| /* bnx2x_main.c: Broadcom Everest network driver. | 
 |  * | 
 |  * Copyright (c) 2007-2012 Broadcom Corporation | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * Maintained by: Eilon Greenstein <eilong@broadcom.com> | 
 |  * Written by: Eliezer Tamir | 
 |  * Based on code from Michael Chan's bnx2 driver | 
 |  * UDP CSUM errata workaround by Arik Gendelman | 
 |  * Slowpath and fastpath rework by Vladislav Zolotarov | 
 |  * Statistics and Link management by Yitchak Gertner | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/device.h>  /* for dev_info() */ | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/delay.h> | 
 | #include <asm/byteorder.h> | 
 | #include <linux/time.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <net/ip.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/tcp.h> | 
 | #include <net/checksum.h> | 
 | #include <net/ip6_checksum.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/crc32c.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/zlib.h> | 
 | #include <linux/io.h> | 
 | #include <linux/semaphore.h> | 
 | #include <linux/stringify.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include "bnx2x.h" | 
 | #include "bnx2x_init.h" | 
 | #include "bnx2x_init_ops.h" | 
 | #include "bnx2x_cmn.h" | 
 | #include "bnx2x_dcb.h" | 
 | #include "bnx2x_sp.h" | 
 |  | 
 | #include <linux/firmware.h> | 
 | #include "bnx2x_fw_file_hdr.h" | 
 | /* FW files */ | 
 | #define FW_FILE_VERSION					\ | 
 | 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\ | 
 | 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\ | 
 | 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\ | 
 | 	__stringify(BCM_5710_FW_ENGINEERING_VERSION) | 
 | #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" | 
 | #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" | 
 | #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" | 
 |  | 
 | /* Time in jiffies before concluding the transmitter is hung */ | 
 | #define TX_TIMEOUT		(5*HZ) | 
 |  | 
 | static char version[] __devinitdata = | 
 | 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " | 
 | 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
 |  | 
 | MODULE_AUTHOR("Eliezer Tamir"); | 
 | MODULE_DESCRIPTION("Broadcom NetXtreme II " | 
 | 		   "BCM57710/57711/57711E/" | 
 | 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/" | 
 | 		   "57840/57840_MF Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_MODULE_VERSION); | 
 | MODULE_FIRMWARE(FW_FILE_NAME_E1); | 
 | MODULE_FIRMWARE(FW_FILE_NAME_E1H); | 
 | MODULE_FIRMWARE(FW_FILE_NAME_E2); | 
 |  | 
 |  | 
 | int num_queues; | 
 | module_param(num_queues, int, 0); | 
 | MODULE_PARM_DESC(num_queues, | 
 | 		 " Set number of queues (default is as a number of CPUs)"); | 
 |  | 
 | static int disable_tpa; | 
 | module_param(disable_tpa, int, 0); | 
 | MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); | 
 |  | 
 | #define INT_MODE_INTx			1 | 
 | #define INT_MODE_MSI			2 | 
 | static int int_mode; | 
 | module_param(int_mode, int, 0); | 
 | MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " | 
 | 				"(1 INT#x; 2 MSI)"); | 
 |  | 
 | static int dropless_fc; | 
 | module_param(dropless_fc, int, 0); | 
 | MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); | 
 |  | 
 | static int mrrs = -1; | 
 | module_param(mrrs, int, 0); | 
 | MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); | 
 |  | 
 | static int debug; | 
 | module_param(debug, int, 0); | 
 | MODULE_PARM_DESC(debug, " Default debug msglevel"); | 
 |  | 
 |  | 
 |  | 
 | struct workqueue_struct *bnx2x_wq; | 
 |  | 
 | enum bnx2x_board_type { | 
 | 	BCM57710 = 0, | 
 | 	BCM57711, | 
 | 	BCM57711E, | 
 | 	BCM57712, | 
 | 	BCM57712_MF, | 
 | 	BCM57800, | 
 | 	BCM57800_MF, | 
 | 	BCM57810, | 
 | 	BCM57810_MF, | 
 | 	BCM57840, | 
 | 	BCM57840_MF, | 
 | 	BCM57811, | 
 | 	BCM57811_MF | 
 | }; | 
 |  | 
 | /* indexed by board_type, above */ | 
 | static struct { | 
 | 	char *name; | 
 | } board_info[] __devinitdata = { | 
 | 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, | 
 | 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, | 
 | 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, | 
 | 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, | 
 | 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, | 
 | 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, | 
 | 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, | 
 | 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, | 
 | 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, | 
 | 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, | 
 | 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"}, | 
 | 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"}, | 
 | 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"}, | 
 | }; | 
 |  | 
 | #ifndef PCI_DEVICE_ID_NX2_57710 | 
 | #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57711 | 
 | #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57711E | 
 | #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57712 | 
 | #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57712_MF | 
 | #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57800 | 
 | #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57800_MF | 
 | #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57810 | 
 | #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57810_MF | 
 | #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57840 | 
 | #define PCI_DEVICE_ID_NX2_57840		CHIP_NUM_57840 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57840_MF | 
 | #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57811 | 
 | #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811 | 
 | #endif | 
 | #ifndef PCI_DEVICE_ID_NX2_57811_MF | 
 | #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF | 
 | #endif | 
 | static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, | 
 | 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, | 
 | 	{ 0 } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); | 
 |  | 
 | /* Global resources for unloading a previously loaded device */ | 
 | #define BNX2X_PREV_WAIT_NEEDED 1 | 
 | static DEFINE_SEMAPHORE(bnx2x_prev_sem); | 
 | static LIST_HEAD(bnx2x_prev_list); | 
 | /**************************************************************************** | 
 | * General service functions | 
 | ****************************************************************************/ | 
 |  | 
 | static inline void __storm_memset_dma_mapping(struct bnx2x *bp, | 
 | 				       u32 addr, dma_addr_t mapping) | 
 | { | 
 | 	REG_WR(bp,  addr, U64_LO(mapping)); | 
 | 	REG_WR(bp,  addr + 4, U64_HI(mapping)); | 
 | } | 
 |  | 
 | static inline void storm_memset_spq_addr(struct bnx2x *bp, | 
 | 					 dma_addr_t mapping, u16 abs_fid) | 
 | { | 
 | 	u32 addr = XSEM_REG_FAST_MEMORY + | 
 | 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); | 
 |  | 
 | 	__storm_memset_dma_mapping(bp, addr, mapping); | 
 | } | 
 |  | 
 | static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, | 
 | 					 u16 pf_id) | 
 | { | 
 | 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), | 
 | 		pf_id); | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), | 
 | 		pf_id); | 
 | 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), | 
 | 		pf_id); | 
 | 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), | 
 | 		pf_id); | 
 | } | 
 |  | 
 | static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, | 
 | 					u8 enable) | 
 | { | 
 | 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), | 
 | 		enable); | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), | 
 | 		enable); | 
 | 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), | 
 | 		enable); | 
 | 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), | 
 | 		enable); | 
 | } | 
 |  | 
 | static inline void storm_memset_eq_data(struct bnx2x *bp, | 
 | 				struct event_ring_data *eq_data, | 
 | 				u16 pfid) | 
 | { | 
 | 	size_t size = sizeof(struct event_ring_data); | 
 |  | 
 | 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); | 
 |  | 
 | 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data); | 
 | } | 
 |  | 
 | static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, | 
 | 					u16 pfid) | 
 | { | 
 | 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); | 
 | 	REG_WR16(bp, addr, eq_prod); | 
 | } | 
 |  | 
 | /* used only at init | 
 |  * locking is done by mcp | 
 |  */ | 
 | static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) | 
 | { | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
 | 			       PCICFG_VENDOR_ID_OFFSET); | 
 | } | 
 |  | 
 | static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); | 
 | 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
 | 			       PCICFG_VENDOR_ID_OFFSET); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]" | 
 | #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]" | 
 | #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]" | 
 | #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]" | 
 | #define DMAE_DP_DST_NONE	"dst_addr [none]" | 
 |  | 
 |  | 
 | /* copy command into DMAE command memory and set DMAE command go */ | 
 | void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) | 
 | { | 
 | 	u32 cmd_offset; | 
 | 	int i; | 
 |  | 
 | 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); | 
 | 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { | 
 | 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); | 
 | 	} | 
 | 	REG_WR(bp, dmae_reg_go_c[idx], 1); | 
 | } | 
 |  | 
 | u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) | 
 | { | 
 | 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | | 
 | 			   DMAE_CMD_C_ENABLE); | 
 | } | 
 |  | 
 | u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) | 
 | { | 
 | 	return opcode & ~DMAE_CMD_SRC_RESET; | 
 | } | 
 |  | 
 | u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, | 
 | 			     bool with_comp, u8 comp_type) | 
 | { | 
 | 	u32 opcode = 0; | 
 |  | 
 | 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | | 
 | 		   (dst_type << DMAE_COMMAND_DST_SHIFT)); | 
 |  | 
 | 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); | 
 |  | 
 | 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); | 
 | 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | | 
 | 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); | 
 | 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); | 
 |  | 
 | #ifdef __BIG_ENDIAN | 
 | 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; | 
 | #else | 
 | 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; | 
 | #endif | 
 | 	if (with_comp) | 
 | 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); | 
 | 	return opcode; | 
 | } | 
 |  | 
 | static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, | 
 | 				      struct dmae_command *dmae, | 
 | 				      u8 src_type, u8 dst_type) | 
 | { | 
 | 	memset(dmae, 0, sizeof(struct dmae_command)); | 
 |  | 
 | 	/* set the opcode */ | 
 | 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, | 
 | 					 true, DMAE_COMP_PCI); | 
 |  | 
 | 	/* fill in the completion parameters */ | 
 | 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); | 
 | 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); | 
 | 	dmae->comp_val = DMAE_COMP_VAL; | 
 | } | 
 |  | 
 | /* issue a dmae command over the init-channel and wailt for completion */ | 
 | static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, | 
 | 				      struct dmae_command *dmae) | 
 | { | 
 | 	u32 *wb_comp = bnx2x_sp(bp, wb_comp); | 
 | 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; | 
 | 	int rc = 0; | 
 |  | 
 | 	/* | 
 | 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock | 
 | 	 * as long as this code is called both from syscall context and | 
 | 	 * from ndo_set_rx_mode() flow that may be called from BH. | 
 | 	 */ | 
 | 	spin_lock_bh(&bp->dmae_lock); | 
 |  | 
 | 	/* reset completion */ | 
 | 	*wb_comp = 0; | 
 |  | 
 | 	/* post the command on the channel used for initializations */ | 
 | 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); | 
 |  | 
 | 	/* wait for completion */ | 
 | 	udelay(5); | 
 | 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { | 
 |  | 
 | 		if (!cnt || | 
 | 		    (bp->recovery_state != BNX2X_RECOVERY_DONE && | 
 | 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { | 
 | 			BNX2X_ERR("DMAE timeout!\n"); | 
 | 			rc = DMAE_TIMEOUT; | 
 | 			goto unlock; | 
 | 		} | 
 | 		cnt--; | 
 | 		udelay(50); | 
 | 	} | 
 | 	if (*wb_comp & DMAE_PCI_ERR_FLAG) { | 
 | 		BNX2X_ERR("DMAE PCI error!\n"); | 
 | 		rc = DMAE_PCI_ERROR; | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	spin_unlock_bh(&bp->dmae_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, | 
 | 		      u32 len32) | 
 | { | 
 | 	struct dmae_command dmae; | 
 |  | 
 | 	if (!bp->dmae_ready) { | 
 | 		u32 *data = bnx2x_sp(bp, wb_data[0]); | 
 |  | 
 | 		if (CHIP_IS_E1(bp)) | 
 | 			bnx2x_init_ind_wr(bp, dst_addr, data, len32); | 
 | 		else | 
 | 			bnx2x_init_str_wr(bp, dst_addr, data, len32); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* set opcode and fixed command fields */ | 
 | 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); | 
 |  | 
 | 	/* fill in addresses and len */ | 
 | 	dmae.src_addr_lo = U64_LO(dma_addr); | 
 | 	dmae.src_addr_hi = U64_HI(dma_addr); | 
 | 	dmae.dst_addr_lo = dst_addr >> 2; | 
 | 	dmae.dst_addr_hi = 0; | 
 | 	dmae.len = len32; | 
 |  | 
 | 	/* issue the command and wait for completion */ | 
 | 	bnx2x_issue_dmae_with_comp(bp, &dmae); | 
 | } | 
 |  | 
 | void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) | 
 | { | 
 | 	struct dmae_command dmae; | 
 |  | 
 | 	if (!bp->dmae_ready) { | 
 | 		u32 *data = bnx2x_sp(bp, wb_data[0]); | 
 | 		int i; | 
 |  | 
 | 		if (CHIP_IS_E1(bp)) | 
 | 			for (i = 0; i < len32; i++) | 
 | 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); | 
 | 		else | 
 | 			for (i = 0; i < len32; i++) | 
 | 				data[i] = REG_RD(bp, src_addr + i*4); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* set opcode and fixed command fields */ | 
 | 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); | 
 |  | 
 | 	/* fill in addresses and len */ | 
 | 	dmae.src_addr_lo = src_addr >> 2; | 
 | 	dmae.src_addr_hi = 0; | 
 | 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); | 
 | 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); | 
 | 	dmae.len = len32; | 
 |  | 
 | 	/* issue the command and wait for completion */ | 
 | 	bnx2x_issue_dmae_with_comp(bp, &dmae); | 
 | } | 
 |  | 
 | static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, | 
 | 				      u32 addr, u32 len) | 
 | { | 
 | 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); | 
 | 	int offset = 0; | 
 |  | 
 | 	while (len > dmae_wr_max) { | 
 | 		bnx2x_write_dmae(bp, phys_addr + offset, | 
 | 				 addr + offset, dmae_wr_max); | 
 | 		offset += dmae_wr_max * 4; | 
 | 		len -= dmae_wr_max; | 
 | 	} | 
 |  | 
 | 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); | 
 | } | 
 |  | 
 | static int bnx2x_mc_assert(struct bnx2x *bp) | 
 | { | 
 | 	char last_idx; | 
 | 	int i, rc = 0; | 
 | 	u32 row0, row1, row2, row3; | 
 |  | 
 | 	/* XSTORM */ | 
 | 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + | 
 | 			   XSTORM_ASSERT_LIST_INDEX_OFFSET); | 
 | 	if (last_idx) | 
 | 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); | 
 |  | 
 | 	/* print the asserts */ | 
 | 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { | 
 |  | 
 | 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + | 
 | 			      XSTORM_ASSERT_LIST_OFFSET(i)); | 
 | 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + | 
 | 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4); | 
 | 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + | 
 | 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8); | 
 | 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + | 
 | 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12); | 
 |  | 
 | 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { | 
 | 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
 | 				  i, row3, row2, row1, row0); | 
 | 			rc++; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* TSTORM */ | 
 | 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + | 
 | 			   TSTORM_ASSERT_LIST_INDEX_OFFSET); | 
 | 	if (last_idx) | 
 | 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); | 
 |  | 
 | 	/* print the asserts */ | 
 | 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { | 
 |  | 
 | 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + | 
 | 			      TSTORM_ASSERT_LIST_OFFSET(i)); | 
 | 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + | 
 | 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4); | 
 | 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + | 
 | 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8); | 
 | 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + | 
 | 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12); | 
 |  | 
 | 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { | 
 | 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
 | 				  i, row3, row2, row1, row0); | 
 | 			rc++; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* CSTORM */ | 
 | 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + | 
 | 			   CSTORM_ASSERT_LIST_INDEX_OFFSET); | 
 | 	if (last_idx) | 
 | 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); | 
 |  | 
 | 	/* print the asserts */ | 
 | 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { | 
 |  | 
 | 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 			      CSTORM_ASSERT_LIST_OFFSET(i)); | 
 | 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4); | 
 | 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8); | 
 | 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12); | 
 |  | 
 | 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { | 
 | 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
 | 				  i, row3, row2, row1, row0); | 
 | 			rc++; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* USTORM */ | 
 | 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + | 
 | 			   USTORM_ASSERT_LIST_INDEX_OFFSET); | 
 | 	if (last_idx) | 
 | 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); | 
 |  | 
 | 	/* print the asserts */ | 
 | 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { | 
 |  | 
 | 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM + | 
 | 			      USTORM_ASSERT_LIST_OFFSET(i)); | 
 | 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM + | 
 | 			      USTORM_ASSERT_LIST_OFFSET(i) + 4); | 
 | 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM + | 
 | 			      USTORM_ASSERT_LIST_OFFSET(i) + 8); | 
 | 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM + | 
 | 			      USTORM_ASSERT_LIST_OFFSET(i) + 12); | 
 |  | 
 | 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { | 
 | 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
 | 				  i, row3, row2, row1, row0); | 
 | 			rc++; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) | 
 | { | 
 | 	u32 addr, val; | 
 | 	u32 mark, offset; | 
 | 	__be32 data[9]; | 
 | 	int word; | 
 | 	u32 trace_shmem_base; | 
 | 	if (BP_NOMCP(bp)) { | 
 | 		BNX2X_ERR("NO MCP - can not dump\n"); | 
 | 		return; | 
 | 	} | 
 | 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", | 
 | 		(bp->common.bc_ver & 0xff0000) >> 16, | 
 | 		(bp->common.bc_ver & 0xff00) >> 8, | 
 | 		(bp->common.bc_ver & 0xff)); | 
 |  | 
 | 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); | 
 | 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) | 
 | 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); | 
 |  | 
 | 	if (BP_PATH(bp) == 0) | 
 | 		trace_shmem_base = bp->common.shmem_base; | 
 | 	else | 
 | 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); | 
 | 	addr = trace_shmem_base - 0x800; | 
 |  | 
 | 	/* validate TRCB signature */ | 
 | 	mark = REG_RD(bp, addr); | 
 | 	if (mark != MFW_TRACE_SIGNATURE) { | 
 | 		BNX2X_ERR("Trace buffer signature is missing."); | 
 | 		return ; | 
 | 	} | 
 |  | 
 | 	/* read cyclic buffer pointer */ | 
 | 	addr += 4; | 
 | 	mark = REG_RD(bp, addr); | 
 | 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) | 
 | 			+ ((mark + 0x3) & ~0x3) - 0x08000000; | 
 | 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); | 
 |  | 
 | 	printk("%s", lvl); | 
 | 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) { | 
 | 		for (word = 0; word < 8; word++) | 
 | 			data[word] = htonl(REG_RD(bp, offset + 4*word)); | 
 | 		data[8] = 0x0; | 
 | 		pr_cont("%s", (char *)data); | 
 | 	} | 
 | 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) { | 
 | 		for (word = 0; word < 8; word++) | 
 | 			data[word] = htonl(REG_RD(bp, offset + 4*word)); | 
 | 		data[8] = 0x0; | 
 | 		pr_cont("%s", (char *)data); | 
 | 	} | 
 | 	printk("%s" "end of fw dump\n", lvl); | 
 | } | 
 |  | 
 | static inline void bnx2x_fw_dump(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_fw_dump_lvl(bp, KERN_ERR); | 
 | } | 
 |  | 
 | void bnx2x_panic_dump(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 | 	u16 j; | 
 | 	struct hc_sp_status_block_data sp_sb_data; | 
 | 	int func = BP_FUNC(bp); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	u16 start = 0, end = 0; | 
 | 	u8 cos; | 
 | #endif | 
 |  | 
 | 	bp->stats_state = STATS_STATE_DISABLED; | 
 | 	bp->eth_stats.unrecoverable_error++; | 
 | 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); | 
 |  | 
 | 	BNX2X_ERR("begin crash dump -----------------\n"); | 
 |  | 
 | 	/* Indices */ | 
 | 	/* Common */ | 
 | 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", | 
 | 		  bp->def_idx, bp->def_att_idx, bp->attn_state, | 
 | 		  bp->spq_prod_idx, bp->stats_counter); | 
 | 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n", | 
 | 		  bp->def_status_blk->atten_status_block.attn_bits, | 
 | 		  bp->def_status_blk->atten_status_block.attn_bits_ack, | 
 | 		  bp->def_status_blk->atten_status_block.status_block_id, | 
 | 		  bp->def_status_blk->atten_status_block.attn_bits_index); | 
 | 	BNX2X_ERR("     def ("); | 
 | 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) | 
 | 		pr_cont("0x%x%s", | 
 | 			bp->def_status_blk->sp_sb.index_values[i], | 
 | 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " "); | 
 |  | 
 | 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) | 
 | 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + | 
 | 			i*sizeof(u32)); | 
 |  | 
 | 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n", | 
 | 	       sp_sb_data.igu_sb_id, | 
 | 	       sp_sb_data.igu_seg_id, | 
 | 	       sp_sb_data.p_func.pf_id, | 
 | 	       sp_sb_data.p_func.vnic_id, | 
 | 	       sp_sb_data.p_func.vf_id, | 
 | 	       sp_sb_data.p_func.vf_valid, | 
 | 	       sp_sb_data.state); | 
 |  | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 		int loop; | 
 | 		struct hc_status_block_data_e2 sb_data_e2; | 
 | 		struct hc_status_block_data_e1x sb_data_e1x; | 
 | 		struct hc_status_block_sm  *hc_sm_p = | 
 | 			CHIP_IS_E1x(bp) ? | 
 | 			sb_data_e1x.common.state_machine : | 
 | 			sb_data_e2.common.state_machine; | 
 | 		struct hc_index_data *hc_index_p = | 
 | 			CHIP_IS_E1x(bp) ? | 
 | 			sb_data_e1x.index_data : | 
 | 			sb_data_e2.index_data; | 
 | 		u8 data_size, cos; | 
 | 		u32 *sb_data_p; | 
 | 		struct bnx2x_fp_txdata txdata; | 
 |  | 
 | 		/* Rx */ | 
 | 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n", | 
 | 			  i, fp->rx_bd_prod, fp->rx_bd_cons, | 
 | 			  fp->rx_comp_prod, | 
 | 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); | 
 | 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n", | 
 | 			  fp->rx_sge_prod, fp->last_max_sge, | 
 | 			  le16_to_cpu(fp->fp_hc_idx)); | 
 |  | 
 | 		/* Tx */ | 
 | 		for_each_cos_in_tx_queue(fp, cos) | 
 | 		{ | 
 | 			txdata = fp->txdata[cos]; | 
 | 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n", | 
 | 				  i, txdata.tx_pkt_prod, | 
 | 				  txdata.tx_pkt_cons, txdata.tx_bd_prod, | 
 | 				  txdata.tx_bd_cons, | 
 | 				  le16_to_cpu(*txdata.tx_cons_sb)); | 
 | 		} | 
 |  | 
 | 		loop = CHIP_IS_E1x(bp) ? | 
 | 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; | 
 |  | 
 | 		/* host sb data */ | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 		if (IS_FCOE_FP(fp)) | 
 | 			continue; | 
 | #endif | 
 | 		BNX2X_ERR("     run indexes ("); | 
 | 		for (j = 0; j < HC_SB_MAX_SM; j++) | 
 | 			pr_cont("0x%x%s", | 
 | 			       fp->sb_running_index[j], | 
 | 			       (j == HC_SB_MAX_SM - 1) ? ")" : " "); | 
 |  | 
 | 		BNX2X_ERR("     indexes ("); | 
 | 		for (j = 0; j < loop; j++) | 
 | 			pr_cont("0x%x%s", | 
 | 			       fp->sb_index_values[j], | 
 | 			       (j == loop - 1) ? ")" : " "); | 
 | 		/* fw sb data */ | 
 | 		data_size = CHIP_IS_E1x(bp) ? | 
 | 			sizeof(struct hc_status_block_data_e1x) : | 
 | 			sizeof(struct hc_status_block_data_e2); | 
 | 		data_size /= sizeof(u32); | 
 | 		sb_data_p = CHIP_IS_E1x(bp) ? | 
 | 			(u32 *)&sb_data_e1x : | 
 | 			(u32 *)&sb_data_e2; | 
 | 		/* copy sb data in here */ | 
 | 		for (j = 0; j < data_size; j++) | 
 | 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
 | 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + | 
 | 				j * sizeof(u32)); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n", | 
 | 				sb_data_e2.common.p_func.pf_id, | 
 | 				sb_data_e2.common.p_func.vf_id, | 
 | 				sb_data_e2.common.p_func.vf_valid, | 
 | 				sb_data_e2.common.p_func.vnic_id, | 
 | 				sb_data_e2.common.same_igu_sb_1b, | 
 | 				sb_data_e2.common.state); | 
 | 		} else { | 
 | 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n", | 
 | 				sb_data_e1x.common.p_func.pf_id, | 
 | 				sb_data_e1x.common.p_func.vf_id, | 
 | 				sb_data_e1x.common.p_func.vf_valid, | 
 | 				sb_data_e1x.common.p_func.vnic_id, | 
 | 				sb_data_e1x.common.same_igu_sb_1b, | 
 | 				sb_data_e1x.common.state); | 
 | 		} | 
 |  | 
 | 		/* SB_SMs data */ | 
 | 		for (j = 0; j < HC_SB_MAX_SM; j++) { | 
 | 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", | 
 | 				j, hc_sm_p[j].__flags, | 
 | 				hc_sm_p[j].igu_sb_id, | 
 | 				hc_sm_p[j].igu_seg_id, | 
 | 				hc_sm_p[j].time_to_expire, | 
 | 				hc_sm_p[j].timer_value); | 
 | 		} | 
 |  | 
 | 		/* Indecies data */ | 
 | 		for (j = 0; j < loop; j++) { | 
 | 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, | 
 | 			       hc_index_p[j].flags, | 
 | 			       hc_index_p[j].timeout); | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	/* Rings */ | 
 | 	/* Rx */ | 
 | 	for_each_rx_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 |  | 
 | 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); | 
 | 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); | 
 | 		for (j = start; j != end; j = RX_BD(j + 1)) { | 
 | 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; | 
 | 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; | 
 |  | 
 | 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n", | 
 | 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data); | 
 | 		} | 
 |  | 
 | 		start = RX_SGE(fp->rx_sge_prod); | 
 | 		end = RX_SGE(fp->last_max_sge); | 
 | 		for (j = start; j != end; j = RX_SGE(j + 1)) { | 
 | 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; | 
 | 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; | 
 |  | 
 | 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n", | 
 | 				  i, j, rx_sge[1], rx_sge[0], sw_page->page); | 
 | 		} | 
 |  | 
 | 		start = RCQ_BD(fp->rx_comp_cons - 10); | 
 | 		end = RCQ_BD(fp->rx_comp_cons + 503); | 
 | 		for (j = start; j != end; j = RCQ_BD(j + 1)) { | 
 | 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; | 
 |  | 
 | 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", | 
 | 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Tx */ | 
 | 	for_each_tx_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 		for_each_cos_in_tx_queue(fp, cos) { | 
 | 			struct bnx2x_fp_txdata *txdata = &fp->txdata[cos]; | 
 |  | 
 | 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); | 
 | 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); | 
 | 			for (j = start; j != end; j = TX_BD(j + 1)) { | 
 | 				struct sw_tx_bd *sw_bd = | 
 | 					&txdata->tx_buf_ring[j]; | 
 |  | 
 | 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", | 
 | 					  i, cos, j, sw_bd->skb, | 
 | 					  sw_bd->first_bd); | 
 | 			} | 
 |  | 
 | 			start = TX_BD(txdata->tx_bd_cons - 10); | 
 | 			end = TX_BD(txdata->tx_bd_cons + 254); | 
 | 			for (j = start; j != end; j = TX_BD(j + 1)) { | 
 | 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; | 
 |  | 
 | 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", | 
 | 					  i, cos, j, tx_bd[0], tx_bd[1], | 
 | 					  tx_bd[2], tx_bd[3]); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	bnx2x_fw_dump(bp); | 
 | 	bnx2x_mc_assert(bp); | 
 | 	BNX2X_ERR("end crash dump -----------------\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * FLR Support for E2 | 
 |  * | 
 |  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW | 
 |  * initialization. | 
 |  */ | 
 | #define FLR_WAIT_USEC		10000	/* 10 miliseconds */ | 
 | #define FLR_WAIT_INTERVAL	50	/* usec */ | 
 | #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ | 
 |  | 
 | struct pbf_pN_buf_regs { | 
 | 	int pN; | 
 | 	u32 init_crd; | 
 | 	u32 crd; | 
 | 	u32 crd_freed; | 
 | }; | 
 |  | 
 | struct pbf_pN_cmd_regs { | 
 | 	int pN; | 
 | 	u32 lines_occup; | 
 | 	u32 lines_freed; | 
 | }; | 
 |  | 
 | static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, | 
 | 				     struct pbf_pN_buf_regs *regs, | 
 | 				     u32 poll_count) | 
 | { | 
 | 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; | 
 | 	u32 cur_cnt = poll_count; | 
 |  | 
 | 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); | 
 | 	crd = crd_start = REG_RD(bp, regs->crd); | 
 | 	init_crd = REG_RD(bp, regs->init_crd); | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); | 
 | 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd); | 
 | 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); | 
 |  | 
 | 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < | 
 | 	       (init_crd - crd_start))) { | 
 | 		if (cur_cnt--) { | 
 | 			udelay(FLR_WAIT_INTERVAL); | 
 | 			crd = REG_RD(bp, regs->crd); | 
 | 			crd_freed = REG_RD(bp, regs->crd_freed); | 
 | 		} else { | 
 | 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", | 
 | 			   regs->pN); | 
 | 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n", | 
 | 			   regs->pN, crd); | 
 | 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", | 
 | 			   regs->pN, crd_freed); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", | 
 | 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); | 
 | } | 
 |  | 
 | static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, | 
 | 				     struct pbf_pN_cmd_regs *regs, | 
 | 				     u32 poll_count) | 
 | { | 
 | 	u32 occup, to_free, freed, freed_start; | 
 | 	u32 cur_cnt = poll_count; | 
 |  | 
 | 	occup = to_free = REG_RD(bp, regs->lines_occup); | 
 | 	freed = freed_start = REG_RD(bp, regs->lines_freed); | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup); | 
 | 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); | 
 |  | 
 | 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { | 
 | 		if (cur_cnt--) { | 
 | 			udelay(FLR_WAIT_INTERVAL); | 
 | 			occup = REG_RD(bp, regs->lines_occup); | 
 | 			freed = REG_RD(bp, regs->lines_freed); | 
 | 		} else { | 
 | 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", | 
 | 			   regs->pN); | 
 | 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", | 
 | 			   regs->pN, occup); | 
 | 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", | 
 | 			   regs->pN, freed); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", | 
 | 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); | 
 | } | 
 |  | 
 | static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, | 
 | 				     u32 expected, u32 poll_count) | 
 | { | 
 | 	u32 cur_cnt = poll_count; | 
 | 	u32 val; | 
 |  | 
 | 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) | 
 | 		udelay(FLR_WAIT_INTERVAL); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, | 
 | 						  char *msg, u32 poll_cnt) | 
 | { | 
 | 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); | 
 | 	if (val != 0) { | 
 | 		BNX2X_ERR("%s usage count=%d\n", msg, val); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) | 
 | { | 
 | 	/* adjust polling timeout */ | 
 | 	if (CHIP_REV_IS_EMUL(bp)) | 
 | 		return FLR_POLL_CNT * 2000; | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp)) | 
 | 		return FLR_POLL_CNT * 120; | 
 |  | 
 | 	return FLR_POLL_CNT; | 
 | } | 
 |  | 
 | static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) | 
 | { | 
 | 	struct pbf_pN_cmd_regs cmd_regs[] = { | 
 | 		{0, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_OCCUPANCY_Q0 : | 
 | 			PBF_REG_P0_TQ_OCCUPANCY, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_LINES_FREED_CNT_Q0 : | 
 | 			PBF_REG_P0_TQ_LINES_FREED_CNT}, | 
 | 		{1, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_OCCUPANCY_Q1 : | 
 | 			PBF_REG_P1_TQ_OCCUPANCY, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_LINES_FREED_CNT_Q1 : | 
 | 			PBF_REG_P1_TQ_LINES_FREED_CNT}, | 
 | 		{4, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_OCCUPANCY_LB_Q : | 
 | 			PBF_REG_P4_TQ_OCCUPANCY, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q : | 
 | 			PBF_REG_P4_TQ_LINES_FREED_CNT} | 
 | 	}; | 
 |  | 
 | 	struct pbf_pN_buf_regs buf_regs[] = { | 
 | 		{0, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INIT_CRD_Q0 : | 
 | 			PBF_REG_P0_INIT_CRD , | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_CREDIT_Q0 : | 
 | 			PBF_REG_P0_CREDIT, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : | 
 | 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, | 
 | 		{1, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INIT_CRD_Q1 : | 
 | 			PBF_REG_P1_INIT_CRD, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_CREDIT_Q1 : | 
 | 			PBF_REG_P1_CREDIT, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : | 
 | 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, | 
 | 		{4, (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INIT_CRD_LB_Q : | 
 | 			PBF_REG_P4_INIT_CRD, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_CREDIT_LB_Q : | 
 | 			PBF_REG_P4_CREDIT, | 
 | 		    (CHIP_IS_E3B0(bp)) ? | 
 | 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : | 
 | 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, | 
 | 	}; | 
 |  | 
 | 	int i; | 
 |  | 
 | 	/* Verify the command queues are flushed P0, P1, P4 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) | 
 | 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); | 
 |  | 
 |  | 
 | 	/* Verify the transmission buffers are flushed P0, P1, P4 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++) | 
 | 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); | 
 | } | 
 |  | 
 | #define OP_GEN_PARAM(param) \ | 
 | 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) | 
 |  | 
 | #define OP_GEN_TYPE(type) \ | 
 | 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) | 
 |  | 
 | #define OP_GEN_AGG_VECT(index) \ | 
 | 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) | 
 |  | 
 |  | 
 | static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, | 
 | 					 u32 poll_cnt) | 
 | { | 
 | 	struct sdm_op_gen op_gen = {0}; | 
 |  | 
 | 	u32 comp_addr = BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (REG_RD(bp, comp_addr)) { | 
 | 		BNX2X_ERR("Cleanup complete was not 0 before sending\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); | 
 | 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); | 
 | 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func); | 
 | 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); | 
 | 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command); | 
 |  | 
 | 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { | 
 | 		BNX2X_ERR("FW final cleanup did not succeed\n"); | 
 | 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", | 
 | 		   (REG_RD(bp, comp_addr))); | 
 | 		ret = 1; | 
 | 	} | 
 | 	/* Zero completion for nxt FLR */ | 
 | 	REG_WR(bp, comp_addr, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev) | 
 | { | 
 | 	int pos; | 
 | 	u16 status; | 
 |  | 
 | 	pos = pci_pcie_cap(dev); | 
 | 	if (!pos) | 
 | 		return false; | 
 |  | 
 | 	pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status); | 
 | 	return status & PCI_EXP_DEVSTA_TRPND; | 
 | } | 
 |  | 
 | /* PF FLR specific routines | 
 | */ | 
 | static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) | 
 | { | 
 |  | 
 | 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */ | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			CFC_REG_NUM_LCIDS_INSIDE_PF, | 
 | 			"CFC PF usage counter timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 |  | 
 |  | 
 | 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			DORQ_REG_PF_USAGE_CNT, | 
 | 			"DQ PF usage counter timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 |  | 
 | 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */ | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), | 
 | 			"QM PF usage counter timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 |  | 
 | 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), | 
 | 			"Timers VNIC usage counter timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), | 
 | 			"Timers NUM_SCANS usage counter timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 |  | 
 | 	/* Wait DMAE PF usage counter to zero */ | 
 | 	if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
 | 			dmae_reg_go_c[INIT_DMAE_C(bp)], | 
 | 			"DMAE dommand register timed out", | 
 | 			poll_cnt)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bnx2x_hw_enable_status(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); | 
 | 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, PBF_REG_DISABLE_PF); | 
 | 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); | 
 | 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); | 
 | 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); | 
 | 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); | 
 | 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); | 
 | 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); | 
 |  | 
 | 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); | 
 | 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", | 
 | 	   val); | 
 | } | 
 |  | 
 | static int bnx2x_pf_flr_clnup(struct bnx2x *bp) | 
 | { | 
 | 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); | 
 |  | 
 | 	/* Re-enable PF target read access */ | 
 | 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); | 
 |  | 
 | 	/* Poll HW usage counters */ | 
 | 	DP(BNX2X_MSG_SP, "Polling usage counters\n"); | 
 | 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* Zero the igu 'trailing edge' and 'leading edge' */ | 
 |  | 
 | 	/* Send the FW cleanup command */ | 
 | 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* ATC cleanup */ | 
 |  | 
 | 	/* Verify TX hw is flushed */ | 
 | 	bnx2x_tx_hw_flushed(bp, poll_cnt); | 
 |  | 
 | 	/* Wait 100ms (not adjusted according to platform) */ | 
 | 	msleep(100); | 
 |  | 
 | 	/* Verify no pending pci transactions */ | 
 | 	if (bnx2x_is_pcie_pending(bp->pdev)) | 
 | 		BNX2X_ERR("PCIE Transactions still pending\n"); | 
 |  | 
 | 	/* Debug */ | 
 | 	bnx2x_hw_enable_status(bp); | 
 |  | 
 | 	/* | 
 | 	 * Master enable - Due to WB DMAE writes performed before this | 
 | 	 * register is re-initialized as part of the regular function init | 
 | 	 */ | 
 | 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bnx2x_hc_int_enable(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; | 
 | 	u32 val = REG_RD(bp, addr); | 
 | 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; | 
 | 	int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0; | 
 |  | 
 | 	if (msix) { | 
 | 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
 | 			 HC_CONFIG_0_REG_INT_LINE_EN_0); | 
 | 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
 | 			HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
 | 	} else if (msi) { | 
 | 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; | 
 | 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
 | 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
 | 			HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
 | 	} else { | 
 | 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
 | 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
 | 			HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
 | 			HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
 |  | 
 | 		if (!CHIP_IS_E1(bp)) { | 
 | 			DP(NETIF_MSG_IFUP, | 
 | 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr); | 
 |  | 
 | 			REG_WR(bp, addr, val); | 
 |  | 
 | 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, | 
 | 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); | 
 |  | 
 | 	REG_WR(bp, addr, val); | 
 | 	/* | 
 | 	 * Ensure that HC_CONFIG is written before leading/trailing edge config | 
 | 	 */ | 
 | 	mmiowb(); | 
 | 	barrier(); | 
 |  | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		/* init leading/trailing edge */ | 
 | 		if (IS_MF(bp)) { | 
 | 			val = (0xee0f | (1 << (BP_VN(bp) + 4))); | 
 | 			if (bp->port.pmf) | 
 | 				/* enable nig and gpio3 attention */ | 
 | 				val |= 0x1100; | 
 | 		} else | 
 | 			val = 0xffff; | 
 |  | 
 | 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); | 
 | 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); | 
 | 	} | 
 |  | 
 | 	/* Make sure that interrupts are indeed enabled from here on */ | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | static void bnx2x_igu_int_enable(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; | 
 | 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; | 
 | 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; | 
 |  | 
 | 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
 |  | 
 | 	if (msix) { | 
 | 		val &= ~(IGU_PF_CONF_INT_LINE_EN | | 
 | 			 IGU_PF_CONF_SINGLE_ISR_EN); | 
 | 		val |= (IGU_PF_CONF_FUNC_EN | | 
 | 			IGU_PF_CONF_MSI_MSIX_EN | | 
 | 			IGU_PF_CONF_ATTN_BIT_EN); | 
 |  | 
 | 		if (single_msix) | 
 | 			val |= IGU_PF_CONF_SINGLE_ISR_EN; | 
 | 	} else if (msi) { | 
 | 		val &= ~IGU_PF_CONF_INT_LINE_EN; | 
 | 		val |= (IGU_PF_CONF_FUNC_EN | | 
 | 			IGU_PF_CONF_MSI_MSIX_EN | | 
 | 			IGU_PF_CONF_ATTN_BIT_EN | | 
 | 			IGU_PF_CONF_SINGLE_ISR_EN); | 
 | 	} else { | 
 | 		val &= ~IGU_PF_CONF_MSI_MSIX_EN; | 
 | 		val |= (IGU_PF_CONF_FUNC_EN | | 
 | 			IGU_PF_CONF_INT_LINE_EN | | 
 | 			IGU_PF_CONF_ATTN_BIT_EN | | 
 | 			IGU_PF_CONF_SINGLE_ISR_EN); | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n", | 
 | 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); | 
 |  | 
 | 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
 |  | 
 | 	if (val & IGU_PF_CONF_INT_LINE_EN) | 
 | 		pci_intx(bp->pdev, true); | 
 |  | 
 | 	barrier(); | 
 |  | 
 | 	/* init leading/trailing edge */ | 
 | 	if (IS_MF(bp)) { | 
 | 		val = (0xee0f | (1 << (BP_VN(bp) + 4))); | 
 | 		if (bp->port.pmf) | 
 | 			/* enable nig and gpio3 attention */ | 
 | 			val |= 0x1100; | 
 | 	} else | 
 | 		val = 0xffff; | 
 |  | 
 | 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); | 
 | 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); | 
 |  | 
 | 	/* Make sure that interrupts are indeed enabled from here on */ | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | void bnx2x_int_enable(struct bnx2x *bp) | 
 | { | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) | 
 | 		bnx2x_hc_int_enable(bp); | 
 | 	else | 
 | 		bnx2x_igu_int_enable(bp); | 
 | } | 
 |  | 
 | static void bnx2x_hc_int_disable(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; | 
 | 	u32 val = REG_RD(bp, addr); | 
 |  | 
 | 	/* | 
 | 	 * in E1 we must use only PCI configuration space to disable | 
 | 	 * MSI/MSIX capablility | 
 | 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block | 
 | 	 */ | 
 | 	if (CHIP_IS_E1(bp)) { | 
 | 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on | 
 | 		 *  Use mask register to prevent from HC sending interrupts | 
 | 		 *  after we exit the function | 
 | 		 */ | 
 | 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0); | 
 |  | 
 | 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
 | 			 HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
 | 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
 | 	} else | 
 | 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
 | 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
 | 			 HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
 | 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
 |  | 
 | 	DP(NETIF_MSG_IFDOWN, | 
 | 	   "write %x to HC %d (addr 0x%x)\n", | 
 | 	   val, port, addr); | 
 |  | 
 | 	/* flush all outstanding writes */ | 
 | 	mmiowb(); | 
 |  | 
 | 	REG_WR(bp, addr, val); | 
 | 	if (REG_RD(bp, addr) != val) | 
 | 		BNX2X_ERR("BUG! proper val not read from IGU!\n"); | 
 | } | 
 |  | 
 | static void bnx2x_igu_int_disable(struct bnx2x *bp) | 
 | { | 
 | 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
 |  | 
 | 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN | | 
 | 		 IGU_PF_CONF_INT_LINE_EN | | 
 | 		 IGU_PF_CONF_ATTN_BIT_EN); | 
 |  | 
 | 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); | 
 |  | 
 | 	/* flush all outstanding writes */ | 
 | 	mmiowb(); | 
 |  | 
 | 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
 | 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) | 
 | 		BNX2X_ERR("BUG! proper val not read from IGU!\n"); | 
 | } | 
 |  | 
 | void bnx2x_int_disable(struct bnx2x *bp) | 
 | { | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) | 
 | 		bnx2x_hc_int_disable(bp); | 
 | 	else | 
 | 		bnx2x_igu_int_disable(bp); | 
 | } | 
 |  | 
 | void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) | 
 | { | 
 | 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; | 
 | 	int i, offset; | 
 |  | 
 | 	if (disable_hw) | 
 | 		/* prevent the HW from sending interrupts */ | 
 | 		bnx2x_int_disable(bp); | 
 |  | 
 | 	/* make sure all ISRs are done */ | 
 | 	if (msix) { | 
 | 		synchronize_irq(bp->msix_table[0].vector); | 
 | 		offset = 1; | 
 | #ifdef BCM_CNIC | 
