | 
 | 	 * Calculate the last inode, which will be at the end of the | 
 | 	 * last (aligned) cluster that can be allocated in the AG. | 
 | 	 */ | 
 | 	bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp)); | 
 | 	*last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that an AG inode number pointer neither points outside the AG | 
 |  * nor points at static metadata. | 
 |  */ | 
 | bool | 
 | xfs_verify_agino( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_agnumber_t		agno, | 
 | 	xfs_agino_t		agino) | 
 | { | 
 | 	xfs_agino_t		first; | 
 | 	xfs_agino_t		last; | 
 |  | 
 | 	xfs_ialloc_agino_range(mp, agno, &first, &last); | 
 | 	return agino >= first && agino <= last; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that an FS inode number pointer neither points outside the | 
 |  * filesystem nor points at static AG metadata. | 
 |  */ | 
 | bool | 
 | xfs_verify_ino( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_ino_t		ino) | 
 | { | 
 | 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ino); | 
 | 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
 |  | 
 | 	if (agno >= mp->m_sb.sb_agcount) | 
 | 		return false; | 
 | 	if (XFS_AGINO_TO_INO(mp, agno, agino) != ino) | 
 | 		return false; | 
 | 	return xfs_verify_agino(mp, agno, agino); | 
 | } | 
 |  | 
 | /* Is this an internal inode number? */ | 
 | bool | 
 | xfs_internal_inum( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_ino_t		ino) | 
 | { | 
 | 	return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino || | 
 | 		(xfs_sb_version_hasquota(&mp->m_sb) && | 
 | 		 xfs_is_quota_inode(&mp->m_sb, ino)); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that a directory entry's inode number doesn't point at an internal | 
 |  * inode, empty space, or static AG metadata. | 
 |  */ | 
 | bool | 
 | xfs_verify_dir_ino( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_ino_t		ino) | 
 | { | 
 | 	if (xfs_internal_inum(mp, ino)) | 
 | 		return false; | 
 | 	return xfs_verify_ino(mp, ino); | 
 | } | 
 |  | 
 | /* Is there an inode record covering a given range of inode numbers? */ | 
 | int | 
 | xfs_ialloc_has_inode_record( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	xfs_agino_t		low, | 
 | 	xfs_agino_t		high, | 
 | 	bool			*exists) | 
 | { | 
 | 	struct xfs_inobt_rec_incore	irec; | 
 | 	xfs_agino_t		agino; | 
 | 	uint16_t		holemask; | 
 | 	int			has_record; | 
 | 	int			i; | 
 | 	int			error; | 
 |  | 
 | 	*exists = false; | 
 | 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); | 
 | 	while (error == 0 && has_record) { | 
 | 		error = xfs_inobt_get_rec(cur, &irec, &has_record); | 
 | 		if (error || irec.ir_startino > high) | 
 | 			break; | 
 |  | 
 | 		agino = irec.ir_startino; | 
 | 		holemask = irec.ir_holemask; | 
 | 		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, | 
 | 				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { | 
 | 			if (holemask & 1) | 
 | 				continue; | 
 | 			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && | 
 | 					agino <= high) { | 
 | 				*exists = true; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		error = xfs_btree_increment(cur, 0, &has_record); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Is there an inode record covering a given extent? */ | 
 | int | 
 | xfs_ialloc_has_inodes_at_extent( | 
 | 	struct xfs_btree_cur	*cur, | 
 | 	xfs_agblock_t		bno, | 
 | 	xfs_extlen_t		len, | 
 | 	bool			*exists) | 
 | { | 
 | 	xfs_agino_t		low; | 
 | 	xfs_agino_t		high; | 
 |  | 
 | 	low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0); | 
 | 	high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1; | 
 |  | 
 | 	return xfs_ialloc_has_inode_record(cur, low, high, exists); | 
 | } | 
 |  | 
 | struct xfs_ialloc_count_inodes { | 
 | 	xfs_agino_t			count; | 
 | 	xfs_agino_t			freecount; | 
 | }; | 
 |  | 
 | /* Record inode counts across all inobt records. */ | 
 | STATIC int | 
 | xfs_ialloc_count_inodes_rec( | 
 | 	struct xfs_btree_cur		*cur, | 
 | 	union xfs_btree_rec		*rec, | 
 | 	void				*priv) | 
 | { | 
 | 	struct xfs_inobt_rec_incore	irec; | 
 | 	struct xfs_ialloc_count_inodes	*ci = priv; | 
 |  | 
 | 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); | 
 | 	ci->count += irec.ir_count; | 
 | 	ci->freecount += irec.ir_freecount; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Count allocated and free inodes under an inobt. */ | 
 | int | 
 | xfs_ialloc_count_inodes( | 
 | 	struct xfs_btree_cur		*cur, | 
 | 	xfs_agino_t			*count, | 
 | 	xfs_agino_t			*freecount) | 
 | { | 
 | 	struct xfs_ialloc_count_inodes	ci = {0}; | 
 | 	int				error; | 
 |  | 
 | 	ASSERT(cur->bc_btnum == XFS_BTNUM_INO); | 
 | 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	*count = ci.count; | 
 | 	*freecount = ci.freecount; | 
 | 	return 0; | 
 | } |