 | 		offset++; | 
 | #endif | 
 | 		for_each_eth_queue(bp, i) | 
 | 			synchronize_irq(bp->msix_table[offset++].vector); | 
 | 	} else | 
 | 		synchronize_irq(bp->pdev->irq); | 
 |  | 
 | 	/* make sure sp_task is not running */ | 
 | 	cancel_delayed_work(&bp->sp_task); | 
 | 	cancel_delayed_work(&bp->period_task); | 
 | 	flush_workqueue(bnx2x_wq); | 
 | } | 
 |  | 
 | /* fast path */ | 
 |  | 
 | /* | 
 |  * General service functions | 
 |  */ | 
 |  | 
 | /* Return true if succeeded to acquire the lock */ | 
 | static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) | 
 | { | 
 | 	u32 lock_status; | 
 | 	u32 resource_bit = (1 << resource); | 
 | 	int func = BP_FUNC(bp); | 
 | 	u32 hw_lock_control_reg; | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
 | 	   "Trying to take a lock on resource %d\n", resource); | 
 |  | 
 | 	/* Validating that the resource is within range */ | 
 | 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
 | 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
 | 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
 | 		   resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (func <= 5) | 
 | 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
 | 	else | 
 | 		hw_lock_control_reg = | 
 | 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
 |  | 
 | 	/* Try to acquire the lock */ | 
 | 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit); | 
 | 	lock_status = REG_RD(bp, hw_lock_control_reg); | 
 | 	if (lock_status & resource_bit) | 
 | 		return true; | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
 | 	   "Failed to get a lock on resource %d\n", resource); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_get_leader_lock_resource - get the recovery leader resource id | 
 |  * | 
 |  * @bp:	driver handle | 
 |  * | 
 |  * Returns the recovery leader resource id according to the engine this function | 
 |  * belongs to. Currently only only 2 engines is supported. | 
 |  */ | 
 | static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp) | 
 | { | 
 | 	if (BP_PATH(bp)) | 
 | 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; | 
 | 	else | 
 | 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_trylock_leader_lock- try to aquire a leader lock. | 
 |  * | 
 |  * @bp: driver handle | 
 |  * | 
 |  * Tries to aquire a leader lock for cuurent engine. | 
 |  */ | 
 | static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp) | 
 | { | 
 | 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); | 
 | } | 
 |  | 
 | #ifdef BCM_CNIC | 
 | static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); | 
 | #endif | 
 |  | 
 | void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) | 
 | { | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); | 
 | 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); | 
 | 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; | 
 | 	struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, | 
 | 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n", | 
 | 	   fp->index, cid, command, bp->state, | 
 | 	   rr_cqe->ramrod_cqe.ramrod_type); | 
 |  | 
 | 	switch (command) { | 
 | 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): | 
 | 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_UPDATE; | 
 | 		break; | 
 |  | 
 | 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): | 
 | 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_SETUP; | 
 | 		break; | 
 |  | 
 | 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): | 
 | 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; | 
 | 		break; | 
 |  | 
 | 	case (RAMROD_CMD_ID_ETH_HALT): | 
 | 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_HALT; | 
 | 		break; | 
 |  | 
 | 	case (RAMROD_CMD_ID_ETH_TERMINATE): | 
 | 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_TERMINATE; | 
 | 		break; | 
 |  | 
 | 	case (RAMROD_CMD_ID_ETH_EMPTY): | 
 | 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); | 
 | 		drv_cmd = BNX2X_Q_CMD_EMPTY; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", | 
 | 			  command, fp->index); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((drv_cmd != BNX2X_Q_CMD_MAX) && | 
 | 	    q_obj->complete_cmd(bp, q_obj, drv_cmd)) | 
 | 		/* q_obj->complete_cmd() failure means that this was | 
 | 		 * an unexpected completion. | 
 | 		 * | 
 | 		 * In this case we don't want to increase the bp->spq_left | 
 | 		 * because apparently we haven't sent this command the first | 
 | 		 * place. | 
 | 		 */ | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		bnx2x_panic(); | 
 | #else | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	smp_mb__before_atomic_inc(); | 
 | 	atomic_inc(&bp->cq_spq_left); | 
 | 	/* push the change in bp->spq_left and towards the memory */ | 
 | 	smp_mb__after_atomic_inc(); | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod) | 
 | { | 
 | 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset; | 
 |  | 
 | 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod, | 
 | 				 start); | 
 | } | 
 |  | 
 | irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev_instance); | 
 | 	u16 status = bnx2x_ack_int(bp); | 
 | 	u16 mask; | 
 | 	int i; | 
 | 	u8 cos; | 
 |  | 
 | 	/* Return here if interrupt is shared and it's not for us */ | 
 | 	if (unlikely(status == 0)) { | 
 | 		DP(NETIF_MSG_INTR, "not our interrupt!\n"); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return IRQ_HANDLED; | 
 | #endif | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 |  | 
 | 		mask = 0x2 << (fp->index + CNIC_PRESENT); | 
 | 		if (status & mask) { | 
 | 			/* Handle Rx or Tx according to SB id */ | 
 | 			prefetch(fp->rx_cons_sb); | 
 | 			for_each_cos_in_tx_queue(fp, cos) | 
 | 				prefetch(fp->txdata[cos].tx_cons_sb); | 
 | 			prefetch(&fp->sb_running_index[SM_RX_ID]); | 
 | 			napi_schedule(&bnx2x_fp(bp, fp->index, napi)); | 
 | 			status &= ~mask; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	mask = 0x2; | 
 | 	if (status & (mask | 0x1)) { | 
 | 		struct cnic_ops *c_ops = NULL; | 
 |  | 
 | 		if (likely(bp->state == BNX2X_STATE_OPEN)) { | 
 | 			rcu_read_lock(); | 
 | 			c_ops = rcu_dereference(bp->cnic_ops); | 
 | 			if (c_ops) | 
 | 				c_ops->cnic_handler(bp->cnic_data, NULL); | 
 | 			rcu_read_unlock(); | 
 | 		} | 
 |  | 
 | 		status &= ~mask; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (unlikely(status & 0x1)) { | 
 | 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); | 
 |  | 
 | 		status &= ~0x1; | 
 | 		if (!status) | 
 | 			return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	if (unlikely(status)) | 
 | 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", | 
 | 		   status); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Link */ | 
 |  | 
 | /* | 
 |  * General service functions | 
 |  */ | 
 |  | 
 | int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) | 
 | { | 
 | 	u32 lock_status; | 
 | 	u32 resource_bit = (1 << resource); | 
 | 	int func = BP_FUNC(bp); | 
 | 	u32 hw_lock_control_reg; | 
 | 	int cnt; | 
 |  | 
 | 	/* Validating that the resource is within range */ | 
 | 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
 | 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
 | 		   resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (func <= 5) { | 
 | 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
 | 	} else { | 
 | 		hw_lock_control_reg = | 
 | 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
 | 	} | 
 |  | 
 | 	/* Validating that the resource is not already taken */ | 
 | 	lock_status = REG_RD(bp, hw_lock_control_reg); | 
 | 	if (lock_status & resource_bit) { | 
 | 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n", | 
 | 		   lock_status, resource_bit); | 
 | 		return -EEXIST; | 
 | 	} | 
 |  | 
 | 	/* Try for 5 second every 5ms */ | 
 | 	for (cnt = 0; cnt < 1000; cnt++) { | 
 | 		/* Try to acquire the lock */ | 
 | 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit); | 
 | 		lock_status = REG_RD(bp, hw_lock_control_reg); | 
 | 		if (lock_status & resource_bit) | 
 | 			return 0; | 
 |  | 
 | 		msleep(5); | 
 | 	} | 
 | 	BNX2X_ERR("Timeout\n"); | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | int bnx2x_release_leader_lock(struct bnx2x *bp) | 
 | { | 
 | 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); | 
 | } | 
 |  | 
 | int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) | 
 | { | 
 | 	u32 lock_status; | 
 | 	u32 resource_bit = (1 << resource); | 
 | 	int func = BP_FUNC(bp); | 
 | 	u32 hw_lock_control_reg; | 
 |  | 
 | 	/* Validating that the resource is within range */ | 
 | 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
 | 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
 | 		   resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (func <= 5) { | 
 | 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
 | 	} else { | 
 | 		hw_lock_control_reg = | 
 | 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
 | 	} | 
 |  | 
 | 	/* Validating that the resource is currently taken */ | 
 | 	lock_status = REG_RD(bp, hw_lock_control_reg); | 
 | 	if (!(lock_status & resource_bit)) { | 
 | 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n", | 
 | 		   lock_status, resource_bit); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, hw_lock_control_reg, resource_bit); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) | 
 | { | 
 | 	/* The GPIO should be swapped if swap register is set and active */ | 
 | 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
 | 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
 | 	int gpio_shift = gpio_num + | 
 | 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
 | 	u32 gpio_mask = (1 << gpio_shift); | 
 | 	u32 gpio_reg; | 
 | 	int value; | 
 |  | 
 | 	if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
 | 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* read GPIO value */ | 
 | 	gpio_reg = REG_RD(bp, MISC_REG_GPIO); | 
 |  | 
 | 	/* get the requested pin value */ | 
 | 	if ((gpio_reg & gpio_mask) == gpio_mask) | 
 | 		value = 1; | 
 | 	else | 
 | 		value = 0; | 
 |  | 
 | 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value); | 
 |  | 
 | 	return value; | 
 | } | 
 |  | 
 | int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) | 
 | { | 
 | 	/* The GPIO should be swapped if swap register is set and active */ | 
 | 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
 | 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
 | 	int gpio_shift = gpio_num + | 
 | 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
 | 	u32 gpio_mask = (1 << gpio_shift); | 
 | 	u32 gpio_reg; | 
 |  | 
 | 	if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
 | 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 | 	/* read GPIO and mask except the float bits */ | 
 | 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); | 
 |  | 
 | 	switch (mode) { | 
 | 	case MISC_REGISTERS_GPIO_OUTPUT_LOW: | 
 | 		DP(NETIF_MSG_LINK, | 
 | 		   "Set GPIO %d (shift %d) -> output low\n", | 
 | 		   gpio_num, gpio_shift); | 
 | 		/* clear FLOAT and set CLR */ | 
 | 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
 | 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH: | 
 | 		DP(NETIF_MSG_LINK, | 
 | 		   "Set GPIO %d (shift %d) -> output high\n", | 
 | 		   gpio_num, gpio_shift); | 
 | 		/* clear FLOAT and set SET */ | 
 | 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
 | 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_GPIO_INPUT_HI_Z: | 
 | 		DP(NETIF_MSG_LINK, | 
 | 		   "Set GPIO %d (shift %d) -> input\n", | 
 | 		   gpio_num, gpio_shift); | 
 | 		/* set FLOAT */ | 
 | 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, MISC_REG_GPIO, gpio_reg); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) | 
 | { | 
 | 	u32 gpio_reg = 0; | 
 | 	int rc = 0; | 
 |  | 
 | 	/* Any port swapping should be handled by caller. */ | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 | 	/* read GPIO and mask except the float bits */ | 
 | 	gpio_reg = REG_RD(bp, MISC_REG_GPIO); | 
 | 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); | 
 | 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); | 
 | 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); | 
 |  | 
 | 	switch (mode) { | 
 | 	case MISC_REGISTERS_GPIO_OUTPUT_LOW: | 
 | 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); | 
 | 		/* set CLR */ | 
 | 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH: | 
 | 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); | 
 | 		/* set SET */ | 
 | 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_GPIO_INPUT_HI_Z: | 
 | 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); | 
 | 		/* set FLOAT */ | 
 | 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); | 
 | 		rc = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (rc == 0) | 
 | 		REG_WR(bp, MISC_REG_GPIO, gpio_reg); | 
 |  | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) | 
 | { | 
 | 	/* The GPIO should be swapped if swap register is set and active */ | 
 | 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
 | 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
 | 	int gpio_shift = gpio_num + | 
 | 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
 | 	u32 gpio_mask = (1 << gpio_shift); | 
 | 	u32 gpio_reg; | 
 |  | 
 | 	if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
 | 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 | 	/* read GPIO int */ | 
 | 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); | 
 |  | 
 | 	switch (mode) { | 
 | 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: | 
 | 		DP(NETIF_MSG_LINK, | 
 | 		   "Clear GPIO INT %d (shift %d) -> output low\n", | 
 | 		   gpio_num, gpio_shift); | 
 | 		/* clear SET and set CLR */ | 
 | 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); | 
 | 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: | 
 | 		DP(NETIF_MSG_LINK, | 
 | 		   "Set GPIO INT %d (shift %d) -> output high\n", | 
 | 		   gpio_num, gpio_shift); | 
 | 		/* clear CLR and set SET */ | 
 | 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); | 
 | 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode) | 
 | { | 
 | 	u32 spio_mask = (1 << spio_num); | 
 | 	u32 spio_reg; | 
 |  | 
 | 	if ((spio_num < MISC_REGISTERS_SPIO_4) || | 
 | 	    (spio_num > MISC_REGISTERS_SPIO_7)) { | 
 | 		BNX2X_ERR("Invalid SPIO %d\n", spio_num); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); | 
 | 	/* read SPIO and mask except the float bits */ | 
 | 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT); | 
 |  | 
 | 	switch (mode) { | 
 | 	case MISC_REGISTERS_SPIO_OUTPUT_LOW: | 
 | 		DP(NETIF_MSG_HW, "Set SPIO %d -> output low\n", spio_num); | 
 | 		/* clear FLOAT and set CLR */ | 
 | 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS); | 
 | 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_CLR_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_SPIO_OUTPUT_HIGH: | 
 | 		DP(NETIF_MSG_HW, "Set SPIO %d -> output high\n", spio_num); | 
 | 		/* clear FLOAT and set SET */ | 
 | 		spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS); | 
 | 		spio_reg |=  (spio_mask << MISC_REGISTERS_SPIO_SET_POS); | 
 | 		break; | 
 |  | 
 | 	case MISC_REGISTERS_SPIO_INPUT_HI_Z: | 
 | 		DP(NETIF_MSG_HW, "Set SPIO %d -> input\n", spio_num); | 
 | 		/* set FLOAT */ | 
 | 		spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, MISC_REG_SPIO, spio_reg); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bnx2x_calc_fc_adv(struct bnx2x *bp) | 
 | { | 
 | 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); | 
 | 	switch (bp->link_vars.ieee_fc & | 
 | 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { | 
 | 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: | 
 | 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | | 
 | 						   ADVERTISED_Pause); | 
 | 		break; | 
 |  | 
 | 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: | 
 | 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | | 
 | 						  ADVERTISED_Pause); | 
 | 		break; | 
 |  | 
 | 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: | 
 | 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | | 
 | 						   ADVERTISED_Pause); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) | 
 | { | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		u8 rc; | 
 | 		int cfx_idx = bnx2x_get_link_cfg_idx(bp); | 
 | 		u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; | 
 | 		/* | 
 | 		 * Initialize link parameters structure variables | 
 | 		 * It is recommended to turn off RX FC for jumbo frames | 
 | 		 * for better performance | 
 | 		 */ | 
 | 		if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) | 
 | 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; | 
 | 		else | 
 | 			bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; | 
 |  | 
 | 		bnx2x_acquire_phy_lock(bp); | 
 |  | 
 | 		if (load_mode == LOAD_DIAG) { | 
 | 			struct link_params *lp = &bp->link_params; | 
 | 			lp->loopback_mode = LOOPBACK_XGXS; | 
 | 			/* do PHY loopback at 10G speed, if possible */ | 
 | 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) { | 
 | 				if (lp->speed_cap_mask[cfx_idx] & | 
 | 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) | 
 | 					lp->req_line_speed[cfx_idx] = | 
 | 					SPEED_10000; | 
 | 				else | 
 | 					lp->req_line_speed[cfx_idx] = | 
 | 					SPEED_1000; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); | 
 |  | 
 | 		bnx2x_release_phy_lock(bp); | 
 |  | 
 | 		bnx2x_calc_fc_adv(bp); | 
 |  | 
 | 		if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) { | 
 | 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
 | 			bnx2x_link_report(bp); | 
 | 		} else | 
 | 			queue_delayed_work(bnx2x_wq, &bp->period_task, 0); | 
 | 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed; | 
 | 		return rc; | 
 | 	} | 
 | 	BNX2X_ERR("Bootcode is missing - can not initialize link\n"); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | void bnx2x_link_set(struct bnx2x *bp) | 
 | { | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		bnx2x_acquire_phy_lock(bp); | 
 | 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); | 
 | 		bnx2x_phy_init(&bp->link_params, &bp->link_vars); | 
 | 		bnx2x_release_phy_lock(bp); | 
 |  | 
 | 		bnx2x_calc_fc_adv(bp); | 
 | 	} else | 
 | 		BNX2X_ERR("Bootcode is missing - can not set link\n"); | 
 | } | 
 |  | 
 | static void bnx2x__link_reset(struct bnx2x *bp) | 
 | { | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		bnx2x_acquire_phy_lock(bp); | 
 | 		bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); | 
 | 		bnx2x_release_phy_lock(bp); | 
 | 	} else | 
 | 		BNX2X_ERR("Bootcode is missing - can not reset link\n"); | 
 | } | 
 |  | 
 | u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) | 
 | { | 
 | 	u8 rc = 0; | 
 |  | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		bnx2x_acquire_phy_lock(bp); | 
 | 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, | 
 | 				     is_serdes); | 
 | 		bnx2x_release_phy_lock(bp); | 
 | 	} else | 
 | 		BNX2X_ERR("Bootcode is missing - can not test link\n"); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | /* Calculates the sum of vn_min_rates. | 
 |    It's needed for further normalizing of the min_rates. | 
 |    Returns: | 
 |      sum of vn_min_rates. | 
 |        or | 
 |      0 - if all the min_rates are 0. | 
 |      In the later case fainess algorithm should be deactivated. | 
 |      If not all min_rates are zero then those that are zeroes will be set to 1. | 
 |  */ | 
 | static void bnx2x_calc_vn_min(struct bnx2x *bp, | 
 | 				      struct cmng_init_input *input) | 
 | { | 
 | 	int all_zero = 1; | 
 | 	int vn; | 
 |  | 
 | 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { | 
 | 		u32 vn_cfg = bp->mf_config[vn]; | 
 | 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> | 
 | 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100; | 
 |  | 
 | 		/* Skip hidden vns */ | 
 | 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) | 
 | 			vn_min_rate = 0; | 
 | 		/* If min rate is zero - set it to 1 */ | 
 | 		else if (!vn_min_rate) | 
 | 			vn_min_rate = DEF_MIN_RATE; | 
 | 		else | 
 | 			all_zero = 0; | 
 |  | 
 | 		input->vnic_min_rate[vn] = vn_min_rate; | 
 | 	} | 
 |  | 
 | 	/* if ETS or all min rates are zeros - disable fairness */ | 
 | 	if (BNX2X_IS_ETS_ENABLED(bp)) { | 
 | 		input->flags.cmng_enables &= | 
 | 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
 | 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); | 
 | 	} else if (all_zero) { | 
 | 		input->flags.cmng_enables &= | 
 | 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
 | 		DP(NETIF_MSG_IFUP, | 
 | 		   "All MIN values are zeroes fairness will be disabled\n"); | 
 | 	} else | 
 | 		input->flags.cmng_enables |= | 
 | 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
 | } | 
 |  | 
 | static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, | 
 | 				    struct cmng_init_input *input) | 
 | { | 
 | 	u16 vn_max_rate; | 
 | 	u32 vn_cfg = bp->mf_config[vn]; | 
 |  | 
 | 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) | 
 | 		vn_max_rate = 0; | 
 | 	else { | 
 | 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); | 
 |  | 
 | 		if (IS_MF_SI(bp)) { | 
 | 			/* maxCfg in percents of linkspeed */ | 
 | 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; | 
 | 		} else /* SD modes */ | 
 | 			/* maxCfg is absolute in 100Mb units */ | 
 | 			vn_max_rate = maxCfg * 100; | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); | 
 |  | 
 | 	input->vnic_max_rate[vn] = vn_max_rate; | 
 | } | 
 |  | 
 |  | 
 | static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) | 
 | { | 
 | 	if (CHIP_REV_IS_SLOW(bp)) | 
 | 		return CMNG_FNS_NONE; | 
 | 	if (IS_MF(bp)) | 
 | 		return CMNG_FNS_MINMAX; | 
 |  | 
 | 	return CMNG_FNS_NONE; | 
 | } | 
 |  | 
 | void bnx2x_read_mf_cfg(struct bnx2x *bp) | 
 | { | 
 | 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); | 
 |  | 
 | 	if (BP_NOMCP(bp)) | 
 | 		return; /* what should be the default bvalue in this case */ | 
 |  | 
 | 	/* For 2 port configuration the absolute function number formula | 
 | 	 * is: | 
 | 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH | 
 | 	 * | 
 | 	 *      and there are 4 functions per port | 
 | 	 * | 
 | 	 * For 4 port configuration it is | 
 | 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH | 
 | 	 * | 
 | 	 *      and there are 2 functions per port | 
 | 	 */ | 
 | 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { | 
 | 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); | 
 |  | 
 | 		if (func >= E1H_FUNC_MAX) | 
 | 			break; | 
 |  | 
 | 		bp->mf_config[vn] = | 
 | 			MF_CFG_RD(bp, func_mf_config[func].config); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) | 
 | { | 
 | 	struct cmng_init_input input; | 
 | 	memset(&input, 0, sizeof(struct cmng_init_input)); | 
 |  | 
 | 	input.port_rate = bp->link_vars.line_speed; | 
 |  | 
 | 	if (cmng_type == CMNG_FNS_MINMAX) { | 
 | 		int vn; | 
 |  | 
 | 		/* read mf conf from shmem */ | 
 | 		if (read_cfg) | 
 | 			bnx2x_read_mf_cfg(bp); | 
 |  | 
 | 		/* vn_weight_sum and enable fairness if not 0 */ | 
 | 		bnx2x_calc_vn_min(bp, &input); | 
 |  | 
 | 		/* calculate and set min-max rate for each vn */ | 
 | 		if (bp->port.pmf) | 
 | 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) | 
 | 				bnx2x_calc_vn_max(bp, vn, &input); | 
 |  | 
 | 		/* always enable rate shaping and fairness */ | 
 | 		input.flags.cmng_enables |= | 
 | 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; | 
 |  | 
 | 		bnx2x_init_cmng(&input, &bp->cmng); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* rate shaping and fairness are disabled */ | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "rate shaping and fairness are disabled\n"); | 
 | } | 
 |  | 
 | /* This function is called upon link interrupt */ | 
 | static void bnx2x_link_attn(struct bnx2x *bp) | 
 | { | 
 | 	/* Make sure that we are synced with the current statistics */ | 
 | 	bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
 |  | 
 | 	bnx2x_link_update(&bp->link_params, &bp->link_vars); | 
 |  | 
 | 	if (bp->link_vars.link_up) { | 
 |  | 
 | 		/* dropless flow control */ | 
 | 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) { | 
 | 			int port = BP_PORT(bp); | 
 | 			u32 pause_enabled = 0; | 
 |  | 
 | 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) | 
 | 				pause_enabled = 1; | 
 |  | 
 | 			REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port), | 
 | 			       pause_enabled); | 
 | 		} | 
 |  | 
 | 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { | 
 | 			struct host_port_stats *pstats; | 
 |  | 
 | 			pstats = bnx2x_sp(bp, port_stats); | 
 | 			/* reset old mac stats */ | 
 | 			memset(&(pstats->mac_stx[0]), 0, | 
 | 			       sizeof(struct mac_stx)); | 
 | 		} | 
 | 		if (bp->state == BNX2X_STATE_OPEN) | 
 | 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
 | 	} | 
 |  | 
 | 	if (bp->link_vars.link_up && bp->link_vars.line_speed) { | 
 | 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp); | 
 |  | 
 | 		if (cmng_fns != CMNG_FNS_NONE) { | 
 | 			bnx2x_cmng_fns_init(bp, false, cmng_fns); | 
 | 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
 | 		} else | 
 | 			/* rate shaping and fairness are disabled */ | 
 | 			DP(NETIF_MSG_IFUP, | 
 | 			   "single function mode without fairness\n"); | 
 | 	} | 
 |  | 
 | 	__bnx2x_link_report(bp); | 
 |  | 
 | 	if (IS_MF(bp)) | 
 | 		bnx2x_link_sync_notify(bp); | 
 | } | 
 |  | 
 | void bnx2x__link_status_update(struct bnx2x *bp) | 
 | { | 
 | 	if (bp->state != BNX2X_STATE_OPEN) | 
 | 		return; | 
 |  | 
 | 	/* read updated dcb configuration */ | 
 | 	bnx2x_dcbx_pmf_update(bp); | 
 |  | 
 | 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars); | 
 |  | 
 | 	if (bp->link_vars.link_up) | 
 | 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
 | 	else | 
 | 		bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
 |  | 
 | 	/* indicate link status */ | 
 | 	bnx2x_link_report(bp); | 
 | } | 
 |  | 
 | static void bnx2x_pmf_update(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 val; | 
 |  | 
 | 	bp->port.pmf = 1; | 
 | 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); | 
 |  | 
 | 	/* | 
 | 	 * We need the mb() to ensure the ordering between the writing to | 
 | 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* queue a periodic task */ | 
 | 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0); | 
 |  | 
 | 	bnx2x_dcbx_pmf_update(bp); | 
 |  | 
 | 	/* enable nig attention */ | 
 | 	val = (0xff0f | (1 << (BP_VN(bp) + 4))); | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) { | 
 | 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); | 
 | 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); | 
 | 	} else if (!CHIP_IS_E1x(bp)) { | 
 | 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); | 
 | 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); | 
 | 	} | 
 |  | 
 | 	bnx2x_stats_handle(bp, STATS_EVENT_PMF); | 
 | } | 
 |  | 
 | /* end of Link */ | 
 |  | 
 | /* slow path */ | 
 |  | 
 | /* | 
 |  * General service functions | 
 |  */ | 
 |  | 
 | /* send the MCP a request, block until there is a reply */ | 
 | u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) | 
 | { | 
 | 	int mb_idx = BP_FW_MB_IDX(bp); | 
 | 	u32 seq; | 
 | 	u32 rc = 0; | 
 | 	u32 cnt = 1; | 
 | 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; | 
 |  | 
 | 	mutex_lock(&bp->fw_mb_mutex); | 
 | 	seq = ++bp->fw_seq; | 
 | 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); | 
 | 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); | 
 |  | 
 | 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", | 
 | 			(command | seq), param); | 
 |  | 
 | 	do { | 
 | 		/* let the FW do it's magic ... */ | 
 | 		msleep(delay); | 
 |  | 
 | 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); | 
 |  | 
 | 		/* Give the FW up to 5 second (500*10ms) */ | 
 | 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); | 
 |  | 
 | 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", | 
 | 	   cnt*delay, rc, seq); | 
 |  | 
 | 	/* is this a reply to our command? */ | 
 | 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) | 
 | 		rc &= FW_MSG_CODE_MASK; | 
 | 	else { | 
 | 		/* FW BUG! */ | 
 | 		BNX2X_ERR("FW failed to respond!\n"); | 
 | 		bnx2x_fw_dump(bp); | 
 | 		rc = 0; | 
 | 	} | 
 | 	mutex_unlock(&bp->fw_mb_mutex); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) | 
 | { | 
 | 	if (CHIP_IS_E1x(bp)) { | 
 | 		struct tstorm_eth_function_common_config tcfg = {0}; | 
 |  | 
 | 		storm_memset_func_cfg(bp, &tcfg, p->func_id); | 
 | 	} | 
 |  | 
 | 	/* Enable the function in the FW */ | 
 | 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); | 
 | 	storm_memset_func_en(bp, p->func_id, 1); | 
 |  | 
 | 	/* spq */ | 
 | 	if (p->func_flgs & FUNC_FLG_SPQ) { | 
 | 		storm_memset_spq_addr(bp, p->spq_map, p->func_id); | 
 | 		REG_WR(bp, XSEM_REG_FAST_MEMORY + | 
 | 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_get_tx_only_flags - Return common flags | 
 |  * | 
 |  * @bp		device handle | 
 |  * @fp		queue handle | 
 |  * @zero_stats	TRUE if statistics zeroing is needed | 
 |  * | 
 |  * Return the flags that are common for the Tx-only and not normal connections. | 
 |  */ | 
 | static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp, | 
 | 						   struct bnx2x_fastpath *fp, | 
 | 						   bool zero_stats) | 
 | { | 
 | 	unsigned long flags = 0; | 
 |  | 
 | 	/* PF driver will always initialize the Queue to an ACTIVE state */ | 
 | 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags); | 
 |  | 
 | 	/* tx only connections collect statistics (on the same index as the | 
 | 	 *  parent connection). The statistics are zeroed when the parent | 
 | 	 *  connection is initialized. | 
 | 	 */ | 
 |  | 
 | 	__set_bit(BNX2X_Q_FLG_STATS, &flags); | 
 | 	if (zero_stats) | 
 | 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); | 
 |  | 
 |  | 
 | 	return flags; | 
 | } | 
 |  | 
 | static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp, | 
 | 					      struct bnx2x_fastpath *fp, | 
 | 					      bool leading) | 
 | { | 
 | 	unsigned long flags = 0; | 
 |  | 
 | 	/* calculate other queue flags */ | 
 | 	if (IS_MF_SD(bp)) | 
 | 		__set_bit(BNX2X_Q_FLG_OV, &flags); | 
 |  | 
 | 	if (IS_FCOE_FP(fp)) | 
 | 		__set_bit(BNX2X_Q_FLG_FCOE, &flags); | 
 |  | 
 | 	if (!fp->disable_tpa) { | 
 | 		__set_bit(BNX2X_Q_FLG_TPA, &flags); | 
 | 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); | 
 | 		if (fp->mode == TPA_MODE_GRO) | 
 | 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); | 
 | 	} | 
 |  | 
 | 	if (leading) { | 
 | 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); | 
 | 		__set_bit(BNX2X_Q_FLG_MCAST, &flags); | 
 | 	} | 
 |  | 
 | 	/* Always set HW VLAN stripping */ | 
 | 	__set_bit(BNX2X_Q_FLG_VLAN, &flags); | 
 |  | 
 |  | 
 | 	return flags | bnx2x_get_common_flags(bp, fp, true); | 
 | } | 
 |  | 
 | static void bnx2x_pf_q_prep_general(struct bnx2x *bp, | 
 | 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, | 
 | 	u8 cos) | 
 | { | 
 | 	gen_init->stat_id = bnx2x_stats_id(fp); | 
 | 	gen_init->spcl_id = fp->cl_id; | 
 |  | 
 | 	/* Always use mini-jumbo MTU for FCoE L2 ring */ | 
 | 	if (IS_FCOE_FP(fp)) | 
 | 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; | 
 | 	else | 
 | 		gen_init->mtu = bp->dev->mtu; | 
 |  | 
 | 	gen_init->cos = cos; | 
 | } | 
 |  | 
 | static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, | 
 | 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, | 
 | 	struct bnx2x_rxq_setup_params *rxq_init) | 
 | { | 
 | 	u8 max_sge = 0; | 
 | 	u16 sge_sz = 0; | 
 | 	u16 tpa_agg_size = 0; | 
 |  | 
 | 	if (!fp->disable_tpa) { | 
 | 		pause->sge_th_lo = SGE_TH_LO(bp); | 
 | 		pause->sge_th_hi = SGE_TH_HI(bp); | 
 |  | 
 | 		/* validate SGE ring has enough to cross high threshold */ | 
 | 		WARN_ON(bp->dropless_fc && | 
 | 				pause->sge_th_hi + FW_PREFETCH_CNT > | 
 | 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); | 
 |  | 
 | 		tpa_agg_size = min_t(u32, | 
 | 			(min_t(u32, 8, MAX_SKB_FRAGS) * | 
 | 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff); | 
 | 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> | 
 | 			SGE_PAGE_SHIFT; | 
 | 		max_sge = ((max_sge + PAGES_PER_SGE - 1) & | 
 | 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; | 
 | 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE, | 
 | 				    0xffff); | 
 | 	} | 
 |  | 
 | 	/* pause - not for e1 */ | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		pause->bd_th_lo = BD_TH_LO(bp); | 
 | 		pause->bd_th_hi = BD_TH_HI(bp); | 
 |  | 
 | 		pause->rcq_th_lo = RCQ_TH_LO(bp); | 
 | 		pause->rcq_th_hi = RCQ_TH_HI(bp); | 
 | 		/* | 
 | 		 * validate that rings have enough entries to cross | 
 | 		 * high thresholds | 
 | 		 */ | 
 | 		WARN_ON(bp->dropless_fc && | 
 | 				pause->bd_th_hi + FW_PREFETCH_CNT > | 
 | 				bp->rx_ring_size); | 
 | 		WARN_ON(bp->dropless_fc && | 
 | 				pause->rcq_th_hi + FW_PREFETCH_CNT > | 
 | 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); | 
 |  | 
 | 		pause->pri_map = 1; | 
 | 	} | 
 |  | 
 | 	/* rxq setup */ | 
 | 	rxq_init->dscr_map = fp->rx_desc_mapping; | 
 | 	rxq_init->sge_map = fp->rx_sge_mapping; | 
 | 	rxq_init->rcq_map = fp->rx_comp_mapping; | 
 | 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; | 
 |  | 
 | 	/* This should be a maximum number of data bytes that may be | 
 | 	 * placed on the BD (not including paddings). | 
 | 	 */ | 
 | 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - | 
 | 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING; | 
 |  | 
 | 	rxq_init->cl_qzone_id = fp->cl_qzone_id; | 
 | 	rxq_init->tpa_agg_sz = tpa_agg_size; | 
 | 	rxq_init->sge_buf_sz = sge_sz; | 
 | 	rxq_init->max_sges_pkt = max_sge; | 
 | 	rxq_init->rss_engine_id = BP_FUNC(bp); | 
 | 	rxq_init->mcast_engine_id = BP_FUNC(bp); | 
 |  | 
 | 	/* Maximum number or simultaneous TPA aggregation for this Queue. | 
 | 	 * | 
 | 	 * For PF Clients it should be the maximum avaliable number. | 
 | 	 * VF driver(s) may want to define it to a smaller value. | 
 | 	 */ | 
 | 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp); | 
 |  | 
 | 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; | 
 | 	rxq_init->fw_sb_id = fp->fw_sb_id; | 
 |  | 
 | 	if (IS_FCOE_FP(fp)) | 
 | 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; | 
 | 	else | 
 | 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; | 
 | } | 
 |  | 
 | static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, | 
 | 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, | 
 | 	u8 cos) | 
 | { | 
 | 	txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping; | 
 | 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; | 
 | 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; | 
 | 	txq_init->fw_sb_id = fp->fw_sb_id; | 
 |  | 
 | 	/* | 
 | 	 * set the tss leading client id for TX classfication == | 
 | 	 * leading RSS client id | 
 | 	 */ | 
 | 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); | 
 |  | 
 | 	if (IS_FCOE_FP(fp)) { | 
 | 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; | 
 | 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_pf_init(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_func_init_params func_init = {0}; | 
 | 	struct event_ring_data eq_data = { {0} }; | 
 | 	u16 flags; | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		/* reset IGU PF statistics: MSIX + ATTN */ | 
 | 		/* PF */ | 
 | 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + | 
 | 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 + | 
 | 			   (CHIP_MODE_IS_4_PORT(bp) ? | 
 | 				BP_FUNC(bp) : BP_VN(bp))*4, 0); | 
 | 		/* ATTN */ | 
 | 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + | 
 | 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 + | 
 | 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 + | 
 | 			   (CHIP_MODE_IS_4_PORT(bp) ? | 
 | 				BP_FUNC(bp) : BP_VN(bp))*4, 0); | 
 | 	} | 
 |  | 
 | 	/* function setup flags */ | 
 | 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); | 
 |  | 
 | 	/* This flag is relevant for E1x only. | 
 | 	 * E2 doesn't have a TPA configuration in a function level. | 
 | 	 */ | 
 | 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; | 
 |  | 
 | 	func_init.func_flgs = flags; | 
 | 	func_init.pf_id = BP_FUNC(bp); | 
 | 	func_init.func_id = BP_FUNC(bp); | 
 | 	func_init.spq_map = bp->spq_mapping; | 
 | 	func_init.spq_prod = bp->spq_prod_idx; | 
 |  | 
 | 	bnx2x_func_init(bp, &func_init); | 
 |  | 
 | 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); | 
 |  | 
 | 	/* | 
 | 	 * Congestion management values depend on the link rate | 
 | 	 * There is no active link so initial link rate is set to 10 Gbps. | 
 | 	 * When the link comes up The congestion management values are | 
 | 	 * re-calculated according to the actual link rate. | 
 | 	 */ | 
 | 	bp->link_vars.line_speed = SPEED_10000; | 
 | 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); | 
 |  | 
 | 	/* Only the PMF sets the HW */ | 
 | 	if (bp->port.pmf) | 
 | 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
 |  | 
 | 	/* init Event Queue */ | 
 | 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping); | 
 | 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping); | 
 | 	eq_data.producer = bp->eq_prod; | 
 | 	eq_data.index_id = HC_SP_INDEX_EQ_CONS; | 
 | 	eq_data.sb_id = DEF_SB_ID; | 
 | 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); | 
 | } | 
 |  | 
 |  | 
 | static void bnx2x_e1h_disable(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 |  | 
 | 	bnx2x_tx_disable(bp); | 
 |  | 
 | 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); | 
 | } | 
 |  | 
 | static void bnx2x_e1h_enable(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 |  | 
 | 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); | 
 |  | 
 | 	/* Tx queue should be only reenabled */ | 
 | 	netif_tx_wake_all_queues(bp->dev); | 
 |  | 
 | 	/* | 
 | 	 * Should not call netif_carrier_on since it will be called if the link | 
 | 	 * is up when checking for link state | 
 | 	 */ | 
 | } | 
 |  | 
 | #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 | 
 |  | 
 | static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) | 
 | { | 
 | 	struct eth_stats_info *ether_stat = | 
 | 		&bp->slowpath->drv_info_to_mcp.ether_stat; | 
 |  | 
 | 	/* leave last char as NULL */ | 
 | 	memcpy(ether_stat->version, DRV_MODULE_VERSION, | 
 | 	       ETH_STAT_INFO_VERSION_LEN - 1); | 
 |  | 
 | 	bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj, | 
 | 					 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, | 
 | 					 ether_stat->mac_local); | 
 |  | 
 | 	ether_stat->mtu_size = bp->dev->mtu; | 
 |  | 
 | 	if (bp->dev->features & NETIF_F_RXCSUM) | 
 | 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; | 
 | 	if (bp->dev->features & NETIF_F_TSO) | 
 | 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; | 
 | 	ether_stat->feature_flags |= bp->common.boot_mode; | 
 |  | 
 | 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; | 
 |  | 
 | 	ether_stat->txq_size = bp->tx_ring_size; | 
 | 	ether_stat->rxq_size = bp->rx_ring_size; | 
 | } | 
 |  | 
 | static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) | 
 | { | 
 | #ifdef BCM_CNIC | 
 | 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; | 
 | 	struct fcoe_stats_info *fcoe_stat = | 
 | 		&bp->slowpath->drv_info_to_mcp.fcoe_stat; | 
 |  | 
 | 	memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN); | 
 |  | 
 | 	fcoe_stat->qos_priority = | 
 | 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; | 
 |  | 
 | 	/* insert FCoE stats from ramrod response */ | 
 | 	if (!NO_FCOE(bp)) { | 
 | 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = | 
 | 			&bp->fw_stats_data->queue_stats[FCOE_IDX]. | 
 | 			tstorm_queue_statistics; | 
 |  | 
 | 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = | 
 | 			&bp->fw_stats_data->queue_stats[FCOE_IDX]. | 
 | 			xstorm_queue_statistics; | 
 |  | 
 | 		struct fcoe_statistics_params *fw_fcoe_stat = | 
 | 			&bp->fw_stats_data->fcoe; | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo, | 
 | 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_bytes_hi, | 
 | 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, | 
 | 		       fcoe_stat->rx_bytes_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_bytes_hi, | 
 | 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, | 
 | 		       fcoe_stat->rx_bytes_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_bytes_hi, | 
 | 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, | 
 | 		       fcoe_stat->rx_bytes_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo, | 
 | 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_ucast_pkts); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_bcast_pkts); | 
 |  | 
 | 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo, | 
 | 		       fcoe_q_tstorm_stats->rcv_mcast_pkts); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo, | 
 | 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_bytes_hi, | 
 | 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi, | 
 | 		       fcoe_stat->tx_bytes_lo, | 
 | 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_bytes_hi, | 
 | 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi, | 
 | 		       fcoe_stat->tx_bytes_lo, | 
 | 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_bytes_hi, | 
 | 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi, | 
 | 		       fcoe_stat->tx_bytes_lo, | 
 | 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo, | 
 | 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo, | 
 | 		       fcoe_q_xstorm_stats->ucast_pkts_sent); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo, | 
 | 		       fcoe_q_xstorm_stats->bcast_pkts_sent); | 
 |  | 
 | 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo, | 
 | 		       fcoe_q_xstorm_stats->mcast_pkts_sent); | 
 | 	} | 
 |  | 
 | 	/* ask L5 driver to add data to the struct */ | 
 | 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) | 
 | { | 
 | #ifdef BCM_CNIC | 
 | 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; | 
 | 	struct iscsi_stats_info *iscsi_stat = | 
 | 		&bp->slowpath->drv_info_to_mcp.iscsi_stat; | 
 |  | 
 | 	memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN); | 
 |  | 
 | 	iscsi_stat->qos_priority = | 
 | 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; | 
 |  | 
 | 	/* ask L5 driver to add data to the struct */ | 
 | 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); | 
 | #endif | 
 | } | 
 |  | 
 | /* called due to MCP event (on pmf): | 
 |  *	reread new bandwidth configuration | 
 |  *	configure FW | 
 |  *	notify others function about the change | 
 |  */ | 
 | static inline void bnx2x_config_mf_bw(struct bnx2x *bp) | 
 | { | 
 | 	if (bp->link_vars.link_up) { | 
 | 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); | 
 | 		bnx2x_link_sync_notify(bp); | 
 | 	} | 
 | 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
 | } | 
 |  | 
 | static inline void bnx2x_set_mf_bw(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_config_mf_bw(bp); | 
 | 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); | 
 | } | 
 |  | 
 | static void bnx2x_handle_drv_info_req(struct bnx2x *bp) | 
 | { | 
 | 	enum drv_info_opcode op_code; | 
 | 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); | 
 |  | 
 | 	/* if drv_info version supported by MFW doesn't match - send NACK */ | 
 | 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> | 
 | 		  DRV_INFO_CONTROL_OP_CODE_SHIFT; | 
 |  | 
 | 	memset(&bp->slowpath->drv_info_to_mcp, 0, | 
 | 	       sizeof(union drv_info_to_mcp)); | 
 |  | 
 | 	switch (op_code) { | 
 | 	case ETH_STATS_OPCODE: | 
 | 		bnx2x_drv_info_ether_stat(bp); | 
 | 		break; | 
 | 	case FCOE_STATS_OPCODE: | 
 | 		bnx2x_drv_info_fcoe_stat(bp); | 
 | 		break; | 
 | 	case ISCSI_STATS_OPCODE: | 
 | 		bnx2x_drv_info_iscsi_stat(bp); | 
 | 		break; | 
 | 	default: | 
 | 		/* if op code isn't supported - send NACK */ | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* if we got drv_info attn from MFW then these fields are defined in | 
 | 	 * shmem2 for sure | 
 | 	 */ | 
 | 	SHMEM2_WR(bp, drv_info_host_addr_lo, | 
 | 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); | 
 | 	SHMEM2_WR(bp, drv_info_host_addr_hi, | 
 | 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); | 
 |  | 
 | 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); | 
 | } | 
 |  | 
 | static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) | 
 | { | 
 | 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); | 
 |  | 
 | 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { | 
 |  | 
 | 		/* | 
 | 		 * This is the only place besides the function initialization | 
 | 		 * where the bp->flags can change so it is done without any | 
 | 		 * locks | 
 | 		 */ | 
 | 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { | 
 | 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); | 
 | 			bp->flags |= MF_FUNC_DIS; | 
 |  | 
 | 			bnx2x_e1h_disable(bp); | 
 | 		} else { | 
 | 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); | 
 | 			bp->flags &= ~MF_FUNC_DIS; | 
 |  | 
 | 			bnx2x_e1h_enable(bp); | 
 | 		} | 
 | 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; | 
 | 	} | 
 | 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { | 
 | 		bnx2x_config_mf_bw(bp); | 
 | 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; | 
 | 	} | 
 |  | 
 | 	/* Report results to MCP */ | 
 | 	if (dcc_event) | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); | 
 | 	else | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); | 
 | } | 
 |  | 
 | /* must be called under the spq lock */ | 
 | static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) | 
 | { | 
 | 	struct eth_spe *next_spe = bp->spq_prod_bd; | 
 |  | 
 | 	if (bp->spq_prod_bd == bp->spq_last_bd) { | 
 | 		bp->spq_prod_bd = bp->spq; | 
 | 		bp->spq_prod_idx = 0; | 
 | 		DP(BNX2X_MSG_SP, "end of spq\n"); | 
 | 	} else { | 
 | 		bp->spq_prod_bd++; | 
 | 		bp->spq_prod_idx++; | 
 | 	} | 
 | 	return next_spe; | 
 | } | 
 |  | 
 | /* must be called under the spq lock */ | 
 | static inline void bnx2x_sp_prod_update(struct bnx2x *bp) | 
 | { | 
 | 	int func = BP_FUNC(bp); | 
 |  | 
 | 	/* | 
 | 	 * Make sure that BD data is updated before writing the producer: | 
 | 	 * BD data is written to the memory, the producer is read from the | 
 | 	 * memory, thus we need a full memory barrier to ensure the ordering. | 
 | 	 */ | 
 | 	mb(); | 
 |  | 
 | 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), | 
 | 		 bp->spq_prod_idx); | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ | 
 |  * | 
 |  * @cmd:	command to check | 
 |  * @cmd_type:	command type | 
 |  */ | 
 | static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) | 
 | { | 
 | 	if ((cmd_type == NONE_CONNECTION_TYPE) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || | 
 | 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) | 
 | 		return true; | 
 | 	else | 
 | 		return false; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * bnx2x_sp_post - place a single command on an SP ring | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.) | 
 |  * @cid:	SW CID the command is related to | 
 |  * @data_hi:	command private data address (high 32 bits) | 
 |  * @data_lo:	command private data address (low 32 bits) | 
 |  * @cmd_type:	command type (e.g. NONE, ETH) | 
 |  * | 
 |  * SP data is handled as if it's always an address pair, thus data fields are | 
 |  * not swapped to little endian in upper functions. Instead this function swaps | 
 |  * data as if it's two u32 fields. | 
 |  */ | 
 | int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, | 
 | 		  u32 data_hi, u32 data_lo, int cmd_type) | 
 | { | 
 | 	struct eth_spe *spe; | 
 | 	u16 type; | 
 | 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) { | 
 | 		BNX2X_ERR("Can't post SP when there is panic\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	spin_lock_bh(&bp->spq_lock); | 
 |  | 
 | 	if (common) { | 
 | 		if (!atomic_read(&bp->eq_spq_left)) { | 
 | 			BNX2X_ERR("BUG! EQ ring full!\n"); | 
 | 			spin_unlock_bh(&bp->spq_lock); | 
 | 			bnx2x_panic(); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} else if (!atomic_read(&bp->cq_spq_left)) { | 
 | 			BNX2X_ERR("BUG! SPQ ring full!\n"); | 
 | 			spin_unlock_bh(&bp->spq_lock); | 
 | 			bnx2x_panic(); | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	spe = bnx2x_sp_get_next(bp); | 
 |  | 
 | 	/* CID needs port number to be encoded int it */ | 
 | 	spe->hdr.conn_and_cmd_data = | 
 | 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | | 
 | 				    HW_CID(bp, cid)); | 
 |  | 
 | 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; | 
 |  | 
 | 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & | 
 | 		 SPE_HDR_FUNCTION_ID); | 
 |  | 
 | 	spe->hdr.type = cpu_to_le16(type); | 
 |  | 
 | 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi); | 
 | 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo); | 
 |  | 
 | 	/* | 
 | 	 * It's ok if the actual decrement is issued towards the memory | 
 | 	 * somewhere between the spin_lock and spin_unlock. Thus no | 
 | 	 * more explict memory barrier is needed. | 
 | 	 */ | 
 | 	if (common) | 
 | 		atomic_dec(&bp->eq_spq_left); | 
 | 	else | 
 | 		atomic_dec(&bp->cq_spq_left); | 
 |  | 
 |  | 
 | 	DP(BNX2X_MSG_SP, | 
 | 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", | 
 | 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), | 
 | 	   (u32)(U64_LO(bp->spq_mapping) + | 
 | 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, | 
 | 	   HW_CID(bp, cid), data_hi, data_lo, type, | 
 | 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); | 
 |  | 
 | 	bnx2x_sp_prod_update(bp); | 
 | 	spin_unlock_bh(&bp->spq_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* acquire split MCP access lock register */ | 
 | static int bnx2x_acquire_alr(struct bnx2x *bp) | 
 | { | 
 | 	u32 j, val; | 
 | 	int rc = 0; | 
 |  | 
 | 	might_sleep(); | 
 | 	for (j = 0; j < 1000; j++) { | 
 | 		val = (1UL << 31); | 
 | 		REG_WR(bp, GRCBASE_MCP + 0x9c, val); | 
 | 		val = REG_RD(bp, GRCBASE_MCP + 0x9c); | 
 | 		if (val & (1L << 31)) | 
 | 			break; | 
 |  | 
 | 		msleep(5); | 
 | 	} | 
 | 	if (!(val & (1L << 31))) { | 
 | 		BNX2X_ERR("Cannot acquire MCP access lock register\n"); | 
 | 		rc = -EBUSY; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* release split MCP access lock register */ | 
 | static void bnx2x_release_alr(struct bnx2x *bp) | 
 | { | 
 | 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0); | 
 | } | 
 |  | 
 | #define BNX2X_DEF_SB_ATT_IDX	0x0001 | 
 | #define BNX2X_DEF_SB_IDX	0x0002 | 
 |  | 
 | static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp) | 
 | { | 
 | 	struct host_sp_status_block *def_sb = bp->def_status_blk; | 
 | 	u16 rc = 0; | 
 |  | 
 | 	barrier(); /* status block is written to by the chip */ | 
 | 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { | 
 | 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; | 
 | 		rc |= BNX2X_DEF_SB_ATT_IDX; | 
 | 	} | 
 |  | 
 | 	if (bp->def_idx != def_sb->sp_sb.running_index) { | 
 | 		bp->def_idx = def_sb->sp_sb.running_index; | 
 | 		rc |= BNX2X_DEF_SB_IDX; | 
 | 	} | 
 |  | 
 | 	/* Do not reorder: indecies reading should complete before handling */ | 
 | 	barrier(); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * slow path service functions | 
 |  */ | 
 |  | 
 | static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
 | 			      MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
 | 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : | 
 | 				       NIG_REG_MASK_INTERRUPT_PORT0; | 
 | 	u32 aeu_mask; | 
 | 	u32 nig_mask = 0; | 
 | 	u32 reg_addr; | 
 |  | 
 | 	if (bp->attn_state & asserted) | 
 | 		BNX2X_ERR("IGU ERROR\n"); | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
 | 	aeu_mask = REG_RD(bp, aeu_addr); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n", | 
 | 	   aeu_mask, asserted); | 
 | 	aeu_mask &= ~(asserted & 0x3ff); | 
 | 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); | 
 |  | 
 | 	REG_WR(bp, aeu_addr, aeu_mask); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); | 
 | 	bp->attn_state |= asserted; | 
 | 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); | 
 |  | 
 | 	if (asserted & ATTN_HARD_WIRED_MASK) { | 
 | 		if (asserted & ATTN_NIG_FOR_FUNC) { | 
 |  | 
 | 			bnx2x_acquire_phy_lock(bp); | 
 |  | 
 | 			/* save nig interrupt mask */ | 
 | 			nig_mask = REG_RD(bp, nig_int_mask_addr); | 
 |  | 
 | 			/* If nig_mask is not set, no need to call the update | 
 | 			 * function. | 
 | 			 */ | 
 | 			if (nig_mask) { | 
 | 				REG_WR(bp, nig_int_mask_addr, 0); | 
 |  | 
 | 				bnx2x_link_attn(bp); | 
 | 			} | 
 |  | 
 | 			/* handle unicore attn? */ | 
 | 		} | 
 | 		if (asserted & ATTN_SW_TIMER_4_FUNC) | 
 | 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); | 
 |  | 
 | 		if (asserted & GPIO_2_FUNC) | 
 | 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); | 
 |  | 
 | 		if (asserted & GPIO_3_FUNC) | 
 | 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); | 
 |  | 
 | 		if (asserted & GPIO_4_FUNC) | 
 | 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); | 
 |  | 
 | 		if (port == 0) { | 
 | 			if (asserted & ATTN_GENERAL_ATTN_1) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); | 
 | 			} | 
 | 			if (asserted & ATTN_GENERAL_ATTN_2) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); | 
 | 			} | 
 | 			if (asserted & ATTN_GENERAL_ATTN_3) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); | 
 | 			} | 
 | 		} else { | 
 | 			if (asserted & ATTN_GENERAL_ATTN_4) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); | 
 | 			} | 
 | 			if (asserted & ATTN_GENERAL_ATTN_5) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); | 
 | 			} | 
 | 			if (asserted & ATTN_GENERAL_ATTN_6) { | 
 | 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); | 
 | 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} /* if hardwired */ | 
 |  | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) | 
 | 		reg_addr = (HC_REG_COMMAND_REG + port*32 + | 
 | 			    COMMAND_REG_ATTN_BITS_SET); | 
 | 	else | 
 | 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, | 
 | 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); | 
 | 	REG_WR(bp, reg_addr, asserted); | 
 |  | 
 | 	/* now set back the mask */ | 
 | 	if (asserted & ATTN_NIG_FOR_FUNC) { | 
 | 		REG_WR(bp, nig_int_mask_addr, nig_mask); | 
 | 		bnx2x_release_phy_lock(bp); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void bnx2x_fan_failure(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 ext_phy_config; | 
 | 	/* mark the failure */ | 
 | 	ext_phy_config = | 
 | 		SHMEM_RD(bp, | 
 | 			 dev_info.port_hw_config[port].external_phy_config); | 
 |  | 
 | 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; | 
 | 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; | 
 | 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, | 
 | 		 ext_phy_config); | 
 |  | 
 | 	/* log the failure */ | 
 | 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" | 
 | 			    "Please contact OEM Support for assistance\n"); | 
 |  | 
 | 	/* | 
 | 	 * Scheudle device reset (unload) | 
 | 	 * This is due to some boards consuming sufficient power when driver is | 
 | 	 * up to overheat if fan fails. | 
 | 	 */ | 
 | 	smp_mb__before_clear_bit(); | 
 | 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); | 
 | 	smp_mb__after_clear_bit(); | 
 | 	schedule_delayed_work(&bp->sp_rtnl_task, 0); | 
 |  | 
 | } | 
 |  | 
 | static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int reg_offset; | 
 | 	u32 val; | 
 |  | 
 | 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
 | 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
 |  | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { | 
 |  | 
 | 		val = REG_RD(bp, reg_offset); | 
 | 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; | 
 | 		REG_WR(bp, reg_offset, val); | 
 |  | 
 | 		BNX2X_ERR("SPIO5 hw attention\n"); | 
 |  | 
 | 		/* Fan failure attention */ | 
 | 		bnx2x_hw_reset_phy(&bp->link_params); | 
 | 		bnx2x_fan_failure(bp); | 
 | 	} | 
 |  | 
 | 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { | 
 | 		bnx2x_acquire_phy_lock(bp); | 
 | 		bnx2x_handle_module_detect_int(&bp->link_params); | 
 | 		bnx2x_release_phy_lock(bp); | 
 | 	} | 
 |  | 
 | 	if (attn & HW_INTERRUT_ASSERT_SET_0) { | 
 |  | 
 | 		val = REG_RD(bp, reg_offset); | 
 | 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); | 
 | 		REG_WR(bp, reg_offset, val); | 
 |  | 
 | 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n", | 
 | 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); | 
 | 		bnx2x_panic(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { | 
 |  | 
 | 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); | 
 | 		BNX2X_ERR("DB hw attention 0x%x\n", val); | 
 | 		/* DORQ discard attention */ | 
 | 		if (val & 0x2) | 
 | 			BNX2X_ERR("FATAL error from DORQ\n"); | 
 | 	} | 
 |  | 
 | 	if (attn & HW_INTERRUT_ASSERT_SET_1) { | 
 |  | 
 | 		int port = BP_PORT(bp); | 
 | 		int reg_offset; | 
 |  | 
 | 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : | 
 | 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); | 
 |  | 
 | 		val = REG_RD(bp, reg_offset); | 
 | 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); | 
 | 		REG_WR(bp, reg_offset, val); | 
 |  | 
 | 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n", | 
 | 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); | 
 | 		bnx2x_panic(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { | 
 |  | 
 | 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); | 
 | 		BNX2X_ERR("CFC hw attention 0x%x\n", val); | 
 | 		/* CFC error attention */ | 
 | 		if (val & 0x2) | 
 | 			BNX2X_ERR("FATAL error from CFC\n"); | 
 | 	} | 
 |  | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { | 
 | 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); | 
 | 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val); | 
 | 		/* RQ_USDMDP_FIFO_OVERFLOW */ | 
 | 		if (val & 0x18000) | 
 | 			BNX2X_ERR("FATAL error from PXP\n"); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); | 
 | 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (attn & HW_INTERRUT_ASSERT_SET_2) { | 
 |  | 
 | 		int port = BP_PORT(bp); | 
 | 		int reg_offset; | 
 |  | 
 | 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : | 
 | 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); | 
 |  | 
 | 		val = REG_RD(bp, reg_offset); | 
 | 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); | 
 | 		REG_WR(bp, reg_offset, val); | 
 |  | 
 | 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n", | 
 | 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); | 
 | 		bnx2x_panic(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { | 
 |  | 
 | 		if (attn & BNX2X_PMF_LINK_ASSERT) { | 
 | 			int func = BP_FUNC(bp); | 
 |  | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
 | 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, | 
 | 					func_mf_config[BP_ABS_FUNC(bp)].config); | 
 | 			val = SHMEM_RD(bp, | 
 | 				       func_mb[BP_FW_MB_IDX(bp)].drv_status); | 
 | 			if (val & DRV_STATUS_DCC_EVENT_MASK) | 
 | 				bnx2x_dcc_event(bp, | 
 | 					    (val & DRV_STATUS_DCC_EVENT_MASK)); | 
 |  | 
 | 			if (val & DRV_STATUS_SET_MF_BW) | 
 | 				bnx2x_set_mf_bw(bp); | 
 |  | 
 | 			if (val & DRV_STATUS_DRV_INFO_REQ) | 
 | 				bnx2x_handle_drv_info_req(bp); | 
 | 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) | 
 | 				bnx2x_pmf_update(bp); | 
 |  | 
 | 			if (bp->port.pmf && | 
 | 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && | 
 | 				bp->dcbx_enabled > 0) | 
 | 				/* start dcbx state machine */ | 
 | 				bnx2x_dcbx_set_params(bp, | 
 | 					BNX2X_DCBX_STATE_NEG_RECEIVED); | 
 | 			if (bp->link_vars.periodic_flags & | 
 | 			    PERIODIC_FLAGS_LINK_EVENT) { | 
 | 				/*  sync with link */ | 
 | 				bnx2x_acquire_phy_lock(bp); | 
 | 				bp->link_vars.periodic_flags &= | 
 | 					~PERIODIC_FLAGS_LINK_EVENT; | 
 | 				bnx2x_release_phy_lock(bp); | 
 | 				if (IS_MF(bp)) | 
 | 					bnx2x_link_sync_notify(bp); | 
 | 				bnx2x_link_report(bp); | 
 | 			} | 
 | 			/* Always call it here: bnx2x_link_report() will | 
 | 			 * prevent the link indication duplication. | 
 | 			 */ | 
 | 			bnx2x__link_status_update(bp); | 
 | 		} else if (attn & BNX2X_MC_ASSERT_BITS) { | 
 |  | 
 | 			BNX2X_ERR("MC assert!\n"); | 
 | 			bnx2x_mc_assert(bp); | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); | 
 | 			bnx2x_panic(); | 
 |  | 
 | 		} else if (attn & BNX2X_MCP_ASSERT) { | 
 |  | 
 | 			BNX2X_ERR("MCP assert!\n"); | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); | 
 | 			bnx2x_fw_dump(bp); | 
 |  | 
 | 		} else | 
 | 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); | 
 | 	} | 
 |  | 
 | 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { | 
 | 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); | 
 | 		if (attn & BNX2X_GRC_TIMEOUT) { | 
 | 			val = CHIP_IS_E1(bp) ? 0 : | 
 | 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); | 
 | 			BNX2X_ERR("GRC time-out 0x%08x\n", val); | 
 | 		} | 
 | 		if (attn & BNX2X_GRC_RSV) { | 
 | 			val = CHIP_IS_E1(bp) ? 0 : | 
 | 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN); | 
 | 			BNX2X_ERR("GRC reserved 0x%08x\n", val); | 
 | 		} | 
 | 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Bits map: | 
 |  * 0-7   - Engine0 load counter. | 
 |  * 8-15  - Engine1 load counter. | 
 |  * 16    - Engine0 RESET_IN_PROGRESS bit. | 
 |  * 17    - Engine1 RESET_IN_PROGRESS bit. | 
 |  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function | 
 |  *         on the engine | 
 |  * 19    - Engine1 ONE_IS_LOADED. | 
 |  * 20    - Chip reset flow bit. When set none-leader must wait for both engines | 
 |  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for | 
 |  *         just the one belonging to its engine). | 
 |  * | 
 |  */ | 
 | #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1 | 
 |  | 
 | #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff | 
 | #define BNX2X_PATH0_LOAD_CNT_SHIFT	0 | 
 | #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00 | 
 | #define BNX2X_PATH1_LOAD_CNT_SHIFT	8 | 
 | #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000 | 
 | #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000 | 
 | #define BNX2X_GLOBAL_RESET_BIT		0x00040000 | 
 |  | 
 | /* | 
 |  * Set the GLOBAL_RESET bit. | 
 |  * | 
 |  * Should be run under rtnl lock | 
 |  */ | 
 | void bnx2x_set_reset_global(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the GLOBAL_RESET bit. | 
 |  * | 
 |  * Should be run under rtnl lock | 
 |  */ | 
 | static inline void bnx2x_clear_reset_global(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | /* | 
 |  * Checks the GLOBAL_RESET bit. | 
 |  * | 
 |  * should be run under rtnl lock | 
 |  */ | 
 | static inline bool bnx2x_reset_is_global(struct bnx2x *bp) | 
 | { | 
 | 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); | 
 | 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear RESET_IN_PROGRESS bit for the current engine. | 
 |  * | 
 |  * Should be run under rtnl lock | 
 |  */ | 
 | static inline void bnx2x_set_reset_done(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	u32 bit = BP_PATH(bp) ? | 
 | 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 |  | 
 | 	/* Clear the bit */ | 
 | 	val &= ~bit; | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
 |  | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | /* | 
 |  * Set RESET_IN_PROGRESS for the current engine. | 
 |  * | 
 |  * should be run under rtnl lock | 
 |  */ | 
 | void bnx2x_set_reset_in_progress(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	u32 bit = BP_PATH(bp) ? | 
 | 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 |  | 
 | 	/* Set the bit */ | 
 | 	val |= bit; | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | /* | 
 |  * Checks the RESET_IN_PROGRESS bit for the given engine. | 
 |  * should be run under rtnl lock | 
 |  */ | 
 | bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) | 
 | { | 
 | 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 | 	u32 bit = engine ? | 
 | 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
 |  | 
 | 	/* return false if bit is set */ | 
 | 	return (val & bit) ? false : true; | 
 | } | 
 |  | 
 | /* | 
 |  * set pf load for the current pf. | 
 |  * | 
 |  * should be run under rtnl lock | 
 |  */ | 
 | void bnx2x_set_pf_load(struct bnx2x *bp) | 
 | { | 
 | 	u32 val1, val; | 
 | 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : | 
 | 			     BNX2X_PATH0_LOAD_CNT_MASK; | 
 | 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
 | 			     BNX2X_PATH0_LOAD_CNT_SHIFT; | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); | 
 |  | 
 | 	/* get the current counter value */ | 
 | 	val1 = (val & mask) >> shift; | 
 |  | 
 | 	/* set bit of that PF */ | 
 | 	val1 |= (1 << bp->pf_num); | 
 |  | 
 | 	/* clear the old value */ | 
 | 	val &= ~mask; | 
 |  | 
 | 	/* set the new one */ | 
 | 	val |= ((val1 << shift) & mask); | 
 |  | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_clear_pf_load - clear pf load mark | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * | 
 |  * Should be run under rtnl lock. | 
 |  * Decrements the load counter for the current engine. Returns | 
 |  * whether other functions are still loaded | 
 |  */ | 
 | bool bnx2x_clear_pf_load(struct bnx2x *bp) | 
 | { | 
 | 	u32 val1, val; | 
 | 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : | 
 | 			     BNX2X_PATH0_LOAD_CNT_MASK; | 
 | 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
 | 			     BNX2X_PATH0_LOAD_CNT_SHIFT; | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 | 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); | 
 |  | 
 | 	/* get the current counter value */ | 
 | 	val1 = (val & mask) >> shift; | 
 |  | 
 | 	/* clear bit of that PF */ | 
 | 	val1 &= ~(1 << bp->pf_num); | 
 |  | 
 | 	/* clear the old value */ | 
 | 	val &= ~mask; | 
 |  | 
 | 	/* set the new one */ | 
 | 	val |= ((val1 << shift) & mask); | 
 |  | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	return val1 != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the load status for the current engine. | 
 |  * | 
 |  * should be run under rtnl lock | 
 |  */ | 
 | static inline bool bnx2x_get_load_status(struct bnx2x *bp, int engine) | 
 | { | 
 | 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : | 
 | 			     BNX2X_PATH0_LOAD_CNT_MASK); | 
 | 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
 | 			     BNX2X_PATH0_LOAD_CNT_SHIFT); | 
 | 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); | 
 |  | 
 | 	val = (val & mask) >> shift; | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", | 
 | 	   engine, val); | 
 |  | 
 | 	return val != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reset the load status for the current engine. | 
 |  */ | 
 | static inline void bnx2x_clear_load_status(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 | 	u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : | 
 | 		    BNX2X_PATH0_LOAD_CNT_MASK); | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
 | 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask)); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
 | } | 
 |  | 
 | static inline void _print_next_block(int idx, const char *blk) | 
 | { | 
 | 	pr_cont("%s%s", idx ? ", " : "", blk); | 
 | } | 
 |  | 
 | static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num, | 
 | 						  bool print) | 
 | { | 
 | 	int i = 0; | 
 | 	u32 cur_bit = 0; | 
 | 	for (i = 0; sig; i++) { | 
 | 		cur_bit = ((u32)0x1 << i); | 
 | 		if (sig & cur_bit) { | 
 | 			switch (cur_bit) { | 
 | 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "BRB"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "PARSER"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "TSDM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "SEARCHER"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "TCM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "TSEMI"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "XPB"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Clear the bit */ | 
 | 			sig &= ~cur_bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return par_num; | 
 | } | 
 |  | 
 | static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num, | 
 | 						  bool *global, bool print) | 
 | { | 
 | 	int i = 0; | 
 | 	u32 cur_bit = 0; | 
 | 	for (i = 0; sig; i++) { | 
 | 		cur_bit = ((u32)0x1 << i); | 
 | 		if (sig & cur_bit) { | 
 | 			switch (cur_bit) { | 
 | 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "PBF"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "QM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "TM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "XSDM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "XCM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "XSEMI"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "DOORBELLQ"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "NIG"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "VAUX PCI CORE"); | 
 | 				*global = true; | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "DEBUG"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "USDM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "UCM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "USEMI"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "UPB"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "CSDM"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "CCM"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Clear the bit */ | 
 | 			sig &= ~cur_bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return par_num; | 
 | } | 
 |  | 
 | static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num, | 
 | 						  bool print) | 
 | { | 
 | 	int i = 0; | 
 | 	u32 cur_bit = 0; | 
 | 	for (i = 0; sig; i++) { | 
 | 		cur_bit = ((u32)0x1 << i); | 
 | 		if (sig & cur_bit) { | 
 | 			switch (cur_bit) { | 
 | 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "CSEMI"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "PXP"); | 
 | 				break; | 
 | 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 					"PXPPCICLOCKCLIENT"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "CFC"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "CDU"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "DMAE"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "IGU"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "MISC"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Clear the bit */ | 
 | 			sig &= ~cur_bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return par_num; | 
 | } | 
 |  | 
 | static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num, | 
 | 						  bool *global, bool print) | 
 | { | 
 | 	int i = 0; | 
 | 	u32 cur_bit = 0; | 
 | 	for (i = 0; sig; i++) { | 
 | 		cur_bit = ((u32)0x1 << i); | 
 | 		if (sig & cur_bit) { | 
 | 			switch (cur_bit) { | 
 | 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "MCP ROM"); | 
 | 				*global = true; | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "MCP UMP RX"); | 
 | 				*global = true; | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "MCP UMP TX"); | 
 | 				*global = true; | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, | 
 | 							  "MCP SCPAD"); | 
 | 				*global = true; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Clear the bit */ | 
 | 			sig &= ~cur_bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return par_num; | 
 | } | 
 |  | 
 | static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num, | 
 | 						  bool print) | 
 | { | 
 | 	int i = 0; | 
 | 	u32 cur_bit = 0; | 
 | 	for (i = 0; sig; i++) { | 
 | 		cur_bit = ((u32)0x1 << i); | 
 | 		if (sig & cur_bit) { | 
 | 			switch (cur_bit) { | 
 | 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "PGLUE_B"); | 
 | 				break; | 
 | 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: | 
 | 				if (print) | 
 | 					_print_next_block(par_num++, "ATC"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* Clear the bit */ | 
 | 			sig &= ~cur_bit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return par_num; | 
 | } | 
 |  | 
 | static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, | 
 | 				     u32 *sig) | 
 | { | 
 | 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) || | 
 | 	    (sig[1] & HW_PRTY_ASSERT_SET_1) || | 
 | 	    (sig[2] & HW_PRTY_ASSERT_SET_2) || | 
 | 	    (sig[3] & HW_PRTY_ASSERT_SET_3) || | 
 | 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) { | 
 | 		int par_num = 0; | 
 | 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" | 
 | 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", | 
 | 			  sig[0] & HW_PRTY_ASSERT_SET_0, | 
 | 			  sig[1] & HW_PRTY_ASSERT_SET_1, | 
 | 			  sig[2] & HW_PRTY_ASSERT_SET_2, | 
 | 			  sig[3] & HW_PRTY_ASSERT_SET_3, | 
 | 			  sig[4] & HW_PRTY_ASSERT_SET_4); | 
 | 		if (print) | 
 | 			netdev_err(bp->dev, | 
 | 				   "Parity errors detected in blocks: "); | 
 | 		par_num = bnx2x_check_blocks_with_parity0( | 
 | 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); | 
 | 		par_num = bnx2x_check_blocks_with_parity1( | 
 | 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); | 
 | 		par_num = bnx2x_check_blocks_with_parity2( | 
 | 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); | 
 | 		par_num = bnx2x_check_blocks_with_parity3( | 
 | 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); | 
 | 		par_num = bnx2x_check_blocks_with_parity4( | 
 | 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); | 
 |  | 
 | 		if (print) | 
 | 			pr_cont("\n"); | 
 |  | 
 | 		return true; | 
 | 	} else | 
 | 		return false; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_chk_parity_attn - checks for parity attentions. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @global:	true if there was a global attention | 
 |  * @print:	show parity attention in syslog | 
 |  */ | 
 | bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) | 
 | { | 
 | 	struct attn_route attn = { {0} }; | 
 | 	int port = BP_PORT(bp); | 
 |  | 
 | 	attn.sig[0] = REG_RD(bp, | 
 | 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + | 
 | 			     port*4); | 
 | 	attn.sig[1] = REG_RD(bp, | 
 | 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + | 
 | 			     port*4); | 
 | 	attn.sig[2] = REG_RD(bp, | 
 | 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + | 
 | 			     port*4); | 
 | 	attn.sig[3] = REG_RD(bp, | 
 | 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + | 
 | 			     port*4); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		attn.sig[4] = REG_RD(bp, | 
 | 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + | 
 | 				     port*4); | 
 |  | 
 | 	return bnx2x_parity_attn(bp, global, print, attn.sig); | 
 | } | 
 |  | 
 |  | 
 | static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) | 
 | { | 
 | 	u32 val; | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { | 
 |  | 
 | 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); | 
 | 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); | 
 | 		if (val & | 
 | 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); | 
 | 		if (val & | 
 | 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); | 
 | 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) | 
 | 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); | 
 | 	} | 
 | 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { | 
 | 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); | 
 | 		BNX2X_ERR("ATC hw attention 0x%x\n", val); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); | 
 | 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) | 
 | 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); | 
 | 	} | 
 |  | 
 | 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | | 
 | 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { | 
 | 		BNX2X_ERR("FATAL parity attention set4 0x%x\n", | 
 | 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | | 
 | 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) | 
 | { | 
 | 	struct attn_route attn, *group_mask; | 
 | 	int port = BP_PORT(bp); | 
 | 	int index; | 
 | 	u32 reg_addr; | 
 | 	u32 val; | 
 | 	u32 aeu_mask; | 
 | 	bool global = false; | 
 |  | 
 | 	/* need to take HW lock because MCP or other port might also | 
 | 	   try to handle this event */ | 
 | 	bnx2x_acquire_alr(bp); | 
 |  | 
 | 	if (bnx2x_chk_parity_attn(bp, &global, true)) { | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | 		bp->recovery_state = BNX2X_RECOVERY_INIT; | 
 | 		schedule_delayed_work(&bp->sp_rtnl_task, 0); | 
 | 		/* Disable HW interrupts */ | 
 | 		bnx2x_int_disable(bp); | 
 | 		/* In case of parity errors don't handle attentions so that | 
 | 		 * other function would "see" parity errors. | 
 | 		 */ | 
 | #else | 
 | 		bnx2x_panic(); | 
 | #endif | 
 | 		bnx2x_release_alr(bp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); | 
 | 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); | 
 | 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); | 
 | 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		attn.sig[4] = | 
 | 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); | 
 | 	else | 
 | 		attn.sig[4] = 0; | 
 |  | 
 | 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", | 
 | 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); | 
 |  | 
 | 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { | 
 | 		if (deasserted & (1 << index)) { | 
 | 			group_mask = &bp->attn_group[index]; | 
 |  | 
 | 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", | 
 | 			   index, | 
 | 			   group_mask->sig[0], group_mask->sig[1], | 
 | 			   group_mask->sig[2], group_mask->sig[3], | 
 | 			   group_mask->sig[4]); | 
 |  | 
 | 			bnx2x_attn_int_deasserted4(bp, | 
 | 					attn.sig[4] & group_mask->sig[4]); | 
 | 			bnx2x_attn_int_deasserted3(bp, | 
 | 					attn.sig[3] & group_mask->sig[3]); | 
 | 			bnx2x_attn_int_deasserted1(bp, | 
 | 					attn.sig[1] & group_mask->sig[1]); | 
 | 			bnx2x_attn_int_deasserted2(bp, | 
 | 					attn.sig[2] & group_mask->sig[2]); | 
 | 			bnx2x_attn_int_deasserted0(bp, | 
 | 					attn.sig[0] & group_mask->sig[0]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2x_release_alr(bp); | 
 |  | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) | 
 | 		reg_addr = (HC_REG_COMMAND_REG + port*32 + | 
 | 			    COMMAND_REG_ATTN_BITS_CLR); | 
 | 	else | 
 | 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); | 
 |  | 
 | 	val = ~deasserted; | 
 | 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, | 
 | 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); | 
 | 	REG_WR(bp, reg_addr, val); | 
 |  | 
 | 	if (~bp->attn_state & deasserted) | 
 | 		BNX2X_ERR("IGU ERROR\n"); | 
 |  | 
 | 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
 | 			  MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
 | 	aeu_mask = REG_RD(bp, reg_addr); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n", | 
 | 	   aeu_mask, deasserted); | 
 | 	aeu_mask |= (deasserted & 0x3ff); | 
 | 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); | 
 |  | 
 | 	REG_WR(bp, reg_addr, aeu_mask); | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); | 
 | 	bp->attn_state &= ~deasserted; | 
 | 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); | 
 | } | 
 |  | 
 | static void bnx2x_attn_int(struct bnx2x *bp) | 
 | { | 
 | 	/* read local copy of bits */ | 
 | 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. | 
 | 								attn_bits); | 
 | 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. | 
 | 								attn_bits_ack); | 
 | 	u32 attn_state = bp->attn_state; | 
 |  | 
 | 	/* look for changed bits */ | 
 | 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state; | 
 | 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state; | 
 |  | 
 | 	DP(NETIF_MSG_HW, | 
 | 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n", | 
 | 	   attn_bits, attn_ack, asserted, deasserted); | 
 |  | 
 | 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) | 
 | 		BNX2X_ERR("BAD attention state\n"); | 
 |  | 
 | 	/* handle bits that were raised */ | 
 | 	if (asserted) | 
 | 		bnx2x_attn_int_asserted(bp, asserted); | 
 |  | 
 | 	if (deasserted) | 
 | 		bnx2x_attn_int_deasserted(bp, deasserted); | 
 | } | 
 |  | 
 | void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, | 
 | 		      u16 index, u8 op, u8 update) | 
 | { | 
 | 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; | 
 |  | 
 | 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, | 
 | 			     igu_addr); | 
 | } | 
 |  | 
 | static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) | 
 | { | 
 | 	/* No memory barriers */ | 
 | 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); | 
 | 	mmiowb(); /* keep prod updates ordered */ | 
 | } | 
 |  | 
 | #ifdef BCM_CNIC | 
 | static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, | 
 | 				      union event_ring_elem *elem) | 
 | { | 
 | 	u8 err = elem->message.error; | 
 |  | 
 | 	if (!bp->cnic_eth_dev.starting_cid  || | 
 | 	    (cid < bp->cnic_eth_dev.starting_cid && | 
 | 	    cid != bp->cnic_eth_dev.iscsi_l2_cid)) | 
 | 		return 1; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); | 
 |  | 
 | 	if (unlikely(err)) { | 
 |  | 
 | 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", | 
 | 			  cid); | 
 | 		bnx2x_panic_dump(bp); | 
 | 	} | 
 | 	bnx2x_cnic_cfc_comp(bp, cid, err); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_mcast_ramrod_params rparam; | 
 | 	int rc; | 
 |  | 
 | 	memset(&rparam, 0, sizeof(rparam)); | 
 |  | 
 | 	rparam.mcast_obj = &bp->mcast_obj; | 
 |  | 
 | 	netif_addr_lock_bh(bp->dev); | 
 |  | 
 | 	/* Clear pending state for the last command */ | 
 | 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); | 
 |  | 
 | 	/* If there are pending mcast commands - send them */ | 
 | 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { | 
 | 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); | 
 | 		if (rc < 0) | 
 | 			BNX2X_ERR("Failed to send pending mcast commands: %d\n", | 
 | 				  rc); | 
 | 	} | 
 |  | 
 | 	netif_addr_unlock_bh(bp->dev); | 
 | } | 
 |  | 
 | static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp, | 
 | 						   union event_ring_elem *elem) | 
 | { | 
 | 	unsigned long ramrod_flags = 0; | 
 | 	int rc = 0; | 
 | 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; | 
 | 	struct bnx2x_vlan_mac_obj *vlan_mac_obj; | 
 |  | 
 | 	/* Always push next commands out, don't wait here */ | 
 | 	__set_bit(RAMROD_CONT, &ramrod_flags); | 
 |  | 
 | 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) { | 
 | 	case BNX2X_FILTER_MAC_PENDING: | 
 | 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); | 
 | #ifdef BCM_CNIC | 
 | 		if (cid == BNX2X_ISCSI_ETH_CID) | 
 | 			vlan_mac_obj = &bp->iscsi_l2_mac_obj; | 
 | 		else | 
 | #endif | 
 | 			vlan_mac_obj = &bp->fp[cid].mac_obj; | 
 |  | 
 | 		break; | 
 | 	case BNX2X_FILTER_MCAST_PENDING: | 
 | 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); | 
 | 		/* This is only relevant for 57710 where multicast MACs are | 
 | 		 * configured as unicast MACs using the same ramrod. | 
 | 		 */ | 
 | 		bnx2x_handle_mcast_eqe(bp); | 
 | 		return; | 
 | 	default: | 
 | 		BNX2X_ERR("Unsupported classification command: %d\n", | 
 | 			  elem->message.data.eth_event.echo); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); | 
 |  | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc); | 
 | 	else if (rc > 0) | 
 | 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); | 
 |  | 
 | } | 
 |  | 
 | #ifdef BCM_CNIC | 
 | static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); | 
 | #endif | 
 |  | 
 | static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) | 
 | { | 
 | 	netif_addr_lock_bh(bp->dev); | 
 |  | 
 | 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); | 
 |  | 
 | 	/* Send rx_mode command again if was requested */ | 
 | 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) | 
 | 		bnx2x_set_storm_rx_mode(bp); | 
 | #ifdef BCM_CNIC | 
 | 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, | 
 | 				    &bp->sp_state)) | 
 | 		bnx2x_set_iscsi_eth_rx_mode(bp, true); | 
 | 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, | 
 | 				    &bp->sp_state)) | 
 | 		bnx2x_set_iscsi_eth_rx_mode(bp, false); | 
 | #endif | 
 |  | 
 | 	netif_addr_unlock_bh(bp->dev); | 
 | } | 
 |  | 
 | static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( | 
 | 	struct bnx2x *bp, u32 cid) | 
 | { | 
 | 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); | 
 | #ifdef BCM_CNIC | 
 | 	if (cid == BNX2X_FCOE_ETH_CID) | 
 | 		return &bnx2x_fcoe(bp, q_obj); | 
 | 	else | 
 | #endif | 
 | 		return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj); | 
 | } | 
 |  | 
 | static void bnx2x_eq_int(struct bnx2x *bp) | 
 | { | 
 | 	u16 hw_cons, sw_cons, sw_prod; | 
 | 	union event_ring_elem *elem; | 
 | 	u32 cid; | 
 | 	u8 opcode; | 
 | 	int spqe_cnt = 0; | 
 | 	struct bnx2x_queue_sp_obj *q_obj; | 
 | 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; | 
 | 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; | 
 |  | 
 | 	hw_cons = le16_to_cpu(*bp->eq_cons_sb); | 
 |  | 
 | 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. | 
 | 	 * when we get the the next-page we nned to adjust so the loop | 
 | 	 * condition below will be met. The next element is the size of a | 
 | 	 * regular element and hence incrementing by 1 | 
 | 	 */ | 
 | 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) | 
 | 		hw_cons++; | 
 |  | 
 | 	/* This function may never run in parallel with itself for a | 
 | 	 * specific bp, thus there is no need in "paired" read memory | 
 | 	 * barrier here. | 
 | 	 */ | 
 | 	sw_cons = bp->eq_cons; | 
 | 	sw_prod = bp->eq_prod; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n", | 
 | 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); | 
 |  | 
 | 	for (; sw_cons != hw_cons; | 
 | 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { | 
 |  | 
 |  | 
 | 		elem = &bp->eq_ring[EQ_DESC(sw_cons)]; | 
 |  | 
 | 		cid = SW_CID(elem->message.data.cfc_del_event.cid); | 
 | 		opcode = elem->message.opcode; | 
 |  | 
 |  | 
 | 		/* handle eq element */ | 
 | 		switch (opcode) { | 
 | 		case EVENT_RING_OPCODE_STAT_QUERY: | 
 | 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, | 
 | 			   "got statistics comp event %d\n", | 
 | 			   bp->stats_comp++); | 
 | 			/* nothing to do with stats comp */ | 
 | 			goto next_spqe; | 
 |  | 
 | 		case EVENT_RING_OPCODE_CFC_DEL: | 
 | 			/* handle according to cid range */ | 
 | 			/* | 
 | 			 * we may want to verify here that the bp state is | 
 | 			 * HALTING | 
 | 			 */ | 
 | 			DP(BNX2X_MSG_SP, | 
 | 			   "got delete ramrod for MULTI[%d]\n", cid); | 
 | #ifdef BCM_CNIC | 
 | 			if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem)) | 
 | 				goto next_spqe; | 
 | #endif | 
 | 			q_obj = bnx2x_cid_to_q_obj(bp, cid); | 
 |  | 
 | 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) | 
 | 				break; | 
 |  | 
 |  | 
 |  | 
 | 			goto next_spqe; | 
 |  | 
 | 		case EVENT_RING_OPCODE_STOP_TRAFFIC: | 
 | 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); | 
 | 			if (f_obj->complete_cmd(bp, f_obj, | 
 | 						BNX2X_F_CMD_TX_STOP)) | 
 | 				break; | 
 | 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); | 
 | 			goto next_spqe; | 
 |  | 
 | 		case EVENT_RING_OPCODE_START_TRAFFIC: | 
 | 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); | 
 | 			if (f_obj->complete_cmd(bp, f_obj, | 
 | 						BNX2X_F_CMD_TX_START)) | 
 | 				break; | 
 | 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); | 
 | 			goto next_spqe; | 
 | 		case EVENT_RING_OPCODE_FUNCTION_START: | 
 | 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
 | 			   "got FUNC_START ramrod\n"); | 
 | 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) | 
 | 				break; | 
 |  | 
 | 			goto next_spqe; | 
 |  | 
 | 		case EVENT_RING_OPCODE_FUNCTION_STOP: | 
 | 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
 | 			   "got FUNC_STOP ramrod\n"); | 
 | 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) | 
 | 				break; | 
 |  | 
 | 			goto next_spqe; | 
 | 		} | 
 |  | 
 | 		switch (opcode | bp->state) { | 
 | 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | | 
 | 		      BNX2X_STATE_OPEN): | 
 | 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | | 
 | 		      BNX2X_STATE_OPENING_WAIT4_PORT): | 
 | 			cid = elem->message.data.eth_event.echo & | 
 | 				BNX2X_SWCID_MASK; | 
 | 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", | 
 | 			   cid); | 
 | 			rss_raw->clear_pending(rss_raw); | 
 | 			break; | 
 |  | 
 | 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): | 
 | 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): | 
 | 		case (EVENT_RING_OPCODE_SET_MAC | | 
 | 		      BNX2X_STATE_CLOSING_WAIT4_HALT): | 
 | 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
 | 		      BNX2X_STATE_OPEN): | 
 | 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
 | 		      BNX2X_STATE_DIAG): | 
 | 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
 | 		      BNX2X_STATE_CLOSING_WAIT4_HALT): | 
 | 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); | 
 | 			bnx2x_handle_classification_eqe(bp, elem); | 
 | 			break; | 
 |  | 
 | 		case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
 | 		      BNX2X_STATE_OPEN): | 
 | 		case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
 | 		      BNX2X_STATE_DIAG): | 
 | 		case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
 | 		      BNX2X_STATE_CLOSING_WAIT4_HALT): | 
 | 			DP(BNX2X_MSG_SP, "got mcast ramrod\n"); | 
 | 			bnx2x_handle_mcast_eqe(bp); | 
 | 			break; | 
 |  | 
 | 		case (EVENT_RING_OPCODE_FILTERS_RULES | | 
 | 		      BNX2X_STATE_OPEN): | 
 | 		case (EVENT_RING_OPCODE_FILTERS_RULES | | 
 | 		      BNX2X_STATE_DIAG): | 
 | 		case (EVENT_RING_OPCODE_FILTERS_RULES | | 
 | 		      BNX2X_STATE_CLOSING_WAIT4_HALT): | 
 | 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); | 
 | 			bnx2x_handle_rx_mode_eqe(bp); | 
 | 			break; | 
 | 		default: | 
 | 			/* unknown event log error and continue */ | 
 | 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", | 
 | 				  elem->message.opcode, bp->state); | 
 | 		} | 
 | next_spqe: | 
 | 		spqe_cnt++; | 
 | 	} /* for */ | 
 |  | 
 | 	smp_mb__before_atomic_inc(); | 
 | 	atomic_add(spqe_cnt, &bp->eq_spq_left); | 
 |  | 
 | 	bp->eq_cons = sw_cons; | 
 | 	bp->eq_prod = sw_prod; | 
 | 	/* Make sure that above mem writes were issued towards the memory */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* update producer */ | 
 | 	bnx2x_update_eq_prod(bp, bp->eq_prod); | 
 | } | 
 |  | 
 | static void bnx2x_sp_task(struct work_struct *work) | 
 | { | 
 | 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); | 
 | 	u16 status; | 
 |  | 
 | 	status = bnx2x_update_dsb_idx(bp); | 
 | /*	if (status == 0)				     */ | 
 | /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */ | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status); | 
 |  | 
 | 	/* HW attentions */ | 
 | 	if (status & BNX2X_DEF_SB_ATT_IDX) { | 
 | 		bnx2x_attn_int(bp); | 
 | 		status &= ~BNX2X_DEF_SB_ATT_IDX; | 
 | 	} | 
 |  | 
 | 	/* SP events: STAT_QUERY and others */ | 
 | 	if (status & BNX2X_DEF_SB_IDX) { | 
 | #ifdef BCM_CNIC | 
 | 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); | 
 |  | 
 | 		if ((!NO_FCOE(bp)) && | 
 | 			(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
 | 			/* | 
 | 			 * Prevent local bottom-halves from running as | 
 | 			 * we are going to change the local NAPI list. | 
 | 			 */ | 
 | 			local_bh_disable(); | 
 | 			napi_schedule(&bnx2x_fcoe(bp, napi)); | 
 | 			local_bh_enable(); | 
 | 		} | 
 | #endif | 
 | 		/* Handle EQ completions */ | 
 | 		bnx2x_eq_int(bp); | 
 |  | 
 | 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, | 
 | 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); | 
 |  | 
 | 		status &= ~BNX2X_DEF_SB_IDX; | 
 | 	} | 
 |  | 
 | 	if (unlikely(status)) | 
 | 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n", | 
 | 		   status); | 
 |  | 
 | 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, | 
 | 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); | 
 | } | 
 |  | 
 | irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) | 
 | { | 
 | 	struct net_device *dev = dev_instance; | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, | 
 | 		     IGU_INT_DISABLE, 0); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return IRQ_HANDLED; | 
 | #endif | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	{ | 
 | 		struct cnic_ops *c_ops; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		c_ops = rcu_dereference(bp->cnic_ops); | 
 | 		if (c_ops) | 
 | 			c_ops->cnic_handler(bp->cnic_data, NULL); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | #endif | 
 | 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* end of slow path */ | 
 |  | 
 |  | 
 | void bnx2x_drv_pulse(struct bnx2x *bp) | 
 | { | 
 | 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, | 
 | 		 bp->fw_drv_pulse_wr_seq); | 
 | } | 
 |  | 
 |  | 
 | static void bnx2x_timer(unsigned long data) | 
 | { | 
 | 	struct bnx2x *bp = (struct bnx2x *) data; | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		return; | 
 |  | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		int mb_idx = BP_FW_MB_IDX(bp); | 
 | 		u32 drv_pulse; | 
 | 		u32 mcp_pulse; | 
 |  | 
 | 		++bp->fw_drv_pulse_wr_seq; | 
 | 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; | 
 | 		/* TBD - add SYSTEM_TIME */ | 
 | 		drv_pulse = bp->fw_drv_pulse_wr_seq; | 
 | 		bnx2x_drv_pulse(bp); | 
 |  | 
 | 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & | 
 | 			     MCP_PULSE_SEQ_MASK); | 
 | 		/* The delta between driver pulse and mcp response | 
 | 		 * should be 1 (before mcp response) or 0 (after mcp response) | 
 | 		 */ | 
 | 		if ((drv_pulse != mcp_pulse) && | 
 | 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { | 
 | 			/* someone lost a heartbeat... */ | 
 | 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n", | 
 | 				  drv_pulse, mcp_pulse); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bp->state == BNX2X_STATE_OPEN) | 
 | 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); | 
 |  | 
 | 	mod_timer(&bp->timer, jiffies + bp->current_interval); | 
 | } | 
 |  | 
 | /* end of Statistics */ | 
 |  | 
 | /* nic init */ | 
 |  | 
 | /* | 
 |  * nic init service functions | 
 |  */ | 
 |  | 
 | static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) | 
 | { | 
 | 	u32 i; | 
 | 	if (!(len%4) && !(addr%4)) | 
 | 		for (i = 0; i < len; i += 4) | 
 | 			REG_WR(bp, addr + i, fill); | 
 | 	else | 
 | 		for (i = 0; i < len; i++) | 
 | 			REG_WR8(bp, addr + i, fill); | 
 |  | 
 | } | 
 |  | 
 | /* helper: writes FP SP data to FW - data_size in dwords */ | 
 | static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp, | 
 | 				       int fw_sb_id, | 
 | 				       u32 *sb_data_p, | 
 | 				       u32 data_size) | 
 | { | 
 | 	int index; | 
 | 	for (index = 0; index < data_size; index++) | 
 | 		REG_WR(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + | 
 | 			sizeof(u32)*index, | 
 | 			*(sb_data_p + index)); | 
 | } | 
 |  | 
 | static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) | 
 | { | 
 | 	u32 *sb_data_p; | 
 | 	u32 data_size = 0; | 
 | 	struct hc_status_block_data_e2 sb_data_e2; | 
 | 	struct hc_status_block_data_e1x sb_data_e1x; | 
 |  | 
 | 	/* disable the function first */ | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); | 
 | 		sb_data_e2.common.state = SB_DISABLED; | 
 | 		sb_data_e2.common.p_func.vf_valid = false; | 
 | 		sb_data_p = (u32 *)&sb_data_e2; | 
 | 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); | 
 | 	} else { | 
 | 		memset(&sb_data_e1x, 0, | 
 | 		       sizeof(struct hc_status_block_data_e1x)); | 
 | 		sb_data_e1x.common.state = SB_DISABLED; | 
 | 		sb_data_e1x.common.p_func.vf_valid = false; | 
 | 		sb_data_p = (u32 *)&sb_data_e1x; | 
 | 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); | 
 | 	} | 
 | 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); | 
 |  | 
 | 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, | 
 | 			CSTORM_STATUS_BLOCK_SIZE); | 
 | 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, | 
 | 			CSTORM_SYNC_BLOCK_SIZE); | 
 | } | 
 |  | 
 | /* helper:  writes SP SB data to FW */ | 
 | static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp, | 
 | 		struct hc_sp_status_block_data *sp_sb_data) | 
 | { | 
 | 	int func = BP_FUNC(bp); | 
 | 	int i; | 
 | 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) | 
 | 		REG_WR(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + | 
 | 			i*sizeof(u32), | 
 | 			*((u32 *)sp_sb_data + i)); | 
 | } | 
 |  | 
 | static inline void bnx2x_zero_sp_sb(struct bnx2x *bp) | 
 | { | 
 | 	int func = BP_FUNC(bp); | 
 | 	struct hc_sp_status_block_data sp_sb_data; | 
 | 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); | 
 |  | 
 | 	sp_sb_data.state = SB_DISABLED; | 
 | 	sp_sb_data.p_func.vf_valid = false; | 
 |  | 
 | 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data); | 
 |  | 
 | 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, | 
 | 			CSTORM_SP_STATUS_BLOCK_SIZE); | 
 | 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
 | 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, | 
 | 			CSTORM_SP_SYNC_BLOCK_SIZE); | 
 |  | 
 | } | 
 |  | 
 |  | 
 | static inline | 
 | void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, | 
 | 					   int igu_sb_id, int igu_seg_id) | 
 | { | 
 | 	hc_sm->igu_sb_id = igu_sb_id; | 
 | 	hc_sm->igu_seg_id = igu_seg_id; | 
 | 	hc_sm->timer_value = 0xFF; | 
 | 	hc_sm->time_to_expire = 0xFFFFFFFF; | 
 | } | 
 |  | 
 |  | 
 | /* allocates state machine ids. */ | 
 | static inline | 
 | void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) | 
 | { | 
 | 	/* zero out state machine indices */ | 
 | 	/* rx indices */ | 
 | 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; | 
 |  | 
 | 	/* tx indices */ | 
 | 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; | 
 |  | 
 | 	/* map indices */ | 
 | 	/* rx indices */ | 
 | 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= | 
 | 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
 |  | 
 | 	/* tx indices */ | 
 | 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= | 
 | 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= | 
 | 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= | 
 | 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
 | 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= | 
 | 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
 | } | 
 |  | 
 | static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, | 
 | 			  u8 vf_valid, int fw_sb_id, int igu_sb_id) | 
 | { | 
 | 	int igu_seg_id; | 
 |  | 
 | 	struct hc_status_block_data_e2 sb_data_e2; | 
 | 	struct hc_status_block_data_e1x sb_data_e1x; | 
 | 	struct hc_status_block_sm  *hc_sm_p; | 
 | 	int data_size; | 
 | 	u32 *sb_data_p; | 
 |  | 
 | 	if (CHIP_INT_MODE_IS_BC(bp)) | 
 | 		igu_seg_id = HC_SEG_ACCESS_NORM; | 
 | 	else | 
 | 		igu_seg_id = IGU_SEG_ACCESS_NORM; | 
 |  | 
 | 	bnx2x_zero_fp_sb(bp, fw_sb_id); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); | 
 | 		sb_data_e2.common.state = SB_ENABLED; | 
 | 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); | 
 | 		sb_data_e2.common.p_func.vf_id = vfid; | 
 | 		sb_data_e2.common.p_func.vf_valid = vf_valid; | 
 | 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp); | 
 | 		sb_data_e2.common.same_igu_sb_1b = true; | 
 | 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); | 
 | 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); | 
 | 		hc_sm_p = sb_data_e2.common.state_machine; | 
 | 		sb_data_p = (u32 *)&sb_data_e2; | 
 | 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); | 
 | 		bnx2x_map_sb_state_machines(sb_data_e2.index_data); | 
 | 	} else { | 
 | 		memset(&sb_data_e1x, 0, | 
 | 		       sizeof(struct hc_status_block_data_e1x)); | 
 | 		sb_data_e1x.common.state = SB_ENABLED; | 
 | 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); | 
 | 		sb_data_e1x.common.p_func.vf_id = 0xff; | 
 | 		sb_data_e1x.common.p_func.vf_valid = false; | 
 | 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); | 
 | 		sb_data_e1x.common.same_igu_sb_1b = true; | 
 | 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); | 
 | 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); | 
 | 		hc_sm_p = sb_data_e1x.common.state_machine; | 
 | 		sb_data_p = (u32 *)&sb_data_e1x; | 
 | 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); | 
 | 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data); | 
 | 	} | 
 |  | 
 | 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], | 
 | 				       igu_sb_id, igu_seg_id); | 
 | 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], | 
 | 				       igu_sb_id, igu_seg_id); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); | 
 |  | 
 | 	/* write indecies to HW */ | 
 | 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); | 
 | } | 
 |  | 
 | static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, | 
 | 				     u16 tx_usec, u16 rx_usec) | 
 | { | 
 | 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, | 
 | 				    false, rx_usec); | 
 | 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
 | 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false, | 
 | 				       tx_usec); | 
 | 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
 | 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false, | 
 | 				       tx_usec); | 
 | 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
 | 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false, | 
 | 				       tx_usec); | 
 | } | 
 |  | 
 | static void bnx2x_init_def_sb(struct bnx2x *bp) | 
 | { | 
 | 	struct host_sp_status_block *def_sb = bp->def_status_blk; | 
 | 	dma_addr_t mapping = bp->def_status_blk_mapping; | 
 | 	int igu_sp_sb_index; | 
 | 	int igu_seg_id; | 
 | 	int port = BP_PORT(bp); | 
 | 	int func = BP_FUNC(bp); | 
 | 	int reg_offset, reg_offset_en5; | 
 | 	u64 section; | 
 | 	int index; | 
 | 	struct hc_sp_status_block_data sp_sb_data; | 
 | 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); | 
 |  | 
 | 	if (CHIP_INT_MODE_IS_BC(bp)) { | 
 | 		igu_sp_sb_index = DEF_SB_IGU_ID; | 
 | 		igu_seg_id = HC_SEG_ACCESS_DEF; | 
 | 	} else { | 
 | 		igu_sp_sb_index = bp->igu_dsb_id; | 
 | 		igu_seg_id = IGU_SEG_ACCESS_DEF; | 
 | 	} | 
 |  | 
 | 	/* ATTN */ | 
 | 	section = ((u64)mapping) + offsetof(struct host_sp_status_block, | 
 | 					    atten_status_block); | 
 | 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index; | 
 |  | 
 | 	bp->attn_state = 0; | 
 |  | 
 | 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
 | 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
 | 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : | 
 | 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); | 
 | 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { | 
 | 		int sindex; | 
 | 		/* take care of sig[0]..sig[4] */ | 
 | 		for (sindex = 0; sindex < 4; sindex++) | 
 | 			bp->attn_group[index].sig[sindex] = | 
 | 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) | 
 | 			/* | 
 | 			 * enable5 is separate from the rest of the registers, | 
 | 			 * and therefore the address skip is 4 | 
 | 			 * and not 16 between the different groups | 
 | 			 */ | 
 | 			bp->attn_group[index].sig[4] = REG_RD(bp, | 
 | 					reg_offset_en5 + 0x4*index); | 
 | 		else | 
 | 			bp->attn_group[index].sig[4] = 0; | 
 | 	} | 
 |  | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) { | 
 | 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : | 
 | 				     HC_REG_ATTN_MSG0_ADDR_L); | 
 |  | 
 | 		REG_WR(bp, reg_offset, U64_LO(section)); | 
 | 		REG_WR(bp, reg_offset + 4, U64_HI(section)); | 
 | 	} else if (!CHIP_IS_E1x(bp)) { | 
 | 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); | 
 | 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); | 
 | 	} | 
 |  | 
 | 	section = ((u64)mapping) + offsetof(struct host_sp_status_block, | 
 | 					    sp_sb); | 
 |  | 
 | 	bnx2x_zero_sp_sb(bp); | 
 |  | 
 | 	sp_sb_data.state		= SB_ENABLED; | 
 | 	sp_sb_data.host_sb_addr.lo	= U64_LO(section); | 
 | 	sp_sb_data.host_sb_addr.hi	= U64_HI(section); | 
 | 	sp_sb_data.igu_sb_id		= igu_sp_sb_index; | 
 | 	sp_sb_data.igu_seg_id		= igu_seg_id; | 
 | 	sp_sb_data.p_func.pf_id		= func; | 
 | 	sp_sb_data.p_func.vnic_id	= BP_VN(bp); | 
 | 	sp_sb_data.p_func.vf_id		= 0xff; | 
 |  | 
 | 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data); | 
 |  | 
 | 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); | 
 | } | 
 |  | 
 | void bnx2x_update_coalesce(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_eth_queue(bp, i) | 
 | 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, | 
 | 					 bp->tx_ticks, bp->rx_ticks); | 
 | } | 
 |  | 
 | static void bnx2x_init_sp_ring(struct bnx2x *bp) | 
 | { | 
 | 	spin_lock_init(&bp->spq_lock); | 
 | 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); | 
 |  | 
 | 	bp->spq_prod_idx = 0; | 
 | 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; | 
 | 	bp->spq_prod_bd = bp->spq; | 
 | 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; | 
 | } | 
 |  | 
 | static void bnx2x_init_eq_ring(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 | 	for (i = 1; i <= NUM_EQ_PAGES; i++) { | 
 | 		union event_ring_elem *elem = | 
 | 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; | 
 |  | 
 | 		elem->next_page.addr.hi = | 
 | 			cpu_to_le32(U64_HI(bp->eq_mapping + | 
 | 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); | 
 | 		elem->next_page.addr.lo = | 
 | 			cpu_to_le32(U64_LO(bp->eq_mapping + | 
 | 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); | 
 | 	} | 
 | 	bp->eq_cons = 0; | 
 | 	bp->eq_prod = NUM_EQ_DESC; | 
 | 	bp->eq_cons_sb = BNX2X_EQ_INDEX; | 
 | 	/* we want a warning message before it gets rought... */ | 
 | 	atomic_set(&bp->eq_spq_left, | 
 | 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); | 
 | } | 
 |  | 
 |  | 
 | /* called with netif_addr_lock_bh() */ | 
 | void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, | 
 | 			 unsigned long rx_mode_flags, | 
 | 			 unsigned long rx_accept_flags, | 
 | 			 unsigned long tx_accept_flags, | 
 | 			 unsigned long ramrod_flags) | 
 | { | 
 | 	struct bnx2x_rx_mode_ramrod_params ramrod_param; | 
 | 	int rc; | 
 |  | 
 | 	memset(&ramrod_param, 0, sizeof(ramrod_param)); | 
 |  | 
 | 	/* Prepare ramrod parameters */ | 
 | 	ramrod_param.cid = 0; | 
 | 	ramrod_param.cl_id = cl_id; | 
 | 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj; | 
 | 	ramrod_param.func_id = BP_FUNC(bp); | 
 |  | 
 | 	ramrod_param.pstate = &bp->sp_state; | 
 | 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; | 
 |  | 
 | 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); | 
 | 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); | 
 |  | 
 | 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); | 
 |  | 
 | 	ramrod_param.ramrod_flags = ramrod_flags; | 
 | 	ramrod_param.rx_mode_flags = rx_mode_flags; | 
 |  | 
 | 	ramrod_param.rx_accept_flags = rx_accept_flags; | 
 | 	ramrod_param.tx_accept_flags = tx_accept_flags; | 
 |  | 
 | 	rc = bnx2x_config_rx_mode(bp, &ramrod_param); | 
 | 	if (rc < 0) { | 
 | 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /* called with netif_addr_lock_bh() */ | 
 | void bnx2x_set_storm_rx_mode(struct bnx2x *bp) | 
 | { | 
 | 	unsigned long rx_mode_flags = 0, ramrod_flags = 0; | 
 | 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0; | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	if (!NO_FCOE(bp)) | 
 |  | 
 | 		/* Configure rx_mode of FCoE Queue */ | 
 | 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); | 
 | #endif | 
 |  | 
 | 	switch (bp->rx_mode) { | 
 | 	case BNX2X_RX_MODE_NONE: | 
 | 		/* | 
 | 		 * 'drop all' supersedes any accept flags that may have been | 
 | 		 * passed to the function. | 
 | 		 */ | 
 | 		break; | 
 | 	case BNX2X_RX_MODE_NORMAL: | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags); | 
 |  | 
 | 		/* internal switching mode */ | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags); | 
 |  | 
 | 		break; | 
 | 	case BNX2X_RX_MODE_ALLMULTI: | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags); | 
 |  | 
 | 		/* internal switching mode */ | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags); | 
 |  | 
 | 		break; | 
 | 	case BNX2X_RX_MODE_PROMISC: | 
 | 		/* According to deffinition of SI mode, iface in promisc mode | 
 | 		 * should receive matched and unmatched (in resolution of port) | 
 | 		 * unicast packets. | 
 | 		 */ | 
 | 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags); | 
 |  | 
 | 		/* internal switching mode */ | 
 | 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags); | 
 |  | 
 | 		if (IS_MF_SI(bp)) | 
 | 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags); | 
 | 		else | 
 | 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags); | 
 |  | 
 | 		break; | 
 | 	default: | 
 | 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) { | 
 | 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags); | 
 | 	} | 
 |  | 
 | 	__set_bit(RAMROD_RX, &ramrod_flags); | 
 | 	__set_bit(RAMROD_TX, &ramrod_flags); | 
 |  | 
 | 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags, | 
 | 			    tx_accept_flags, ramrod_flags); | 
 | } | 
 |  | 
 | static void bnx2x_init_internal_common(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (IS_MF_SI(bp)) | 
 | 		/* | 
 | 		 * In switch independent mode, the TSTORM needs to accept | 
 | 		 * packets that failed classification, since approximate match | 
 | 		 * mac addresses aren't written to NIG LLH | 
 | 		 */ | 
 | 		REG_WR8(bp, BAR_TSTRORM_INTMEM + | 
 | 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); | 
 | 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ | 
 | 		REG_WR8(bp, BAR_TSTRORM_INTMEM + | 
 | 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); | 
 |  | 
 | 	/* Zero this manually as its initialization is | 
 | 	   currently missing in the initTool */ | 
 | 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) | 
 | 		REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 		       USTORM_AGG_DATA_OFFSET + i * 4, 0); | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, | 
 | 			CHIP_INT_MODE_IS_BC(bp) ? | 
 | 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) | 
 | { | 
 | 	switch (load_code) { | 
 | 	case FW_MSG_CODE_DRV_LOAD_COMMON: | 
 | 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: | 
 | 		bnx2x_init_internal_common(bp); | 
 | 		/* no break */ | 
 |  | 
 | 	case FW_MSG_CODE_DRV_LOAD_PORT: | 
 | 		/* nothing to do */ | 
 | 		/* no break */ | 
 |  | 
 | 	case FW_MSG_CODE_DRV_LOAD_FUNCTION: | 
 | 		/* internal memory per function is | 
 | 		   initialized inside bnx2x_pf_init */ | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT; | 
 | } | 
 |  | 
 | static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT; | 
 | } | 
 |  | 
 | static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	if (CHIP_IS_E1x(fp->bp)) | 
 | 		return BP_L_ID(fp->bp) + fp->index; | 
 | 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */ | 
 | 		return bnx2x_fp_igu_sb_id(fp); | 
 | } | 
 |  | 
 | static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; | 
 | 	u8 cos; | 
 | 	unsigned long q_type = 0; | 
 | 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; | 
 | 	fp->rx_queue = fp_idx; | 
 | 	fp->cid = fp_idx; | 
 | 	fp->cl_id = bnx2x_fp_cl_id(fp); | 
 | 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); | 
 | 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); | 
 | 	/* qZone id equals to FW (per path) client id */ | 
 | 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp); | 
 |  | 
 | 	/* init shortcut */ | 
 | 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); | 
 |  | 
 | 	/* Setup SB indicies */ | 
 | 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX; | 
 |  | 
 | 	/* Configure Queue State object */ | 
 | 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); | 
 | 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); | 
 |  | 
 | 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); | 
 |  | 
 | 	/* init tx data */ | 
 | 	for_each_cos_in_tx_queue(fp, cos) { | 
 | 		bnx2x_init_txdata(bp, &fp->txdata[cos], | 
 | 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos), | 
 | 				  FP_COS_TO_TXQ(fp, cos), | 
 | 				  BNX2X_TX_SB_INDEX_BASE + cos); | 
 | 		cids[cos] = fp->txdata[cos].cid; | 
 | 	} | 
 |  | 
 | 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos, | 
 | 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata), | 
 | 			     bnx2x_sp_mapping(bp, q_rdata), q_type); | 
 |  | 
 | 	/** | 
 | 	 * Configure classification DBs: Always enable Tx switching | 
 | 	 */ | 
 | 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n", | 
 | 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, | 
 | 		   fp->igu_sb_id); | 
 | 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, | 
 | 		      fp->fw_sb_id, fp->igu_sb_id); | 
 |  | 
 | 	bnx2x_update_fpsb_idx(fp); | 
 | } | 
 |  | 
 | void bnx2x_nic_init(struct bnx2x *bp, u32 load_code) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_eth_queue(bp, i) | 
 | 		bnx2x_init_eth_fp(bp, i); | 
 | #ifdef BCM_CNIC | 
 | 	if (!NO_FCOE(bp)) | 
 | 		bnx2x_init_fcoe_fp(bp); | 
 |  | 
 | 	bnx2x_init_sb(bp, bp->cnic_sb_mapping, | 
 | 		      BNX2X_VF_ID_INVALID, false, | 
 | 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); | 
 |  | 
 | #endif | 
 |  | 
 | 	/* Initialize MOD_ABS interrupts */ | 
 | 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, | 
 | 			       bp->common.shmem_base, bp->common.shmem2_base, | 
 | 			       BP_PORT(bp)); | 
 | 	/* ensure status block indices were read */ | 
 | 	rmb(); | 
 |  | 
 | 	bnx2x_init_def_sb(bp); | 
 | 	bnx2x_update_dsb_idx(bp); | 
 | 	bnx2x_init_rx_rings(bp); | 
 | 	bnx2x_init_tx_rings(bp); | 
 | 	bnx2x_init_sp_ring(bp); | 
 | 	bnx2x_init_eq_ring(bp); | 
 | 	bnx2x_init_internal(bp, load_code); | 
 | 	bnx2x_pf_init(bp); | 
 | 	bnx2x_stats_init(bp); | 
 |  | 
 | 	/* flush all before enabling interrupts */ | 
 | 	mb(); | 
 | 	mmiowb(); | 
 |  | 
 | 	bnx2x_int_enable(bp); | 
 |  | 
 | 	/* Check for SPIO5 */ | 
 | 	bnx2x_attn_int_deasserted0(bp, | 
 | 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & | 
 | 				   AEU_INPUTS_ATTN_BITS_SPIO5); | 
 | } | 
 |  | 
 | /* end of nic init */ | 
 |  | 
 | /* | 
 |  * gzip service functions | 
 |  */ | 
 |  | 
 | static int bnx2x_gunzip_init(struct bnx2x *bp) | 
 | { | 
 | 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, | 
 | 					    &bp->gunzip_mapping, GFP_KERNEL); | 
 | 	if (bp->gunzip_buf  == NULL) | 
 | 		goto gunzip_nomem1; | 
 |  | 
 | 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); | 
 | 	if (bp->strm  == NULL) | 
 | 		goto gunzip_nomem2; | 
 |  | 
 | 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); | 
 | 	if (bp->strm->workspace == NULL) | 
 | 		goto gunzip_nomem3; | 
 |  | 
 | 	return 0; | 
 |  | 
 | gunzip_nomem3: | 
 | 	kfree(bp->strm); | 
 | 	bp->strm = NULL; | 
 |  | 
 | gunzip_nomem2: | 
 | 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, | 
 | 			  bp->gunzip_mapping); | 
 | 	bp->gunzip_buf = NULL; | 
 |  | 
 | gunzip_nomem1: | 
 | 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void bnx2x_gunzip_end(struct bnx2x *bp) | 
 | { | 
 | 	if (bp->strm) { | 
 | 		vfree(bp->strm->workspace); | 
 | 		kfree(bp->strm); | 
 | 		bp->strm = NULL; | 
 | 	} | 
 |  | 
 | 	if (bp->gunzip_buf) { | 
 | 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, | 
 | 				  bp->gunzip_mapping); | 
 | 		bp->gunzip_buf = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) | 
 | { | 
 | 	int n, rc; | 
 |  | 
 | 	/* check gzip header */ | 
 | 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { | 
 | 		BNX2X_ERR("Bad gzip header\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	n = 10; | 
 |  | 
 | #define FNAME				0x8 | 
 |  | 
 | 	if (zbuf[3] & FNAME) | 
 | 		while ((zbuf[n++] != 0) && (n < len)); | 
 |  | 
 | 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; | 
 | 	bp->strm->avail_in = len - n; | 
 | 	bp->strm->next_out = bp->gunzip_buf; | 
 | 	bp->strm->avail_out = FW_BUF_SIZE; | 
 |  | 
 | 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); | 
 | 	if (rc != Z_OK) | 
 | 		return rc; | 
 |  | 
 | 	rc = zlib_inflate(bp->strm, Z_FINISH); | 
 | 	if ((rc != Z_OK) && (rc != Z_STREAM_END)) | 
 | 		netdev_err(bp->dev, "Firmware decompression error: %s\n", | 
 | 			   bp->strm->msg); | 
 |  | 
 | 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); | 
 | 	if (bp->gunzip_outlen & 0x3) | 
 | 		netdev_err(bp->dev, | 
 | 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n", | 
 | 				bp->gunzip_outlen); | 
 | 	bp->gunzip_outlen >>= 2; | 
 |  | 
 | 	zlib_inflateEnd(bp->strm); | 
 |  | 
 | 	if (rc == Z_STREAM_END) | 
 | 		return 0; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* nic load/unload */ | 
 |  | 
 | /* | 
 |  * General service functions | 
 |  */ | 
 |  | 
 | /* send a NIG loopback debug packet */ | 
 | static void bnx2x_lb_pckt(struct bnx2x *bp) | 
 | { | 
 | 	u32 wb_write[3]; | 
 |  | 
 | 	/* Ethernet source and destination addresses */ | 
 | 	wb_write[0] = 0x55555555; | 
 | 	wb_write[1] = 0x55555555; | 
 | 	wb_write[2] = 0x20;		/* SOP */ | 
 | 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); | 
 |  | 
 | 	/* NON-IP protocol */ | 
 | 	wb_write[0] = 0x09000000; | 
 | 	wb_write[1] = 0x55555555; | 
 | 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */ | 
 | 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); | 
 | } | 
 |  | 
 | /* some of the internal memories | 
 |  * are not directly readable from the driver | 
 |  * to test them we send debug packets | 
 |  */ | 
 | static int bnx2x_int_mem_test(struct bnx2x *bp) | 
 | { | 
 | 	int factor; | 
 | 	int count, i; | 
 | 	u32 val = 0; | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp)) | 
 | 		factor = 120; | 
 | 	else if (CHIP_REV_IS_EMUL(bp)) | 
 | 		factor = 200; | 
 | 	else | 
 | 		factor = 1; | 
 |  | 
 | 	/* Disable inputs of parser neighbor blocks */ | 
 | 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); | 
 | 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); | 
 | 	REG_WR(bp, CFC_REG_DEBUG0, 0x1); | 
 | 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); | 
 |  | 
 | 	/*  Write 0 to parser credits for CFC search request */ | 
 | 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); | 
 |  | 
 | 	/* send Ethernet packet */ | 
 | 	bnx2x_lb_pckt(bp); | 
 |  | 
 | 	/* TODO do i reset NIG statistic? */ | 
 | 	/* Wait until NIG register shows 1 packet of size 0x10 */ | 
 | 	count = 1000 * factor; | 
 | 	while (count) { | 
 |  | 
 | 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
 | 		val = *bnx2x_sp(bp, wb_data[0]); | 
 | 		if (val == 0x10) | 
 | 			break; | 
 |  | 
 | 		msleep(10); | 
 | 		count--; | 
 | 	} | 
 | 	if (val != 0x10) { | 
 | 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* Wait until PRS register shows 1 packet */ | 
 | 	count = 1000 * factor; | 
 | 	while (count) { | 
 | 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
 | 		if (val == 1) | 
 | 			break; | 
 |  | 
 | 		msleep(10); | 
 | 		count--; | 
 | 	} | 
 | 	if (val != 0x1) { | 
 | 		BNX2X_ERR("PRS timeout val = 0x%x\n", val); | 
 | 		return -2; | 
 | 	} | 
 |  | 
 | 	/* Reset and init BRB, PRS */ | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); | 
 | 	msleep(50); | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); | 
 | 	msleep(50); | 
 | 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "part2\n"); | 
 |  | 
 | 	/* Disable inputs of parser neighbor blocks */ | 
 | 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); | 
 | 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); | 
 | 	REG_WR(bp, CFC_REG_DEBUG0, 0x1); | 
 | 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); | 
 |  | 
 | 	/* Write 0 to parser credits for CFC search request */ | 
 | 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); | 
 |  | 
 | 	/* send 10 Ethernet packets */ | 
 | 	for (i = 0; i < 10; i++) | 
 | 		bnx2x_lb_pckt(bp); | 
 |  | 
 | 	/* Wait until NIG register shows 10 + 1 | 
 | 	   packets of size 11*0x10 = 0xb0 */ | 
 | 	count = 1000 * factor; | 
 | 	while (count) { | 
 |  | 
 | 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
 | 		val = *bnx2x_sp(bp, wb_data[0]); | 
 | 		if (val == 0xb0) | 
 | 			break; | 
 |  | 
 | 		msleep(10); | 
 | 		count--; | 
 | 	} | 
 | 	if (val != 0xb0) { | 
 | 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val); | 
 | 		return -3; | 
 | 	} | 
 |  | 
 | 	/* Wait until PRS register shows 2 packets */ | 
 | 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
 | 	if (val != 2) | 
 | 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val); | 
 |  | 
 | 	/* Write 1 to parser credits for CFC search request */ | 
 | 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); | 
 |  | 
 | 	/* Wait until PRS register shows 3 packets */ | 
 | 	msleep(10 * factor); | 
 | 	/* Wait until NIG register shows 1 packet of size 0x10 */ | 
 | 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
 | 	if (val != 3) | 
 | 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val); | 
 |  | 
 | 	/* clear NIG EOP FIFO */ | 
 | 	for (i = 0; i < 11; i++) | 
 | 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); | 
 | 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("clear of NIG failed\n"); | 
 | 		return -4; | 
 | 	} | 
 |  | 
 | 	/* Reset and init BRB, PRS, NIG */ | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); | 
 | 	msleep(50); | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); | 
 | 	msleep(50); | 
 | 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
 | #ifndef BCM_CNIC | 
 | 	/* set NIC mode */ | 
 | 	REG_WR(bp, PRS_REG_NIC_MODE, 1); | 
 | #endif | 
 |  | 
 | 	/* Enable inputs of parser neighbor blocks */ | 
 | 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); | 
 | 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); | 
 | 	REG_WR(bp, CFC_REG_DEBUG0, 0x0); | 
 | 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "done\n"); | 
 |  | 
 | 	return 0; /* OK */ | 
 | } | 
 |  | 
 | static void bnx2x_enable_blocks_attention(struct bnx2x *bp) | 
 | { | 
 | 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); | 
 | 	else | 
 | 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); | 
 | 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); | 
 | 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); | 
 | 	/* | 
 | 	 * mask read length error interrupts in brb for parser | 
 | 	 * (parsing unit and 'checksum and crc' unit) | 
 | 	 * these errors are legal (PU reads fixed length and CAC can cause | 
 | 	 * read length error on truncated packets) | 
 | 	 */ | 
 | 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); | 
 | 	REG_WR(bp, QM_REG_QM_INT_MASK, 0); | 
 | 	REG_WR(bp, TM_REG_TM_INT_MASK, 0); | 
 | 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); | 
 | 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); | 
 | 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); | 
 | /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ | 
 | /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ | 
 | 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); | 
 | 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); | 
 | 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); | 
 | /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ | 
 | /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ | 
 | 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); | 
 | 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); | 
 | 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); | 
 | 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); | 
 | /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ | 
 | /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp)) | 
 | 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000); | 
 | 	else if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, | 
 | 			   (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 
 | 				| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 
 | 				| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN | 
 | 				| PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 
 | 				| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED)); | 
 | 	else | 
 | 		REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000); | 
 | 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); | 
 | 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); | 
 | 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); | 
 | /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ | 
 | 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); | 
 |  | 
 | 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); | 
 | 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); | 
 | /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ | 
 | 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */ | 
 | } | 
 |  | 
 | static void bnx2x_reset_common(struct bnx2x *bp) | 
 | { | 
 | 	u32 val = 0x1400; | 
 |  | 
 | 	/* reset_common */ | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
 | 	       0xd3ffff7f); | 
 |  | 
 | 	if (CHIP_IS_E3(bp)) { | 
 | 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; | 
 | 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); | 
 | } | 
 |  | 
 | static void bnx2x_setup_dmae(struct bnx2x *bp) | 
 | { | 
 | 	bp->dmae_ready = 0; | 
 | 	spin_lock_init(&bp->dmae_lock); | 
 | } | 
 |  | 
 | static void bnx2x_init_pxp(struct bnx2x *bp) | 
 | { | 
 | 	u16 devctl; | 
 | 	int r_order, w_order; | 
 |  | 
 | 	pci_read_config_word(bp->pdev, | 
 | 			     pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl); | 
 | 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); | 
 | 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); | 
 | 	if (bp->mrrs == -1) | 
 | 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); | 
 | 	else { | 
 | 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); | 
 | 		r_order = bp->mrrs; | 
 | 	} | 
 |  | 
 | 	bnx2x_init_pxp_arb(bp, r_order, w_order); | 
 | } | 
 |  | 
 | static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) | 
 | { | 
 | 	int is_required; | 
 | 	u32 val; | 
 | 	int port; | 
 |  | 
 | 	if (BP_NOMCP(bp)) | 
 | 		return; | 
 |  | 
 | 	is_required = 0; | 
 | 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & | 
 | 	      SHARED_HW_CFG_FAN_FAILURE_MASK; | 
 |  | 
 | 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) | 
 | 		is_required = 1; | 
 |  | 
 | 	/* | 
 | 	 * The fan failure mechanism is usually related to the PHY type since | 
 | 	 * the power consumption of the board is affected by the PHY. Currently, | 
 | 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. | 
 | 	 */ | 
 | 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) | 
 | 		for (port = PORT_0; port < PORT_MAX; port++) { | 
 | 			is_required |= | 
 | 				bnx2x_fan_failure_det_req( | 
 | 					bp, | 
 | 					bp->common.shmem_base, | 
 | 					bp->common.shmem2_base, | 
 | 					port); | 
 | 		} | 
 |  | 
 | 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); | 
 |  | 
 | 	if (is_required == 0) | 
 | 		return; | 
 |  | 
 | 	/* Fan failure is indicated by SPIO 5 */ | 
 | 	bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5, | 
 | 		       MISC_REGISTERS_SPIO_INPUT_HI_Z); | 
 |  | 
 | 	/* set to active low mode */ | 
 | 	val = REG_RD(bp, MISC_REG_SPIO_INT); | 
 | 	val |= ((1 << MISC_REGISTERS_SPIO_5) << | 
 | 					MISC_REGISTERS_SPIO_INT_OLD_SET_POS); | 
 | 	REG_WR(bp, MISC_REG_SPIO_INT, val); | 
 |  | 
 | 	/* enable interrupt to signal the IGU */ | 
 | 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); | 
 | 	val |= (1 << MISC_REGISTERS_SPIO_5); | 
 | 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); | 
 | } | 
 |  | 
 | static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num) | 
 | { | 
 | 	u32 offset = 0; | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		return; | 
 | 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX)) | 
 | 		return; | 
 |  | 
 | 	switch (BP_ABS_FUNC(bp)) { | 
 | 	case 0: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0; | 
 | 		break; | 
 | 	case 1: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1; | 
 | 		break; | 
 | 	case 2: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2; | 
 | 		break; | 
 | 	case 3: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3; | 
 | 		break; | 
 | 	case 4: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4; | 
 | 		break; | 
 | 	case 5: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5; | 
 | 		break; | 
 | 	case 6: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6; | 
 | 		break; | 
 | 	case 7: | 
 | 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7; | 
 | 		break; | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	REG_WR(bp, offset, pretend_func_num); | 
 | 	REG_RD(bp, offset); | 
 | 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num); | 
 | } | 
 |  | 
 | void bnx2x_pf_disable(struct bnx2x *bp) | 
 | { | 
 | 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
 | 	val &= ~IGU_PF_CONF_FUNC_EN; | 
 |  | 
 | 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
 | 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); | 
 | 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); | 
 | } | 
 |  | 
 | static inline void bnx2x__common_init_phy(struct bnx2x *bp) | 
 | { | 
 | 	u32 shmem_base[2], shmem2_base[2]; | 
 | 	shmem_base[0] =  bp->common.shmem_base; | 
 | 	shmem2_base[0] = bp->common.shmem2_base; | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		shmem_base[1] = | 
 | 			SHMEM2_RD(bp, other_shmem_base_addr); | 
 | 		shmem2_base[1] = | 
 | 			SHMEM2_RD(bp, other_shmem2_base_addr); | 
 | 	} | 
 | 	bnx2x_acquire_phy_lock(bp); | 
 | 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base, | 
 | 			      bp->common.chip_id); | 
 | 	bnx2x_release_phy_lock(bp); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_init_hw_common - initialize the HW at the COMMON phase. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  */ | 
 | static int bnx2x_init_hw_common(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp)); | 
 |  | 
 | 	/* | 
 | 	 * take the UNDI lock to protect undi_unload flow from accessing | 
 | 	 * registers while we're resetting the chip | 
 | 	 */ | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
 |  | 
 | 	bnx2x_reset_common(bp); | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); | 
 |  | 
 | 	val = 0xfffc; | 
 | 	if (CHIP_IS_E3(bp)) { | 
 | 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; | 
 | 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; | 
 | 	} | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); | 
 |  | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		u8 abs_func_id; | 
 |  | 
 | 		/** | 
 | 		 * 4-port mode or 2-port mode we need to turn of master-enable | 
 | 		 * for everyone, after that, turn it back on for self. | 
 | 		 * so, we disregard multi-function or not, and always disable | 
 | 		 * for all functions on the given path, this means 0,2,4,6 for | 
 | 		 * path 0 and 1,3,5,7 for path 1 | 
 | 		 */ | 
 | 		for (abs_func_id = BP_PATH(bp); | 
 | 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { | 
 | 			if (abs_func_id == BP_ABS_FUNC(bp)) { | 
 | 				REG_WR(bp, | 
 | 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, | 
 | 				    1); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			bnx2x_pretend_func(bp, abs_func_id); | 
 | 			/* clear pf enable */ | 
 | 			bnx2x_pf_disable(bp); | 
 | 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); | 
 | 	if (CHIP_IS_E1(bp)) { | 
 | 		/* enable HW interrupt from PXP on USDM overflow | 
 | 		   bit 16 on INT_MASK_0 */ | 
 | 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); | 
 | 	bnx2x_init_pxp(bp); | 
 |  | 
 | #ifdef __BIG_ENDIAN | 
 | 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); | 
 | 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); | 
 | 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); | 
 | 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); | 
 | 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); | 
 | 	/* make sure this value is 0 */ | 
 | 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); | 
 |  | 
 | /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ | 
 | 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); | 
 | 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); | 
 | 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); | 
 | 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); | 
 | #endif | 
 |  | 
 | 	bnx2x_ilt_init_page_size(bp, INITOP_SET); | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) | 
 | 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); | 
 |  | 
 | 	/* let the HW do it's magic ... */ | 
 | 	msleep(100); | 
 | 	/* finish PXP init */ | 
 | 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("PXP2 CFG failed\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("PXP2 RD_INIT failed\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* Timers bug workaround E2 only. We need to set the entire ILT to | 
 | 	 * have entries with value "0" and valid bit on. | 
 | 	 * This needs to be done by the first PF that is loaded in a path | 
 | 	 * (i.e. common phase) | 
 | 	 */ | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | /* In E2 there is a bug in the timers block that can cause function 6 / 7 | 
 |  * (i.e. vnic3) to start even if it is marked as "scan-off". | 
 |  * This occurs when a different function (func2,3) is being marked | 
 |  * as "scan-off". Real-life scenario for example: if a driver is being | 
 |  * load-unloaded while func6,7 are down. This will cause the timer to access | 
 |  * the ilt, translate to a logical address and send a request to read/write. | 
 |  * Since the ilt for the function that is down is not valid, this will cause | 
 |  * a translation error which is unrecoverable. | 
 |  * The Workaround is intended to make sure that when this happens nothing fatal | 
 |  * will occur. The workaround: | 
 |  *	1.  First PF driver which loads on a path will: | 
 |  *		a.  After taking the chip out of reset, by using pretend, | 
 |  *		    it will write "0" to the following registers of | 
 |  *		    the other vnics. | 
 |  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); | 
 |  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); | 
 |  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); | 
 |  *		    And for itself it will write '1' to | 
 |  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable | 
 |  *		    dmae-operations (writing to pram for example.) | 
 |  *		    note: can be done for only function 6,7 but cleaner this | 
 |  *			  way. | 
 |  *		b.  Write zero+valid to the entire ILT. | 
 |  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of | 
 |  *		    VNIC3 (of that port). The range allocated will be the | 
 |  *		    entire ILT. This is needed to prevent  ILT range error. | 
 |  *	2.  Any PF driver load flow: | 
 |  *		a.  ILT update with the physical addresses of the allocated | 
 |  *		    logical pages. | 
 |  *		b.  Wait 20msec. - note that this timeout is needed to make | 
 |  *		    sure there are no requests in one of the PXP internal | 
 |  *		    queues with "old" ILT addresses. | 
 |  *		c.  PF enable in the PGLC. | 
 |  *		d.  Clear the was_error of the PF in the PGLC. (could have | 
 |  *		    occured while driver was down) | 
 |  *		e.  PF enable in the CFC (WEAK + STRONG) | 
 |  *		f.  Timers scan enable | 
 |  *	3.  PF driver unload flow: | 
 |  *		a.  Clear the Timers scan_en. | 
 |  *		b.  Polling for scan_on=0 for that PF. | 
 |  *		c.  Clear the PF enable bit in the PXP. | 
 |  *		d.  Clear the PF enable in the CFC (WEAK + STRONG) | 
 |  *		e.  Write zero+valid to all ILT entries (The valid bit must | 
 |  *		    stay set) | 
 |  *		f.  If this is VNIC 3 of a port then also init | 
 |  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry | 
 |  *		    to the last enrty in the ILT. | 
 |  * | 
 |  *	Notes: | 
 |  *	Currently the PF error in the PGLC is non recoverable. | 
 |  *	In the future the there will be a recovery routine for this error. | 
 |  *	Currently attention is masked. | 
 |  *	Having an MCP lock on the load/unload process does not guarantee that | 
 |  *	there is no Timer disable during Func6/7 enable. This is because the | 
 |  *	Timers scan is currently being cleared by the MCP on FLR. | 
 |  *	Step 2.d can be done only for PF6/7 and the driver can also check if | 
 |  *	there is error before clearing it. But the flow above is simpler and | 
 |  *	more general. | 
 |  *	All ILT entries are written by zero+valid and not just PF6/7 | 
 |  *	ILT entries since in the future the ILT entries allocation for | 
 |  *	PF-s might be dynamic. | 
 |  */ | 
 | 		struct ilt_client_info ilt_cli; | 
 | 		struct bnx2x_ilt ilt; | 
 | 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); | 
 | 		memset(&ilt, 0, sizeof(struct bnx2x_ilt)); | 
 |  | 
 | 		/* initialize dummy TM client */ | 
 | 		ilt_cli.start = 0; | 
 | 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; | 
 | 		ilt_cli.client_num = ILT_CLIENT_TM; | 
 |  | 
 | 		/* Step 1: set zeroes to all ilt page entries with valid bit on | 
 | 		 * Step 2: set the timers first/last ilt entry to point | 
 | 		 * to the entire range to prevent ILT range error for 3rd/4th | 
 | 		 * vnic	(this code assumes existance of the vnic) | 
 | 		 * | 
 | 		 * both steps performed by call to bnx2x_ilt_client_init_op() | 
 | 		 * with dummy TM client | 
 | 		 * | 
 | 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT | 
 | 		 * and his brother are split registers | 
 | 		 */ | 
 | 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); | 
 | 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); | 
 | 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); | 
 |  | 
 | 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); | 
 | 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); | 
 | 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); | 
 | 	} | 
 |  | 
 |  | 
 | 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); | 
 | 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : | 
 | 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0); | 
 | 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); | 
 |  | 
 | 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); | 
 |  | 
 | 		/* let the HW do it's magic ... */ | 
 | 		do { | 
 | 			msleep(200); | 
 | 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); | 
 | 		} while (factor-- && (val != 1)); | 
 |  | 
 | 		if (val != 1) { | 
 | 			BNX2X_ERR("ATC_INIT failed\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); | 
 |  | 
 | 	/* clean the DMAE memory */ | 
 | 	bp->dmae_ready = 1; | 
 | 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); | 
 |  | 
 | 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); | 
 | 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); | 
 | 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); | 
 | 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); | 
 |  | 
 |  | 
 | 	/* QM queues pointers table */ | 
 | 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); | 
 |  | 
 | 	/* soft reset pulse */ | 
 | 	REG_WR(bp, QM_REG_SOFT_RESET, 1); | 
 | 	REG_WR(bp, QM_REG_SOFT_RESET, 0); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); | 
 | #endif | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); | 
 | 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT); | 
 | 	if (!CHIP_REV_IS_SLOW(bp)) | 
 | 		/* enable hw interrupt from doorbell Q */ | 
 | 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
 | 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); | 
 |  | 
 | 	if (!CHIP_IS_E1(bp)) | 
 | 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) | 
 | 		/* Bit-map indicating which L2 hdrs may appear | 
 | 		 * after the basic Ethernet header | 
 | 		 */ | 
 | 		REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, | 
 | 		       bp->path_has_ovlan ? 7 : 6); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		/* reset VFC memories */ | 
 | 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, | 
 | 			   VFC_MEMORIES_RST_REG_CAM_RST | | 
 | 			   VFC_MEMORIES_RST_REG_RAM_RST); | 
 | 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, | 
 | 			   VFC_MEMORIES_RST_REG_CAM_RST | | 
 | 			   VFC_MEMORIES_RST_REG_RAM_RST); | 
 |  | 
 | 		msleep(20); | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); | 
 |  | 
 | 	/* sync semi rtc */ | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
 | 	       0x80000000); | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, | 
 | 	       0x80000000); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, | 
 | 		       bp->path_has_ovlan ? 7 : 6); | 
 |  | 
 | 	REG_WR(bp, SRC_REG_SOFT_RST, 1); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); | 
 | 	REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); | 
 | #endif | 
 | 	REG_WR(bp, SRC_REG_SOFT_RST, 0); | 
 |  | 
 | 	if (sizeof(union cdu_context) != 1024) | 
 | 		/* we currently assume that a context is 1024 bytes */ | 
 | 		dev_alert(&bp->pdev->dev, | 
 | 			  "please adjust the size of cdu_context(%ld)\n", | 
 | 			  (long)sizeof(union cdu_context)); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); | 
 | 	val = (4 << 24) + (0 << 12) + 1024; | 
 | 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); | 
 | 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); | 
 | 	/* enable context validation interrupt from CFC */ | 
 | 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); | 
 |  | 
 | 	/* set the thresholds to prevent CFC/CDU race */ | 
 | 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) | 
 | 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); | 
 | 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); | 
 |  | 
 | 	/* Reset PCIE errors for debug */ | 
 | 	REG_WR(bp, 0x2814, 0xffffffff); | 
 | 	REG_WR(bp, 0x3820, 0xffffffff); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, | 
 | 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | | 
 | 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); | 
 | 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, | 
 | 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | | 
 | 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | | 
 | 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); | 
 | 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, | 
 | 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | | 
 | 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | | 
 | 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		/* in E3 this done in per-port section */ | 
 | 		if (!CHIP_IS_E3(bp)) | 
 | 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); | 
 | 	} | 
 | 	if (CHIP_IS_E1H(bp)) | 
 | 		/* not applicable for E2 (and above ...) */ | 
 | 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); | 
 |  | 
 | 	if (CHIP_REV_IS_SLOW(bp)) | 
 | 		msleep(200); | 
 |  | 
 | 	/* finish CFC init */ | 
 | 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("CFC LL_INIT failed\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("CFC AC_INIT failed\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); | 
 | 	if (val != 1) { | 
 | 		BNX2X_ERR("CFC CAM_INIT failed\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	REG_WR(bp, CFC_REG_DEBUG0, 0); | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) { | 
 | 		/* read NIG statistic | 
 | 		   to see if this is our first up since powerup */ | 
 | 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
 | 		val = *bnx2x_sp(bp, wb_data[0]); | 
 |  | 
 | 		/* do internal memory self test */ | 
 | 		if ((val == 0) && bnx2x_int_mem_test(bp)) { | 
 | 			BNX2X_ERR("internal mem self test failed\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2x_setup_fan_failure_detection(bp); | 
 |  | 
 | 	/* clear PXP2 attentions */ | 
 | 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); | 
 |  | 
 | 	bnx2x_enable_blocks_attention(bp); | 
 | 	bnx2x_enable_blocks_parity(bp); | 
 |  | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		if (CHIP_IS_E1x(bp)) | 
 | 			bnx2x__common_init_phy(bp); | 
 | 	} else | 
 | 		BNX2X_ERR("Bootcode is missing - can not initialize link\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  */ | 
 | static int bnx2x_init_hw_common_chip(struct bnx2x *bp) | 
 | { | 
 | 	int rc = bnx2x_init_hw_common(bp); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* In E2 2-PORT mode, same ext phy is used for the two paths */ | 
 | 	if (!BP_NOMCP(bp)) | 
 | 		bnx2x__common_init_phy(bp); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_init_hw_port(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; | 
 | 	u32 low, high; | 
 | 	u32 val; | 
 |  | 
 | 	bnx2x__link_reset(bp); | 
 |  | 
 | 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port); | 
 |  | 
 | 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_MISC, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PXP, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase); | 
 |  | 
 | 	/* Timers bug workaround: disables the pf_master bit in pglue at | 
 | 	 * common phase, we need to enable it here before any dmae access are | 
 | 	 * attempted. Therefore we manually added the enable-master to the | 
 | 	 * port phase (it also happens in the function phase) | 
 | 	 */ | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_ATC, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_QM, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_UCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XCM, init_phase); | 
 |  | 
 | 	/* QM cid (connection) count */ | 
 | 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bnx2x_init_block(bp, BLOCK_TM, init_phase); | 
 | 	REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); | 
 | 	REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); | 
 | #endif | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase); | 
 |  | 
 | 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { | 
 | 		bnx2x_init_block(bp, BLOCK_BRB1, init_phase); | 
 |  | 
 | 		if (IS_MF(bp)) | 
 | 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); | 
 | 		else if (bp->dev->mtu > 4096) { | 
 | 			if (bp->flags & ONE_PORT_FLAG) | 
 | 				low = 160; | 
 | 			else { | 
 | 				val = bp->dev->mtu; | 
 | 				/* (24*1024 + val*4)/256 */ | 
 | 				low = 96 + (val/64) + | 
 | 						((val % 64) ? 1 : 0); | 
 | 			} | 
 | 		} else | 
 | 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); | 
 | 		high = low + 56;	/* 14*1024/256 */ | 
 | 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); | 
 | 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); | 
 | 	} | 
 |  | 
 | 	if (CHIP_MODE_IS_4_PORT(bp)) | 
 | 		REG_WR(bp, (BP_PORT(bp) ? | 
 | 			    BRB1_REG_MAC_GUARANTIED_1 : | 
 | 			    BRB1_REG_MAC_GUARANTIED_0), 40); | 
 |  | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PRS, init_phase); | 
 | 	if (CHIP_IS_E3B0(bp)) | 
 | 		/* Ovlan exists only if we are in multi-function + | 
 | 		 * switch-dependent mode, in switch-independent there | 
 | 		 * is no ovlan headers | 
 | 		 */ | 
 | 		REG_WR(bp, BP_PORT(bp) ? | 
 | 		       PRS_REG_HDRS_AFTER_BASIC_PORT_1 : | 
 | 		       PRS_REG_HDRS_AFTER_BASIC_PORT_0, | 
 | 		       (bp->path_has_ovlan ? 7 : 6)); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_USDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_USEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_UPB, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XPB, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PBF, init_phase); | 
 |  | 
 | 	if (CHIP_IS_E1x(bp)) { | 
 | 		/* configure PBF to work without PAUSE mtu 9000 */ | 
 | 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); | 
 |  | 
 | 		/* update threshold */ | 
 | 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); | 
 | 		/* update init credit */ | 
 | 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); | 
 |  | 
 | 		/* probe changes */ | 
 | 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); | 
 | 		udelay(50); | 
 | 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); | 
 | 	} | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bnx2x_init_block(bp, BLOCK_SRC, init_phase); | 
 | #endif | 
 | 	bnx2x_init_block(bp, BLOCK_CDU, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CFC, init_phase); | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) { | 
 | 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
 | 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
 | 	} | 
 | 	bnx2x_init_block(bp, BLOCK_HC, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_IGU, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); | 
 | 	/* init aeu_mask_attn_func_0/1: | 
 | 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use | 
 | 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF | 
 | 	 *             bits 4-7 are used for "per vn group attention" */ | 
 | 	val = IS_MF(bp) ? 0xF7 : 0x7; | 
 | 	/* Enable DCBX attention for all but E1 */ | 
 | 	val |= CHIP_IS_E1(bp) ? 0 : 0x10; | 
 | 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_NIG, init_phase); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		/* Bit-map indicating which L2 hdrs may appear after the | 
 | 		 * basic Ethernet header | 
 | 		 */ | 
 | 		REG_WR(bp, BP_PORT(bp) ? | 
 | 			   NIG_REG_P1_HDRS_AFTER_BASIC : | 
 | 			   NIG_REG_P0_HDRS_AFTER_BASIC, | 
 | 			   IS_MF_SD(bp) ? 7 : 6); | 
 |  | 
 | 		if (CHIP_IS_E3(bp)) | 
 | 			REG_WR(bp, BP_PORT(bp) ? | 
 | 				   NIG_REG_LLH1_MF_MODE : | 
 | 				   NIG_REG_LLH_MF_MODE, IS_MF(bp)); | 
 | 	} | 
 | 	if (!CHIP_IS_E3(bp)) | 
 | 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); | 
 |  | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		/* 0x2 disable mf_ov, 0x1 enable */ | 
 | 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, | 
 | 		       (IS_MF_SD(bp) ? 0x1 : 0x2)); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			val = 0; | 
 | 			switch (bp->mf_mode) { | 
 | 			case MULTI_FUNCTION_SD: | 
 | 				val = 1; | 
 | 				break; | 
 | 			case MULTI_FUNCTION_SI: | 
 | 				val = 2; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : | 
 | 						  NIG_REG_LLH0_CLS_TYPE), val); | 
 | 		} | 
 | 		{ | 
 | 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); | 
 | 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); | 
 | 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	/* If SPIO5 is set to generate interrupts, enable it for this port */ | 
 | 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); | 
 | 	if (val & (1 << MISC_REGISTERS_SPIO_5)) { | 
 | 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
 | 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
 | 		val = REG_RD(bp, reg_addr); | 
 | 		val |= AEU_INPUTS_ATTN_BITS_SPIO5; | 
 | 		REG_WR(bp, reg_addr, val); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) | 
 | { | 
 | 	int reg; | 
 | 	u32 wb_write[2]; | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8; | 
 | 	else | 
 | 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; | 
 |  | 
 | 	wb_write[0] = ONCHIP_ADDR1(addr); | 
 | 	wb_write[1] = ONCHIP_ADDR2(addr); | 
 | 	REG_WR_DMAE(bp, reg, wb_write, 2); | 
 | } | 
 |  | 
 | static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) | 
 | { | 
 | 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); | 
 | } | 
 |  | 
 | static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) | 
 | { | 
 | 	u32 i, base = FUNC_ILT_BASE(func); | 
 | 	for (i = base; i < base + ILT_PER_FUNC; i++) | 
 | 		bnx2x_ilt_wr(bp, i, 0); | 
 | } | 
 |  | 
 | static int bnx2x_init_hw_func(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int func = BP_FUNC(bp); | 
 | 	int init_phase = PHASE_PF0 + func; | 
 | 	struct bnx2x_ilt *ilt = BP_ILT(bp); | 
 | 	u16 cdu_ilt_start; | 
 | 	u32 addr, val; | 
 | 	u32 main_mem_base, main_mem_size, main_mem_prty_clr; | 
 | 	int i, main_mem_width, rc; | 
 |  | 
 | 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func); | 
 |  | 
 | 	/* FLR cleanup - hmmm */ | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		rc = bnx2x_pf_flr_clnup(bp); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	/* set MSI reconfigure capability */ | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) { | 
 | 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); | 
 | 		val = REG_RD(bp, addr); | 
 | 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; | 
 | 		REG_WR(bp, addr, val); | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PXP, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase); | 
 |  | 
 | 	ilt = BP_ILT(bp); | 
 | 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; | 
 |  | 
 | 	for (i = 0; i < L2_ILT_LINES(bp); i++) { | 
 | 		ilt->lines[cdu_ilt_start + i].page = | 
 | 			bp->context.vcxt + (ILT_PAGE_CIDS * i); | 
 | 		ilt->lines[cdu_ilt_start + i].page_mapping = | 
 | 			bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i); | 
 | 		/* cdu ilt pages are allocated manually so there's no need to | 
 | 		set the size */ | 
 | 	} | 
 | 	bnx2x_ilt_init_op(bp, INITOP_SET); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); | 
 |  | 
 | 	/* T1 hash bits value determines the T1 number of entries */ | 
 | 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); | 
 | #endif | 
 |  | 
 | #ifndef BCM_CNIC | 
 | 	/* set NIC mode */ | 
 | 	REG_WR(bp, PRS_REG_NIC_MODE, 1); | 
 | #endif  /* BCM_CNIC */ | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		u32 pf_conf = IGU_PF_CONF_FUNC_EN; | 
 |  | 
 | 		/* Turn on a single ISR mode in IGU if driver is going to use | 
 | 		 * INT#x or MSI | 
 | 		 */ | 
 | 		if (!(bp->flags & USING_MSIX_FLAG)) | 
 | 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; | 
 | 		/* | 
 | 		 * Timers workaround bug: function init part. | 
 | 		 * Need to wait 20msec after initializing ILT, | 
 | 		 * needed to make sure there are no requests in | 
 | 		 * one of the PXP internal queues with "old" ILT addresses | 
 | 		 */ | 
 | 		msleep(20); | 
 | 		/* | 
 | 		 * Master enable - Due to WB DMAE writes performed before this | 
 | 		 * register is re-initialized as part of the regular function | 
 | 		 * init | 
 | 		 */ | 
 | 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
 | 		/* Enable the function in IGU */ | 
 | 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); | 
 | 	} | 
 |  | 
 | 	bp->dmae_ready = 1; | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_ATC, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_NIG, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_SRC, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_MISC, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_TCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_UCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XCM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_USEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, QM_REG_PF_EN, 1); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
 | 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
 | 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
 | 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
 | 	} | 
 | 	bnx2x_init_block(bp, BLOCK_QM, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_TM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PRS, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_USDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_UPB, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_XPB, init_phase); | 
 | 	bnx2x_init_block(bp, BLOCK_PBF, init_phase); | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, PBF_REG_DISABLE_PF, 0); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_CDU, init_phase); | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_CFC, init_phase); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); | 
 |  | 
 | 	if (IS_MF(bp)) { | 
 | 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); | 
 | 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); | 
 | 	} | 
 |  | 
 | 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); | 
 |  | 
 | 	/* HC init per function */ | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) { | 
 | 		if (CHIP_IS_E1H(bp)) { | 
 | 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
 |  | 
 | 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
 | 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
 | 		} | 
 | 		bnx2x_init_block(bp, BLOCK_HC, init_phase); | 
 |  | 
 | 	} else { | 
 | 		int num_segs, sb_idx, prod_offset; | 
 |  | 
 | 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); | 
 | 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); | 
 | 		} | 
 |  | 
 | 		bnx2x_init_block(bp, BLOCK_IGU, init_phase); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			int dsb_idx = 0; | 
 | 			/** | 
 | 			 * Producer memory: | 
 | 			 * E2 mode: address 0-135 match to the mapping memory; | 
 | 			 * 136 - PF0 default prod; 137 - PF1 default prod; | 
 | 			 * 138 - PF2 default prod; 139 - PF3 default prod; | 
 | 			 * 140 - PF0 attn prod;    141 - PF1 attn prod; | 
 | 			 * 142 - PF2 attn prod;    143 - PF3 attn prod; | 
 | 			 * 144-147 reserved. | 
 | 			 * | 
 | 			 * E1.5 mode - In backward compatible mode; | 
 | 			 * for non default SB; each even line in the memory | 
 | 			 * holds the U producer and each odd line hold | 
 | 			 * the C producer. The first 128 producers are for | 
 | 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 | 
 | 			 * producers are for the DSB for each PF. | 
 | 			 * Each PF has five segments: (the order inside each | 
 | 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; | 
 | 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods; | 
 | 			 * 144-147 attn prods; | 
 | 			 */ | 
 | 			/* non-default-status-blocks */ | 
 | 			num_segs = CHIP_INT_MODE_IS_BC(bp) ? | 
 | 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; | 
 | 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { | 
 | 				prod_offset = (bp->igu_base_sb + sb_idx) * | 
 | 					num_segs; | 
 |  | 
 | 				for (i = 0; i < num_segs; i++) { | 
 | 					addr = IGU_REG_PROD_CONS_MEMORY + | 
 | 							(prod_offset + i) * 4; | 
 | 					REG_WR(bp, addr, 0); | 
 | 				} | 
 | 				/* send consumer update with value 0 */ | 
 | 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, | 
 | 					     USTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_igu_clear_sb(bp, | 
 | 						   bp->igu_base_sb + sb_idx); | 
 | 			} | 
 |  | 
 | 			/* default-status-blocks */ | 
 | 			num_segs = CHIP_INT_MODE_IS_BC(bp) ? | 
 | 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; | 
 |  | 
 | 			if (CHIP_MODE_IS_4_PORT(bp)) | 
 | 				dsb_idx = BP_FUNC(bp); | 
 | 			else | 
 | 				dsb_idx = BP_VN(bp); | 
 |  | 
 | 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? | 
 | 				       IGU_BC_BASE_DSB_PROD + dsb_idx : | 
 | 				       IGU_NORM_BASE_DSB_PROD + dsb_idx); | 
 |  | 
 | 			/* | 
 | 			 * igu prods come in chunks of E1HVN_MAX (4) - | 
 | 			 * does not matters what is the current chip mode | 
 | 			 */ | 
 | 			for (i = 0; i < (num_segs * E1HVN_MAX); | 
 | 			     i += E1HVN_MAX) { | 
 | 				addr = IGU_REG_PROD_CONS_MEMORY + | 
 | 							(prod_offset + i)*4; | 
 | 				REG_WR(bp, addr, 0); | 
 | 			} | 
 | 			/* send consumer update with 0 */ | 
 | 			if (CHIP_INT_MODE_IS_BC(bp)) { | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     USTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     CSTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     XSTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     TSTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     ATTENTION_ID, 0, IGU_INT_NOP, 1); | 
 | 			} else { | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     USTORM_ID, 0, IGU_INT_NOP, 1); | 
 | 				bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
 | 					     ATTENTION_ID, 0, IGU_INT_NOP, 1); | 
 | 			} | 
 | 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); | 
 |  | 
 | 			/* !!! these should become driver const once | 
 | 			   rf-tool supports split-68 const */ | 
 | 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); | 
 | 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); | 
 | 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); | 
 | 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); | 
 | 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); | 
 | 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reset PCIE errors for debug */ | 
 | 	REG_WR(bp, 0x2114, 0xffffffff); | 
 | 	REG_WR(bp, 0x2120, 0xffffffff); | 
 |  | 
 | 	if (CHIP_IS_E1x(bp)) { | 
 | 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ | 
 | 		main_mem_base = HC_REG_MAIN_MEMORY + | 
 | 				BP_PORT(bp) * (main_mem_size * 4); | 
 | 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; | 
 | 		main_mem_width = 8; | 
 |  | 
 | 		val = REG_RD(bp, main_mem_prty_clr); | 
 | 		if (val) | 
 | 			DP(NETIF_MSG_HW, | 
 | 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n", | 
 | 			   val); | 
 |  | 
 | 		/* Clear "false" parity errors in MSI-X table */ | 
 | 		for (i = main_mem_base; | 
 | 		     i < main_mem_base + main_mem_size * 4; | 
 | 		     i += main_mem_width) { | 
 | 			bnx2x_read_dmae(bp, i, main_mem_width / 4); | 
 | 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), | 
 | 					 i, main_mem_width / 4); | 
 | 		} | 
 | 		/* Clear HC parity attention */ | 
 | 		REG_RD(bp, main_mem_prty_clr); | 
 | 	} | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	/* Enable STORMs SP logging */ | 
 | 	REG_WR8(bp, BAR_USTRORM_INTMEM + | 
 | 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
 | 	REG_WR8(bp, BAR_TSTRORM_INTMEM + | 
 | 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
 | 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
 | 	REG_WR8(bp, BAR_XSTRORM_INTMEM + | 
 | 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
 | #endif | 
 |  | 
 | 	bnx2x_phy_probe(&bp->link_params); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | void bnx2x_free_mem(struct bnx2x *bp) | 
 | { | 
 | 	/* fastpath */ | 
 | 	bnx2x_free_fp_mem(bp); | 
 | 	/* end of fastpath */ | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, | 
 | 		       sizeof(struct host_sp_status_block)); | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, | 
 | 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, | 
 | 		       sizeof(struct bnx2x_slowpath)); | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping, | 
 | 		       bp->context.size); | 
 |  | 
 | 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); | 
 |  | 
 | 	BNX2X_FREE(bp->ilt->lines); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, | 
 | 			       sizeof(struct host_hc_status_block_e2)); | 
 | 	else | 
 | 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, | 
 | 			       sizeof(struct host_hc_status_block_e1x)); | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); | 
 | #endif | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); | 
 |  | 
 | 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, | 
 | 		       BCM_PAGE_SIZE * NUM_EQ_PAGES); | 
 | } | 
 |  | 
 | static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) | 
 | { | 
 | 	int num_groups; | 
 | 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; | 
 |  | 
 | 	/* number of queues for statistics is number of eth queues + FCoE */ | 
 | 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; | 
 |  | 
 | 	/* Total number of FW statistics requests = | 
 | 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats + | 
 | 	 * num of queues | 
 | 	 */ | 
 | 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; | 
 |  | 
 |  | 
 | 	/* Request is built from stats_query_header and an array of | 
 | 	 * stats_query_cmd_group each of which contains | 
 | 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is | 
 | 	 * configured in the stats_query_header. | 
 | 	 */ | 
 | 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) + | 
 | 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0); | 
 |  | 
 | 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) + | 
 | 			num_groups * sizeof(struct stats_query_cmd_group); | 
 |  | 
 | 	/* Data for statistics requests + stats_conter | 
 | 	 * | 
 | 	 * stats_counter holds per-STORM counters that are incremented | 
 | 	 * when STORM has finished with the current request. | 
 | 	 * | 
 | 	 * memory for FCoE offloaded statistics are counted anyway, | 
 | 	 * even if they will not be sent. | 
 | 	 */ | 
 | 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) + | 
 | 		sizeof(struct per_pf_stats) + | 
 | 		sizeof(struct fcoe_statistics_params) + | 
 | 		sizeof(struct per_queue_stats) * num_queue_stats + | 
 | 		sizeof(struct stats_counter); | 
 |  | 
 | 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping, | 
 | 			bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
 |  | 
 | 	/* Set shortcuts */ | 
 | 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; | 
 | 	bp->fw_stats_req_mapping = bp->fw_stats_mapping; | 
 |  | 
 | 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *) | 
 | 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz); | 
 |  | 
 | 	bp->fw_stats_data_mapping = bp->fw_stats_mapping + | 
 | 				   bp->fw_stats_req_sz; | 
 | 	return 0; | 
 |  | 
 | alloc_mem_err: | 
 | 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, | 
 | 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
 | 	BNX2X_ERR("Can't allocate memory\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 |  | 
 | int bnx2x_alloc_mem(struct bnx2x *bp) | 
 | { | 
 | #ifdef BCM_CNIC | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		/* size = the status block + ramrod buffers */ | 
 | 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, | 
 | 				sizeof(struct host_hc_status_block_e2)); | 
 | 	else | 
 | 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping, | 
 | 				sizeof(struct host_hc_status_block_e1x)); | 
 |  | 
 | 	/* allocate searcher T2 table */ | 
 | 	BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); | 
 | #endif | 
 |  | 
 |  | 
 | 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, | 
 | 			sizeof(struct host_sp_status_block)); | 
 |  | 
 | 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, | 
 | 			sizeof(struct bnx2x_slowpath)); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* write address to which L5 should insert its values */ | 
 | 	bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp; | 
 | #endif | 
 |  | 
 | 	/* Allocated memory for FW statistics  */ | 
 | 	if (bnx2x_alloc_fw_stats_mem(bp)) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); | 
 |  | 
 | 	BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping, | 
 | 			bp->context.size); | 
 |  | 
 | 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); | 
 |  | 
 | 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	/* Slow path ring */ | 
 | 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); | 
 |  | 
 | 	/* EQ */ | 
 | 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, | 
 | 			BCM_PAGE_SIZE * NUM_EQ_PAGES); | 
 |  | 
 |  | 
 | 	/* fastpath */ | 
 | 	/* need to be done at the end, since it's self adjusting to amount | 
 | 	 * of memory available for RSS queues | 
 | 	 */ | 
 | 	if (bnx2x_alloc_fp_mem(bp)) | 
 | 		goto alloc_mem_err; | 
 | 	return 0; | 
 |  | 
 | alloc_mem_err: | 
 | 	bnx2x_free_mem(bp); | 
 | 	BNX2X_ERR("Can't allocate memory\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Init service functions | 
 |  */ | 
 |  | 
 | int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, | 
 | 		      struct bnx2x_vlan_mac_obj *obj, bool set, | 
 | 		      int mac_type, unsigned long *ramrod_flags) | 
 | { | 
 | 	int rc; | 
 | 	struct bnx2x_vlan_mac_ramrod_params ramrod_param; | 
 |  | 
 | 	memset(&ramrod_param, 0, sizeof(ramrod_param)); | 
 |  | 
 | 	/* Fill general parameters */ | 
 | 	ramrod_param.vlan_mac_obj = obj; | 
 | 	ramrod_param.ramrod_flags = *ramrod_flags; | 
 |  | 
 | 	/* Fill a user request section if needed */ | 
 | 	if (!test_bit(RAMROD_CONT, ramrod_flags)) { | 
 | 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); | 
 |  | 
 | 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); | 
 |  | 
 | 		/* Set the command: ADD or DEL */ | 
 | 		if (set) | 
 | 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; | 
 | 		else | 
 | 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; | 
 | 	} | 
 |  | 
 | 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); | 
 | 	return rc; | 
 | } | 
 |  | 
 | int bnx2x_del_all_macs(struct bnx2x *bp, | 
 | 		       struct bnx2x_vlan_mac_obj *mac_obj, | 
 | 		       int mac_type, bool wait_for_comp) | 
 | { | 
 | 	int rc; | 
 | 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0; | 
 |  | 
 | 	/* Wait for completion of requested */ | 
 | 	if (wait_for_comp) | 
 | 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
 |  | 
 | 	/* Set the mac type of addresses we want to clear */ | 
 | 	__set_bit(mac_type, &vlan_mac_flags); | 
 |  | 
 | 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to delete MACs: %d\n", rc); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) | 
 | { | 
 | 	unsigned long ramrod_flags = 0; | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_STORAGE_SD(bp)) { | 
 | 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, | 
 | 		   "Ignoring Zero MAC for STORAGE SD mode\n"); | 
 | 		return 0; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); | 
 |  | 
 | 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
 | 	/* Eth MAC is set on RSS leading client (fp[0]) */ | 
 | 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set, | 
 | 				 BNX2X_ETH_MAC, &ramrod_flags); | 
 | } | 
 |  | 
 | int bnx2x_setup_leading(struct bnx2x *bp) | 
 | { | 
 | 	return bnx2x_setup_queue(bp, &bp->fp[0], 1); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_int_mode - configure interrupt mode | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * | 
 |  * In case of MSI-X it will also try to enable MSI-X. | 
 |  */ | 
 | static void __devinit bnx2x_set_int_mode(struct bnx2x *bp) | 
 | { | 
 | 	switch (int_mode) { | 
 | 	case INT_MODE_MSI: | 
 | 		bnx2x_enable_msi(bp); | 
 | 		/* falling through... */ | 
 | 	case INT_MODE_INTx: | 
 | 		bp->num_queues = 1 + NON_ETH_CONTEXT_USE; | 
 | 		BNX2X_DEV_INFO("set number of queues to 1\n"); | 
 | 		break; | 
 | 	default: | 
 | 		/* Set number of queues for MSI-X mode */ | 
 | 		bnx2x_set_num_queues(bp); | 
 |  | 
 | 		BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); | 
 |  | 
 | 		/* if we can't use MSI-X we only need one fp, | 
 | 		 * so try to enable MSI-X with the requested number of fp's | 
 | 		 * and fallback to MSI or legacy INTx with one fp | 
 | 		 */ | 
 | 		if (bnx2x_enable_msix(bp) || | 
 | 		    bp->flags & USING_SINGLE_MSIX_FLAG) { | 
 | 			/* failed to enable multiple MSI-X */ | 
 | 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", | 
 | 				       bp->num_queues, 1 + NON_ETH_CONTEXT_USE); | 
 |  | 
 | 			bp->num_queues = 1 + NON_ETH_CONTEXT_USE; | 
 |  | 
 | 			/* Try to enable MSI */ | 
 | 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) && | 
 | 			    !(bp->flags & DISABLE_MSI_FLAG)) | 
 | 				bnx2x_enable_msi(bp); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* must be called prioir to any HW initializations */ | 
 | static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) | 
 | { | 
 | 	return L2_ILT_LINES(bp); | 
 | } | 
 |  | 
 | void bnx2x_ilt_set_info(struct bnx2x *bp) | 
 | { | 
 | 	struct ilt_client_info *ilt_client; | 
 | 	struct bnx2x_ilt *ilt = BP_ILT(bp); | 
 | 	u16 line = 0; | 
 |  | 
 | 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); | 
 | 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); | 
 |  | 
 | 	/* CDU */ | 
 | 	ilt_client = &ilt->clients[ILT_CLIENT_CDU]; | 
 | 	ilt_client->client_num = ILT_CLIENT_CDU; | 
 | 	ilt_client->page_size = CDU_ILT_PAGE_SZ; | 
 | 	ilt_client->flags = ILT_CLIENT_SKIP_MEM; | 
 | 	ilt_client->start = line; | 
 | 	line += bnx2x_cid_ilt_lines(bp); | 
 | #ifdef BCM_CNIC | 
 | 	line += CNIC_ILT_LINES; | 
 | #endif | 
 | 	ilt_client->end = line - 1; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
 | 	   ilt_client->start, | 
 | 	   ilt_client->end, | 
 | 	   ilt_client->page_size, | 
 | 	   ilt_client->flags, | 
 | 	   ilog2(ilt_client->page_size >> 12)); | 
 |  | 
 | 	/* QM */ | 
 | 	if (QM_INIT(bp->qm_cid_count)) { | 
 | 		ilt_client = &ilt->clients[ILT_CLIENT_QM]; | 
 | 		ilt_client->client_num = ILT_CLIENT_QM; | 
 | 		ilt_client->page_size = QM_ILT_PAGE_SZ; | 
 | 		ilt_client->flags = 0; | 
 | 		ilt_client->start = line; | 
 |  | 
 | 		/* 4 bytes for each cid */ | 
 | 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, | 
 | 							 QM_ILT_PAGE_SZ); | 
 |  | 
 | 		ilt_client->end = line - 1; | 
 |  | 
 | 		DP(NETIF_MSG_IFUP, | 
 | 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
 | 		   ilt_client->start, | 
 | 		   ilt_client->end, | 
 | 		   ilt_client->page_size, | 
 | 		   ilt_client->flags, | 
 | 		   ilog2(ilt_client->page_size >> 12)); | 
 |  | 
 | 	} | 
 | 	/* SRC */ | 
 | 	ilt_client = &ilt->clients[ILT_CLIENT_SRC]; | 
 | #ifdef BCM_CNIC | 
 | 	ilt_client->client_num = ILT_CLIENT_SRC; | 
 | 	ilt_client->page_size = SRC_ILT_PAGE_SZ; | 
 | 	ilt_client->flags = 0; | 
 | 	ilt_client->start = line; | 
 | 	line += SRC_ILT_LINES; | 
 | 	ilt_client->end = line - 1; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
 | 	   ilt_client->start, | 
 | 	   ilt_client->end, | 
 | 	   ilt_client->page_size, | 
 | 	   ilt_client->flags, | 
 | 	   ilog2(ilt_client->page_size >> 12)); | 
 |  | 
 | #else | 
 | 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM); | 
 | #endif | 
 |  | 
 | 	/* TM */ | 
 | 	ilt_client = &ilt->clients[ILT_CLIENT_TM]; | 
 | #ifdef BCM_CNIC | 
 | 	ilt_client->client_num = ILT_CLIENT_TM; | 
 | 	ilt_client->page_size = TM_ILT_PAGE_SZ; | 
 | 	ilt_client->flags = 0; | 
 | 	ilt_client->start = line; | 
 | 	line += TM_ILT_LINES; | 
 | 	ilt_client->end = line - 1; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
 | 	   ilt_client->start, | 
 | 	   ilt_client->end, | 
 | 	   ilt_client->page_size, | 
 | 	   ilt_client->flags, | 
 | 	   ilog2(ilt_client->page_size >> 12)); | 
 |  | 
 | #else | 
 | 	ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM); | 
 | #endif | 
 | 	BUG_ON(line > ILT_MAX_LINES); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_pf_q_prep_init - prepare INIT transition parameters | 
 |  * | 
 |  * @bp:			driver handle | 
 |  * @fp:			pointer to fastpath | 
 |  * @init_params:	pointer to parameters structure | 
 |  * | 
 |  * parameters configured: | 
 |  *      - HC configuration | 
 |  *      - Queue's CDU context | 
 |  */ | 
 | static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp, | 
 | 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) | 
 | { | 
 |  | 
 | 	u8 cos; | 
 | 	/* FCoE Queue uses Default SB, thus has no HC capabilities */ | 
 | 	if (!IS_FCOE_FP(fp)) { | 
 | 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); | 
 | 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); | 
 |  | 
 | 		/* If HC is supporterd, enable host coalescing in the transition | 
 | 		 * to INIT state. | 
 | 		 */ | 
 | 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); | 
 | 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); | 
 |  | 
 | 		/* HC rate */ | 
 | 		init_params->rx.hc_rate = bp->rx_ticks ? | 
 | 			(1000000 / bp->rx_ticks) : 0; | 
 | 		init_params->tx.hc_rate = bp->tx_ticks ? | 
 | 			(1000000 / bp->tx_ticks) : 0; | 
 |  | 
 | 		/* FW SB ID */ | 
 | 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = | 
 | 			fp->fw_sb_id; | 
 |  | 
 | 		/* | 
 | 		 * CQ index among the SB indices: FCoE clients uses the default | 
 | 		 * SB, therefore it's different. | 
 | 		 */ | 
 | 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; | 
 | 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; | 
 | 	} | 
 |  | 
 | 	/* set maximum number of COSs supported by this queue */ | 
 | 	init_params->max_cos = fp->max_cos; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", | 
 | 	    fp->index, init_params->max_cos); | 
 |  | 
 | 	/* set the context pointers queue object */ | 
 | 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) | 
 | 		init_params->cxts[cos] = | 
 | 			&bp->context.vcxt[fp->txdata[cos].cid].eth; | 
 | } | 
 |  | 
 | int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			struct bnx2x_queue_state_params *q_params, | 
 | 			struct bnx2x_queue_setup_tx_only_params *tx_only_params, | 
 | 			int tx_index, bool leading) | 
 | { | 
 | 	memset(tx_only_params, 0, sizeof(*tx_only_params)); | 
 |  | 
 | 	/* Set the command */ | 
 | 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; | 
 |  | 
 | 	/* Set tx-only QUEUE flags: don't zero statistics */ | 
 | 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); | 
 |  | 
 | 	/* choose the index of the cid to send the slow path on */ | 
 | 	tx_only_params->cid_index = tx_index; | 
 |  | 
 | 	/* Set general TX_ONLY_SETUP parameters */ | 
 | 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); | 
 |  | 
 | 	/* Set Tx TX_ONLY_SETUP parameters */ | 
 | 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", | 
 | 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], | 
 | 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, | 
 | 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags); | 
 |  | 
 | 	/* send the ramrod */ | 
 | 	return bnx2x_queue_state_change(bp, q_params); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * bnx2x_setup_queue - setup queue | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @fp:		pointer to fastpath | 
 |  * @leading:	is leading | 
 |  * | 
 |  * This function performs 2 steps in a Queue state machine | 
 |  *      actually: 1) RESET->INIT 2) INIT->SETUP | 
 |  */ | 
 |  | 
 | int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 		       bool leading) | 
 | { | 
 | 	struct bnx2x_queue_state_params q_params = {NULL}; | 
 | 	struct bnx2x_queue_setup_params *setup_params = | 
 | 						&q_params.params.setup; | 
 | 	struct bnx2x_queue_setup_tx_only_params *tx_only_params = | 
 | 						&q_params.params.tx_only; | 
 | 	int rc; | 
 | 	u8 tx_index; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); | 
 |  | 
 | 	/* reset IGU state skip FCoE L2 queue */ | 
 | 	if (!IS_FCOE_FP(fp)) | 
 | 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, | 
 | 			     IGU_INT_ENABLE, 0); | 
 |  | 
 | 	q_params.q_obj = &fp->q_obj; | 
 | 	/* We want to wait for completion in this context */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); | 
 |  | 
 | 	/* Prepare the INIT parameters */ | 
 | 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); | 
 |  | 
 | 	/* Set the command */ | 
 | 	q_params.cmd = BNX2X_Q_CMD_INIT; | 
 |  | 
 | 	/* Change the state to INIT */ | 
 | 	rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "init complete\n"); | 
 |  | 
 |  | 
 | 	/* Now move the Queue to the SETUP state... */ | 
 | 	memset(setup_params, 0, sizeof(*setup_params)); | 
 |  | 
 | 	/* Set QUEUE flags */ | 
 | 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); | 
 |  | 
 | 	/* Set general SETUP parameters */ | 
 | 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, | 
 | 				FIRST_TX_COS_INDEX); | 
 |  | 
 | 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, | 
 | 			    &setup_params->rxq_params); | 
 |  | 
 | 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, | 
 | 			   FIRST_TX_COS_INDEX); | 
 |  | 
 | 	/* Set the command */ | 
 | 	q_params.cmd = BNX2X_Q_CMD_SETUP; | 
 |  | 
 | 	/* Change the state to SETUP */ | 
 | 	rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* loop through the relevant tx-only indices */ | 
 | 	for (tx_index = FIRST_TX_ONLY_COS_INDEX; | 
 | 	      tx_index < fp->max_cos; | 
 | 	      tx_index++) { | 
 |  | 
 | 		/* prepare and send tx-only ramrod*/ | 
 | 		rc = bnx2x_setup_tx_only(bp, fp, &q_params, | 
 | 					  tx_only_params, tx_index, leading); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", | 
 | 				  fp->index, tx_index); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int bnx2x_stop_queue(struct bnx2x *bp, int index) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = &bp->fp[index]; | 
 | 	struct bnx2x_fp_txdata *txdata; | 
 | 	struct bnx2x_queue_state_params q_params = {NULL}; | 
 | 	int rc, tx_index; | 
 |  | 
 | 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); | 
 |  | 
 | 	q_params.q_obj = &fp->q_obj; | 
 | 	/* We want to wait for completion in this context */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); | 
 |  | 
 |  | 
 | 	/* close tx-only connections */ | 
 | 	for (tx_index = FIRST_TX_ONLY_COS_INDEX; | 
 | 	     tx_index < fp->max_cos; | 
 | 	     tx_index++){ | 
 |  | 
 | 		/* ascertain this is a normal queue*/ | 
 | 		txdata = &fp->txdata[tx_index]; | 
 |  | 
 | 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", | 
 | 							txdata->txq_index); | 
 |  | 
 | 		/* send halt terminate on tx-only connection */ | 
 | 		q_params.cmd = BNX2X_Q_CMD_TERMINATE; | 
 | 		memset(&q_params.params.terminate, 0, | 
 | 		       sizeof(q_params.params.terminate)); | 
 | 		q_params.params.terminate.cid_index = tx_index; | 
 |  | 
 | 		rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		/* send halt terminate on tx-only connection */ | 
 | 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL; | 
 | 		memset(&q_params.params.cfc_del, 0, | 
 | 		       sizeof(q_params.params.cfc_del)); | 
 | 		q_params.params.cfc_del.cid_index = tx_index; | 
 | 		rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 | 	/* Stop the primary connection: */ | 
 | 	/* ...halt the connection */ | 
 | 	q_params.cmd = BNX2X_Q_CMD_HALT; | 
 | 	rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* ...terminate the connection */ | 
 | 	q_params.cmd = BNX2X_Q_CMD_TERMINATE; | 
 | 	memset(&q_params.params.terminate, 0, | 
 | 	       sizeof(q_params.params.terminate)); | 
 | 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; | 
 | 	rc = bnx2x_queue_state_change(bp, &q_params); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	/* ...delete cfc entry */ | 
 | 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL; | 
 | 	memset(&q_params.params.cfc_del, 0, | 
 | 	       sizeof(q_params.params.cfc_del)); | 
 | 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; | 
 | 	return bnx2x_queue_state_change(bp, &q_params); | 
 | } | 
 |  | 
 |  | 
 | static void bnx2x_reset_func(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int func = BP_FUNC(bp); | 
 | 	int i; | 
 |  | 
 | 	/* Disable the function in the FW */ | 
 | 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); | 
 | 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); | 
 | 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); | 
 |  | 
 | 	/* FP SBs */ | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 		REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
 | 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), | 
 | 			   SB_DISABLED); | 
 | 	} | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* CNIC SB */ | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
 | 		CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)), | 
 | 		SB_DISABLED); | 
 | #endif | 
 | 	/* SP SB */ | 
 | 	REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
 | 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), | 
 | 		   SB_DISABLED); | 
 |  | 
 | 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) | 
 | 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), | 
 | 		       0); | 
 |  | 
 | 	/* Configure IGU */ | 
 | 	if (bp->common.int_block == INT_BLOCK_HC) { | 
 | 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
 | 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
 | 	} else { | 
 | 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); | 
 | 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); | 
 | 	} | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* Disable Timer scan */ | 
 | 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); | 
 | 	/* | 
 | 	 * Wait for at least 10ms and up to 2 second for the timers scan to | 
 | 	 * complete | 
 | 	 */ | 
 | 	for (i = 0; i < 200; i++) { | 
 | 		msleep(10); | 
 | 		if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) | 
 | 			break; | 
 | 	} | 
 | #endif | 
 | 	/* Clear ILT */ | 
 | 	bnx2x_clear_func_ilt(bp, func); | 
 |  | 
 | 	/* Timers workaround bug for E2: if this is vnic-3, | 
 | 	 * we need to set the entire ilt range for this timers. | 
 | 	 */ | 
 | 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { | 
 | 		struct ilt_client_info ilt_cli; | 
 | 		/* use dummy TM client */ | 
 | 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); | 
 | 		ilt_cli.start = 0; | 
 | 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; | 
 | 		ilt_cli.client_num = ILT_CLIENT_TM; | 
 |  | 
 | 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); | 
 | 	} | 
 |  | 
 | 	/* this assumes that reset_port() called before reset_func()*/ | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		bnx2x_pf_disable(bp); | 
 |  | 
 | 	bp->dmae_ready = 0; | 
 | } | 
 |  | 
 | static void bnx2x_reset_port(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 val; | 
 |  | 
 | 	/* Reset physical Link */ | 
 | 	bnx2x__link_reset(bp); | 
 |  | 
 | 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); | 
 |  | 
 | 	/* Do not rcv packets to BRB */ | 
 | 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); | 
 | 	/* Do not direct rcv packets that are not for MCP to the BRB */ | 
 | 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : | 
 | 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); | 
 |  | 
 | 	/* Configure AEU */ | 
 | 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); | 
 |  | 
 | 	msleep(100); | 
 | 	/* Check for BRB port occupancy */ | 
 | 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); | 
 | 	if (val) | 
 | 		DP(NETIF_MSG_IFDOWN, | 
 | 		   "BRB1 is not empty  %d blocks are occupied\n", val); | 
 |  | 
 | 	/* TODO: Close Doorbell port? */ | 
 | } | 
 |  | 
 | static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) | 
 | { | 
 | 	struct bnx2x_func_state_params func_params = {NULL}; | 
 |  | 
 | 	/* Prepare parameters for function state transitions */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
 |  | 
 | 	func_params.f_obj = &bp->func_obj; | 
 | 	func_params.cmd = BNX2X_F_CMD_HW_RESET; | 
 |  | 
 | 	func_params.params.hw_init.load_phase = load_code; | 
 |  | 
 | 	return bnx2x_func_state_change(bp, &func_params); | 
 | } | 
 |  | 
 | static inline int bnx2x_func_stop(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_func_state_params func_params = {NULL}; | 
 | 	int rc; | 
 |  | 
 | 	/* Prepare parameters for function state transitions */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
 | 	func_params.f_obj = &bp->func_obj; | 
 | 	func_params.cmd = BNX2X_F_CMD_STOP; | 
 |  | 
 | 	/* | 
 | 	 * Try to stop the function the 'good way'. If fails (in case | 
 | 	 * of a parity error during bnx2x_chip_cleanup()) and we are | 
 | 	 * not in a debug mode, perform a state transaction in order to | 
 | 	 * enable further HW_RESET transaction. | 
 | 	 */ | 
 | 	rc = bnx2x_func_state_change(bp, &func_params); | 
 | 	if (rc) { | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		return rc; | 
 | #else | 
 | 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); | 
 | 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); | 
 | 		return bnx2x_func_state_change(bp, &func_params); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_send_unload_req - request unload mode from the MCP. | 
 |  * | 
 |  * @bp:			driver handle | 
 |  * @unload_mode:	requested function's unload mode | 
 |  * | 
 |  * Return unload mode returned by the MCP: COMMON, PORT or FUNC. | 
 |  */ | 
 | u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) | 
 | { | 
 | 	u32 reset_code = 0; | 
 | 	int port = BP_PORT(bp); | 
 |  | 
 | 	/* Select the UNLOAD request mode */ | 
 | 	if (unload_mode == UNLOAD_NORMAL) | 
 | 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; | 
 |  | 
 | 	else if (bp->flags & NO_WOL_FLAG) | 
 | 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; | 
 |  | 
 | 	else if (bp->wol) { | 
 | 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; | 
 | 		u8 *mac_addr = bp->dev->dev_addr; | 
 | 		u32 val; | 
 | 		u16 pmc; | 
 |  | 
 | 		/* The mac address is written to entries 1-4 to | 
 | 		 * preserve entry 0 which is used by the PMF | 
 | 		 */ | 
 | 		u8 entry = (BP_VN(bp) + 1)*8; | 
 |  | 
 | 		val = (mac_addr[0] << 8) | mac_addr[1]; | 
 | 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); | 
 |  | 
 | 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | | 
 | 		      (mac_addr[4] << 8) | mac_addr[5]; | 
 | 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); | 
 |  | 
 | 		/* Enable the PME and clear the status */ | 
 | 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc); | 
 | 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; | 
 | 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc); | 
 |  | 
 | 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; | 
 |  | 
 | 	} else | 
 | 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; | 
 |  | 
 | 	/* Send the request to the MCP */ | 
 | 	if (!BP_NOMCP(bp)) | 
 | 		reset_code = bnx2x_fw_command(bp, reset_code, 0); | 
 | 	else { | 
 | 		int path = BP_PATH(bp); | 
 |  | 
 | 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n", | 
 | 		   path, load_count[path][0], load_count[path][1], | 
 | 		   load_count[path][2]); | 
 | 		load_count[path][0]--; | 
 | 		load_count[path][1 + port]--; | 
 | 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n", | 
 | 		   path, load_count[path][0], load_count[path][1], | 
 | 		   load_count[path][2]); | 
 | 		if (load_count[path][0] == 0) | 
 | 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; | 
 | 		else if (load_count[path][1 + port] == 0) | 
 | 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; | 
 | 		else | 
 | 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; | 
 | 	} | 
 |  | 
 | 	return reset_code; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  */ | 
 | void bnx2x_send_unload_done(struct bnx2x *bp) | 
 | { | 
 | 	/* Report UNLOAD_DONE to MCP */ | 
 | 	if (!BP_NOMCP(bp)) | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
 | } | 
 |  | 
 | static inline int bnx2x_func_wait_started(struct bnx2x *bp) | 
 | { | 
 | 	int tout = 50; | 
 | 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; | 
 |  | 
 | 	if (!bp->port.pmf) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * (assumption: No Attention from MCP at this stage) | 
 | 	 * PMF probably in the middle of TXdisable/enable transaction | 
 | 	 * 1. Sync IRS for default SB | 
 | 	 * 2. Sync SP queue - this guarantes us that attention handling started | 
 | 	 * 3. Wait, that TXdisable/enable transaction completes | 
 | 	 * | 
 | 	 * 1+2 guranty that if DCBx attention was scheduled it already changed | 
 | 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy | 
 | 	 * received complettion for the transaction the state is TX_STOPPED. | 
 | 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED | 
 | 	 * transaction. | 
 | 	 */ | 
 |  | 
 | 	/* make sure default SB ISR is done */ | 
 | 	if (msix) | 
 | 		synchronize_irq(bp->msix_table[0].vector); | 
 | 	else | 
 | 		synchronize_irq(bp->pdev->irq); | 
 |  | 
 | 	flush_workqueue(bnx2x_wq); | 
 |  | 
 | 	while (bnx2x_func_get_state(bp, &bp->func_obj) != | 
 | 				BNX2X_F_STATE_STARTED && tout--) | 
 | 		msleep(20); | 
 |  | 
 | 	if (bnx2x_func_get_state(bp, &bp->func_obj) != | 
 | 						BNX2X_F_STATE_STARTED) { | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		BNX2X_ERR("Wrong function state\n"); | 
 | 		return -EBUSY; | 
 | #else | 
 | 		/* | 
 | 		 * Failed to complete the transaction in a "good way" | 
 | 		 * Force both transactions with CLR bit | 
 | 		 */ | 
 | 		struct bnx2x_func_state_params func_params = {NULL}; | 
 |  | 
 | 		DP(NETIF_MSG_IFDOWN, | 
 | 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); | 
 |  | 
 | 		func_params.f_obj = &bp->func_obj; | 
 | 		__set_bit(RAMROD_DRV_CLR_ONLY, | 
 | 					&func_params.ramrod_flags); | 
 |  | 
 | 		/* STARTED-->TX_ST0PPED */ | 
 | 		func_params.cmd = BNX2X_F_CMD_TX_STOP; | 
 | 		bnx2x_func_state_change(bp, &func_params); | 
 |  | 
 | 		/* TX_ST0PPED-->STARTED */ | 
 | 		func_params.cmd = BNX2X_F_CMD_TX_START; | 
 | 		return bnx2x_func_state_change(bp, &func_params); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int i, rc = 0; | 
 | 	u8 cos; | 
 | 	struct bnx2x_mcast_ramrod_params rparam = {NULL}; | 
 | 	u32 reset_code; | 
 |  | 
 | 	/* Wait until tx fastpath tasks complete */ | 
 | 	for_each_tx_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 |  | 
 | 		for_each_cos_in_tx_queue(fp, cos) | 
 | 			rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		if (rc) | 
 | 			return; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Give HW time to discard old tx messages */ | 
 | 	usleep_range(1000, 1000); | 
 |  | 
 | 	/* Clean all ETH MACs */ | 
 | 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); | 
 |  | 
 | 	/* Clean up UC list  */ | 
 | 	rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC, | 
 | 				true); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", | 
 | 			  rc); | 
 |  | 
 | 	/* Disable LLH */ | 
 | 	if (!CHIP_IS_E1(bp)) | 
 | 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); | 
 |  | 
 | 	/* Set "drop all" (stop Rx). | 
 | 	 * We need to take a netif_addr_lock() here in order to prevent | 
 | 	 * a race between the completion code and this code. | 
 | 	 */ | 
 | 	netif_addr_lock_bh(bp->dev); | 
 | 	/* Schedule the rx_mode command */ | 
 | 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) | 
 | 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); | 
 | 	else | 
 | 		bnx2x_set_storm_rx_mode(bp); | 
 |  | 
 | 	/* Cleanup multicast configuration */ | 
 | 	rparam.mcast_obj = &bp->mcast_obj; | 
 | 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); | 
 |  | 
 | 	netif_addr_unlock_bh(bp->dev); | 
 |  | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Send the UNLOAD_REQUEST to the MCP. This will return if | 
 | 	 * this function should perform FUNC, PORT or COMMON HW | 
 | 	 * reset. | 
 | 	 */ | 
 | 	reset_code = bnx2x_send_unload_req(bp, unload_mode); | 
 |  | 
 | 	/* | 
 | 	 * (assumption: No Attention from MCP at this stage) | 
 | 	 * PMF probably in the middle of TXdisable/enable transaction | 
 | 	 */ | 
 | 	rc = bnx2x_func_wait_started(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("bnx2x_func_wait_started failed\n"); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		return; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Close multi and leading connections | 
 | 	 * Completions for ramrods are collected in a synchronous way | 
 | 	 */ | 
 | 	for_each_queue(bp, i) | 
 | 		if (bnx2x_stop_queue(bp, i)) | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 			return; | 
 | #else | 
 | 			goto unload_error; | 
 | #endif | 
 | 	/* If SP settings didn't get completed so far - something | 
 | 	 * very wrong has happen. | 
 | 	 */ | 
 | 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) | 
 | 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); | 
 |  | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | unload_error: | 
 | #endif | 
 | 	rc = bnx2x_func_stop(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Function stop failed!\n"); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		return; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Disable HW interrupts, NAPI */ | 
 | 	bnx2x_netif_stop(bp, 1); | 
 |  | 
 | 	/* Release IRQs */ | 
 | 	bnx2x_free_irq(bp); | 
 |  | 
 | 	/* Reset the chip */ | 
 | 	rc = bnx2x_reset_hw(bp, reset_code); | 
 | 	if (rc) | 
 | 		BNX2X_ERR("HW_RESET failed\n"); | 
 |  | 
 |  | 
 | 	/* Report UNLOAD_DONE to MCP */ | 
 | 	bnx2x_send_unload_done(bp); | 
 | } | 
 |  | 
 | void bnx2x_disable_close_the_gate(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) { | 
 | 		int port = BP_PORT(bp); | 
 | 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
 | 			MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
 |  | 
 | 		val = REG_RD(bp, addr); | 
 | 		val &= ~(0x300); | 
 | 		REG_WR(bp, addr, val); | 
 | 	} else { | 
 | 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); | 
 | 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | | 
 | 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); | 
 | 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); | 
 | 	} | 
 | } | 
 |  | 
 | /* Close gates #2, #3 and #4: */ | 
 | static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	/* Gates #2 and #4a are closed/opened for "not E1" only */ | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		/* #4 */ | 
 | 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); | 
 | 		/* #2 */ | 
 | 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); | 
 | 	} | 
 |  | 
 | 	/* #3 */ | 
 | 	if (CHIP_IS_E1x(bp)) { | 
 | 		/* Prevent interrupts from HC on both ports */ | 
 | 		val = REG_RD(bp, HC_REG_CONFIG_1); | 
 | 		REG_WR(bp, HC_REG_CONFIG_1, | 
 | 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : | 
 | 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); | 
 |  | 
 | 		val = REG_RD(bp, HC_REG_CONFIG_0); | 
 | 		REG_WR(bp, HC_REG_CONFIG_0, | 
 | 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : | 
 | 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); | 
 | 	} else { | 
 | 		/* Prevent incomming interrupts in IGU */ | 
 | 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); | 
 |  | 
 | 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, | 
 | 		       (!close) ? | 
 | 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : | 
 | 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", | 
 | 		close ? "closing" : "opening"); | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */ | 
 |  | 
 | static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) | 
 | { | 
 | 	/* Do some magic... */ | 
 | 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); | 
 | 	*magic_val = val & SHARED_MF_CLP_MAGIC; | 
 | 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_clp_reset_done - restore the value of the `magic' bit. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @magic_val:	old value of the `magic' bit. | 
 |  */ | 
 | static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) | 
 | { | 
 | 	/* Restore the `magic' bit value... */ | 
 | 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); | 
 | 	MF_CFG_WR(bp, shared_mf_config.clp_mb, | 
 | 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_reset_mcp_prep - prepare for MCP reset. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @magic_val:	old value of 'magic' bit. | 
 |  * | 
 |  * Takes care of CLP configurations. | 
 |  */ | 
 | static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) | 
 | { | 
 | 	u32 shmem; | 
 | 	u32 validity_offset; | 
 |  | 
 | 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); | 
 |  | 
 | 	/* Set `magic' bit in order to save MF config */ | 
 | 	if (!CHIP_IS_E1(bp)) | 
 | 		bnx2x_clp_reset_prep(bp, magic_val); | 
 |  | 
 | 	/* Get shmem offset */ | 
 | 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); | 
 | 	validity_offset = offsetof(struct shmem_region, validity_map[0]); | 
 |  | 
 | 	/* Clear validity map flags */ | 
 | 	if (shmem > 0) | 
 | 		REG_WR(bp, shmem + validity_offset, 0); | 
 | } | 
 |  | 
 | #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */ | 
 | #define MCP_ONE_TIMEOUT  100    /* 100 ms */ | 
 |  | 
 | /** | 
 |  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT | 
 |  * | 
 |  * @bp:	driver handle | 
 |  */ | 
 | static inline void bnx2x_mcp_wait_one(struct bnx2x *bp) | 
 | { | 
 | 	/* special handling for emulation and FPGA, | 
 | 	   wait 10 times longer */ | 
 | 	if (CHIP_REV_IS_SLOW(bp)) | 
 | 		msleep(MCP_ONE_TIMEOUT*10); | 
 | 	else | 
 | 		msleep(MCP_ONE_TIMEOUT); | 
 | } | 
 |  | 
 | /* | 
 |  * initializes bp->common.shmem_base and waits for validity signature to appear | 
 |  */ | 
 | static int bnx2x_init_shmem(struct bnx2x *bp) | 
 | { | 
 | 	int cnt = 0; | 
 | 	u32 val = 0; | 
 |  | 
 | 	do { | 
 | 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); | 
 | 		if (bp->common.shmem_base) { | 
 | 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); | 
 | 			if (val & SHR_MEM_VALIDITY_MB) | 
 | 				return 0; | 
 | 		} | 
 |  | 
 | 		bnx2x_mcp_wait_one(bp); | 
 |  | 
 | 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); | 
 |  | 
 | 	BNX2X_ERR("BAD MCP validity signature\n"); | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) | 
 | { | 
 | 	int rc = bnx2x_init_shmem(bp); | 
 |  | 
 | 	/* Restore the `magic' bit value */ | 
 | 	if (!CHIP_IS_E1(bp)) | 
 | 		bnx2x_clp_reset_done(bp, magic_val); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void bnx2x_pxp_prep(struct bnx2x *bp) | 
 | { | 
 | 	if (!CHIP_IS_E1(bp)) { | 
 | 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0); | 
 | 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); | 
 | 		mmiowb(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Reset the whole chip except for: | 
 |  *      - PCIE core | 
 |  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by | 
 |  *              one reset bit) | 
 |  *      - IGU | 
 |  *      - MISC (including AEU) | 
 |  *      - GRC | 
 |  *      - RBCN, RBCP | 
 |  */ | 
 | static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) | 
 | { | 
 | 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; | 
 | 	u32 global_bits2, stay_reset2; | 
 |  | 
 | 	/* | 
 | 	 * Bits that have to be set in reset_mask2 if we want to reset 'global' | 
 | 	 * (per chip) blocks. | 
 | 	 */ | 
 | 	global_bits2 = | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; | 
 |  | 
 | 	/* Don't reset the following blocks */ | 
 | 	not_reset_mask1 = | 
 | 		MISC_REGISTERS_RESET_REG_1_RST_HC | | 
 | 		MISC_REGISTERS_RESET_REG_1_RST_PXPV | | 
 | 		MISC_REGISTERS_RESET_REG_1_RST_PXP; | 
 |  | 
 | 	not_reset_mask2 = | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_RBCN | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_GRC  | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_ATC | | 
 | 		MISC_REGISTERS_RESET_REG_2_PGLC; | 
 |  | 
 | 	/* | 
 | 	 * Keep the following blocks in reset: | 
 | 	 *  - all xxMACs are handled by the bnx2x_link code. | 
 | 	 */ | 
 | 	stay_reset2 = | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | | 
 | 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | | 
 | 		MISC_REGISTERS_RESET_REG_2_UMAC0 | | 
 | 		MISC_REGISTERS_RESET_REG_2_UMAC1 | | 
 | 		MISC_REGISTERS_RESET_REG_2_XMAC | | 
 | 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; | 
 |  | 
 | 	/* Full reset masks according to the chip */ | 
 | 	reset_mask1 = 0xffffffff; | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		reset_mask2 = 0xffff; | 
 | 	else if (CHIP_IS_E1H(bp)) | 
 | 		reset_mask2 = 0x1ffff; | 
 | 	else if (CHIP_IS_E2(bp)) | 
 | 		reset_mask2 = 0xfffff; | 
 | 	else /* CHIP_IS_E3 */ | 
 | 		reset_mask2 = 0x3ffffff; | 
 |  | 
 | 	/* Don't reset global blocks unless we need to */ | 
 | 	if (!global) | 
 | 		reset_mask2 &= ~global_bits2; | 
 |  | 
 | 	/* | 
 | 	 * In case of attention in the QM, we need to reset PXP | 
 | 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM | 
 | 	 * because otherwise QM reset would release 'close the gates' shortly | 
 | 	 * before resetting the PXP, then the PSWRQ would send a write | 
 | 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to | 
 | 	 * read the payload data from PSWWR, but PSWWR would not | 
 | 	 * respond. The write queue in PGLUE would stuck, dmae commands | 
 | 	 * would not return. Therefore it's important to reset the second | 
 | 	 * reset register (containing the | 
 | 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the | 
 | 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM | 
 | 	 * bit). | 
 | 	 */ | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, | 
 | 	       reset_mask2 & (~not_reset_mask2)); | 
 |  | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
 | 	       reset_mask1 & (~not_reset_mask1)); | 
 |  | 
 | 	barrier(); | 
 | 	mmiowb(); | 
 |  | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, | 
 | 	       reset_mask2 & (~stay_reset2)); | 
 |  | 
 | 	barrier(); | 
 | 	mmiowb(); | 
 |  | 
 | 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_er_poll_igu_vq - poll for pending writes bit. | 
 |  * It should get cleared in no more than 1s. | 
 |  * | 
 |  * @bp:	driver handle | 
 |  * | 
 |  * It should get cleared in no more than 1s. Returns 0 if | 
 |  * pending writes bit gets cleared. | 
 |  */ | 
 | static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) | 
 | { | 
 | 	u32 cnt = 1000; | 
 | 	u32 pend_bits = 0; | 
 |  | 
 | 	do { | 
 | 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); | 
 |  | 
 | 		if (pend_bits == 0) | 
 | 			break; | 
 |  | 
 | 		usleep_range(1000, 1000); | 
 | 	} while (cnt-- > 0); | 
 |  | 
 | 	if (cnt <= 0) { | 
 | 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", | 
 | 			  pend_bits); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_process_kill(struct bnx2x *bp, bool global) | 
 | { | 
 | 	int cnt = 1000; | 
 | 	u32 val = 0; | 
 | 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; | 
 |  | 
 |  | 
 | 	/* Empty the Tetris buffer, wait for 1s */ | 
 | 	do { | 
 | 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT); | 
 | 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); | 
 | 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); | 
 | 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); | 
 | 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); | 
 | 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && | 
 | 		    ((port_is_idle_0 & 0x1) == 0x1) && | 
 | 		    ((port_is_idle_1 & 0x1) == 0x1) && | 
 | 		    (pgl_exp_rom2 == 0xffffffff)) | 
 | 			break; | 
 | 		usleep_range(1000, 1000); | 
 | 	} while (cnt-- > 0); | 
 |  | 
 | 	if (cnt <= 0) { | 
 | 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); | 
 | 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", | 
 | 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, | 
 | 			  pgl_exp_rom2); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	barrier(); | 
 |  | 
 | 	/* Close gates #2, #3 and #4 */ | 
 | 	bnx2x_set_234_gates(bp, true); | 
 |  | 
 | 	/* Poll for IGU VQs for 57712 and newer chips */ | 
 | 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) | 
 | 		return -EAGAIN; | 
 |  | 
 |  | 
 | 	/* TBD: Indicate that "process kill" is in progress to MCP */ | 
 |  | 
 | 	/* Clear "unprepared" bit */ | 
 | 	REG_WR(bp, MISC_REG_UNPREPARED, 0); | 
 | 	barrier(); | 
 |  | 
 | 	/* Make sure all is written to the chip before the reset */ | 
 | 	mmiowb(); | 
 |  | 
 | 	/* Wait for 1ms to empty GLUE and PCI-E core queues, | 
 | 	 * PSWHST, GRC and PSWRD Tetris buffer. | 
 | 	 */ | 
 | 	usleep_range(1000, 1000); | 
 |  | 
 | 	/* Prepare to chip reset: */ | 
 | 	/* MCP */ | 
 | 	if (global) | 
 | 		bnx2x_reset_mcp_prep(bp, &val); | 
 |  | 
 | 	/* PXP */ | 
 | 	bnx2x_pxp_prep(bp); | 
 | 	barrier(); | 
 |  | 
 | 	/* reset the chip */ | 
 | 	bnx2x_process_kill_chip_reset(bp, global); | 
 | 	barrier(); | 
 |  | 
 | 	/* Recover after reset: */ | 
 | 	/* MCP */ | 
 | 	if (global && bnx2x_reset_mcp_comp(bp, val)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* TBD: Add resetting the NO_MCP mode DB here */ | 
 |  | 
 | 	/* PXP */ | 
 | 	bnx2x_pxp_prep(bp); | 
 |  | 
 | 	/* Open the gates #2, #3 and #4 */ | 
 | 	bnx2x_set_234_gates(bp, false); | 
 |  | 
 | 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a | 
 | 	 * reset state, re-enable attentions. */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bnx2x_leader_reset(struct bnx2x *bp) | 
 | { | 
 | 	int rc = 0; | 
 | 	bool global = bnx2x_reset_is_global(bp); | 
 | 	u32 load_code; | 
 |  | 
 | 	/* if not going to reset MCP - load "fake" driver to reset HW while | 
 | 	 * driver is owner of the HW | 
 | 	 */ | 
 | 	if (!global && !BP_NOMCP(bp)) { | 
 | 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0); | 
 | 		if (!load_code) { | 
 | 			BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 			rc = -EAGAIN; | 
 | 			goto exit_leader_reset; | 
 | 		} | 
 | 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && | 
 | 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { | 
 | 			BNX2X_ERR("MCP unexpected resp, aborting\n"); | 
 | 			rc = -EAGAIN; | 
 | 			goto exit_leader_reset2; | 
 | 		} | 
 | 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
 | 		if (!load_code) { | 
 | 			BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 			rc = -EAGAIN; | 
 | 			goto exit_leader_reset2; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Try to recover after the failure */ | 
 | 	if (bnx2x_process_kill(bp, global)) { | 
 | 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", | 
 | 			  BP_PATH(bp)); | 
 | 		rc = -EAGAIN; | 
 | 		goto exit_leader_reset2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver | 
 | 	 * state. | 
 | 	 */ | 
 | 	bnx2x_set_reset_done(bp); | 
 | 	if (global) | 
 | 		bnx2x_clear_reset_global(bp); | 
 |  | 
 | exit_leader_reset2: | 
 | 	/* unload "fake driver" if it was loaded */ | 
 | 	if (!global && !BP_NOMCP(bp)) { | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
 | 	} | 
 | exit_leader_reset: | 
 | 	bp->is_leader = 0; | 
 | 	bnx2x_release_leader_lock(bp); | 
 | 	smp_mb(); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static inline void bnx2x_recovery_failed(struct bnx2x *bp) | 
 | { | 
 | 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); | 
 |  | 
 | 	/* Disconnect this device */ | 
 | 	netif_device_detach(bp->dev); | 
 |  | 
 | 	/* | 
 | 	 * Block ifup for all function on this engine until "process kill" | 
 | 	 * or power cycle. | 
 | 	 */ | 
 | 	bnx2x_set_reset_in_progress(bp); | 
 |  | 
 | 	/* Shut down the power */ | 
 | 	bnx2x_set_power_state(bp, PCI_D3hot); | 
 |  | 
 | 	bp->recovery_state = BNX2X_RECOVERY_FAILED; | 
 |  | 
 | 	smp_mb(); | 
 | } | 
 |  | 
 | /* | 
 |  * Assumption: runs under rtnl lock. This together with the fact | 
 |  * that it's called only from bnx2x_sp_rtnl() ensure that it | 
 |  * will never be called when netif_running(bp->dev) is false. | 
 |  */ | 
 | static void bnx2x_parity_recover(struct bnx2x *bp) | 
 | { | 
 | 	bool global = false; | 
 | 	u32 error_recovered, error_unrecovered; | 
 | 	bool is_parity; | 
 |  | 
 | 	DP(NETIF_MSG_HW, "Handling parity\n"); | 
 | 	while (1) { | 
 | 		switch (bp->recovery_state) { | 
 | 		case BNX2X_RECOVERY_INIT: | 
 | 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); | 
 | 			is_parity = bnx2x_chk_parity_attn(bp, &global, false); | 
 | 			WARN_ON(!is_parity); | 
 |  | 
 | 			/* Try to get a LEADER_LOCK HW lock */ | 
 | 			if (bnx2x_trylock_leader_lock(bp)) { | 
 | 				bnx2x_set_reset_in_progress(bp); | 
 | 				/* | 
 | 				 * Check if there is a global attention and if | 
 | 				 * there was a global attention, set the global | 
 | 				 * reset bit. | 
 | 				 */ | 
 |  | 
 | 				if (global) | 
 | 					bnx2x_set_reset_global(bp); | 
 |  | 
 | 				bp->is_leader = 1; | 
 | 			} | 
 |  | 
 | 			/* Stop the driver */ | 
 | 			/* If interface has been removed - break */ | 
 | 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY)) | 
 | 				return; | 
 |  | 
 | 			bp->recovery_state = BNX2X_RECOVERY_WAIT; | 
 |  | 
 | 			/* Ensure "is_leader", MCP command sequence and | 
 | 			 * "recovery_state" update values are seen on other | 
 | 			 * CPUs. | 
 | 			 */ | 
 | 			smp_mb(); | 
 | 			break; | 
 |  | 
 | 		case BNX2X_RECOVERY_WAIT: | 
 | 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); | 
 | 			if (bp->is_leader) { | 
 | 				int other_engine = BP_PATH(bp) ? 0 : 1; | 
 | 				bool other_load_status = | 
 | 					bnx2x_get_load_status(bp, other_engine); | 
 | 				bool load_status = | 
 | 					bnx2x_get_load_status(bp, BP_PATH(bp)); | 
 | 				global = bnx2x_reset_is_global(bp); | 
 |  | 
 | 				/* | 
 | 				 * In case of a parity in a global block, let | 
 | 				 * the first leader that performs a | 
 | 				 * leader_reset() reset the global blocks in | 
 | 				 * order to clear global attentions. Otherwise | 
 | 				 * the the gates will remain closed for that | 
 | 				 * engine. | 
 | 				 */ | 
 | 				if (load_status || | 
 | 				    (global && other_load_status)) { | 
 | 					/* Wait until all other functions get | 
 | 					 * down. | 
 | 					 */ | 
 | 					schedule_delayed_work(&bp->sp_rtnl_task, | 
 | 								HZ/10); | 
 | 					return; | 
 | 				} else { | 
 | 					/* If all other functions got down - | 
 | 					 * try to bring the chip back to | 
 | 					 * normal. In any case it's an exit | 
 | 					 * point for a leader. | 
 | 					 */ | 
 | 					if (bnx2x_leader_reset(bp)) { | 
 | 						bnx2x_recovery_failed(bp); | 
 | 						return; | 
 | 					} | 
 |  | 
 | 					/* If we are here, means that the | 
 | 					 * leader has succeeded and doesn't | 
 | 					 * want to be a leader any more. Try | 
 | 					 * to continue as a none-leader. | 
 | 					 */ | 
 | 					break; | 
 | 				} | 
 | 			} else { /* non-leader */ | 
 | 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { | 
 | 					/* Try to get a LEADER_LOCK HW lock as | 
 | 					 * long as a former leader may have | 
 | 					 * been unloaded by the user or | 
 | 					 * released a leadership by another | 
 | 					 * reason. | 
 | 					 */ | 
 | 					if (bnx2x_trylock_leader_lock(bp)) { | 
 | 						/* I'm a leader now! Restart a | 
 | 						 * switch case. | 
 | 						 */ | 
 | 						bp->is_leader = 1; | 
 | 						break; | 
 | 					} | 
 |  | 
 | 					schedule_delayed_work(&bp->sp_rtnl_task, | 
 | 								HZ/10); | 
 | 					return; | 
 |  | 
 | 				} else { | 
 | 					/* | 
 | 					 * If there was a global attention, wait | 
 | 					 * for it to be cleared. | 
 | 					 */ | 
 | 					if (bnx2x_reset_is_global(bp)) { | 
 | 						schedule_delayed_work( | 
 | 							&bp->sp_rtnl_task, | 
 | 							HZ/10); | 
 | 						return; | 
 | 					} | 
 |  | 
 | 					error_recovered = | 
 | 					  bp->eth_stats.recoverable_error; | 
 | 					error_unrecovered = | 
 | 					  bp->eth_stats.unrecoverable_error; | 
 | 					bp->recovery_state = | 
 | 						BNX2X_RECOVERY_NIC_LOADING; | 
 | 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) { | 
 | 						error_unrecovered++; | 
 | 						netdev_err(bp->dev, | 
 | 							   "Recovery failed. Power cycle needed\n"); | 
 | 						/* Disconnect this device */ | 
 | 						netif_device_detach(bp->dev); | 
 | 						/* Shut down the power */ | 
 | 						bnx2x_set_power_state( | 
 | 							bp, PCI_D3hot); | 
 | 						smp_mb(); | 
 | 					} else { | 
 | 						bp->recovery_state = | 
 | 							BNX2X_RECOVERY_DONE; | 
 | 						error_recovered++; | 
 | 						smp_mb(); | 
 | 					} | 
 | 					bp->eth_stats.recoverable_error = | 
 | 						error_recovered; | 
 | 					bp->eth_stats.unrecoverable_error = | 
 | 						error_unrecovered; | 
 |  | 
 | 					return; | 
 | 				} | 
 | 			} | 
 | 		default: | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int bnx2x_close(struct net_device *dev); | 
 |  | 
 | /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is | 
 |  * scheduled on a general queue in order to prevent a dead lock. | 
 |  */ | 
 | static void bnx2x_sp_rtnl_task(struct work_struct *work) | 
 | { | 
 | 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		goto sp_rtnl_exit; | 
 |  | 
 | 	/* if stop on error is defined no recovery flows should be executed */ | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" | 
 | 		  "you will need to reboot when done\n"); | 
 | 	goto sp_rtnl_not_reset; | 
 | #endif | 
 |  | 
 | 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { | 
 | 		/* | 
 | 		 * Clear all pending SP commands as we are going to reset the | 
 | 		 * function anyway. | 
 | 		 */ | 
 | 		bp->sp_rtnl_state = 0; | 
 | 		smp_mb(); | 
 |  | 
 | 		bnx2x_parity_recover(bp); | 
 |  | 
 | 		goto sp_rtnl_exit; | 
 | 	} | 
 |  | 
 | 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { | 
 | 		/* | 
 | 		 * Clear all pending SP commands as we are going to reset the | 
 | 		 * function anyway. | 
 | 		 */ | 
 | 		bp->sp_rtnl_state = 0; | 
 | 		smp_mb(); | 
 |  | 
 | 		bnx2x_nic_unload(bp, UNLOAD_NORMAL); | 
 | 		bnx2x_nic_load(bp, LOAD_NORMAL); | 
 |  | 
 | 		goto sp_rtnl_exit; | 
 | 	} | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | sp_rtnl_not_reset: | 
 | #endif | 
 | 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) | 
 | 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); | 
 |  | 
 | 	/* | 
 | 	 * in case of fan failure we need to reset id if the "stop on error" | 
 | 	 * debug flag is set, since we trying to prevent permanent overheating | 
 | 	 * damage | 
 | 	 */ | 
 | 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { | 
 | 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); | 
 | 		netif_device_detach(bp->dev); | 
 | 		bnx2x_close(bp->dev); | 
 | 	} | 
 |  | 
 | sp_rtnl_exit: | 
 | 	rtnl_unlock(); | 
 | } | 
 |  | 
 | /* end of nic load/unload */ | 
 |  | 
 | static void bnx2x_period_task(struct work_struct *work) | 
 | { | 
 | 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); | 
 |  | 
 | 	if (!netif_running(bp->dev)) | 
 | 		goto period_task_exit; | 
 |  | 
 | 	if (CHIP_REV_IS_SLOW(bp)) { | 
 | 		BNX2X_ERR("period task called on emulation, ignoring\n"); | 
 | 		goto period_task_exit; | 
 | 	} | 
 |  | 
 | 	bnx2x_acquire_phy_lock(bp); | 
 | 	/* | 
 | 	 * The barrier is needed to ensure the ordering between the writing to | 
 | 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and | 
 | 	 * the reading here. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (bp->port.pmf) { | 
 | 		bnx2x_period_func(&bp->link_params, &bp->link_vars); | 
 |  | 
 | 		/* Re-queue task in 1 sec */ | 
 | 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); | 
 | 	} | 
 |  | 
 | 	bnx2x_release_phy_lock(bp); | 
 | period_task_exit: | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Init service functions | 
 |  */ | 
 |  | 
 | static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) | 
 | { | 
 | 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; | 
 | 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; | 
 | 	return base + (BP_ABS_FUNC(bp)) * stride; | 
 | } | 
 |  | 
 | static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp) | 
 | { | 
 | 	u32 reg = bnx2x_get_pretend_reg(bp); | 
 |  | 
 | 	/* Flush all outstanding writes */ | 
 | 	mmiowb(); | 
 |  | 
 | 	/* Pretend to be function 0 */ | 
 | 	REG_WR(bp, reg, 0); | 
 | 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */ | 
 |  | 
 | 	/* From now we are in the "like-E1" mode */ | 
 | 	bnx2x_int_disable(bp); | 
 |  | 
 | 	/* Flush all outstanding writes */ | 
 | 	mmiowb(); | 
 |  | 
 | 	/* Restore the original function */ | 
 | 	REG_WR(bp, reg, BP_ABS_FUNC(bp)); | 
 | 	REG_RD(bp, reg); | 
 | } | 
 |  | 
 | static inline void bnx2x_undi_int_disable(struct bnx2x *bp) | 
 | { | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		bnx2x_int_disable(bp); | 
 | 	else | 
 | 		bnx2x_undi_int_disable_e1h(bp); | 
 | } | 
 |  | 
 | static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp) | 
 | { | 
 | 	u32 val, base_addr, offset, mask, reset_reg; | 
 | 	bool mac_stopped = false; | 
 | 	u8 port = BP_PORT(bp); | 
 |  | 
 | 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); | 
 |  | 
 | 	if (!CHIP_IS_E3(bp)) { | 
 | 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); | 
 | 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; | 
 | 		if ((mask & reset_reg) && val) { | 
 | 			u32 wb_data[2]; | 
 | 			BNX2X_DEV_INFO("Disable bmac Rx\n"); | 
 | 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM | 
 | 						: NIG_REG_INGRESS_BMAC0_MEM; | 
 | 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL | 
 | 						: BIGMAC_REGISTER_BMAC_CONTROL; | 
 |  | 
 | 			/* | 
 | 			 * use rd/wr since we cannot use dmae. This is safe | 
 | 			 * since MCP won't access the bus due to the request | 
 | 			 * to unload, and no function on the path can be | 
 | 			 * loaded at this time. | 
 | 			 */ | 
 | 			wb_data[0] = REG_RD(bp, base_addr + offset); | 
 | 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); | 
 | 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; | 
 | 			REG_WR(bp, base_addr + offset, wb_data[0]); | 
 | 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]); | 
 |  | 
 | 		} | 
 | 		BNX2X_DEV_INFO("Disable emac Rx\n"); | 
 | 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0); | 
 |  | 
 | 		mac_stopped = true; | 
 | 	} else { | 
 | 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { | 
 | 			BNX2X_DEV_INFO("Disable xmac Rx\n"); | 
 | 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; | 
 | 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); | 
 | 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, | 
 | 			       val & ~(1 << 1)); | 
 | 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, | 
 | 			       val | (1 << 1)); | 
 | 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0); | 
 | 			mac_stopped = true; | 
 | 		} | 
 | 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; | 
 | 		if (mask & reset_reg) { | 
 | 			BNX2X_DEV_INFO("Disable umac Rx\n"); | 
 | 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; | 
 | 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0); | 
 | 			mac_stopped = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (mac_stopped) | 
 | 		msleep(20); | 
 |  | 
 | } | 
 |  | 
 | #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) | 
 | #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff) | 
 | #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff) | 
 | #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq)) | 
 |  | 
 | static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, | 
 | 						 u8 inc) | 
 | { | 
 | 	u16 rcq, bd; | 
 | 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); | 
 |  | 
 | 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; | 
 | 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; | 
 |  | 
 | 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); | 
 | 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); | 
 |  | 
 | 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", | 
 | 		       port, bd, rcq); | 
 | } | 
 |  | 
 | static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp) | 
 | { | 
 | 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
 | 	if (!rc) { | 
 | 		BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_prev_path_list *tmp_list; | 
 | 	int rc = false; | 
 |  | 
 | 	if (down_trylock(&bnx2x_prev_sem)) | 
 | 		return false; | 
 |  | 
 | 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) { | 
 | 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && | 
 | 		    bp->pdev->bus->number == tmp_list->bus && | 
 | 		    BP_PATH(bp) == tmp_list->path) { | 
 | 			rc = true; | 
 | 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", | 
 | 				       BP_PATH(bp)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	up(&bnx2x_prev_sem); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_prev_path_list *tmp_list; | 
 | 	int rc; | 
 |  | 
 | 	tmp_list = (struct bnx2x_prev_path_list *) | 
 | 		    kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); | 
 | 	if (!tmp_list) { | 
 | 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	tmp_list->bus = bp->pdev->bus->number; | 
 | 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn); | 
 | 	tmp_list->path = BP_PATH(bp); | 
 |  | 
 | 	rc = down_interruptible(&bnx2x_prev_sem); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Received %d when tried to take lock\n", rc); | 
 | 		kfree(tmp_list); | 
 | 	} else { | 
 | 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n", | 
 | 				BP_PATH(bp)); | 
 | 		list_add(&tmp_list->list, &bnx2x_prev_list); | 
 | 		up(&bnx2x_prev_sem); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static bool __devinit bnx2x_can_flr(struct bnx2x *bp) | 
 | { | 
 | 	int pos; | 
 | 	u32 cap; | 
 | 	struct pci_dev *dev = bp->pdev; | 
 |  | 
 | 	pos = pci_pcie_cap(dev); | 
 | 	if (!pos) | 
 | 		return false; | 
 |  | 
 | 	pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap); | 
 | 	if (!(cap & PCI_EXP_DEVCAP_FLR)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_do_flr(struct bnx2x *bp) | 
 | { | 
 | 	int i, pos; | 
 | 	u16 status; | 
 | 	struct pci_dev *dev = bp->pdev; | 
 |  | 
 | 	/* probe the capability first */ | 
 | 	if (bnx2x_can_flr(bp)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	pos = pci_pcie_cap(dev); | 
 | 	if (!pos) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	/* Wait for Transaction Pending bit clean */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (i) | 
 | 			msleep((1 << (i - 1)) * 100); | 
 |  | 
 | 		pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status); | 
 | 		if (!(status & PCI_EXP_DEVSTA_TRPND)) | 
 | 			goto clear; | 
 | 	} | 
 |  | 
 | 	dev_err(&dev->dev, | 
 | 		"transaction is not cleared; proceeding with reset anyway\n"); | 
 |  | 
 | clear: | 
 | 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { | 
 | 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", | 
 | 			  bp->common.bc_ver); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	BNX2X_DEV_INFO("Uncommon unload Flow\n"); | 
 |  | 
 | 	/* Test if previous unload process was already finished for this path */ | 
 | 	if (bnx2x_prev_is_path_marked(bp)) | 
 | 		return bnx2x_prev_mcp_done(bp); | 
 |  | 
 | 	/* If function has FLR capabilities, and existing FW version matches | 
 | 	 * the one required, then FLR will be sufficient to clean any residue | 
 | 	 * left by previous driver | 
 | 	 */ | 
 | 	if (bnx2x_test_firmware_version(bp, false) && bnx2x_can_flr(bp)) | 
 | 		return bnx2x_do_flr(bp); | 
 |  | 
 | 	/* Close the MCP request, return failure*/ | 
 | 	rc = bnx2x_prev_mcp_done(bp); | 
 | 	if (!rc) | 
 | 		rc = BNX2X_PREV_WAIT_NEEDED; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp) | 
 | { | 
 | 	u32 reset_reg, tmp_reg = 0, rc; | 
 | 	/* It is possible a previous function received 'common' answer, | 
 | 	 * but hasn't loaded yet, therefore creating a scenario of | 
 | 	 * multiple functions receiving 'common' on the same path. | 
 | 	 */ | 
 | 	BNX2X_DEV_INFO("Common unload Flow\n"); | 
 |  | 
 | 	if (bnx2x_prev_is_path_marked(bp)) | 
 | 		return bnx2x_prev_mcp_done(bp); | 
 |  | 
 | 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); | 
 |  | 
 | 	/* Reset should be performed after BRB is emptied */ | 
 | 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { | 
 | 		u32 timer_count = 1000; | 
 | 		bool prev_undi = false; | 
 |  | 
 | 		/* Close the MAC Rx to prevent BRB from filling up */ | 
 | 		bnx2x_prev_unload_close_mac(bp); | 
 |  | 
 | 		/* Check if the UNDI driver was previously loaded | 
 | 		 * UNDI driver initializes CID offset for normal bell to 0x7 | 
 | 		 */ | 
 | 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); | 
 | 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { | 
 | 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); | 
 | 			if (tmp_reg == 0x7) { | 
 | 				BNX2X_DEV_INFO("UNDI previously loaded\n"); | 
 | 				prev_undi = true; | 
 | 				/* clear the UNDI indication */ | 
 | 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); | 
 | 			} | 
 | 		} | 
 | 		/* wait until BRB is empty */ | 
 | 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); | 
 | 		while (timer_count) { | 
 | 			u32 prev_brb = tmp_reg; | 
 |  | 
 | 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); | 
 | 			if (!tmp_reg) | 
 | 				break; | 
 |  | 
 | 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); | 
 |  | 
 | 			/* reset timer as long as BRB actually gets emptied */ | 
 | 			if (prev_brb > tmp_reg) | 
 | 				timer_count = 1000; | 
 | 			else | 
 | 				timer_count--; | 
 |  | 
 | 			/* If UNDI resides in memory, manually increment it */ | 
 | 			if (prev_undi) | 
 | 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); | 
 |  | 
 | 			udelay(10); | 
 | 		} | 
 |  | 
 | 		if (!timer_count) | 
 | 			BNX2X_ERR("Failed to empty BRB, hope for the best\n"); | 
 |  | 
 | 	} | 
 |  | 
 | 	/* No packets are in the pipeline, path is ready for reset */ | 
 | 	bnx2x_reset_common(bp); | 
 |  | 
 | 	rc = bnx2x_prev_mark_path(bp); | 
 | 	if (rc) { | 
 | 		bnx2x_prev_mcp_done(bp); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	return bnx2x_prev_mcp_done(bp); | 
 | } | 
 |  | 
 | static int __devinit bnx2x_prev_unload(struct bnx2x *bp) | 
 | { | 
 | 	int time_counter = 10; | 
 | 	u32 rc, fw, hw_lock_reg, hw_lock_val; | 
 | 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); | 
 |  | 
 |        /* Release previously held locks */ | 
 | 	hw_lock_reg = (BP_FUNC(bp) <= 5) ? | 
 | 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : | 
 | 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); | 
 |  | 
 | 	hw_lock_val = (REG_RD(bp, hw_lock_reg)); | 
 | 	if (hw_lock_val) { | 
 | 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { | 
 | 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); | 
 | 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, | 
 | 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); | 
 | 		} | 
 |  | 
 | 		BNX2X_DEV_INFO("Release Previously held hw lock\n"); | 
 | 		REG_WR(bp, hw_lock_reg, 0xffffffff); | 
 | 	} else | 
 | 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); | 
 |  | 
 | 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { | 
 | 		BNX2X_DEV_INFO("Release previously held alr\n"); | 
 | 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); | 
 | 	} | 
 |  | 
 |  | 
 | 	do { | 
 | 		/* Lock MCP using an unload request */ | 
 | 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); | 
 | 		if (!fw) { | 
 | 			BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 			rc = -EBUSY; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { | 
 | 			rc = bnx2x_prev_unload_common(bp); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* non-common reply from MCP night require looping */ | 
 | 		rc = bnx2x_prev_unload_uncommon(bp); | 
 | 		if (rc != BNX2X_PREV_WAIT_NEEDED) | 
 | 			break; | 
 |  | 
 | 		msleep(20); | 
 | 	} while (--time_counter); | 
 |  | 
 | 	if (!time_counter || rc) { | 
 | 		BNX2X_ERR("Failed unloading previous driver, aborting\n"); | 
 | 		rc = -EBUSY; | 
 | 	} | 
 |  | 
 | 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp) | 
 | { | 
 | 	u32 val, val2, val3, val4, id, boot_mode; | 
 | 	u16 pmc; | 
 |  | 
 | 	/* Get the chip revision id and number. */ | 
 | 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ | 
 | 	val = REG_RD(bp, MISC_REG_CHIP_NUM); | 
 | 	id = ((val & 0xffff) << 16); | 
 | 	val = REG_RD(bp, MISC_REG_CHIP_REV); | 
 | 	id |= ((val & 0xf) << 12); | 
 | 	val = REG_RD(bp, MISC_REG_CHIP_METAL); | 
 | 	id |= ((val & 0xff) << 4); | 
 | 	val = REG_RD(bp, MISC_REG_BOND_ID); | 
 | 	id |= (val & 0xf); | 
 | 	bp->common.chip_id = id; | 
 |  | 
 | 	/* force 57811 according to MISC register */ | 
 | 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { | 
 | 		if (CHIP_IS_57810(bp)) | 
 | 			bp->common.chip_id = (CHIP_NUM_57811 << 16) | | 
 | 				(bp->common.chip_id & 0x0000FFFF); | 
 | 		else if (CHIP_IS_57810_MF(bp)) | 
 | 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | | 
 | 				(bp->common.chip_id & 0x0000FFFF); | 
 | 		bp->common.chip_id |= 0x1; | 
 | 	} | 
 |  | 
 | 	/* Set doorbell size */ | 
 | 	bp->db_size = (1 << BNX2X_DB_SHIFT); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); | 
 | 		if ((val & 1) == 0) | 
 | 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN); | 
 | 		else | 
 | 			val = (val >> 1) & 1; | 
 | 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : | 
 | 						       "2_PORT_MODE"); | 
 | 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : | 
 | 						 CHIP_2_PORT_MODE; | 
 |  | 
 | 		if (CHIP_MODE_IS_4_PORT(bp)) | 
 | 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */ | 
 | 		else | 
 | 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */ | 
 | 	} else { | 
 | 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ | 
 | 		bp->pfid = bp->pf_num;			/* 0..7 */ | 
 | 	} | 
 |  | 
 | 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid); | 
 |  | 
 | 	bp->link_params.chip_id = bp->common.chip_id; | 
 | 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id); | 
 |  | 
 | 	val = (REG_RD(bp, 0x2874) & 0x55); | 
 | 	if ((bp->common.chip_id & 0x1) || | 
 | 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { | 
 | 		bp->flags |= ONE_PORT_FLAG; | 
 | 		BNX2X_DEV_INFO("single port device\n"); | 
 | 	} | 
 |  | 
 | 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); | 
 | 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << | 
 | 				 (val & MCPR_NVM_CFG4_FLASH_SIZE)); | 
 | 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", | 
 | 		       bp->common.flash_size, bp->common.flash_size); | 
 |  | 
 | 	bnx2x_init_shmem(bp); | 
 |  | 
 |  | 
 |  | 
 | 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? | 
 | 					MISC_REG_GENERIC_CR_1 : | 
 | 					MISC_REG_GENERIC_CR_0)); | 
 |  | 
 | 	bp->link_params.shmem_base = bp->common.shmem_base; | 
 | 	bp->link_params.shmem2_base = bp->common.shmem2_base; | 
 | 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n", | 
 | 		       bp->common.shmem_base, bp->common.shmem2_base); | 
 |  | 
 | 	if (!bp->common.shmem_base) { | 
 | 		BNX2X_DEV_INFO("MCP not active\n"); | 
 | 		bp->flags |= NO_MCP_FLAG; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); | 
 | 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); | 
 |  | 
 | 	bp->link_params.hw_led_mode = ((bp->common.hw_config & | 
 | 					SHARED_HW_CFG_LED_MODE_MASK) >> | 
 | 				       SHARED_HW_CFG_LED_MODE_SHIFT); | 
 |  | 
 | 	bp->link_params.feature_config_flags = 0; | 
 | 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config); | 
 | 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) | 
 | 		bp->link_params.feature_config_flags |= | 
 | 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; | 
 | 	else | 
 | 		bp->link_params.feature_config_flags &= | 
 | 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; | 
 |  | 
 | 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; | 
 | 	bp->common.bc_ver = val; | 
 | 	BNX2X_DEV_INFO("bc_ver %X\n", val); | 
 | 	if (val < BNX2X_BC_VER) { | 
 | 		/* for now only warn | 
 | 		 * later we might need to enforce this */ | 
 | 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", | 
 | 			  BNX2X_BC_VER, val); | 
 | 	} | 
 | 	bp->link_params.feature_config_flags |= | 
 | 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? | 
 | 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; | 
 |  | 
 | 	bp->link_params.feature_config_flags |= | 
 | 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? | 
 | 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; | 
 |  | 
 | 	bp->link_params.feature_config_flags |= | 
 | 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? | 
 | 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; | 
 | 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? | 
 | 			BC_SUPPORTS_PFC_STATS : 0; | 
 |  | 
 | 	boot_mode = SHMEM_RD(bp, | 
 | 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) & | 
 | 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; | 
 | 	switch (boot_mode) { | 
 | 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: | 
 | 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; | 
 | 		break; | 
 | 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: | 
 | 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; | 
 | 		break; | 
 | 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: | 
 | 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; | 
 | 		break; | 
 | 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: | 
 | 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc); | 
 | 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; | 
 |  | 
 | 	BNX2X_DEV_INFO("%sWoL capable\n", | 
 | 		       (bp->flags & NO_WOL_FLAG) ? "not " : ""); | 
 |  | 
 | 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); | 
 | 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); | 
 | 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); | 
 | 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); | 
 |  | 
 | 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", | 
 | 		 val, val2, val3, val4); | 
 | } | 
 |  | 
 | #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) | 
 | #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) | 
 |  | 
 | static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp) | 
 | { | 
 | 	int pfid = BP_FUNC(bp); | 
 | 	int igu_sb_id; | 
 | 	u32 val; | 
 | 	u8 fid, igu_sb_cnt = 0; | 
 |  | 
 | 	bp->igu_base_sb = 0xff; | 
 | 	if (CHIP_INT_MODE_IS_BC(bp)) { | 
 | 		int vn = BP_VN(bp); | 
 | 		igu_sb_cnt = bp->igu_sb_cnt; | 
 | 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * | 
 | 			FP_SB_MAX_E1x; | 
 |  | 
 | 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x + | 
 | 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* IGU in normal mode - read CAM */ | 
 | 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; | 
 | 	     igu_sb_id++) { | 
 | 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); | 
 | 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) | 
 | 			continue; | 
 | 		fid = IGU_FID(val); | 
 | 		if ((fid & IGU_FID_ENCODE_IS_PF)) { | 
 | 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid) | 
 | 				continue; | 
 | 			if (IGU_VEC(val) == 0) | 
 | 				/* default status block */ | 
 | 				bp->igu_dsb_id = igu_sb_id; | 
 | 			else { | 
 | 				if (bp->igu_base_sb == 0xff) | 
 | 					bp->igu_base_sb = igu_sb_id; | 
 | 				igu_sb_cnt++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_PCI_MSI | 
 | 	/* | 
 | 	 * It's expected that number of CAM entries for this functions is equal | 
 | 	 * to the number evaluated based on the MSI-X table size. We want a | 
 | 	 * harsh warning if these values are different! | 
 | 	 */ | 
 | 	WARN_ON(bp->igu_sb_cnt != igu_sb_cnt); | 
 | #endif | 
 |  | 
 | 	if (igu_sb_cnt == 0) | 
 | 		BNX2X_ERR("CAM configuration error\n"); | 
 | } | 
 |  | 
 | static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp, | 
 | 						    u32 switch_cfg) | 
 | { | 
 | 	int cfg_size = 0, idx, port = BP_PORT(bp); | 
 |  | 
 | 	/* Aggregation of supported attributes of all external phys */ | 
 | 	bp->port.supported[0] = 0; | 
 | 	bp->port.supported[1] = 0; | 
 | 	switch (bp->link_params.num_phys) { | 
 | 	case 1: | 
 | 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; | 
 | 		cfg_size = 1; | 
 | 		break; | 
 | 	case 2: | 
 | 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; | 
 | 		cfg_size = 1; | 
 | 		break; | 
 | 	case 3: | 
 | 		if (bp->link_params.multi_phy_config & | 
 | 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) { | 
 | 			bp->port.supported[1] = | 
 | 				bp->link_params.phy[EXT_PHY1].supported; | 
 | 			bp->port.supported[0] = | 
 | 				bp->link_params.phy[EXT_PHY2].supported; | 
 | 		} else { | 
 | 			bp->port.supported[0] = | 
 | 				bp->link_params.phy[EXT_PHY1].supported; | 
 | 			bp->port.supported[1] = | 
 | 				bp->link_params.phy[EXT_PHY2].supported; | 
 | 		} | 
 | 		cfg_size = 2; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (!(bp->port.supported[0] || bp->port.supported[1])) { | 
 | 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", | 
 | 			   SHMEM_RD(bp, | 
 | 			   dev_info.port_hw_config[port].external_phy_config), | 
 | 			   SHMEM_RD(bp, | 
 | 			   dev_info.port_hw_config[port].external_phy_config2)); | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (CHIP_IS_E3(bp)) | 
 | 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); | 
 | 	else { | 
 | 		switch (switch_cfg) { | 
 | 		case SWITCH_CFG_1G: | 
 | 			bp->port.phy_addr = REG_RD( | 
 | 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); | 
 | 			break; | 
 | 		case SWITCH_CFG_10G: | 
 | 			bp->port.phy_addr = REG_RD( | 
 | 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); | 
 | 			break; | 
 | 		default: | 
 | 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", | 
 | 				  bp->port.link_config[0]); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); | 
 | 	/* mask what we support according to speed_cap_mask per configuration */ | 
 | 	for (idx = 0; idx < cfg_size; idx++) { | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) | 
 | 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | | 
 | 						     SUPPORTED_1000baseT_Full); | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; | 
 |  | 
 | 		if (!(bp->link_params.speed_cap_mask[idx] & | 
 | 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) | 
 | 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; | 
 |  | 
 | 	} | 
 |  | 
 | 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], | 
 | 		       bp->port.supported[1]); | 
 | } | 
 |  | 
 | static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp) | 
 | { | 
 | 	u32 link_config, idx, cfg_size = 0; | 
 | 	bp->port.advertising[0] = 0; | 
 | 	bp->port.advertising[1] = 0; | 
 | 	switch (bp->link_params.num_phys) { | 
 | 	case 1: | 
 | 	case 2: | 
 | 		cfg_size = 1; | 
 | 		break; | 
 | 	case 3: | 
 | 		cfg_size = 2; | 
 | 		break; | 
 | 	} | 
 | 	for (idx = 0; idx < cfg_size; idx++) { | 
 | 		bp->link_params.req_duplex[idx] = DUPLEX_FULL; | 
 | 		link_config = bp->port.link_config[idx]; | 
 | 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { | 
 | 		case PORT_FEATURE_LINK_SPEED_AUTO: | 
 | 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_AUTO_NEG; | 
 | 				bp->port.advertising[idx] |= | 
 | 					bp->port.supported[idx]; | 
 | 				if (bp->link_params.phy[EXT_PHY1].type == | 
 | 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) | 
 | 					bp->port.advertising[idx] |= | 
 | 					(SUPPORTED_100baseT_Half | | 
 | 					 SUPPORTED_100baseT_Full); | 
 | 			} else { | 
 | 				/* force 10G, no AN */ | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_10000; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_10000baseT_Full | | 
 | 					 ADVERTISED_FIBRE); | 
 | 				continue; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_10M_FULL: | 
 | 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_10; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_10baseT_Full | | 
 | 					 ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 					    link_config, | 
 | 				    bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_10M_HALF: | 
 | 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_10; | 
 | 				bp->link_params.req_duplex[idx] = | 
 | 					DUPLEX_HALF; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_10baseT_Half | | 
 | 					 ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 					    link_config, | 
 | 					  bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_100M_FULL: | 
 | 			if (bp->port.supported[idx] & | 
 | 			    SUPPORTED_100baseT_Full) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_100; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_100baseT_Full | | 
 | 					 ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 					    link_config, | 
 | 					  bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_100M_HALF: | 
 | 			if (bp->port.supported[idx] & | 
 | 			    SUPPORTED_100baseT_Half) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 								SPEED_100; | 
 | 				bp->link_params.req_duplex[idx] = | 
 | 								DUPLEX_HALF; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_100baseT_Half | | 
 | 					 ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 				    link_config, | 
 | 				    bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_1G: | 
 | 			if (bp->port.supported[idx] & | 
 | 			    SUPPORTED_1000baseT_Full) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_1000; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_1000baseT_Full | | 
 | 					 ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 				    link_config, | 
 | 				    bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_2_5G: | 
 | 			if (bp->port.supported[idx] & | 
 | 			    SUPPORTED_2500baseX_Full) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_2500; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_2500baseX_Full | | 
 | 						ADVERTISED_TP); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 				    link_config, | 
 | 				    bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case PORT_FEATURE_LINK_SPEED_10G_CX4: | 
 | 			if (bp->port.supported[idx] & | 
 | 			    SUPPORTED_10000baseT_Full) { | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 					SPEED_10000; | 
 | 				bp->port.advertising[idx] |= | 
 | 					(ADVERTISED_10000baseT_Full | | 
 | 						ADVERTISED_FIBRE); | 
 | 			} else { | 
 | 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
 | 				    link_config, | 
 | 				    bp->link_params.speed_cap_mask[idx]); | 
 | 				return; | 
 | 			} | 
 | 			break; | 
 | 		case PORT_FEATURE_LINK_SPEED_20G: | 
 | 			bp->link_params.req_line_speed[idx] = SPEED_20000; | 
 |  | 
 | 			break; | 
 | 		default: | 
 | 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", | 
 | 				  link_config); | 
 | 				bp->link_params.req_line_speed[idx] = | 
 | 							SPEED_AUTO_NEG; | 
 | 				bp->port.advertising[idx] = | 
 | 						bp->port.supported[idx]; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		bp->link_params.req_flow_ctrl[idx] = (link_config & | 
 | 					 PORT_FEATURE_FLOW_CONTROL_MASK); | 
 | 		if ((bp->link_params.req_flow_ctrl[idx] == | 
 | 		     BNX2X_FLOW_CTRL_AUTO) && | 
 | 		    !(bp->port.supported[idx] & SUPPORTED_Autoneg)) { | 
 | 			bp->link_params.req_flow_ctrl[idx] = | 
 | 				BNX2X_FLOW_CTRL_NONE; | 
 | 		} | 
 |  | 
 | 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", | 
 | 			       bp->link_params.req_line_speed[idx], | 
 | 			       bp->link_params.req_duplex[idx], | 
 | 			       bp->link_params.req_flow_ctrl[idx], | 
 | 			       bp->port.advertising[idx]); | 
 | 	} | 
 | } | 
 |  | 
 | static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) | 
 | { | 
 | 	mac_hi = cpu_to_be16(mac_hi); | 
 | 	mac_lo = cpu_to_be32(mac_lo); | 
 | 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi)); | 
 | 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo)); | 
 | } | 
 |  | 
 | static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	u32 config; | 
 | 	u32 ext_phy_type, ext_phy_config; | 
 |  | 
 | 	bp->link_params.bp = bp; | 
 | 	bp->link_params.port = port; | 
 |  | 
 | 	bp->link_params.lane_config = | 
 | 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); | 
 |  | 
 | 	bp->link_params.speed_cap_mask[0] = | 
 | 		SHMEM_RD(bp, | 
 | 			 dev_info.port_hw_config[port].speed_capability_mask); | 
 | 	bp->link_params.speed_cap_mask[1] = | 
 | 		SHMEM_RD(bp, | 
 | 			 dev_info.port_hw_config[port].speed_capability_mask2); | 
 | 	bp->port.link_config[0] = | 
 | 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); | 
 |  | 
 | 	bp->port.link_config[1] = | 
 | 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); | 
 |  | 
 | 	bp->link_params.multi_phy_config = | 
 | 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); | 
 | 	/* If the device is capable of WoL, set the default state according | 
 | 	 * to the HW | 
 | 	 */ | 
 | 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); | 
 | 	bp->wol = (!(bp->flags & NO_WOL_FLAG) && | 
 | 		   (config & PORT_FEATURE_WOL_ENABLED)); | 
 |  | 
 | 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n", | 
 | 		       bp->link_params.lane_config, | 
 | 		       bp->link_params.speed_cap_mask[0], | 
 | 		       bp->port.link_config[0]); | 
 |  | 
 | 	bp->link_params.switch_cfg = (bp->port.link_config[0] & | 
 | 				      PORT_FEATURE_CONNECTED_SWITCH_MASK); | 
 | 	bnx2x_phy_probe(&bp->link_params); | 
 | 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); | 
 |  | 
 | 	bnx2x_link_settings_requested(bp); | 
 |  | 
 | 	/* | 
 | 	 * If connected directly, work with the internal PHY, otherwise, work | 
 | 	 * with the external PHY | 
 | 	 */ | 
 | 	ext_phy_config = | 
 | 		SHMEM_RD(bp, | 
 | 			 dev_info.port_hw_config[port].external_phy_config); | 
 | 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); | 
 | 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) | 
 | 		bp->mdio.prtad = bp->port.phy_addr; | 
 |  | 
 | 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && | 
 | 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) | 
 | 		bp->mdio.prtad = | 
 | 			XGXS_EXT_PHY_ADDR(ext_phy_config); | 
 |  | 
 | 	/* | 
 | 	 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s) | 
 | 	 * In MF mode, it is set to cover self test cases | 
 | 	 */ | 
 | 	if (IS_MF(bp)) | 
 | 		bp->port.need_hw_lock = 1; | 
 | 	else | 
 | 		bp->port.need_hw_lock = bnx2x_hw_lock_required(bp, | 
 | 							bp->common.shmem_base, | 
 | 							bp->common.shmem2_base); | 
 | } | 
 |  | 
 | void bnx2x_get_iscsi_info(struct bnx2x *bp) | 
 | { | 
 | 	u32 no_flags = NO_ISCSI_FLAG; | 
 | #ifdef BCM_CNIC | 
 | 	int port = BP_PORT(bp); | 
 |  | 
 | 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, | 
 | 				drv_lic_key[port].max_iscsi_conn); | 
 |  | 
 | 	/* Get the number of maximum allowed iSCSI connections */ | 
 | 	bp->cnic_eth_dev.max_iscsi_conn = | 
 | 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> | 
 | 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; | 
 |  | 
 | 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", | 
 | 		       bp->cnic_eth_dev.max_iscsi_conn); | 
 |  | 
 | 	/* | 
 | 	 * If maximum allowed number of connections is zero - | 
 | 	 * disable the feature. | 
 | 	 */ | 
 | 	if (!bp->cnic_eth_dev.max_iscsi_conn) | 
 | 		bp->flags |= no_flags; | 
 | #else | 
 | 	bp->flags |= no_flags; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef BCM_CNIC | 
 | static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) | 
 | { | 
 | 	/* Port info */ | 
 | 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi = | 
 | 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); | 
 | 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo = | 
 | 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); | 
 |  | 
 | 	/* Node info */ | 
 | 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi = | 
 | 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); | 
 | 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo = | 
 | 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); | 
 | } | 
 | #endif | 
 | static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp) | 
 | { | 
 | #ifdef BCM_CNIC | 
 | 	int port = BP_PORT(bp); | 
 | 	int func = BP_ABS_FUNC(bp); | 
 |  | 
 | 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, | 
 | 				drv_lic_key[port].max_fcoe_conn); | 
 |  | 
 | 	/* Get the number of maximum allowed FCoE connections */ | 
 | 	bp->cnic_eth_dev.max_fcoe_conn = | 
 | 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> | 
 | 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT; | 
 |  | 
 | 	/* Read the WWN: */ | 
 | 	if (!IS_MF(bp)) { | 
 | 		/* Port info */ | 
 | 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi = | 
 | 			SHMEM_RD(bp, | 
 | 				dev_info.port_hw_config[port]. | 
 | 				 fcoe_wwn_port_name_upper); | 
 | 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo = | 
 | 			SHMEM_RD(bp, | 
 | 				dev_info.port_hw_config[port]. | 
 | 				 fcoe_wwn_port_name_lower); | 
 |  | 
 | 		/* Node info */ | 
 | 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi = | 
 | 			SHMEM_RD(bp, | 
 | 				dev_info.port_hw_config[port]. | 
 | 				 fcoe_wwn_node_name_upper); | 
 | 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo = | 
 | 			SHMEM_RD(bp, | 
 | 				dev_info.port_hw_config[port]. | 
 | 				 fcoe_wwn_node_name_lower); | 
 | 	} else if (!IS_MF_SD(bp)) { | 
 | 		u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); | 
 |  | 
 | 		/* | 
 | 		 * Read the WWN info only if the FCoE feature is enabled for | 
 | 		 * this function. | 
 | 		 */ | 
 | 		if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) | 
 | 			bnx2x_get_ext_wwn_info(bp, func); | 
 |  | 
 | 	} else if (IS_MF_FCOE_SD(bp)) | 
 | 		bnx2x_get_ext_wwn_info(bp, func); | 
 |  | 
 | 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); | 
 |  | 
 | 	/* | 
 | 	 * If maximum allowed number of connections is zero - | 
 | 	 * disable the feature. | 
 | 	 */ | 
 | 	if (!bp->cnic_eth_dev.max_fcoe_conn) | 
 | 		bp->flags |= NO_FCOE_FLAG; | 
 | #else | 
 | 	bp->flags |= NO_FCOE_FLAG; | 
 | #endif | 
 | } | 
 |  | 
 | static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp) | 
 | { | 
 | 	/* | 
 | 	 * iSCSI may be dynamically disabled but reading | 
 | 	 * info here we will decrease memory usage by driver | 
 | 	 * if the feature is disabled for good | 
 | 	 */ | 
 | 	bnx2x_get_iscsi_info(bp); | 
 | 	bnx2x_get_fcoe_info(bp); | 
 | } | 
 |  | 
 | static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp) | 
 | { | 
 | 	u32 val, val2; | 
 | 	int func = BP_ABS_FUNC(bp); | 
 | 	int port = BP_PORT(bp); | 
 | #ifdef BCM_CNIC | 
 | 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; | 
 | 	u8 *fip_mac = bp->fip_mac; | 
 | #endif | 
 |  | 
 | 	/* Zero primary MAC configuration */ | 
 | 	memset(bp->dev->dev_addr, 0, ETH_ALEN); | 
 |  | 
 | 	if (BP_NOMCP(bp)) { | 
 | 		BNX2X_ERROR("warning: random MAC workaround active\n"); | 
 | 		eth_hw_addr_random(bp->dev); | 
 | 	} else if (IS_MF(bp)) { | 
 | 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); | 
 | 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); | 
 | 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && | 
 | 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) | 
 | 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 		/* | 
 | 		 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or | 
 | 		 * FCoE MAC then the appropriate feature should be disabled. | 
 | 		 * | 
 | 		 * In non SD mode features configuration comes from | 
 | 		 * struct func_ext_config. | 
 | 		 */ | 
 | 		if (!IS_MF_SD(bp)) { | 
 | 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); | 
 | 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { | 
 | 				val2 = MF_CFG_RD(bp, func_ext_config[func]. | 
 | 						     iscsi_mac_addr_upper); | 
 | 				val = MF_CFG_RD(bp, func_ext_config[func]. | 
 | 						    iscsi_mac_addr_lower); | 
 | 				bnx2x_set_mac_buf(iscsi_mac, val, val2); | 
 | 				BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n", | 
 | 					       iscsi_mac); | 
 | 			} else | 
 | 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; | 
 |  | 
 | 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { | 
 | 				val2 = MF_CFG_RD(bp, func_ext_config[func]. | 
 | 						     fcoe_mac_addr_upper); | 
 | 				val = MF_CFG_RD(bp, func_ext_config[func]. | 
 | 						    fcoe_mac_addr_lower); | 
 | 				bnx2x_set_mac_buf(fip_mac, val, val2); | 
 | 				BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n", | 
 | 					       fip_mac); | 
 |  | 
 | 			} else | 
 | 				bp->flags |= NO_FCOE_FLAG; | 
 | 		} else { /* SD MODE */ | 
 | 			if (IS_MF_STORAGE_SD(bp)) { | 
 | 				if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { | 
 | 					/* use primary mac as iscsi mac */ | 
 | 					memcpy(iscsi_mac, bp->dev->dev_addr, | 
 | 					       ETH_ALEN); | 
 |  | 
 | 					BNX2X_DEV_INFO("SD ISCSI MODE\n"); | 
 | 					BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n", | 
 | 						       iscsi_mac); | 
 | 				} else { /* FCoE */ | 
 | 					memcpy(fip_mac, bp->dev->dev_addr, | 
 | 					       ETH_ALEN); | 
 | 					BNX2X_DEV_INFO("SD FCoE MODE\n"); | 
 | 					BNX2X_DEV_INFO("Read FIP MAC: %pM\n", | 
 | 						       fip_mac); | 
 | 				} | 
 | 				/* Zero primary MAC configuration */ | 
 | 				memset(bp->dev->dev_addr, 0, ETH_ALEN); | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} else { | 
 | 		/* in SF read MACs from port configuration */ | 
 | 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); | 
 | 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); | 
 | 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
 | 				    iscsi_mac_upper); | 
 | 		val = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
 | 				   iscsi_mac_lower); | 
 | 		bnx2x_set_mac_buf(iscsi_mac, val, val2); | 
 |  | 
 | 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
 | 				    fcoe_fip_mac_upper); | 
 | 		val = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
 | 				   fcoe_fip_mac_lower); | 
 | 		bnx2x_set_mac_buf(fip_mac, val, val2); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); | 
 | 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* Disable iSCSI if MAC configuration is | 
 | 	 * invalid. | 
 | 	 */ | 
 | 	if (!is_valid_ether_addr(iscsi_mac)) { | 
 | 		bp->flags |= NO_ISCSI_FLAG; | 
 | 		memset(iscsi_mac, 0, ETH_ALEN); | 
 | 	} | 
 |  | 
 | 	/* Disable FCoE if MAC configuration is | 
 | 	 * invalid. | 
 | 	 */ | 
 | 	if (!is_valid_ether_addr(fip_mac)) { | 
 | 		bp->flags |= NO_FCOE_FLAG; | 
 | 		memset(bp->fip_mac, 0, ETH_ALEN); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"bad Ethernet MAC address configuration: %pM\n" | 
 | 			"change it manually before bringing up the appropriate network interface\n", | 
 | 			bp->dev->dev_addr); | 
 |  | 
 |  | 
 | } | 
 |  | 
 | static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp) | 
 | { | 
 | 	int /*abs*/func = BP_ABS_FUNC(bp); | 
 | 	int vn; | 
 | 	u32 val = 0; | 
 | 	int rc = 0; | 
 |  | 
 | 	bnx2x_get_common_hwinfo(bp); | 
 |  | 
 | 	/* | 
 | 	 * initialize IGU parameters | 
 | 	 */ | 
 | 	if (CHIP_IS_E1x(bp)) { | 
 | 		bp->common.int_block = INT_BLOCK_HC; | 
 |  | 
 | 		bp->igu_dsb_id = DEF_SB_IGU_ID; | 
 | 		bp->igu_base_sb = 0; | 
 | 	} else { | 
 | 		bp->common.int_block = INT_BLOCK_IGU; | 
 |  | 
 | 		/* do not allow device reset during IGU info preocessing */ | 
 | 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
 |  | 
 | 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); | 
 |  | 
 | 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { | 
 | 			int tout = 5000; | 
 |  | 
 | 			BNX2X_DEV_INFO("FORCING Normal Mode\n"); | 
 |  | 
 | 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); | 
 | 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); | 
 | 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); | 
 |  | 
 | 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { | 
 | 				tout--; | 
 | 				usleep_range(1000, 1000); | 
 | 			} | 
 |  | 
 | 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { | 
 | 				dev_err(&bp->pdev->dev, | 
 | 					"FORCING Normal Mode failed!!!\n"); | 
 | 				return -EPERM; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { | 
 | 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); | 
 | 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; | 
 | 		} else | 
 | 			BNX2X_DEV_INFO("IGU Normal Mode\n"); | 
 |  | 
 | 		bnx2x_get_igu_cam_info(bp); | 
 |  | 
 | 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * set base FW non-default (fast path) status block id, this value is | 
 | 	 * used to initialize the fw_sb_id saved on the fp/queue structure to | 
 | 	 * determine the id used by the FW. | 
 | 	 */ | 
 | 	if (CHIP_IS_E1x(bp)) | 
 | 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); | 
 | 	else /* | 
 | 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of | 
 | 	      * the same queue are indicated on the same IGU SB). So we prefer | 
 | 	      * FW and IGU SBs to be the same value. | 
 | 	      */ | 
 | 		bp->base_fw_ndsb = bp->igu_base_sb; | 
 |  | 
 | 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n" | 
 | 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, | 
 | 		       bp->igu_sb_cnt, bp->base_fw_ndsb); | 
 |  | 
 | 	/* | 
 | 	 * Initialize MF configuration | 
 | 	 */ | 
 |  | 
 | 	bp->mf_ov = 0; | 
 | 	bp->mf_mode = 0; | 
 | 	vn = BP_VN(bp); | 
 |  | 
 | 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { | 
 | 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", | 
 | 			       bp->common.shmem2_base, SHMEM2_RD(bp, size), | 
 | 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr)); | 
 |  | 
 | 		if (SHMEM2_HAS(bp, mf_cfg_addr)) | 
 | 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); | 
 | 		else | 
 | 			bp->common.mf_cfg_base = bp->common.shmem_base + | 
 | 				offsetof(struct shmem_region, func_mb) + | 
 | 				E1H_FUNC_MAX * sizeof(struct drv_func_mb); | 
 | 		/* | 
 | 		 * get mf configuration: | 
 | 		 * 1. existence of MF configuration | 
 | 		 * 2. MAC address must be legal (check only upper bytes) | 
 | 		 *    for  Switch-Independent mode; | 
 | 		 *    OVLAN must be legal for Switch-Dependent mode | 
 | 		 * 3. SF_MODE configures specific MF mode | 
 | 		 */ | 
 | 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { | 
 | 			/* get mf configuration */ | 
 | 			val = SHMEM_RD(bp, | 
 | 				       dev_info.shared_feature_config.config); | 
 | 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; | 
 |  | 
 | 			switch (val) { | 
 | 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: | 
 | 				val = MF_CFG_RD(bp, func_mf_config[func]. | 
 | 						mac_upper); | 
 | 				/* check for legal mac (upper bytes)*/ | 
 | 				if (val != 0xffff) { | 
 | 					bp->mf_mode = MULTI_FUNCTION_SI; | 
 | 					bp->mf_config[vn] = MF_CFG_RD(bp, | 
 | 						   func_mf_config[func].config); | 
 | 				} else | 
 | 					BNX2X_DEV_INFO("illegal MAC address for SI\n"); | 
 | 				break; | 
 | 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: | 
 | 				/* get OV configuration */ | 
 | 				val = MF_CFG_RD(bp, | 
 | 					func_mf_config[FUNC_0].e1hov_tag); | 
 | 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK; | 
 |  | 
 | 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { | 
 | 					bp->mf_mode = MULTI_FUNCTION_SD; | 
 | 					bp->mf_config[vn] = MF_CFG_RD(bp, | 
 | 						func_mf_config[func].config); | 
 | 				} else | 
 | 					BNX2X_DEV_INFO("illegal OV for SD\n"); | 
 | 				break; | 
 | 			default: | 
 | 				/* Unknown configuration: reset mf_config */ | 
 | 				bp->mf_config[vn] = 0; | 
 | 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		BNX2X_DEV_INFO("%s function mode\n", | 
 | 			       IS_MF(bp) ? "multi" : "single"); | 
 |  | 
 | 		switch (bp->mf_mode) { | 
 | 		case MULTI_FUNCTION_SD: | 
 | 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & | 
 | 			      FUNC_MF_CFG_E1HOV_TAG_MASK; | 
 | 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { | 
 | 				bp->mf_ov = val; | 
 | 				bp->path_has_ovlan = true; | 
 |  | 
 | 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", | 
 | 					       func, bp->mf_ov, bp->mf_ov); | 
 | 			} else { | 
 | 				dev_err(&bp->pdev->dev, | 
 | 					"No valid MF OV for func %d, aborting\n", | 
 | 					func); | 
 | 				return -EPERM; | 
 | 			} | 
 | 			break; | 
 | 		case MULTI_FUNCTION_SI: | 
 | 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", | 
 | 				       func); | 
 | 			break; | 
 | 		default: | 
 | 			if (vn) { | 
 | 				dev_err(&bp->pdev->dev, | 
 | 					"VN %d is in a single function mode, aborting\n", | 
 | 					vn); | 
 | 				return -EPERM; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* check if other port on the path needs ovlan: | 
 | 		 * Since MF configuration is shared between ports | 
 | 		 * Possible mixed modes are only | 
 | 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} | 
 | 		 */ | 
 | 		if (CHIP_MODE_IS_4_PORT(bp) && | 
 | 		    !bp->path_has_ovlan && | 
 | 		    !IS_MF(bp) && | 
 | 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { | 
 | 			u8 other_port = !BP_PORT(bp); | 
 | 			u8 other_func = BP_PATH(bp) + 2*other_port; | 
 | 			val = MF_CFG_RD(bp, | 
 | 					func_mf_config[other_func].e1hov_tag); | 
 | 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) | 
 | 				bp->path_has_ovlan = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* adjust igu_sb_cnt to MF for E1x */ | 
 | 	if (CHIP_IS_E1x(bp) && IS_MF(bp)) | 
 | 		bp->igu_sb_cnt /= E1HVN_MAX; | 
 |  | 
 | 	/* port info */ | 
 | 	bnx2x_get_port_hwinfo(bp); | 
 |  | 
 | 	/* Get MAC addresses */ | 
 | 	bnx2x_get_mac_hwinfo(bp); | 
 |  | 
 | 	bnx2x_get_cnic_info(bp); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp) | 
 | { | 
 | 	int cnt, i, block_end, rodi; | 
 | 	char vpd_start[BNX2X_VPD_LEN+1]; | 
 | 	char str_id_reg[VENDOR_ID_LEN+1]; | 
 | 	char str_id_cap[VENDOR_ID_LEN+1]; | 
 | 	char *vpd_data; | 
 | 	char *vpd_extended_data = NULL; | 
 | 	u8 len; | 
 |  | 
 | 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); | 
 | 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); | 
 |  | 
 | 	if (cnt < BNX2X_VPD_LEN) | 
 | 		goto out_not_found; | 
 |  | 
 | 	/* VPD RO tag should be first tag after identifier string, hence | 
 | 	 * we should be able to find it in first BNX2X_VPD_LEN chars | 
 | 	 */ | 
 | 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, | 
 | 			     PCI_VPD_LRDT_RO_DATA); | 
 | 	if (i < 0) | 
 | 		goto out_not_found; | 
 |  | 
 | 	block_end = i + PCI_VPD_LRDT_TAG_SIZE + | 
 | 		    pci_vpd_lrdt_size(&vpd_start[i]); | 
 |  | 
 | 	i += PCI_VPD_LRDT_TAG_SIZE; | 
 |  | 
 | 	if (block_end > BNX2X_VPD_LEN) { | 
 | 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL); | 
 | 		if (vpd_extended_data  == NULL) | 
 | 			goto out_not_found; | 
 |  | 
 | 		/* read rest of vpd image into vpd_extended_data */ | 
 | 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); | 
 | 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, | 
 | 				   block_end - BNX2X_VPD_LEN, | 
 | 				   vpd_extended_data + BNX2X_VPD_LEN); | 
 | 		if (cnt < (block_end - BNX2X_VPD_LEN)) | 
 | 			goto out_not_found; | 
 | 		vpd_data = vpd_extended_data; | 
 | 	} else | 
 | 		vpd_data = vpd_start; | 
 |  | 
 | 	/* now vpd_data holds full vpd content in both cases */ | 
 |  | 
 | 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, | 
 | 				   PCI_VPD_RO_KEYWORD_MFR_ID); | 
 | 	if (rodi < 0) | 
 | 		goto out_not_found; | 
 |  | 
 | 	len = pci_vpd_info_field_size(&vpd_data[rodi]); | 
 |  | 
 | 	if (len != VENDOR_ID_LEN) | 
 | 		goto out_not_found; | 
 |  | 
 | 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE; | 
 |  | 
 | 	/* vendor specific info */ | 
 | 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); | 
 | 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); | 
 | 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || | 
 | 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { | 
 |  | 
 | 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, | 
 | 						PCI_VPD_RO_KEYWORD_VENDOR0); | 
 | 		if (rodi >= 0) { | 
 | 			len = pci_vpd_info_field_size(&vpd_data[rodi]); | 
 |  | 
 | 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE; | 
 |  | 
 | 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { | 
 | 				memcpy(bp->fw_ver, &vpd_data[rodi], len); | 
 | 				bp->fw_ver[len] = ' '; | 
 | 			} | 
 | 		} | 
 | 		kfree(vpd_extended_data); | 
 | 		return; | 
 | 	} | 
 | out_not_found: | 
 | 	kfree(vpd_extended_data); | 
 | 	return; | 
 | } | 
 |  | 
 | static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp) | 
 | { | 
 | 	u32 flags = 0; | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp)) | 
 | 		SET_FLAGS(flags, MODE_FPGA); | 
 | 	else if (CHIP_REV_IS_EMUL(bp)) | 
 | 		SET_FLAGS(flags, MODE_EMUL); | 
 | 	else | 
 | 		SET_FLAGS(flags, MODE_ASIC); | 
 |  | 
 | 	if (CHIP_MODE_IS_4_PORT(bp)) | 
 | 		SET_FLAGS(flags, MODE_PORT4); | 
 | 	else | 
 | 		SET_FLAGS(flags, MODE_PORT2); | 
 |  | 
 | 	if (CHIP_IS_E2(bp)) | 
 | 		SET_FLAGS(flags, MODE_E2); | 
 | 	else if (CHIP_IS_E3(bp)) { | 
 | 		SET_FLAGS(flags, MODE_E3); | 
 | 		if (CHIP_REV(bp) == CHIP_REV_Ax) | 
 | 			SET_FLAGS(flags, MODE_E3_A0); | 
 | 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ | 
 | 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); | 
 | 	} | 
 |  | 
 | 	if (IS_MF(bp)) { | 
 | 		SET_FLAGS(flags, MODE_MF); | 
 | 		switch (bp->mf_mode) { | 
 | 		case MULTI_FUNCTION_SD: | 
 | 			SET_FLAGS(flags, MODE_MF_SD); | 
 | 			break; | 
 | 		case MULTI_FUNCTION_SI: | 
 | 			SET_FLAGS(flags, MODE_MF_SI); | 
 | 			break; | 
 | 		} | 
 | 	} else | 
 | 		SET_FLAGS(flags, MODE_SF); | 
 |  | 
 | #if defined(__LITTLE_ENDIAN) | 
 | 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN); | 
 | #else /*(__BIG_ENDIAN)*/ | 
 | 	SET_FLAGS(flags, MODE_BIG_ENDIAN); | 
 | #endif | 
 | 	INIT_MODE_FLAGS(bp) = flags; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_init_bp(struct bnx2x *bp) | 
 | { | 
 | 	int func; | 
 | 	int rc; | 
 |  | 
 | 	mutex_init(&bp->port.phy_mutex); | 
 | 	mutex_init(&bp->fw_mb_mutex); | 
 | 	spin_lock_init(&bp->stats_lock); | 
 | #ifdef BCM_CNIC | 
 | 	mutex_init(&bp->cnic_mutex); | 
 | #endif | 
 |  | 
 | 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); | 
 | 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); | 
 | 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); | 
 | 	rc = bnx2x_get_hwinfo(bp); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	bnx2x_set_modes_bitmap(bp); | 
 |  | 
 | 	rc = bnx2x_alloc_mem_bp(bp); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	bnx2x_read_fwinfo(bp); | 
 |  | 
 | 	func = BP_FUNC(bp); | 
 |  | 
 | 	/* need to reset chip if undi was active */ | 
 | 	if (!BP_NOMCP(bp)) { | 
 | 		/* init fw_seq */ | 
 | 		bp->fw_seq = | 
 | 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & | 
 | 							DRV_MSG_SEQ_NUMBER_MASK; | 
 | 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); | 
 |  | 
 | 		bnx2x_prev_unload(bp); | 
 | 	} | 
 |  | 
 |  | 
 | 	if (CHIP_REV_IS_FPGA(bp)) | 
 | 		dev_err(&bp->pdev->dev, "FPGA detected\n"); | 
 |  | 
 | 	if (BP_NOMCP(bp) && (func == 0)) | 
 | 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); | 
 |  | 
 | 	bp->disable_tpa = disable_tpa; | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp); | 
 | #endif | 
 |  | 
 | 	/* Set TPA flags */ | 
 | 	if (bp->disable_tpa) { | 
 | 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); | 
 | 		bp->dev->features &= ~NETIF_F_LRO; | 
 | 	} else { | 
 | 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); | 
 | 		bp->dev->features |= NETIF_F_LRO; | 
 | 	} | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		bp->dropless_fc = 0; | 
 | 	else | 
 | 		bp->dropless_fc = dropless_fc; | 
 |  | 
 | 	bp->mrrs = mrrs; | 
 |  | 
 | 	bp->tx_ring_size = MAX_TX_AVAIL; | 
 |  | 
 | 	/* make sure that the numbers are in the right granularity */ | 
 | 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; | 
 | 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; | 
 |  | 
 | 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; | 
 |  | 
 | 	init_timer(&bp->timer); | 
 | 	bp->timer.expires = jiffies + bp->current_interval; | 
 | 	bp->timer.data = (unsigned long) bp; | 
 | 	bp->timer.function = bnx2x_timer; | 
 |  | 
 | 	bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); | 
 | 	bnx2x_dcbx_init_params(bp); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	if (CHIP_IS_E1x(bp)) | 
 | 		bp->cnic_base_cl_id = FP_SB_MAX_E1x; | 
 | 	else | 
 | 		bp->cnic_base_cl_id = FP_SB_MAX_E2; | 
 | #endif | 
 |  | 
 | 	/* multiple tx priority */ | 
 | 	if (CHIP_IS_E1x(bp)) | 
 | 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X; | 
 | 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) | 
 | 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; | 
 | 	if (CHIP_IS_E3B0(bp)) | 
 | 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; | 
 |  | 
 | 	bp->gro_check = bnx2x_need_gro_check(bp->dev->mtu); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | /**************************************************************************** | 
 | * General service functions | 
 | ****************************************************************************/ | 
 |  | 
 | /* | 
 |  * net_device service functions | 
 |  */ | 
 |  | 
 | /* called with rtnl_lock */ | 
 | static int bnx2x_open(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	bool global = false; | 
 | 	int other_engine = BP_PATH(bp) ? 0 : 1; | 
 | 	bool other_load_status, load_status; | 
 |  | 
 | 	bp->stats_init = true; | 
 |  | 
 | 	netif_carrier_off(dev); | 
 |  | 
 | 	bnx2x_set_power_state(bp, PCI_D0); | 
 |  | 
 | 	other_load_status = bnx2x_get_load_status(bp, other_engine); | 
 | 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); | 
 |  | 
 | 	/* | 
 | 	 * If parity had happen during the unload, then attentions | 
 | 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we | 
 | 	 * want the first function loaded on the current engine to | 
 | 	 * complete the recovery. | 
 | 	 */ | 
 | 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || | 
 | 	    bnx2x_chk_parity_attn(bp, &global, true)) | 
 | 		do { | 
 | 			/* | 
 | 			 * If there are attentions and they are in a global | 
 | 			 * blocks, set the GLOBAL_RESET bit regardless whether | 
 | 			 * it will be this function that will complete the | 
 | 			 * recovery or not. | 
 | 			 */ | 
 | 			if (global) | 
 | 				bnx2x_set_reset_global(bp); | 
 |  | 
 | 			/* | 
 | 			 * Only the first function on the current engine should | 
 | 			 * try to recover in open. In case of attentions in | 
 | 			 * global blocks only the first in the chip should try | 
 | 			 * to recover. | 
 | 			 */ | 
 | 			if ((!load_status && | 
 | 			     (!global || !other_load_status)) && | 
 | 			    bnx2x_trylock_leader_lock(bp) && | 
 | 			    !bnx2x_leader_reset(bp)) { | 
 | 				netdev_info(bp->dev, "Recovered in open\n"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* recovery has failed... */ | 
 | 			bnx2x_set_power_state(bp, PCI_D3hot); | 
 | 			bp->recovery_state = BNX2X_RECOVERY_FAILED; | 
 |  | 
 | 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" | 
 | 				  "If you still see this message after a few retries then power cycle is required.\n"); | 
 |  | 
 | 			return -EAGAIN; | 
 | 		} while (0); | 
 |  | 
 | 	bp->recovery_state = BNX2X_RECOVERY_DONE; | 
 | 	return bnx2x_nic_load(bp, LOAD_OPEN); | 
 | } | 
 |  | 
 | /* called with rtnl_lock */ | 
 | static int bnx2x_close(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	/* Unload the driver, release IRQs */ | 
 | 	bnx2x_nic_unload(bp, UNLOAD_CLOSE); | 
 |  | 
 | 	/* Power off */ | 
 | 	bnx2x_set_power_state(bp, PCI_D3hot); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp, | 
 | 					 struct bnx2x_mcast_ramrod_params *p) | 
 | { | 
 | 	int mc_count = netdev_mc_count(bp->dev); | 
 | 	struct bnx2x_mcast_list_elem *mc_mac = | 
 | 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); | 
 | 	struct netdev_hw_addr *ha; | 
 |  | 
 | 	if (!mc_mac) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_LIST_HEAD(&p->mcast_list); | 
 |  | 
 | 	netdev_for_each_mc_addr(ha, bp->dev) { | 
 | 		mc_mac->mac = bnx2x_mc_addr(ha); | 
 | 		list_add_tail(&mc_mac->link, &p->mcast_list); | 
 | 		mc_mac++; | 
 | 	} | 
 |  | 
 | 	p->mcast_list_len = mc_count; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void bnx2x_free_mcast_macs_list( | 
 | 	struct bnx2x_mcast_ramrod_params *p) | 
 | { | 
 | 	struct bnx2x_mcast_list_elem *mc_mac = | 
 | 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, | 
 | 				 link); | 
 |  | 
 | 	WARN_ON(!mc_mac); | 
 | 	kfree(mc_mac); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_uc_list - configure a new unicast MACs list. | 
 |  * | 
 |  * @bp: driver handle | 
 |  * | 
 |  * We will use zero (0) as a MAC type for these MACs. | 
 |  */ | 
 | static inline int bnx2x_set_uc_list(struct bnx2x *bp) | 
 | { | 
 | 	int rc; | 
 | 	struct net_device *dev = bp->dev; | 
 | 	struct netdev_hw_addr *ha; | 
 | 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj; | 
 | 	unsigned long ramrod_flags = 0; | 
 |  | 
 | 	/* First schedule a cleanup up of old configuration */ | 
 | 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); | 
 | 	if (rc < 0) { | 
 | 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	netdev_for_each_uc_addr(ha, dev) { | 
 | 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, | 
 | 				       BNX2X_UC_LIST_MAC, &ramrod_flags); | 
 | 		if (rc < 0) { | 
 | 			BNX2X_ERR("Failed to schedule ADD operations: %d\n", | 
 | 				  rc); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Execute the pending commands */ | 
 | 	__set_bit(RAMROD_CONT, &ramrod_flags); | 
 | 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, | 
 | 				 BNX2X_UC_LIST_MAC, &ramrod_flags); | 
 | } | 
 |  | 
 | static inline int bnx2x_set_mc_list(struct bnx2x *bp) | 
 | { | 
 | 	struct net_device *dev = bp->dev; | 
 | 	struct bnx2x_mcast_ramrod_params rparam = {NULL}; | 
 | 	int rc = 0; | 
 |  | 
 | 	rparam.mcast_obj = &bp->mcast_obj; | 
 |  | 
 | 	/* first, clear all configured multicast MACs */ | 
 | 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); | 
 | 	if (rc < 0) { | 
 | 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	/* then, configure a new MACs list */ | 
 | 	if (netdev_mc_count(dev)) { | 
 | 		rc = bnx2x_init_mcast_macs_list(bp, &rparam); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Failed to create multicast MACs list: %d\n", | 
 | 				  rc); | 
 | 			return rc; | 
 | 		} | 
 |  | 
 | 		/* Now add the new MACs */ | 
 | 		rc = bnx2x_config_mcast(bp, &rparam, | 
 | 					BNX2X_MCAST_CMD_ADD); | 
 | 		if (rc < 0) | 
 | 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n", | 
 | 				  rc); | 
 |  | 
 | 		bnx2x_free_mcast_macs_list(&rparam); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ | 
 | void bnx2x_set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	u32 rx_mode = BNX2X_RX_MODE_NORMAL; | 
 |  | 
 | 	if (bp->state != BNX2X_STATE_OPEN) { | 
 | 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) | 
 | 		rx_mode = BNX2X_RX_MODE_PROMISC; | 
 | 	else if ((dev->flags & IFF_ALLMULTI) || | 
 | 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) && | 
 | 		  CHIP_IS_E1(bp))) | 
 | 		rx_mode = BNX2X_RX_MODE_ALLMULTI; | 
 | 	else { | 
 | 		/* some multicasts */ | 
 | 		if (bnx2x_set_mc_list(bp) < 0) | 
 | 			rx_mode = BNX2X_RX_MODE_ALLMULTI; | 
 |  | 
 | 		if (bnx2x_set_uc_list(bp) < 0) | 
 | 			rx_mode = BNX2X_RX_MODE_PROMISC; | 
 | 	} | 
 |  | 
 | 	bp->rx_mode = rx_mode; | 
 | #ifdef BCM_CNIC | 
 | 	/* handle ISCSI SD mode */ | 
 | 	if (IS_MF_ISCSI_SD(bp)) | 
 | 		bp->rx_mode = BNX2X_RX_MODE_NONE; | 
 | #endif | 
 |  | 
 | 	/* Schedule the rx_mode command */ | 
 | 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { | 
 | 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	bnx2x_set_storm_rx_mode(bp); | 
 | } | 
 |  | 
 | /* called with rtnl_lock */ | 
 | static int bnx2x_mdio_read(struct net_device *netdev, int prtad, | 
 | 			   int devad, u16 addr) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(netdev); | 
 | 	u16 value; | 
 | 	int rc; | 
 |  | 
 | 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", | 
 | 	   prtad, devad, addr); | 
 |  | 
 | 	/* The HW expects different devad if CL22 is used */ | 
 | 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; | 
 |  | 
 | 	bnx2x_acquire_phy_lock(bp); | 
 | 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); | 
 | 	bnx2x_release_phy_lock(bp); | 
 | 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); | 
 |  | 
 | 	if (!rc) | 
 | 		rc = value; | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* called with rtnl_lock */ | 
 | static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, | 
 | 			    u16 addr, u16 value) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(netdev); | 
 | 	int rc; | 
 |  | 
 | 	DP(NETIF_MSG_LINK, | 
 | 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", | 
 | 	   prtad, devad, addr, value); | 
 |  | 
 | 	/* The HW expects different devad if CL22 is used */ | 
 | 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; | 
 |  | 
 | 	bnx2x_acquire_phy_lock(bp); | 
 | 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); | 
 | 	bnx2x_release_phy_lock(bp); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* called with rtnl_lock */ | 
 | static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	struct mii_ioctl_data *mdio = if_mii(ifr); | 
 |  | 
 | 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", | 
 | 	   mdio->phy_id, mdio->reg_num, mdio->val_in); | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void poll_bnx2x(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	disable_irq(bp->pdev->irq); | 
 | 	bnx2x_interrupt(bp->pdev->irq, dev); | 
 | 	enable_irq(bp->pdev->irq); | 
 | } | 
 | #endif | 
 |  | 
 | static int bnx2x_validate_addr(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { | 
 | 		BNX2X_ERR("Non-valid Ethernet address\n"); | 
 | 		return -EADDRNOTAVAIL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct net_device_ops bnx2x_netdev_ops = { | 
 | 	.ndo_open		= bnx2x_open, | 
 | 	.ndo_stop		= bnx2x_close, | 
 | 	.ndo_start_xmit		= bnx2x_start_xmit, | 
 | 	.ndo_select_queue	= bnx2x_select_queue, | 
 | 	.ndo_set_rx_mode	= bnx2x_set_rx_mode, | 
 | 	.ndo_set_mac_address	= bnx2x_change_mac_addr, | 
 | 	.ndo_validate_addr	= bnx2x_validate_addr, | 
 | 	.ndo_do_ioctl		= bnx2x_ioctl, | 
 | 	.ndo_change_mtu		= bnx2x_change_mtu, | 
 | 	.ndo_fix_features	= bnx2x_fix_features, | 
 | 	.ndo_set_features	= bnx2x_set_features, | 
 | 	.ndo_tx_timeout		= bnx2x_tx_timeout, | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller	= poll_bnx2x, | 
 | #endif | 
 | 	.ndo_setup_tc		= bnx2x_setup_tc, | 
 |  | 
 | #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC) | 
 | 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn, | 
 | #endif | 
 | }; | 
 |  | 
 | static inline int bnx2x_set_coherency_mask(struct bnx2x *bp) | 
 | { | 
 | 	struct device *dev = &bp->pdev->dev; | 
 |  | 
 | 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { | 
 | 		bp->flags |= USING_DAC_FLAG; | 
 | 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { | 
 | 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { | 
 | 		dev_err(dev, "System does not support DMA, aborting\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_init_dev(struct pci_dev *pdev, | 
 | 				    struct net_device *dev, | 
 | 				    unsigned long board_type) | 
 | { | 
 | 	struct bnx2x *bp; | 
 | 	int rc; | 
 | 	u32 pci_cfg_dword; | 
 | 	bool chip_is_e1x = (board_type == BCM57710 || | 
 | 			    board_type == BCM57711 || | 
 | 			    board_type == BCM57711E); | 
 |  | 
 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | 	bp->dev = dev; | 
 | 	bp->pdev = pdev; | 
 | 	bp->flags = 0; | 
 |  | 
 | 	rc = pci_enable_device(pdev); | 
 | 	if (rc) { | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"Cannot enable PCI device, aborting\n"); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"Cannot find PCI device base address, aborting\n"); | 
 | 		rc = -ENODEV; | 
 | 		goto err_out_disable; | 
 | 	} | 
 |  | 
 | 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { | 
 | 		dev_err(&bp->pdev->dev, "Cannot find second PCI device" | 
 | 		       " base address, aborting\n"); | 
 | 		rc = -ENODEV; | 
 | 		goto err_out_disable; | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&pdev->enable_cnt) == 1) { | 
 | 		rc = pci_request_regions(pdev, DRV_MODULE_NAME); | 
 | 		if (rc) { | 
 | 			dev_err(&bp->pdev->dev, | 
 | 				"Cannot obtain PCI resources, aborting\n"); | 
 | 			goto err_out_disable; | 
 | 		} | 
 |  | 
 | 		pci_set_master(pdev); | 
 | 		pci_save_state(pdev); | 
 | 	} | 
 |  | 
 | 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); | 
 | 	if (bp->pm_cap == 0) { | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"Cannot find power management capability, aborting\n"); | 
 | 		rc = -EIO; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	if (!pci_is_pcie(pdev)) { | 
 | 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); | 
 | 		rc = -EIO; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	rc = bnx2x_set_coherency_mask(bp); | 
 | 	if (rc) | 
 | 		goto err_out_release; | 
 |  | 
 | 	dev->mem_start = pci_resource_start(pdev, 0); | 
 | 	dev->base_addr = dev->mem_start; | 
 | 	dev->mem_end = pci_resource_end(pdev, 0); | 
 |  | 
 | 	dev->irq = pdev->irq; | 
 |  | 
 | 	bp->regview = pci_ioremap_bar(pdev, 0); | 
 | 	if (!bp->regview) { | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"Cannot map register space, aborting\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out_release; | 
 | 	} | 
 |  | 
 | 	/* In E1/E1H use pci device function given by kernel. | 
 | 	 * In E2/E3 read physical function from ME register since these chips | 
 | 	 * support Physical Device Assignment where kernel BDF maybe arbitrary | 
 | 	 * (depending on hypervisor). | 
 | 	 */ | 
 | 	if (chip_is_e1x) | 
 | 		bp->pf_num = PCI_FUNC(pdev->devfn); | 
 | 	else {/* chip is E2/3*/ | 
 | 		pci_read_config_dword(bp->pdev, | 
 | 				      PCICFG_ME_REGISTER, &pci_cfg_dword); | 
 | 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> | 
 | 		    ME_REG_ABS_PF_NUM_SHIFT); | 
 | 	} | 
 | 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); | 
 |  | 
 | 	bnx2x_set_power_state(bp, PCI_D0); | 
 |  | 
 | 	/* clean indirect addresses */ | 
 | 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
 | 			       PCICFG_VENDOR_ID_OFFSET); | 
 | 	/* | 
 | 	 * Clean the following indirect addresses for all functions since it | 
 | 	 * is not used by the driver. | 
 | 	 */ | 
 | 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); | 
 | 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); | 
 | 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); | 
 | 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); | 
 |  | 
 | 	if (chip_is_e1x) { | 
 | 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); | 
 | 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); | 
 | 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); | 
 | 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable internal target-read (in case we are probed after PF FLR). | 
 | 	 * Must be done prior to any BAR read access. Only for 57712 and up | 
 | 	 */ | 
 | 	if (!chip_is_e1x) | 
 | 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); | 
 |  | 
 | 	/* Reset the load counter */ | 
 | 	bnx2x_clear_load_status(bp); | 
 |  | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 |  | 
 | 	dev->netdev_ops = &bnx2x_netdev_ops; | 
 | 	bnx2x_set_ethtool_ops(dev); | 
 |  | 
 | 	dev->priv_flags |= IFF_UNICAST_FLT; | 
 |  | 
 | 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | | 
 | 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | | 
 | 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | | 
 | 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX; | 
 |  | 
 | 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | | 
 | 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; | 
 |  | 
 | 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX; | 
 | 	if (bp->flags & USING_DAC_FLAG) | 
 | 		dev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	/* Add Loopback capability to the device */ | 
 | 	dev->hw_features |= NETIF_F_LOOPBACK; | 
 |  | 
 | #ifdef BCM_DCBNL | 
 | 	dev->dcbnl_ops = &bnx2x_dcbnl_ops; | 
 | #endif | 
 |  | 
 | 	/* get_port_hwinfo() will set prtad and mmds properly */ | 
 | 	bp->mdio.prtad = MDIO_PRTAD_NONE; | 
 | 	bp->mdio.mmds = 0; | 
 | 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; | 
 | 	bp->mdio.dev = dev; | 
 | 	bp->mdio.mdio_read = bnx2x_mdio_read; | 
 | 	bp->mdio.mdio_write = bnx2x_mdio_write; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_release: | 
 | 	if (atomic_read(&pdev->enable_cnt) == 1) | 
 | 		pci_release_regions(pdev); | 
 |  | 
 | err_out_disable: | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 |  | 
 | err_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp, | 
 | 						 int *width, int *speed) | 
 | { | 
 | 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL); | 
 |  | 
 | 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; | 
 |  | 
 | 	/* return value of 1=2.5GHz 2=5GHz */ | 
 | 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; | 
 | } | 
 |  | 
 | static int bnx2x_check_firmware(struct bnx2x *bp) | 
 | { | 
 | 	const struct firmware *firmware = bp->firmware; | 
 | 	struct bnx2x_fw_file_hdr *fw_hdr; | 
 | 	struct bnx2x_fw_file_section *sections; | 
 | 	u32 offset, len, num_ops; | 
 | 	u16 *ops_offsets; | 
 | 	int i; | 
 | 	const u8 *fw_ver; | 
 |  | 
 | 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { | 
 | 		BNX2X_ERR("Wrong FW size\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; | 
 | 	sections = (struct bnx2x_fw_file_section *)fw_hdr; | 
 |  | 
 | 	/* Make sure none of the offsets and sizes make us read beyond | 
 | 	 * the end of the firmware data */ | 
 | 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { | 
 | 		offset = be32_to_cpu(sections[i].offset); | 
 | 		len = be32_to_cpu(sections[i].len); | 
 | 		if (offset + len > firmware->size) { | 
 | 			BNX2X_ERR("Section %d length is out of bounds\n", i); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Likewise for the init_ops offsets */ | 
 | 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); | 
 | 	ops_offsets = (u16 *)(firmware->data + offset); | 
 | 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); | 
 |  | 
 | 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { | 
 | 		if (be16_to_cpu(ops_offsets[i]) > num_ops) { | 
 | 			BNX2X_ERR("Section offset %d is out of bounds\n", i); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Check FW version */ | 
 | 	offset = be32_to_cpu(fw_hdr->fw_version.offset); | 
 | 	fw_ver = firmware->data + offset; | 
 | 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || | 
 | 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || | 
 | 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || | 
 | 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { | 
 | 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", | 
 | 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], | 
 | 		       BCM_5710_FW_MAJOR_VERSION, | 
 | 		       BCM_5710_FW_MINOR_VERSION, | 
 | 		       BCM_5710_FW_REVISION_VERSION, | 
 | 		       BCM_5710_FW_ENGINEERING_VERSION); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) | 
 | { | 
 | 	const __be32 *source = (const __be32 *)_source; | 
 | 	u32 *target = (u32 *)_target; | 
 | 	u32 i; | 
 |  | 
 | 	for (i = 0; i < n/4; i++) | 
 | 		target[i] = be32_to_cpu(source[i]); | 
 | } | 
 |  | 
 | /* | 
 |    Ops array is stored in the following format: | 
 |    {op(8bit), offset(24bit, big endian), data(32bit, big endian)} | 
 |  */ | 
 | static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) | 
 | { | 
 | 	const __be32 *source = (const __be32 *)_source; | 
 | 	struct raw_op *target = (struct raw_op *)_target; | 
 | 	u32 i, j, tmp; | 
 |  | 
 | 	for (i = 0, j = 0; i < n/8; i++, j += 2) { | 
 | 		tmp = be32_to_cpu(source[j]); | 
 | 		target[i].op = (tmp >> 24) & 0xff; | 
 | 		target[i].offset = tmp & 0xffffff; | 
 | 		target[i].raw_data = be32_to_cpu(source[j + 1]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * IRO array is stored in the following format: | 
 |  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } | 
 |  */ | 
 | static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) | 
 | { | 
 | 	const __be32 *source = (const __be32 *)_source; | 
 | 	struct iro *target = (struct iro *)_target; | 
 | 	u32 i, j, tmp; | 
 |  | 
 | 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { | 
 | 		target[i].base = be32_to_cpu(source[j]); | 
 | 		j++; | 
 | 		tmp = be32_to_cpu(source[j]); | 
 | 		target[i].m1 = (tmp >> 16) & 0xffff; | 
 | 		target[i].m2 = tmp & 0xffff; | 
 | 		j++; | 
 | 		tmp = be32_to_cpu(source[j]); | 
 | 		target[i].m3 = (tmp >> 16) & 0xffff; | 
 | 		target[i].size = tmp & 0xffff; | 
 | 		j++; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) | 
 | { | 
 | 	const __be16 *source = (const __be16 *)_source; | 
 | 	u16 *target = (u16 *)_target; | 
 | 	u32 i; | 
 |  | 
 | 	for (i = 0; i < n/2; i++) | 
 | 		target[i] = be16_to_cpu(source[i]); | 
 | } | 
 |  | 
 | #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\ | 
 | do {									\ | 
 | 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\ | 
 | 	bp->arr = kmalloc(len, GFP_KERNEL);				\ | 
 | 	if (!bp->arr)							\ | 
 | 		goto lbl;						\ | 
 | 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\ | 
 | 	     (u8 *)bp->arr, len);					\ | 
 | } while (0) | 
 |  | 
 | static int bnx2x_init_firmware(struct bnx2x *bp) | 
 | { | 
 | 	const char *fw_file_name; | 
 | 	struct bnx2x_fw_file_hdr *fw_hdr; | 
 | 	int rc; | 
 |  | 
 | 	if (bp->firmware) | 
 | 		return 0; | 
 |  | 
 | 	if (CHIP_IS_E1(bp)) | 
 | 		fw_file_name = FW_FILE_NAME_E1; | 
 | 	else if (CHIP_IS_E1H(bp)) | 
 | 		fw_file_name = FW_FILE_NAME_E1H; | 
 | 	else if (!CHIP_IS_E1x(bp)) | 
 | 		fw_file_name = FW_FILE_NAME_E2; | 
 | 	else { | 
 | 		BNX2X_ERR("Unsupported chip revision\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name); | 
 |  | 
 | 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Can't load firmware file %s\n", | 
 | 			  fw_file_name); | 
 | 		goto request_firmware_exit; | 
 | 	} | 
 |  | 
 | 	rc = bnx2x_check_firmware(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); | 
 | 		goto request_firmware_exit; | 
 | 	} | 
 |  | 
 | 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; | 
 |  | 
 | 	/* Initialize the pointers to the init arrays */ | 
 | 	/* Blob */ | 
 | 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); | 
 |  | 
 | 	/* Opcodes */ | 
 | 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); | 
 |  | 
 | 	/* Offsets */ | 
 | 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, | 
 | 			    be16_to_cpu_n); | 
 |  | 
 | 	/* STORMs firmware */ | 
 | 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset); | 
 | 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->tsem_pram_data.offset); | 
 | 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->usem_int_table_data.offset); | 
 | 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->usem_pram_data.offset); | 
 | 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset); | 
 | 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->xsem_pram_data.offset); | 
 | 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->csem_int_table_data.offset); | 
 | 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
 | 			be32_to_cpu(fw_hdr->csem_pram_data.offset); | 
 | 	/* IRO */ | 
 | 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); | 
 |  | 
 | 	return 0; | 
 |  | 
 | iro_alloc_err: | 
 | 	kfree(bp->init_ops_offsets); | 
 | init_offsets_alloc_err: | 
 | 	kfree(bp->init_ops); | 
 | init_ops_alloc_err: | 
 | 	kfree(bp->init_data); | 
 | request_firmware_exit: | 
 | 	release_firmware(bp->firmware); | 
 | 	bp->firmware = NULL; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void bnx2x_release_firmware(struct bnx2x *bp) | 
 | { | 
 | 	kfree(bp->init_ops_offsets); | 
 | 	kfree(bp->init_ops); | 
 | 	kfree(bp->init_data); | 
 | 	release_firmware(bp->firmware); | 
 | 	bp->firmware = NULL; | 
 | } | 
 |  | 
 |  | 
 | static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { | 
 | 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip, | 
 | 	.init_hw_cmn      = bnx2x_init_hw_common, | 
 | 	.init_hw_port     = bnx2x_init_hw_port, | 
 | 	.init_hw_func     = bnx2x_init_hw_func, | 
 |  | 
 | 	.reset_hw_cmn     = bnx2x_reset_common, | 
 | 	.reset_hw_port    = bnx2x_reset_port, | 
 | 	.reset_hw_func    = bnx2x_reset_func, | 
 |  | 
 | 	.gunzip_init      = bnx2x_gunzip_init, | 
 | 	.gunzip_end       = bnx2x_gunzip_end, | 
 |  | 
 | 	.init_fw          = bnx2x_init_firmware, | 
 | 	.release_fw       = bnx2x_release_firmware, | 
 | }; | 
 |  | 
 | void bnx2x__init_func_obj(struct bnx2x *bp) | 
 | { | 
 | 	/* Prepare DMAE related driver resources */ | 
 | 	bnx2x_setup_dmae(bp); | 
 |  | 
 | 	bnx2x_init_func_obj(bp, &bp->func_obj, | 
 | 			    bnx2x_sp(bp, func_rdata), | 
 | 			    bnx2x_sp_mapping(bp, func_rdata), | 
 | 			    &bnx2x_func_sp_drv); | 
 | } | 
 |  | 
 | /* must be called after sriov-enable */ | 
 | static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp) | 
 | { | 
 | 	int cid_count = BNX2X_L2_CID_COUNT(bp); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	cid_count += CNIC_CID_MAX; | 
 | #endif | 
 | 	return roundup(cid_count, QM_CID_ROUND); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_get_num_none_def_sbs - return the number of none default SBs | 
 |  * | 
 |  * @dev:	pci device | 
 |  * | 
 |  */ | 
 | static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev) | 
 | { | 
 | 	int pos; | 
 | 	u16 control; | 
 |  | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); | 
 |  | 
 | 	/* | 
 | 	 * If MSI-X is not supported - return number of SBs needed to support | 
 | 	 * one fast path queue: one FP queue + SB for CNIC | 
 | 	 */ | 
 | 	if (!pos) | 
 | 		return 1 + CNIC_PRESENT; | 
 |  | 
 | 	/* | 
 | 	 * The value in the PCI configuration space is the index of the last | 
 | 	 * entry, namely one less than the actual size of the table, which is | 
 | 	 * exactly what we want to return from this function: number of all SBs | 
 | 	 * without the default SB. | 
 | 	 */ | 
 | 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control); | 
 | 	return control & PCI_MSIX_FLAGS_QSIZE; | 
 | } | 
 |  | 
 | static int __devinit bnx2x_init_one(struct pci_dev *pdev, | 
 | 				    const struct pci_device_id *ent) | 
 | { | 
 | 	struct net_device *dev = NULL; | 
 | 	struct bnx2x *bp; | 
 | 	int pcie_width, pcie_speed; | 
 | 	int rc, max_non_def_sbs; | 
 | 	int rx_count, tx_count, rss_count; | 
 | 	/* | 
 | 	 * An estimated maximum supported CoS number according to the chip | 
 | 	 * version. | 
 | 	 * We will try to roughly estimate the maximum number of CoSes this chip | 
 | 	 * may support in order to minimize the memory allocated for Tx | 
 | 	 * netdev_queue's. This number will be accurately calculated during the | 
 | 	 * initialization of bp->max_cos based on the chip versions AND chip | 
 | 	 * revision in the bnx2x_init_bp(). | 
 | 	 */ | 
 | 	u8 max_cos_est = 0; | 
 |  | 
 | 	switch (ent->driver_data) { | 
 | 	case BCM57710: | 
 | 	case BCM57711: | 
 | 	case BCM57711E: | 
 | 		max_cos_est = BNX2X_MULTI_TX_COS_E1X; | 
 | 		break; | 
 |  | 
 | 	case BCM57712: | 
 | 	case BCM57712_MF: | 
 | 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0; | 
 | 		break; | 
 |  | 
 | 	case BCM57800: | 
 | 	case BCM57800_MF: | 
 | 	case BCM57810: | 
 | 	case BCM57810_MF: | 
 | 	case BCM57840: | 
 | 	case BCM57840_MF: | 
 | 	case BCM57811: | 
 | 	case BCM57811_MF: | 
 | 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_err("Unknown board_type (%ld), aborting\n", | 
 | 			   ent->driver_data); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev); | 
 |  | 
 | 	/* !!! FIXME !!! | 
 | 	 * Do not allow the maximum SB count to grow above 16 | 
 | 	 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48. | 
 | 	 * We will use the FP_SB_MAX_E1x macro for this matter. | 
 | 	 */ | 
 | 	max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs); | 
 |  | 
 | 	WARN_ON(!max_non_def_sbs); | 
 |  | 
 | 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */ | 
 | 	rss_count = max_non_def_sbs - CNIC_PRESENT; | 
 |  | 
 | 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */ | 
 | 	rx_count = rss_count + FCOE_PRESENT; | 
 |  | 
 | 	/* | 
 | 	 * Maximum number of netdev Tx queues: | 
 | 	 *      Maximum TSS queues * Maximum supported number of CoS  + FCoE L2 | 
 | 	 */ | 
 | 	tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT; | 
 |  | 
 | 	/* dev zeroed in init_etherdev */ | 
 | 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", | 
 | 			  tx_count, rx_count); | 
 |  | 
 | 	bp->igu_sb_cnt = max_non_def_sbs; | 
 | 	bp->msg_enable = debug; | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data); | 
 | 	if (rc < 0) { | 
 | 		free_netdev(dev); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs); | 
 |  | 
 | 	rc = bnx2x_init_bp(bp); | 
 | 	if (rc) | 
 | 		goto init_one_exit; | 
 |  | 
 | 	/* | 
 | 	 * Map doorbels here as we need the real value of bp->max_cos which | 
 | 	 * is initialized in bnx2x_init_bp(). | 
 | 	 */ | 
 | 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), | 
 | 					min_t(u64, BNX2X_DB_SIZE(bp), | 
 | 					      pci_resource_len(pdev, 2))); | 
 | 	if (!bp->doorbells) { | 
 | 		dev_err(&bp->pdev->dev, | 
 | 			"Cannot map doorbell space, aborting\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto init_one_exit; | 
 | 	} | 
 |  | 
 | 	/* calc qm_cid_count */ | 
 | 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* disable FCOE L2 queue for E1x */ | 
 | 	if (CHIP_IS_E1x(bp)) | 
 | 		bp->flags |= NO_FCOE_FLAG; | 
 |  | 
 | #endif | 
 |  | 
 | 	/* Configure interrupt mode: try to enable MSI-X/MSI if | 
 | 	 * needed, set bp->num_queues appropriately. | 
 | 	 */ | 
 | 	bnx2x_set_int_mode(bp); | 
 |  | 
 | 	/* Add all NAPI objects */ | 
 | 	bnx2x_add_all_napi(bp); | 
 |  | 
 | 	rc = register_netdev(dev); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, "Cannot register net device\n"); | 
 | 		goto init_one_exit; | 
 | 	} | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	if (!NO_FCOE(bp)) { | 
 | 		/* Add storage MAC address */ | 
 | 		rtnl_lock(); | 
 | 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); | 
 | 		rtnl_unlock(); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); | 
 |  | 
 | 	BNX2X_DEV_INFO( | 
 | 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", | 
 | 		    board_info[ent->driver_data].name, | 
 | 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), | 
 | 		    pcie_width, | 
 | 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) || | 
 | 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ? | 
 | 		    "5GHz (Gen2)" : "2.5GHz", | 
 | 		    dev->base_addr, bp->pdev->irq, dev->dev_addr); | 
 |  | 
 | 	return 0; | 
 |  | 
 | init_one_exit: | 
 | 	if (bp->regview) | 
 | 		iounmap(bp->regview); | 
 |  | 
 | 	if (bp->doorbells) | 
 | 		iounmap(bp->doorbells); | 
 |  | 
 | 	free_netdev(dev); | 
 |  | 
 | 	if (atomic_read(&pdev->enable_cnt) == 1) | 
 | 		pci_release_regions(pdev); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __devexit bnx2x_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp; | 
 |  | 
 | 	if (!dev) { | 
 | 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
 | 		return; | 
 | 	} | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	/* Delete storage MAC address */ | 
 | 	if (!NO_FCOE(bp)) { | 
 | 		rtnl_lock(); | 
 | 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); | 
 | 		rtnl_unlock(); | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef BCM_DCBNL | 
 | 	/* Delete app tlvs from dcbnl */ | 
 | 	bnx2x_dcbnl_update_applist(bp, true); | 
 | #endif | 
 |  | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	/* Delete all NAPI objects */ | 
 | 	bnx2x_del_all_napi(bp); | 
 |  | 
 | 	/* Power on: we can't let PCI layer write to us while we are in D3 */ | 
 | 	bnx2x_set_power_state(bp, PCI_D0); | 
 |  | 
 | 	/* Disable MSI/MSI-X */ | 
 | 	bnx2x_disable_msi(bp); | 
 |  | 
 | 	/* Power off */ | 
 | 	bnx2x_set_power_state(bp, PCI_D3hot); | 
 |  | 
 | 	/* Make sure RESET task is not scheduled before continuing */ | 
 | 	cancel_delayed_work_sync(&bp->sp_rtnl_task); | 
 |  | 
 | 	if (bp->regview) | 
 | 		iounmap(bp->regview); | 
 |  | 
 | 	if (bp->doorbells) | 
 | 		iounmap(bp->doorbells); | 
 |  | 
 | 	bnx2x_release_firmware(bp); | 
 |  | 
 | 	bnx2x_free_mem_bp(bp); | 
 |  | 
 | 	free_netdev(dev); | 
 |  | 
 | 	if (atomic_read(&pdev->enable_cnt) == 1) | 
 | 		pci_release_regions(pdev); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | } | 
 |  | 
 | static int bnx2x_eeh_nic_unload(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	bp->state = BNX2X_STATE_ERROR; | 
 |  | 
 | 	bp->rx_mode = BNX2X_RX_MODE_NONE; | 
 |  | 
 | #ifdef BCM_CNIC | 
 | 	bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | 
 | #endif | 
 | 	/* Stop Tx */ | 
 | 	bnx2x_tx_disable(bp); | 
 |  | 
 | 	bnx2x_netif_stop(bp, 0); | 
 |  | 
 | 	del_timer_sync(&bp->timer); | 
 |  | 
 | 	bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
 |  | 
 | 	/* Release IRQs */ | 
 | 	bnx2x_free_irq(bp); | 
 |  | 
 | 	/* Free SKBs, SGEs, TPA pool and driver internals */ | 
 | 	bnx2x_free_skbs(bp); | 
 |  | 
 | 	for_each_rx_queue(bp, i) | 
 | 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
 |  | 
 | 	bnx2x_free_mem(bp); | 
 |  | 
 | 	bp->state = BNX2X_STATE_CLOSED; | 
 |  | 
 | 	netif_carrier_off(bp->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void bnx2x_eeh_recover(struct bnx2x *bp) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	mutex_init(&bp->port.phy_mutex); | 
 |  | 
 |  | 
 | 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); | 
 | 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) | 
 | 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) | 
 | 		BNX2X_ERR("BAD MCP validity signature\n"); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_io_error_detected - called when PCI error is detected | 
 |  * @pdev: Pointer to PCI device | 
 |  * @state: The current pci connection state | 
 |  * | 
 |  * This function is called after a PCI bus error affecting | 
 |  * this device has been detected. | 
 |  */ | 
 | static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, | 
 | 						pci_channel_state_t state) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	netif_device_detach(dev); | 
 |  | 
 | 	if (state == pci_channel_io_perm_failure) { | 
 | 		rtnl_unlock(); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		bnx2x_eeh_nic_unload(bp); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	/* Request a slot reset */ | 
 | 	return PCI_ERS_RESULT_NEED_RESET; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_io_slot_reset - called after the PCI bus has been reset | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * Restart the card from scratch, as if from a cold-boot. | 
 |  */ | 
 | static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (pci_enable_device(pdev)) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Cannot re-enable PCI device after reset\n"); | 
 | 		rtnl_unlock(); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pdev); | 
 | 	pci_restore_state(pdev); | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		bnx2x_set_power_state(bp, PCI_D0); | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	return PCI_ERS_RESULT_RECOVERED; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_io_resume - called when traffic can start flowing again | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * This callback is called when the error recovery driver tells us that | 
 |  * its OK to resume normal operation. | 
 |  */ | 
 | static void bnx2x_io_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
 | 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	bnx2x_eeh_recover(bp); | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		bnx2x_nic_load(bp, LOAD_NORMAL); | 
 |  | 
 | 	netif_device_attach(dev); | 
 |  | 
 | 	rtnl_unlock(); | 
 | } | 
 |  | 
 | static struct pci_error_handlers bnx2x_err_handler = { | 
 | 	.error_detected = bnx2x_io_error_detected, | 
 | 	.slot_reset     = bnx2x_io_slot_reset, | 
 | 	.resume         = bnx2x_io_resume, | 
 | }; | 
 |  | 
 | static struct pci_driver bnx2x_pci_driver = { | 
 | 	.name        = DRV_MODULE_NAME, | 
 | 	.id_table    = bnx2x_pci_tbl, | 
 | 	.probe       = bnx2x_init_one, | 
 | 	.remove      = __devexit_p(bnx2x_remove_one), | 
 | 	.suspend     = bnx2x_suspend, | 
 | 	.resume      = bnx2x_resume, | 
 | 	.err_handler = &bnx2x_err_handler, | 
 | }; | 
 |  | 
 | static int __init bnx2x_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	pr_info("%s", version); | 
 |  | 
 | 	bnx2x_wq = create_singlethread_workqueue("bnx2x"); | 
 | 	if (bnx2x_wq == NULL) { | 
 | 		pr_err("Cannot create workqueue\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ret = pci_register_driver(&bnx2x_pci_driver); | 
 | 	if (ret) { | 
 | 		pr_err("Cannot register driver\n"); | 
 | 		destroy_workqueue(bnx2x_wq); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit bnx2x_cleanup(void) | 
 | { | 
 | 	struct list_head *pos, *q; | 
 | 	pci_unregister_driver(&bnx2x_pci_driver); | 
 |  | 
 | 	destroy_workqueue(bnx2x_wq); | 
 |  | 
 | 	/* Free globablly allocated resources */ | 
 | 	list_for_each_safe(pos, q, &bnx2x_prev_list) { | 
 | 		struct bnx2x_prev_path_list *tmp = | 
 | 			list_entry(pos, struct bnx2x_prev_path_list, list); | 
 | 		list_del(pos); | 
 | 		kfree(tmp); | 
 | 	} | 
 | } | 
 |  | 
 | void bnx2x_notify_link_changed(struct bnx2x *bp) | 
 | { | 
 | 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); | 
 | } | 
 |  | 
 | module_init(bnx2x_init); | 
 | module_exit(bnx2x_cleanup); | 
 |  | 
 | #ifdef BCM_CNIC | 
 | /** | 
 |  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @set:	set or clear the CAM entry | 
 |  * | 
 |  * This function will wait until the ramdord completion returns. | 
 |  * Return 0 if success, -ENODEV if ramrod doesn't return. | 
 |  */ | 
 | static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) | 
 | { | 
 | 	unsigned long ramrod_flags = 0; | 
 |  | 
 | 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
 | 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, | 
 | 				 &bp->iscsi_l2_mac_obj, true, | 
 | 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); | 
 | } | 
 |  | 
 | /* count denotes the number of new completions we have seen */ | 
 | static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) | 
 | { | 
 | 	struct eth_spe *spe; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	spin_lock_bh(&bp->spq_lock); | 
 | 	BUG_ON(bp->cnic_spq_pending < count); | 
 | 	bp->cnic_spq_pending -= count; | 
 |  | 
 |  | 
 | 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { | 
 | 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) | 
 | 				& SPE_HDR_CONN_TYPE) >> | 
 | 				SPE_HDR_CONN_TYPE_SHIFT; | 
 | 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) | 
 | 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff; | 
 |  | 
 | 		/* Set validation for iSCSI L2 client before sending SETUP | 
 | 		 *  ramrod | 
 | 		 */ | 
 | 		if (type == ETH_CONNECTION_TYPE) { | 
 | 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) | 
 | 				bnx2x_set_ctx_validation(bp, &bp->context. | 
 | 					vcxt[BNX2X_ISCSI_ETH_CID].eth, | 
 | 					BNX2X_ISCSI_ETH_CID); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * There may be not more than 8 L2, not more than 8 L5 SPEs | 
 | 		 * and in the air. We also check that number of outstanding | 
 | 		 * COMMON ramrods is not more than the EQ and SPQ can | 
 | 		 * accommodate. | 
 | 		 */ | 
 | 		if (type == ETH_CONNECTION_TYPE) { | 
 | 			if (!atomic_read(&bp->cq_spq_left)) | 
 | 				break; | 
 | 			else | 
 | 				atomic_dec(&bp->cq_spq_left); | 
 | 		} else if (type == NONE_CONNECTION_TYPE) { | 
 | 			if (!atomic_read(&bp->eq_spq_left)) | 
 | 				break; | 
 | 			else | 
 | 				atomic_dec(&bp->eq_spq_left); | 
 | 		} else if ((type == ISCSI_CONNECTION_TYPE) || | 
 | 			   (type == FCOE_CONNECTION_TYPE)) { | 
 | 			if (bp->cnic_spq_pending >= | 
 | 			    bp->cnic_eth_dev.max_kwqe_pending) | 
 | 				break; | 
 | 			else | 
 | 				bp->cnic_spq_pending++; | 
 | 		} else { | 
 | 			BNX2X_ERR("Unknown SPE type: %d\n", type); | 
 | 			bnx2x_panic(); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		spe = bnx2x_sp_get_next(bp); | 
 | 		*spe = *bp->cnic_kwq_cons; | 
 |  | 
 | 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", | 
 | 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count); | 
 |  | 
 | 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last) | 
 | 			bp->cnic_kwq_cons = bp->cnic_kwq; | 
 | 		else | 
 | 			bp->cnic_kwq_cons++; | 
 | 	} | 
 | 	bnx2x_sp_prod_update(bp); | 
 | 	spin_unlock_bh(&bp->spq_lock); | 
 | } | 
 |  | 
 | static int bnx2x_cnic_sp_queue(struct net_device *dev, | 
 | 			       struct kwqe_16 *kwqes[], u32 count) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) { | 
 | 		BNX2X_ERR("Can't post to SP queue while panic\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && | 
 | 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { | 
 | 		BNX2X_ERR("Handling parity error recovery. Try again later\n"); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	spin_lock_bh(&bp->spq_lock); | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		struct eth_spe *spe = (struct eth_spe *)kwqes[i]; | 
 |  | 
 | 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) | 
 | 			break; | 
 |  | 
 | 		*bp->cnic_kwq_prod = *spe; | 
 |  | 
 | 		bp->cnic_kwq_pending++; | 
 |  | 
 | 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", | 
 | 		   spe->hdr.conn_and_cmd_data, spe->hdr.type, | 
 | 		   spe->data.update_data_addr.hi, | 
 | 		   spe->data.update_data_addr.lo, | 
 | 		   bp->cnic_kwq_pending); | 
 |  | 
 | 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last) | 
 | 			bp->cnic_kwq_prod = bp->cnic_kwq; | 
 | 		else | 
 | 			bp->cnic_kwq_prod++; | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&bp->spq_lock); | 
 |  | 
 | 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) | 
 | 		bnx2x_cnic_sp_post(bp, 0); | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) | 
 | { | 
 | 	struct cnic_ops *c_ops; | 
 | 	int rc = 0; | 
 |  | 
 | 	mutex_lock(&bp->cnic_mutex); | 
 | 	c_ops = rcu_dereference_protected(bp->cnic_ops, | 
 | 					  lockdep_is_held(&bp->cnic_mutex)); | 
 | 	if (c_ops) | 
 | 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl); | 
 | 	mutex_unlock(&bp->cnic_mutex); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) | 
 | { | 
 | 	struct cnic_ops *c_ops; | 
 | 	int rc = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	c_ops = rcu_dereference(bp->cnic_ops); | 
 | 	if (c_ops) | 
 | 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * for commands that have no data | 
 |  */ | 
 | int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) | 
 | { | 
 | 	struct cnic_ctl_info ctl = {0}; | 
 |  | 
 | 	ctl.cmd = cmd; | 
 |  | 
 | 	return bnx2x_cnic_ctl_send(bp, &ctl); | 
 | } | 
 |  | 
 | static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) | 
 | { | 
 | 	struct cnic_ctl_info ctl = {0}; | 
 |  | 
 | 	/* first we tell CNIC and only then we count this as a completion */ | 
 | 	ctl.cmd = CNIC_CTL_COMPLETION_CMD; | 
 | 	ctl.data.comp.cid = cid; | 
 | 	ctl.data.comp.error = err; | 
 |  | 
 | 	bnx2x_cnic_ctl_send_bh(bp, &ctl); | 
 | 	bnx2x_cnic_sp_post(bp, 0); | 
 | } | 
 |  | 
 |  | 
 | /* Called with netif_addr_lock_bh() taken. | 
 |  * Sets an rx_mode config for an iSCSI ETH client. | 
 |  * Doesn't block. | 
 |  * Completion should be checked outside. | 
 |  */ | 
 | static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) | 
 | { | 
 | 	unsigned long accept_flags = 0, ramrod_flags = 0; | 
 | 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); | 
 | 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; | 
 |  | 
 | 	if (start) { | 
 | 		/* Start accepting on iSCSI L2 ring. Accept all multicasts | 
 | 		 * because it's the only way for UIO Queue to accept | 
 | 		 * multicasts (in non-promiscuous mode only one Queue per | 
 | 		 * function will receive multicast packets (leading in our | 
 | 		 * case). | 
 | 		 */ | 
 | 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); | 
 | 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); | 
 |  | 
 | 		/* Clear STOP_PENDING bit if START is requested */ | 
 | 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); | 
 |  | 
 | 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; | 
 | 	} else | 
 | 		/* Clear START_PENDING bit if STOP is requested */ | 
 | 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); | 
 |  | 
 | 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) | 
 | 		set_bit(sched_state, &bp->sp_state); | 
 | 	else { | 
 | 		__set_bit(RAMROD_RX, &ramrod_flags); | 
 | 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, | 
 | 				    ramrod_flags); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	int rc = 0; | 
 |  | 
 | 	switch (ctl->cmd) { | 
 | 	case DRV_CTL_CTXTBL_WR_CMD: { | 
 | 		u32 index = ctl->data.io.offset; | 
 | 		dma_addr_t addr = ctl->data.io.dma_addr; | 
 |  | 
 | 		bnx2x_ilt_wr(bp, index, addr); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { | 
 | 		int count = ctl->data.credit.credit_count; | 
 |  | 
 | 		bnx2x_cnic_sp_post(bp, count); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* rtnl_lock is held.  */ | 
 | 	case DRV_CTL_START_L2_CMD: { | 
 | 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 | 		unsigned long sp_bits = 0; | 
 |  | 
 | 		/* Configure the iSCSI classification object */ | 
 | 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, | 
 | 				   cp->iscsi_l2_client_id, | 
 | 				   cp->iscsi_l2_cid, BP_FUNC(bp), | 
 | 				   bnx2x_sp(bp, mac_rdata), | 
 | 				   bnx2x_sp_mapping(bp, mac_rdata), | 
 | 				   BNX2X_FILTER_MAC_PENDING, | 
 | 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX, | 
 | 				   &bp->macs_pool); | 
 |  | 
 | 		/* Set iSCSI MAC address */ | 
 | 		rc = bnx2x_set_iscsi_eth_mac_addr(bp); | 
 | 		if (rc) | 
 | 			break; | 
 |  | 
 | 		mmiowb(); | 
 | 		barrier(); | 
 |  | 
 | 		/* Start accepting on iSCSI L2 ring */ | 
 |  | 
 | 		netif_addr_lock_bh(dev); | 
 | 		bnx2x_set_iscsi_eth_rx_mode(bp, true); | 
 | 		netif_addr_unlock_bh(dev); | 
 |  | 
 | 		/* bits to wait on */ | 
 | 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); | 
 | 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); | 
 |  | 
 | 		if (!bnx2x_wait_sp_comp(bp, sp_bits)) | 
 | 			BNX2X_ERR("rx_mode completion timed out!\n"); | 
 |  | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* rtnl_lock is held.  */ | 
 | 	case DRV_CTL_STOP_L2_CMD: { | 
 | 		unsigned long sp_bits = 0; | 
 |  | 
 | 		/* Stop accepting on iSCSI L2 ring */ | 
 | 		netif_addr_lock_bh(dev); | 
 | 		bnx2x_set_iscsi_eth_rx_mode(bp, false); | 
 | 		netif_addr_unlock_bh(dev); | 
 |  | 
 | 		/* bits to wait on */ | 
 | 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); | 
 | 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); | 
 |  | 
 | 		if (!bnx2x_wait_sp_comp(bp, sp_bits)) | 
 | 			BNX2X_ERR("rx_mode completion timed out!\n"); | 
 |  | 
 | 		mmiowb(); | 
 | 		barrier(); | 
 |  | 
 | 		/* Unset iSCSI L2 MAC */ | 
 | 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, | 
 | 					BNX2X_ISCSI_ETH_MAC, true); | 
 | 		break; | 
 | 	} | 
 | 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { | 
 | 		int count = ctl->data.credit.credit_count; | 
 |  | 
 | 		smp_mb__before_atomic_inc(); | 
 | 		atomic_add(count, &bp->cq_spq_left); | 
 | 		smp_mb__after_atomic_inc(); | 
 | 		break; | 
 | 	} | 
 | 	case DRV_CTL_ULP_REGISTER_CMD: { | 
 | 		int ulp_type = ctl->data.ulp_type; | 
 |  | 
 | 		if (CHIP_IS_E3(bp)) { | 
 | 			int idx = BP_FW_MB_IDX(bp); | 
 | 			u32 cap; | 
 |  | 
 | 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); | 
 | 			if (ulp_type == CNIC_ULP_ISCSI) | 
 | 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; | 
 | 			else if (ulp_type == CNIC_ULP_FCOE) | 
 | 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; | 
 | 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case DRV_CTL_ULP_UNREGISTER_CMD: { | 
 | 		int ulp_type = ctl->data.ulp_type; | 
 |  | 
 | 		if (CHIP_IS_E3(bp)) { | 
 | 			int idx = BP_FW_MB_IDX(bp); | 
 | 			u32 cap; | 
 |  | 
 | 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); | 
 | 			if (ulp_type == CNIC_ULP_ISCSI) | 
 | 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; | 
 | 			else if (ulp_type == CNIC_ULP_FCOE) | 
 | 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; | 
 | 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		BNX2X_ERR("unknown command %x\n", ctl->cmd); | 
 | 		rc = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) | 
 | { | 
 | 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 |  | 
 | 	if (bp->flags & USING_MSIX_FLAG) { | 
 | 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; | 
 | 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; | 
 | 		cp->irq_arr[0].vector = bp->msix_table[1].vector; | 
 | 	} else { | 
 | 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; | 
 | 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; | 
 | 	} | 
 | 	if (!CHIP_IS_E1x(bp)) | 
 | 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; | 
 | 	else | 
 | 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; | 
 |  | 
 | 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp); | 
 | 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); | 
 | 	cp->irq_arr[1].status_blk = bp->def_status_blk; | 
 | 	cp->irq_arr[1].status_blk_num = DEF_SB_ID; | 
 | 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; | 
 |  | 
 | 	cp->num_irq = 2; | 
 | } | 
 |  | 
 | static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, | 
 | 			       void *data) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 |  | 
 | 	if (ops == NULL) { | 
 | 		BNX2X_ERR("NULL ops received\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!bp->cnic_kwq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bp->cnic_kwq_cons = bp->cnic_kwq; | 
 | 	bp->cnic_kwq_prod = bp->cnic_kwq; | 
 | 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; | 
 |  | 
 | 	bp->cnic_spq_pending = 0; | 
 | 	bp->cnic_kwq_pending = 0; | 
 |  | 
 | 	bp->cnic_data = data; | 
 |  | 
 | 	cp->num_irq = 0; | 
 | 	cp->drv_state |= CNIC_DRV_STATE_REGD; | 
 | 	cp->iro_arr = bp->iro_arr; | 
 |  | 
 | 	bnx2x_setup_cnic_irq_info(bp); | 
 |  | 
 | 	rcu_assign_pointer(bp->cnic_ops, ops); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_unregister_cnic(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 |  | 
 | 	mutex_lock(&bp->cnic_mutex); | 
 | 	cp->drv_state = 0; | 
 | 	RCU_INIT_POINTER(bp->cnic_ops, NULL); | 
 | 	mutex_unlock(&bp->cnic_mutex); | 
 | 	synchronize_rcu(); | 
 | 	kfree(bp->cnic_kwq); | 
 | 	bp->cnic_kwq = NULL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 |  | 
 | 	/* If both iSCSI and FCoE are disabled - return NULL in | 
 | 	 * order to indicate CNIC that it should not try to work | 
 | 	 * with this device. | 
 | 	 */ | 
 | 	if (NO_ISCSI(bp) && NO_FCOE(bp)) | 
 | 		return NULL; | 
 |  | 
 | 	cp->drv_owner = THIS_MODULE; | 
 | 	cp->chip_id = CHIP_ID(bp); | 
 | 	cp->pdev = bp->pdev; | 
 | 	cp->io_base = bp->regview; | 
 | 	cp->io_base2 = bp->doorbells; | 
 | 	cp->max_kwqe_pending = 8; | 
 | 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ; | 
 | 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + | 
 | 			     bnx2x_cid_ilt_lines(bp); | 
 | 	cp->ctx_tbl_len = CNIC_ILT_LINES; | 
 | 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; | 
 | 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; | 
 | 	cp->drv_ctl = bnx2x_drv_ctl; | 
 | 	cp->drv_register_cnic = bnx2x_register_cnic; | 
 | 	cp->drv_unregister_cnic = bnx2x_unregister_cnic; | 
 | 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID; | 
 | 	cp->iscsi_l2_client_id = | 
 | 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); | 
 | 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID; | 
 |  | 
 | 	if (NO_ISCSI_OOO(bp)) | 
 | 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; | 
 |  | 
 | 	if (NO_ISCSI(bp)) | 
 | 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; | 
 |  | 
 | 	if (NO_FCOE(bp)) | 
 | 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; | 
 |  | 
 | 	BNX2X_DEV_INFO( | 
 | 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", | 
 | 	   cp->ctx_blk_size, | 
 | 	   cp->ctx_tbl_offset, | 
 | 	   cp->ctx_tbl_len, | 
 | 	   cp->starting_cid); | 
 | 	return cp; | 
 | } | 
 | EXPORT_SYMBOL(bnx2x_cnic_probe); | 
 |  | 
 | #endif /* BCM_CNIC */ | 
 |  |